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On Universal Properties of Capacity-Approaching

LDPC Ensembles
Igal Sason, Member

Abstract

This paper provides some universal information-theoretic bounds related to capacity-approaching ensembles of low-density

parity-check (LDPC) codes. These bounds refer to the behavior of the degree distributions of such ensembles, and also

to the graphical complexity and the fundamental system of cycles associated with the Tanner graphs of LDPC ensembles.

The transmission of these ensembles is assumed to take place over an arbitrary memoryless binary-input output-symmetric

(MBIOS) channel. The universality of the bounds derived in this paper stems from the fact that they do not depend on the

full characterization of the LDPC ensembles but rather depend on the achievable gap between the channel capacity and the

design rate of the ensemble, and also on the required bit error (or erasure) probability at the end of the decoding process.

Some of these bounds hold under maximum-likelihood decoding (and hence, they also hold under any sub-optimal decoding

algorithm) whereas the others hold particularly under the sum-product iterative decoding algorithm. The tightness of some of

these bounds is exemplified numerically for capacity-approaching LDPC ensembles under sum-product decoding; the bounds

are reasonably tight for general MBIOS channels, and are tightened for the binary erasure channel.

Index Terms

Cycles, low-density parity-check (LDPC) codes, maximum-likelihood decoding, memoryless binary-input output-symmetric

(MBIOS) channels, stability condition, sum-product decoding algorithm, Tanner graphs.

I. INTRODUCTION

Low-density parity-check (LDPC) codes were introduced by Gallager [7] in the early 1960s. These linear block

codes are characterized by sparse parity-check matrices which facilitate their efficient decoding with sub-optimal

iterative message-passing algorithms. In spite of the seminal work of Gallager [7], LDPC codes were ignored for

a long time. Following the breakthrough in coding theory made by the introduction of turbo codes [2] and the

rediscovery of LDPC codes [13] in the mid 1990s, it was realized that these codes and lots of other variants of

capacity-approaching error-correcting codes can all be understood as codes defined on graphs. Graphs not only

describe the codes, but more importantly, they structure the operation of efficient iterative decoding algorithms

which are used to decode these codes. Various iterative algorithms, used to decode codes defined on graphs, enable

to closely approach the channel capacity while maintaining reasonable decoding complexity. This breakthrough

attracted coding theorists, and lots of research activity has been conducted during the last decade on these modern

coding techniques and their practical decoding algorithms; the reader is referred to the special issue of the IEEE

Transactions on Information Theory on codes on graphs and iterative algorithms [26].

This paper derives some universal information-theoretic bounds related to capacity-approaching LDPC ensembles

whose transmission takes place over a memoryless binary-input output-symmetric (MBIOS) channel. The universal-

ity of the bounds derived in this paper stems from the fact that they do not depend on the full characterization of the

LDPC ensembles but rather depend on the achievable gap between the channel capacity and the design rate of the

ensemble, and also on the required bit error (or erasure) probability at the end of the decoding process. Most of these

bounds apply to the asymptotic case where we let the block length tend to infinity, and the bounds are compared

with some capacity-approaching LDPC ensembles. The design of such ensembles under iterative decoding lies on

a solid background due to the density evolution technique which was developed by Richardson and Urbanke (see

[10], [18], [19]). This technique is commonly used for a numerical search of the degree distributions of capacity-

approaching LDPC ensembles where the target is to minimize the gap to capacity for infinite block length while
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limiting the maximal degree and specifying the communication channel model. Some approximate techniques which

optimize the degree distributions of LDPC ensembles under further practical constraints (e.g., an optimization of the

degree distributions of LDPC ensembles for obtaining a good tradeoff between the asymptotic gap to capacity and

the decoding complexity [1]) are of interest. For the binary erasure channel (BEC), the density evolution technique

is tractable for analysis (as it becomes a one-dimensional analysis), and explicit expressions for capacity-achieving

sequences of LDPC ensembles for the BEC are introduced in [12], [17], [24]. For general MBIOS channels, as

of yet there are no closed-form expressions for capacity-achieving sequences of LDPC ensembles under iterative

decoding, and the density evolution technique is used as a numerical tool for devising the degree distributions of

capacity-approaching LDPC ensembles in the limit where their block length tends to infinity.

It is well known that linear block codes which are represented by cycle-free Tanner graphs have poor performance

even under ML decoding [6]. The Tanner graphs of capacity-approaching LDPC codes should have cycles, and

it is of interest to provide some quantitative bounds related to the average cardinality of these cycles for LDPC

ensembles. Following the approach of Khandekar and McEliece in [11] where the decoding complexity is measured

in terms of the achievable gap (in rate) to capacity, we also study in this paper the behavior of the degree distributions

and the average cardinality of the fundamental system of cycles of LDPC ensembles in terms of their achievable

gap to capacity. Several of the results derived in this paper hold under ML decoding (and, hence, they also hold

under any sub-optimal decoding algorithm), while some other results are specialized to the iterative sum-product

decoding algorithm.

This paper is structured as follows: Section II presents preliminary background and notation, Section III introduces

the main results of this paper, Section IV provides their proofs followed by some discussions, and Section V

exemplifies the numerical tightness of some of the bounds derived in this paper. Finally, Section VI summarizes

this paper, and provides some open problems which are related to this research.

II. PRELIMINARIES

We introduce here some background from [8], [21], [25] and [28] and notation which serve for the rest of this

paper.

A. LDPC Ensembles

LDPC codes are linear block codes which are characterized by sparse parity-check matrices. Alternatively, a

parity-check matrix can be represented by a bipartite (Tanner) graph where the variable and parity-check nodes

which specify the binary linear block code are on the left and the right of this graph, respectively, and an edge

connects between a variable node and a parity-check node if the corresponding code symbol is involved in the

specific parity-check equation. This is illustrated in Fig. 1.
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Fig. 1. A parity-check matrix H and the corresponding Tanner graph. For illustrating this relationship, column 8 and row 2 of H are

emphasized; the corresponding variable and parity-check nodes, and the attached edges are also emphasized (this figure appears in [20], and

it is used later in this section as a reference).

We now move to consider ensembles of LDPC codes. The requirement of the sparseness of the parity-check

matrices representing LDPC codes is transformed to an equivalent requirement where the number of edges in the
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Tanner graph scales linearly with the block length (note that by picking a parity-check matrix uniformly at random

as a representative of a binary linear block codes, the number of non-zero elements in this matrix is likely to scale

quadratically with the block length). Following standard notation in [21], let λi and ρi denote the fraction of edges

attached to variable and parity-check nodes of degree i, respectively. In a similar manner, let Λi and Γi denote the

fraction of variable and parity-check nodes of degree i, respectively. The LDPC ensemble is characterized by a

triplet (n, λ, ρ) where n designates the block length of the codes, and the power series

λ(x) ,

∞∑

i=1

λix
i−1, ρ(x) ,

∞∑

i=1

ρix
i−1

represent, respectively, the left and right degree distributions from the edge perspective. Equivalently, this ensemble

is also characterized by the triplet (n, Λ, Γ) where the power series

Λ(x) ,

∞∑

i=1

Λix
i, Γ(x) ,

∞∑

i=1

Γix
i

represent, respectively, the left and right degree distributions from the node perspective. We denote by LDPC(n, λ, ρ)
(or LDPC(n, Λ, Γ)) the ensemble of codes whose bipartite graphs are constructed according to the corresponding

pairs of degree distributions. The connections between the edges emanating from the variable nodes to the parity-

check nodes are constructed by numbering the connectors on the left and the right of the graph (whose number

is the same on both sides, and is equal to s = n
∑∞

i=1 iΛi), and by using a random and uniform permutation

π : {1, . . . , s} → {1, . . . , s} which associates connector number i (where 1 ≤ i ≤ s) on the left side of this graph

with the connector whose number is π(i) on the right. One can switch between degree distributions w.r.t. to the

nodes and edges of a bipartite graph, using the following equations:

Λ(x) =

∫ x

0
λ(u)du

∫ 1

0
λ(u)du

, Γ(x) =

∫ x

0
ρ(u)du

∫ 1

0
ρ(u)du

λ(x) =
Λ′(x)

Λ′(1)
, ρ(x) =

Γ′(x)

Γ′(1)
.

An important characteristic of an ensemble of LPDC codes is its design rate. For an LDPC ensemble whose codes

are represented by parity-check matrices of dimension c × n, the design rate is defined to be Rd , 1 − c
n . This

serves as a lower bound on the actual rate of any code from this ensemble, and the rate of such a code is equal to

the design rate if the particular parity-check matrix representing this code is full rank. For an ensemble of LDPC

codes, the design rate is given in terms of the degree distributions (either w.r.t. the edges or nodes of a Tanner

graph), and it can be expressed in two equivalent forms:

Rd = 1 −

∫ 1

0
ρ(x)dx

∫ 1

0
λ(x)dx

= 1 − Λ′(1)

Γ′(1)
. (1)

Note that

aL = Λ′(1) =
1

∫ 1

0
λ(x)dx

, aR = Γ′(1) =
1

∫ 1

0
ρ(x)dx

designate the average left and right degrees, respectively (i.e., the average degrees of the variable nodes and parity-

check nodes, respectively).

In this paper, we rely on the stability condition which forms a necessary condition for a successful iterative

message-passing decoding for LDPC ensembles. The reader is referred to [21, Chapter 4] for more background on

the analytical tools used for the asymptotic analysis of LDPC ensembles over MBIOS channels, and the stability

condition in particular.
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B. Elements from Graph Theory

Definition 1: [Tree] A tree is a connected graph that has no cycles.

From Definition 1, trees are the smallest connected graphs; remove any edge from a tree and it becomes disconnected.

A fundamental property of trees is that any two vertices are connected by a unique path.

Every graph G has subgraphs that are trees. This motivates the following definition:

Definition 2: [Spanning tree] A spanning tree of a graph G is a tree which spans all the vertices of G.

Lemma 1: Every connected graph has a spanning tree.

Proof: Let G be a connected graph. If G has no cycles, then it is a spanning tree. Otherwise, choose a cycle

S in the graph, and remove an arbitrary edge e which belongs to this cycle. The remaining graph is still connected

since any path which uses the removed edge e can now be replaced by a path using S − {e}, so that every two

vertices of the graph G are still connected. One can repeat this process as many times as required until the resulting

graph has no cycles. By construction, it is a spanning tree of G.

Definition 3: [Fundamental cycle of a connected graph] Let F be a spanning tree of a graph G, and let e be

any edge in the relative complement of F . The cycle of the subgraph F ∪ {e} (whose existence and uniqueness is

guaranteed by [8, Theorem 3.1.11]) is called a fundamental cycle of G which is associated with the spanning tree

F .

We turn now to discuss graphs with a finite number of components.

Definition 4: [Number of components of a graph] Let G be a graph (possibly disconnected). The number of

components of G is the minimal number of its connected subgraphs whose union forms the graph G (clearly, a

connected graph has a unique component).

Definition 5: [Cycle rank] Let G be an arbitrary graph with |VG | vertices, |EG | edges and C(G) components.

The cycle rank of G, denoted by β(G), equals the maximal number of edges which can be removed from the graph

without increasing its number of components.

From Definition 5, the cycle rank of a graph is a measure of the edge redundancy with respect to the connectedness

of this graph. The cycle rank satisfies the following equality (see [8, p. 154]):

β(G) = |EG | − |VG | + C(G). (2)

Definition 6: [Full spanning forest] Let G be an arbitrary graph. The full spanning forest F of the graph G is

the subgraph of G after removing the β(G) edges from Definition 5. Clearly, the number of components of F and

G is the same.

Definition 7: [Fundamental cycle] Let F be a full spanning forest of a graph G, and let e be any edge in the

relative complement of F . The cycle of the subgraph F ∪ {e} (whose existence and uniqueness is guaranteed by

[8, Theorem 3.1.11]) is called a fundamental cycle of G which is associated with F .

Remark 1: Each of the edges in the relative complement of a full spanning forest F gives rise to a different

fundamental cycle of the graph G.

Definition 8: [Fundamental system of cycles] The fundamental system of cycles of a graph G which is associated

with a full spanning forest F is the set of all fundamental cycles of G associated with F .

Remark 2: By Remark 1, the cardinality of the fundamental system of cycles of G associated with a full spanning

forest of this graph is equal to the cycle rank β(G).
Example 1: [Illustration with the Tanner graph in Fig. 1] We refer now to the Tanner graph in Fig. 1. This

graph is connected, but it is clearly not a tree. As an example of a cycle in this graph, we refer to the path which

connects v9 to c4, c4 to v10, v10 to c5, and finally c5 back to v9; this cycle includes 4 edges, so it is a cycle of

the shortest length. Since the number of vertices in this graph is 15 and the number of edges is 30, then from (2),

the cycle rank of this connected Tanner graph is equal to 30− 15 + 1 = 16. In order to get a spanning tree of this

graph, we follow the concept of the proof of Lemma 1, and remove sequentially 16 suitable edges from this graph

so that it still remains connected. In the following, we show the parity-check matrix H̃ which corresponds to the

new Tanner graph after the removal of the above 16 edges from the original graph in Fig. 1; the new zero entries

of H̃ which correspond to these removed edges are bolded.

The matrix H̃ with its bolded zeros defines a set of 16 fundamental cycles of the Tanner graph in Fig. 1. For

example, by returning the edge which connects v6 with c1 (i.e., returning the value in the first row and sixth column

of H̃ to be 1), we get a fundamental cycle; this is the path which connects v3 to c2, c2 to v6, v6 to c1, and c1 back
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Fig. 2. A parity-check matrix which corresponds to a spanning tree of the Tanner graph in Fig. 1. As compared to the parity-check matrix

H in Fig. 1, the new parity-check matrix H̃ is obtained by changing the values of the emphasized 16 entries from 1 to 0.

to v3). This is clearly a fundamental cycle in this graph since it is a cycle of the shortest possible length. The new

Tanner graph which corresponds to H̃ is connected. For example, the variable nodes v5 and v6 are connected by

the path of length 6 which connects v6 to c2, c2 to v3, v3 to c1, c1 to v1, v1 to c4 and c4 to v5. This path can be

observed directly from the parity-check matrix H̃ = [h̃i,j ] by alternate horizontal and vertical moves through the

ones of H̃; explicitly, this path is determined by the horizontal move from h̃2,6 to h̃2,3, then the vertical move to

h̃1,3, the horizontal move to h̃1,1, the vertical move to h̃4,1 and the horizontal move to h̃4,5. In a similar way one

can show that each two vertices of the Tanner graph which corresponds to H̃ are connected, and hence this graph

is indeed a spanning tree of the Tanner graph in Fig. 1. Every single edge which is added to the new graph creates

a fundamental cycle (like the one mentioned above).

C. Lower Bound on the Conditional Entropy for Binary Linear Block Codes

In this section, we outline the derivation of a lower bound on the conditional entropy of a transmitted codeword

given the received sequence at the output of the channel; the full derivation is given in [25, Section 4] and its

appendices, and it is outlined here in order to highlight the main steps used for this derivation. The lower bound

on the conditional entropy which is presented in this section is crucial for the proof of Theorem 1 of this paper.

In the sequel to this discussion, we assume that the transmission of a binary linear block code takes place over

an MBIOS channel. In the following, the block length and the code rate are designated by n and R, respectively.

Let C designate the capacity of this communication channel in units of bits per channel use.

• Define an equivalent channel whose output is the log-likelihood ratio (LLR) of the original communication

channel.

• The LLR is represented by a pair which includes its sign and absolute value.

• For the characterization of the equivalent channel, let the function a designate the conditional pdf of the LLR

given that the channel input is the zero symbol.

• We randomly generate an i.i.d. sequence {Li}n
i=1 w.r.t. the conditional pdf a, and define

Ωi , |Li|, Θi ,





0 if Li > 0

1 if Li < 0

0 or 1 w.p. 1
2 if Li = 0

.

• The output of the equivalent channel is Ỹ = (Ỹ1, . . . , Ỹn) where

Ỹi = (Φi, Ωi), i = 1, . . . , n

and Φi = Θi + Xi (this addition is modulo-2).

• The output of this equivalent channel at time i is therefore the pair (Φi, Ωi) where Φi ∈ {0, 1} and Ωi ∈ R
+.

This defines the memoryless mapping

X → Ỹ , (Φ, Ω)

where Φ is a binary random variable which is affected by X , and Ω is a non-negative random variable which

is not affected by X .
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• Due to the symmetry of the communication channel, the pdf of the absolute value of the LLR satisfies

fΩ(ω) =

{
a(ω) + a(−ω) = (1 + e−ω) a(ω) if ω > 0,

a(0) if ω = 0.

Let C be a binary linear block code of length n and rate R. In addition, let X and Y be the transmitted codeword and

received sequence, respectively. The conditional entropy of the transmitted codeword given the received sequence

at the output of the MBIOS channel satisfies

H(X|Y) = H(X|Ỹ)

= H(X) + H(Ỹ|X) − H(Ỹ)

= nR + nH(Ỹ1|X1) − H(Ỹ)

= nR + n[H(Ỹ1) − I(X1; Ỹ1)] − H(Y) (3)

and

I(X1; Ỹ1) = I(X1; Y1) ≤ C (4)

H(Ỹ ) = H(Φ, Ω)

= H(Ω) + H(Φ|Ω)

= H(Ω) + 1. (5)

The last transition in (5) is due to the fact that given the absolute value of the LLR, its sign is equally likely to be

positive or negative. The entropy H(Ω) is not expressed explicitly as it will cancel out later.

The entropy of the vector Ỹ satisfies

H(Ỹ) = H
(
Φ1, Ω1, . . . ,Φn, Ωn

)

= H(Ω1, . . . ,Ωn) + H
(
Φ1, . . . ,Φn | Ω1, . . . ,Ωn

)

= nH(Ω) + H
(
Φ1, . . . ,Φn | Ω1, . . . ,Ωn

)
. (6)

• Define the syndrome vector S = (Φ1, . . . ,Φn)HT where H is an arbitrary full-rank parity-check matrix of C.

• Let M be the index of the vector (Φ1, . . . ,Φn) in the coset.

• H(M) = nR since all the codewords are transmitted with equal probability, and we get

H
(
(Φ1, . . . ,Φn) | (Ω1, . . . ,Ωn)

)

= H(S, M | (Ω1, . . . ,Ωn)
)

≤ H(M) + H
(
S | (Ω1, . . . ,Ωn)

)

≤ nR +

n(1−R)∑

j=1

H
(
Sj | (Ω1, . . . ,Ωn)

)
. (7)

• Since XHT = 0 for any codeword X, and Φi = Xi + Θi for all i, then S = (Θ1, . . . ,Θn)HT which is

independent of the transmitted codeword.

By combining (3)–(7), one obtains that

H(X|Y) ≥ n(1 − C) −
n(1−R)∑

j=1

H(Sj

∣∣Ω1, . . . ,Ωn)

where

• Sj = 1 if and only if Θi = 1 for an odd number of i’s in the j’th parity-check equation.

• Due to the symmetry of the channel

P (αi) , P (Θi = 1
∣∣Ωi = αi) =

1

1 + eαi
.
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In order to calculate the conditional entropy of a single component of the syndrome, the following lemma is used:

Lemma 2: If the j’th component of the syndrome S involves k active variables whose indices are {i1, . . . , ik}
then

P (Sj = 1
∣∣Ωi1 = α1, . . . ,Ωik

= αk) =
1

2

[
1 −

k∏

m=1

(
1 − 2P (αm)

)]

where

1 − 2P (α) = tanh
(α

2

)
.

• For a parity-check equation of degree k, the conditional entropy H(Sj

∣∣Ω1, . . . ,Ωn) is given by the following

k-dimensional integral:

∫ ∞

0
. . .

∫ ∞

0
h2

(
1

2

[
1 −

k∏

m=1

tanh
(αm

2

)]
)

k∏

m=1

fΩ(αm) dα1 . . . dαk

where fΩ designates the pdf of the absolute value of the LLR, and h2 designates the binary entropy function

to the base 2.

• Using the Taylor series expansion of h2 (around one-half) transforms the above multi-dimensional integral to

a one-dimensional integral raised to the k’th power.

For an arbitrary full-rank parity-check matrix of a binary linear block code C, let Γi designate the fraction of the

parity-checks involving i variables, and let Γ(x) ,
∑

i Γix
i. This leads in [25, Eq. (56)] to the following lower

bound on the conditional entropy of the transmitted codeword given the received sequence at the channel output:

H(X|Y)

n
≥ R − C +

1 − R

2 ln 2

∞∑

k=1

Γ(gk)

k(2k − 1)
(8)

where

gk ,

∫ ∞

0
a(l)(1 + e−l) tanh2k

(
l

2

)
dl, k ∈ N. (9)

The above lower bound on the conditional entropy holds for any representation of the code by a full-rank parity-

check matrix. Note also that the symmetry condition states that a(l) = e la(−l) for all l ∈ R, and therefore (9)

gives that

gk = E

[
tanh2k

(
L

2

)]
, k ∈ N (10)

where E designates the statistical expectation, and L is a random variable which stands for the LLR at the output

of the channel given that the input bit is zero. This also implies that the sequence {gk} depends only on the

communication channel (and not on the code).

We note that for a general MBIOS channel, the lower bound on the conditional entropy which is given in (8)

is tighter than the bound in [3, Eq. (15)]. These two bounds coincide however for the case of a binary symmetric

channel (BSC) since the derivation of the bound in (8) relies on the soft output of the channel whereas the derivation

of the bound in [3, Eq. (15)] relies on a two-level quantization of this output (which turns the side information

about the LLR at the output of the MBIOS channel to be equivalent to the side information which is obtained from

a degraded BSC, unless this channel was originally a BSC where the two bounds then coincide).

D. Notation

We rely on the following standard notation (see [28]):

• f(n) = O
(
g(n)

)
means that there are positive constants c and k, such that 0 ≤ f(n) ≤ c g(n) for all n ≥ k.

The values of c and k must be fixed for the function f and should not depend on n.

• f(n) = Ω
(
g(n)

)
means that there are positive constants c and k, such that 0 ≤ c g(n) ≤ f(n) for all n ≥ k.

The values of c and k must be fixed for the function f and should not depend on n.

In this paper, we refer to the gap (in rate) to capacity, denoted by ε, and discuss in particular the case where

0 ≤ ε ≪ 1 (i.e., capacity-approaching ensembles). Accordingly, we have



8 SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, SEPTEMBER 2007

• f(ε) = O
(
g(ε)

)
means that there are positive constants c and δ, such that 0 ≤ f(ε) ≤ c g(ε) for all 0 ≤ ε ≤ δ.

The values of c and δ must be fixed for the function f and should not depend on ε.

• f(ε) = Ω
(
g(ε)

)
means that there are positive constants c and δ, such that 0 ≤ c g(ε) ≤ f(ε) for all 0 ≤ ε ≤ δ.

The values of c and δ must be fixed for the function f and should not depend on ε.

Throughout the paper

h2(x) , −x log2(x) − (1 − x) log2(1 − x), 0 ≤ x ≤ 1

designates the binary entropy function to the base 2, and h−1
2 : [0, 1] →

[
0, 1

2

]
stands for its inverse function.

III. MAIN RESULTS

The following theorem provides an information-theoretic lower bound on the average degree of the parity-check

nodes of an arbitrary Tanner graph representing a binary linear block code; it is assumed that the graph corresponds

to a full-rank parity-check matrix of this code. The new bound forms a tightened version of a previously reported

lower bound (see [25, Eq. (77)]). We later generalize this theorem for LDPC ensembles.

Theorem 1: [On the average degree of the parity-check nodes] Let C be a binary linear block code whose

transmission takes place over an MBIOS channel. Let G be a standard bipartite (Tanner) graph which represents

the code while referring to a full-rank parity-check matrix of the code, let C designate the channel capacity in units

of bits per channel use, and a be the conditional pdf of the log-likelihood ratio (LLR) at the output of the channel

given that the input is zero. Let the code rate be (at least) a fraction 1− ε of the channel capacity (where ε ∈ (0, 1)
is arbitrary), and assume that this code achieves a bit error probability Pb under some decoding algorithm. Then

the average right degree of the Tanner graph of the code (i.e., the average degree of the parity-check nodes in G)

satisfies

aR ≥

2 ln


 1

1−2h−1
2

(
1−C−h2(Pb)

1−(1−ε)C

)




ln
(

1
g1

) (11)

where g1 only depends on the channel and is given by

g1 ,

∫ ∞

0
a(l)(1 + e−l) tanh2

(
l

2

)
dl. (12)

For the BEC, this bound is tightened to

aR ≥
ln

(
1 + p−Pb

(1−p)ε+Pb

)

ln
(

1
1−p

) (13)

where p is the erasure probability of the BEC and Pb is the erasure probability of the code. Furthermore, among all

the MBIOS channels with a fixed capacity C, and for fixed values of the gap (in rate) to capacity (ε) and bit error/

erasure probability (Pb), the lower bound on the average degree of the parity-check nodes given in (11) attains its

maximal and minimal values for a BSC and BEC, respectively.

Remark 3: In the particular case where Pb vanishes, the lower bound on the average right degree introduced in

(11) forms a tightened version of the bound given in [25, Eq. (77)]; note also that the bit error probability is taken

into account in Theorem 1 while it is assumed to vanish in [25, Eq. (77)]. This point and some of its implications

are clarified in Discussion 1, which proceeds the proof of Theorem 1. In the limit where the gap (in rate) to capacity

vanishes, the lower bounds on the average right degree in (11) and [25, Eq. (77)] both grow like the logarithm of

the inverse of the gap to capacity and they possess the same behavior. In this case

aR = Ω

(
ln

1

ε

)
. (14)

Besides of tightening the bound in [25, Eq. (77)] and generalizing it to the case where the bit error (or erasure)

probability is strictly positive, Theorem 1 also states the two extreme cases among all MBIOS channels with fixed

capacity.
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Remark 4: As is clarified later in Discussion 2, Theorem 1 can be adapted to hold for an arbitrary ensemble of

(n, λ, ρ) LDPC codes. In this case, the requirement of a full-rank parity-check matrix of a particular code C from

this ensemble is relaxed by requiring that the design rate of the LDPC ensemble forms a fraction 1 − ε of the

channel capacity. In this case, Pb stands for the average bit error (or erasure) probability of the ensemble under

some decoding algorithm.

Corollary 1: Under the assumptions in Theorem 1, the cardinality of the fundamental system of cycles of a

Tanner graph G, associated with a full spanning forest of this graph, is larger than

n
[
(1 − R)(aR − 1) − 1

]
(15)

where from Theorem 1, aR can be replaced by the lower bounds in (11) and (13) for a general MBIOS channel

and a BEC, respectively. From this corollary and Remark 3, the cardinality of the fundamental system of cycles of

the Tanner graph G which is associated with a full spanning forest of this graph is Ω
(
ln 1

ε

)
.

Based on Remark 4 and Corollary 1, the following result is derived:

Corollary 2: [On the asymptotic average cardinality of the fundamental system of cycles of LDPC ensem-

bles] Consider a sequence of LDPC ensembles, specified by an arbitrary pair of degree distributions (λ, ρ), whose

transmission takes place over an MBIOS channel. Let the design rate of these ensembles be a fraction 1− ε of the

channel capacity C (in units of bits per channel use), and assume that the average bit error/ erasure probability of

such an LDPC ensemble vanishes under some decoding algorithm as we let the block length tend to infinity. Then,

the average cardinality of the fundamental system of cycles of a Tanner graph G (denoted by β(G)) satisfies the

following asymptotic property when the average is taken over all the Tanner graphs which represent codes from

an LDPC ensemble of this sequence and as we let the block length tend to infinity:

lim inf
n→∞

ELDPC(n,λ,ρ)

[
β(G)

]

n

≥
(1 − C) ln

(
g1

[
1 − 2h−1

2

(
1−C

1−(1−ε)C

)]−2
)

ln
(

1
g1

) − 1 (16)

where g1 in introduced in (12). For a BEC whose erasure probability is p, a tightened version of this result gets

the form

lim inf
n→∞

ELDPC(n,λ,ρ)

[
β(G)

]

n
≥ p ln

(
1 − p + p

ε

)

ln
(

1
1−p

) − 1. (17)

Furthermore, among all the MBIOS channels with a fixed capacity C and for a fixed value of the achievable gap

in rate (ε) to the channel capacity, the lower bound (16) on the asymptotic average cardinality of the fundamental

system of cycles attains its maximal and minimal values for a BSC and BEC, respectively.

Remark 5: Corollary 2 provides two results which are of the type Ω
(
ln 1

ε

)
.

Theorem 2: [On the degree distributions of capacity-approaching LDPC ensembles] Let
(
n, λ, ρ

)
be an

ensemble of LDPC codes whose transmission takes place over an MBIOS channel. Assume that the design rate of

the ensemble is equal to a fraction 1 − ε of the channel capacity C, and let Pb designate the average bit error (or

erasure) probability of the ensemble under ML decoding or any sub-optimal decoding algorithm. Then, the following

properties hold for an arbitrary finite degree i from the node perspective in the case where εC + h2(Pb) ≪ 1

Λi = O(1) (18)

Γi = O
(
εC + h2(Pb)

)
(19)

and the following properties hold for the degree distributions from the edge perspective:

λi = O

(
1

ln 1
εC+h2(Pb)

)
(20)

ρi = O

(
εC + h2(Pb)

ln 1
εC+h2(Pb)

)
. (21)
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For the case where the transmission takes place over the BEC, the bounds above are tightened by replacing h2(Pb)
with Pb.

Remark 6: [On the connection between Theorems 1 and 2] Theorem 2 implies that for any capacity-approaching

LDPC ensemble whose bit error probability vanishes and also for any finite degree i in their Tanner graphs, the

fraction of variable nodes and parity-check nodes of degree i tends to zero as the gap to capacity (ε) vanishes.

This conclusion is consistent with Theorem 1 which states that the average left and right degrees of the Tanner

graphs scale at least like ln 1
ε ; hence, these average degrees necessarily become unbounded as the gap to capacity

vanishes.

Corollary 3: Under the assumptions of Theorem 2, in the limit where the bit error (or erasure) probability of a

sequence of LDPC ensembles vanishes asymptotically (as we let the block length tend to infinity) and the design

rate is a fraction 1 − ε of the channel capacity, the following properties hold for an arbitrary finite degree i

Λi = O(1) , Γi = O(ε) ,

λi = O

(
1

ln 1
ε

)
, ρi = O

(
ε

ln 1
ε

)
.

We turn now our attention to ensembles of LDPC codes which achieve vanishing bit error (or erasure) probability

under the sum-product decoding algorithm. The following theorem relies on information-theoretic arguments and

the stability condition, and it provides an upper bound on the fraction of degree-2 variable nodes for a sequence of

LDPC ensembles whose transmission takes place over an arbitrary MBIOS channel. As we will see, the following

theorem provides a tight upper bound for capacity-achieving sequences of LDPC ensembles over the BEC.

Theorem 3: [On the fraction of degree-2 variable nodes of LDPC ensembles] Let
{(

nm, λ(x), ρ(x)
)}

m≥1
be a sequence of ensembles of LDPC codes whose transmission takes place over an MBIOS channel. Assume that

this sequence asymptotically achieves a fraction 1−ε of the channel capacity under iterative sum-product decoding

with vanishing bit error probability. Based on the notation in Theorem 1, the fraction of degree-2 variable nodes

satisfies

Λ2 <
er(1 − C)

2

(
1 +

εC

1 − C

)
·




1 +
ln

(
1
g1

)

ln

(
g1[

1−2h−1
2

(
1−C

1−(1−ε)C

)]2

)




(22)

where

r , − ln

(∫ ∞

−∞
a(l)e−

l

2 dl

)
(23)

is the Bhattacharyya distance which only depends on the channel. For sequences of LDPC ensembles whose

transmission takes place over a BEC with an erasure probability p, if the bit erasure probability vanishes under

iterative message-passing decoding, then the bound on the fraction of degree-2 variable nodes is tightened to

Λ2 <
1

2

(
1 +

ε(1 − p)

p

) 
1 +

ln
(

1
1−p

)

ln
(
1 − p + p

ε

)


 . (24)

Corollary 4: Under the assumptions of Theorem 3, in the limit where the gap to capacity vanishes under the

sum-product decoding algorithm (i.e., ε → 0), the fraction of degree-2 variable nodes satisfies

Λ2 ≤ er(1 − C)

2
. (25)

The tightness of the latter upper bound on the fraction of degree-2 variable nodes for capacity-achieving sequences

of LDPC ensembles under iterative sum-product decoding is considered in Discussion 5 which follows the proof

of Theorem 3. We state there two conditions which ensure the tightness of the bound in (25).

Remark 7: Note that for capacity-achieving sequences of LDPC ensembles whose transmission takes place over

the BEC, the bound in (25) is particularized to 1
2 regardless of the erasure probability of this channel. This is

indeed the case for some capacity-achieving LDPC ensembles over the BEC (see, e.g., [12], [17], [24]).
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Remark 8: Let us consider sequences of LDPC ensembles which achieve the capacity of a BEC under iterative

message-passing decoding. As mentioned above, for all such known sequences, the fraction of variable nodes of

degree 2 tends to 1
2 as the gap to capacity vanishes. This is in contrast to the behavior of the right degree-distribution

where, for any fixed degree i, Corollary 3 implies that the fraction of the parity-check nodes of degree i tends to

zero as the gap to capacity vanishes.

In order to complement the picture for degree-2 variable nodes, we provide in the following theorem an upper

bound on the fraction of edges connected to degree-2 variable nodes, and show that this fraction of edges vanishes

as the gap to capacity under iterative decoding tends to zero. Like the previous theorem, the derivation of the

following theorem also relies on information-theoretic arguments and the stability condition.

Theorem 4: [On the fraction of edges connected to degree-2 variable nodes] Under the assumptions of

Theorem 3, the fraction of edges connected to variable nodes of degree 2 satisfies

λ2 <
er ln

(
1
g1

)

ln

(
g1[

1−2h−1
2

(
1−C

1−(1−ε)C

)]2

) (26)

where g1 and r are introduced in (12) and (23), respectively. For a BEC with erasure probability p, the bound in

(26) is tightened to

λ2 <
ln

(
1

1−p

)

p ln
(
1 − p + p

ε

) . (27)

Corollary 5: [A looser and simple version of the bounds in Theorem 4] The upper bound on the fraction of

edges connected to degree-2 variable nodes can be loosened to

λ2 <
1

[
c1 + c2 ln

(
1
ε

)]+ (28)

for some constants c1 and c2 which only depend on the MBIOS channel, and where [x]+ , max(x, 0); the

coefficient c2 of the logarithm in (28) is given by

c2 =
e−r

ln
(

1
g1

) (29)

and it is strictly positive.

Theorem 4 and Corollary 5 show that the fraction of edges connected to degree-2 variable nodes of capacity-

achieving LDPC ensembles tends to zero, though the decay of the upper bound on λ2 to zero is rather slow as the

gap to capacity vanishes. In the following proposition, we show that for transmission over the BEC, the bounds in

(27) and (28) are indeed tight.

Proposition 1: [On the tightness of the upper bound on λ2 for capacity-achieving sequences of LDPC

ensembles over the BEC] The upper bounds on the fraction of edges connected to degree-2 variable nodes in (27)

and (28) are tight for the sequence of capacity-achieving right-regular LDPC ensembles over the BEC in [24]. For

this capacity-achieving sequence, λ2 , λ2(ε) decays to zero as ε → 0 similarly to the upper bound in (28) with

the same coefficient c2 of ln
(

1
ε

)
as given in (29).

IV. PROOFS AND DISCUSSIONS

A. Proof of Theorem 1

Let X be a random codeword from the binary linear block code C. Let Y designate the output of the commu-

nication channel when X is transmitted. Based on the assumption that the code C is represented by a full-rank

parity-check matrix and that G is the corresponding bipartite (Tanner) graph representing this code, the conditional

entropy of X given Y satisfies the inequality in (8) (the derivation of this lower bound on the conditional entropy
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is outlined in Section II-C; for the full derivation, which includes all the mathematical details, the reader is referred

to [25]). Using the convexity of f(t) = xt for all x ≥ 0 and applying Jensen’s inequality gives

Γ(x) =
∑

i

Γix
i ≥ x

∑
i i Γi = xaR , x ≥ 0 .

Substituting the inequality above in (8) implies that

H(X|Y)

n
≥ R − C +

1 − R

2 ln 2

∞∑

k=1

gaR

k

k(2k − 1)
. (30)

To continue, we apply the following lemma, which relates g1 and gk in (9) for all k ∈ N.

Lemma 3:

gk ≥ (g1)
k , ∀k ∈ N (31)

where gk is defined in (9).

Proof: For k = 1, (31) is trivial. For k > 1, the equality in (10) and Hölder’s inequality give

gk = E

[
tanh2k

(L

2

)]

=

(
E

1

k

[(
tanh2

(L

2

))k ])k

≥
(

E

[(
tanh2

(L

2

))])k

= (g1)
k .

The substitution of (31) in (30) gives

H(X|Y)

n
≥ R − C +

1 − R

2 ln 2

∞∑

k=1

(gaR

1 )k

k(2k − 1)
. (32)

Expanding the binary entropy function into a power series around 1
2 (see [25, Appendix II.A]) gives

h2(x) = 1 − 1

2 ln 2

∞∑

k=1

(1 − 2x)2k

k(2k − 1)
, 0 ≤ x ≤ 1 (33)

and assigning x = 1−√
u

2 gives

1

2 ln 2

∞∑

k=1

uk

k(2k − 1)
= 1 − h2

(
1 −√

u

2

)
, 0 ≤ u ≤ 1. (34)

Since 0 ≤ tanh2(x) < 1 for all x ∈ R, we get from (9) that 0 ≤ g1 ≤ 1 (this property holds for all the sequence

{gk}∞k=1). Substituting (34) into (32) gives

H(X|Y)

n
≥ R − C + (1 − R)

[
1 − h2

(
1 − g

aR/2
1

2

)]
. (35)

Fano’s inequality provides the following upper bound on the conditional entropy of X given Y:

H(X|Y)

n
≤ R h2(Pb) (36)

where Pb designates the bit error probability of the code under some arbitrary decoding algorithm (without any

loss of generality, one can assume that the first nR bits of the code are its information bits, and their knowledge
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is sufficient for determining the codeword). In order to make later the statement also valid for code ensembles (as

is clarified later in Discussion 2), we loosen the bound in (36), and get

H(X|Y)

n
≤ h2(Pb). (37)

Combining the upper bound on the conditional entropy in (37) with the lower bound in (35) gives

h2(Pb) ≥ R − C + (1 − R)

[
1 − h2

(
1 − g

aR/2
1

2

)]
. (38)

Since the RHS of (38) is monotonically increasing in R, then following our assumption, one can possibly loosen

the bound by replacing R with (1 − ε)C; this yields after some algebra that

h2

(
1 − g

aR/2
1

2

)
≥ 1 − C − h2(Pb)

1 − (1 − ε)C
.

Since the binary entropy function h2 is monotonically increasing between 0 and 1
2 then

g
aR
2

1 ≤ 1 − 2h−1
2

(
1 − C − h2(Pb)

1 − (1 − ε)C

)

which gives the lower bound on aR in (11) (note that g1 ≤ 1 and this inequality is strict unless the channel is

noiseless).

Let us now consider the particular case where the transmission is over the BEC. Note that for a BEC with erasure

probability p, gk = 1 − p for all k ∈ N and therefore (32) is particularized to

H(X|Y)

n
≥ R − C +

(1 − R)(1 − p)aR

2 ln 2

∞∑

k=1

1

k(2k − 1)
.

Substituting u = 1 in (34) gives the equality

1

2 ln 2

∞∑

k=1

1

k(2k − 1)
= 1

and hence, the last inequality gets the form

H(X|Y)

n
≥ R − C + (1 − R)(1 − p)aR . (39)

Note that the RHS of (39) is monotonic increasing with the code rate R; following our assumption that R ≥ (1−ε)C
and since C = 1 − p is the channel capacity of the BEC, we get

H(X|Y)

n
≥ −ε(1 − p) +

(
1 − (1 − ε)(1 − p)

)
(1 − p)aR . (40)

The normalized conditional entropy
H(X|Y)

n satisfies

H(X|Y)

n
=

1

n

n∑

i=1

H
(
Xi|Y,

{
Xj

}
j<i

)

(a)
=

1

n

nR∑

i=1

H
(
Xi|Y,

{
Xj

}
j<i

)

≤ 1

n

nR∑

i=1

H(Xi|Y)

(b)
= R Pb

≤ Pb (41)
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where (a) holds since the code dimension is at most nR and assuming without any loss of generality that the first

nR bits form the information bits of the code, and (b) holds since given Y, the decoder finds Xi with probability

1−Pb and otherwise the bit Xi is erased and due to the linearity of the code it takes the values 0 and 1 with equal

probability so its entropy is equal to 1 bit. Combining (40) with (41) gives

Pb ≥ −ε(1 − p) +
(
1 − (1 − ε)(1 − p)

)
(1 − p)aR . (42)

Finally, the lower bound on the average right degree in (13) follows from (42) by simple algebra. Note that in the

case where Pb = 0, the resulting lower bound coincides with the result obtained in [22, p. 1619] (though it was

obtained there in a different way), and it gets the form

aR ≥
ln

(
1 + p

(1−p)ε

)

ln
(

1
1−p

) . (43)

We wish now to show that among all the MBIOS channels with a fixed capacity C and for fixed values of

the gap to capacity (ε) and the bit error/ erasure probability (Pb), the lower bound on the average degree of the

parity-check nodes as given in (11) attains its maximal and minimal values for a BSC and BEC, respectively. To

this end, note that for fixed values of C, ε and Pb, the numerator of the lower bound in (11) is fixed; hence, the

value of this lower bound is maximized or minimized by maximizing or minimizing, respectively, the value of g1

as given in (12) (note that g1 lies in general between zero and one).

Lemma 4: [Extreme values of g1 among all MBIOS channels with a fixed capacity] Among all the MBIOS

channels with a fixed capacity C, the value of g1 satisfies

C ≤ g1 ≤
(
1 − 2h−1

2 (1 − C)
)2

(44)

and these upper and lower bounds on g1 are attained for a BSC and BEC, respectively.

Proof: The proof of the lower bound on g1 follows from the calculations in [25, p. 565], though the proof

there is not explicit (since something else was needed to prove there). We prove here this lower bound explicitly

to improve readability. From (33), we get that for 0 ≤ x ≤ 1

h2(x) = 1 − 1

2 ln 2

∞∑

k=1

(1 − 2x)2k

k(2k − 1)

≥ 1 − (1 − 2x)2

2 ln 2

∞∑

k=1

1

k(2k − 1)

= 1 − (1 − 2x)2 (45)

where the last inequality holds since (1 − 2x)2k ≤ (1 − 2x)2 for k ∈ N and 0 ≤ x ≤ 1, and the last transition

follows from the equality
∑∞

k=1
1

2k(2k−1) = ln 2. By substituting x = 1
1+e l for l ≥ 0 in (45), it follows that

h2

(
1

1 + e l

)
≥ 1 − tanh2

(
l

2

)
, ∀ l ∈ [0,∞). (46)

The substitution of (46) in (12) gives

g1 =

∫ ∞

0
a(l)(1 + e−l) tanh2

(
l

2

)
dl

≥
∫ ∞

0
a(l)(1 + e−l)

[
1 − h2

(
1

1 + e l

)]
dl

= C (47)

where the last equality relies on a possible representation of the channel capacity for an arbitrary MBIOS channel

(see [21, Section 4.1.8]). This completes the proof of the lower bound on g1, as given on the LHS of (44). Note

that this lower bound on g1 is attained for a BEC (since for a BEC with an arbitrary erasure probability p, we get

from (12) that g1 = 1 − p = C).
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In order to prove the upper bound on g1, as given on the RHS of (44), observe that the channel capacity of an

arbitrary MBIOS channel satisfies

C =

∫ ∞

0
a(l)(1 + e−l)

[
1 − h2

(
1

1 + e l

)]
dl

(a)
=

∫ ∞

0
a(l)(1 + e−l)

1

2 ln 2

∞∑

k=1

tanh2k
(

l
2

)

k(2k − 1)
dl

=
1

2 ln 2

∞∑

k=1

{∫ ∞
0 a(l)(1 + e−l) tanh2k

(
l
2

)
dl

k(2k − 1)

}

(b)
=

1

2 ln 2

∞∑

k=1

gk

k(2k − 1)
(48)

where equality (a) follows by substituting in (33) x = 1
1+e l for l ≥ 0, and equality (b) follows from (9); this

provides an expression for the channel capacity in terms of the non-negative sequence {gk}∞k=0 defined in (9).

Since we look for the maximal value of g1 among all MBIOS channels with a fixed capacity, then we need to

solve the maximization problem

maximize

{
g1

∣∣∣∣
1

2 ln 2

∞∑

k=1

gk

k(2k − 1)
= C

}
. (49)

Based on Lemma 3, for every MBIOS channel, gk ≥ (g1)
k for all k ∈ N; therefore, one can write gk , (g1)

k + ǫk

where ǫk ≥ 0 for all k ∈ N. By substituting this in the infinite series (48), we get

1

2 ln 2

∞∑

k=1

gk

k(2k − 1)

=
1

2 ln 2

∞∑

k=1

(g1)
k

k(2k − 1)
+

1

2 ln 2

∞∑

k=1

ǫk

k(2k − 1)

= 1 − h2

(
1 −√

g1

2

)
+

1

2 ln 2

∞∑

k=1

ǫk

k(2k − 1)
(50)

where the last equality is based on (34). Since ǫk ≥ 0 for all k ∈ N, the equality constraint in (49) and the equality

in (50) yield that

1 − h2

(
1 −√

g1

2

)
≤ C

from which the RHS of (44) follows. Note that this upper bound on g1 is achieved when the second term in

(50) vanishes. Since {ǫk}∞k=1 is a non-negative sequence, this happens if and only if ǫk = 0 for all k ∈ N. For

a BSC with an arbitrary crossover probability p, the LLR at the channel output is bimodal and it gets the values

± ln
(

1−p
p

)
, which implies from (10) that

gk , E

[
tanh2k

(
L

2

)]

= (1 − p) tanh2k

(
l

2

)∣∣∣∣
l=ln

(
1−p

p

) + p tanh2k

(
l

2

)∣∣∣∣
l=− ln

(
1−p

p

)

= tanh2k

(
l

2

)∣∣∣∣
l=ln

(
1−p

p

)

=

(
el − 1

el + 1

)2k
∣∣∣∣∣
l=ln

(
1−p

p

)

= (1 − 2p)2k , ∀ k ∈ N. (51)
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Hence for the BSC, gk = (g1)
k and ǫk = 0 for all k ∈ N. The upper bound on g1 on the RHS of (44) is therefore

achieved for a BSC whose crossover probability is p = h−1
2 (1 − C).

Based on the paragraph which proceeds Lemma 4 and the result of this lemma, the last claim in Theorem 1 is

proved.

Discussion 1: [A discussion on the bounds in Theorem 1 and their comparison to [25, Eq. (77)]] In the

particular case where Pb vanishes, the lower bound on the average right degree, as introduced in (11), forms a

tightened version of the bound given in [25, Eq. (77)]. We note that both bounds are derived from the lower

bound (8) on the conditional entropy of the transmitted codeword given the channel output. However, the bound

in (11) (even in the particular case where we set Pb to zero) is tighter than the bound given in [25, Eq. (77)]; this

follows from the improved tightness of the lower bound on the RHS of (8), as obtained in the proof of Theorem 1.

Particularly, the authors in [25] rely on the fact that all the terms of the infinite sum in the RHS of (8) are non-

negative, and derive a simple lower bound on the conditional entropy by truncating this infinite sum after its first

term. In the proof of Theorem 1, on the other hand, this lower bound on the conditional entropy is improved by

applying Jensen’s inequality and the Taylor series expansion in (34). Note that in the case where the gap to capacity

vanishes (i.e., ε → 0), the average right degree tends to infinity. Since g1 ≤ 1 where this inequality is strict unless

the channel is noiseless, then when ε becomes small, gaR

1 << 1. As compared to the derivation of Theorem 1,

the loss in the tightness of the bound in [25] due to the truncation of the infinite sum after its first term becomes

marginal as the gap (in rate) to capacity vanishes; though, the difference between the two lower bounds on the

average right degree given in (8) and [25, Eq. (77)]] becomes more significant as the gap to capacity is increased.

Note also that the bound on the average right degree in Theorem 1 takes into account the bit error probability at

the end of the decoding process, while the bound in [25, Eq. (77)] applies only to the case where Pb vanishes. The

additional dependence of the bound (11) on Pb makes the bounds in Theorem 1 valid for LDPC ensembles of finite

block length while the bound in [25, Eq. (77)] can be only applied to the asymptotic case of vanishing bit error (or

erasure) probability by letting the block length tend to infinity. In addition to the tightening and generalization of

the bound in [25, Eq. (77)], Theorem 1 also states the two extreme cases of (11) among all the MBIOS channels

whose capacity is fixed.

Discussion 2: [An adaptation of Theorem 1 for LDPC ensembles] As mentioned in Remark 4, the statement

in Theorem 1 can be easily adapted to hold for an LDPC ensemble (n, λ, ρ) whose transmission takes place over

an arbitrary MBIOS channel. This modification is done by relaxing the requirement of a full-rank parity-check

matrix for a particular code with the requirement that the design rate of the ensemble is (at least) a fraction 1 − ε

of the channel capacity. In this case, by taking the statistical expectation over the codes from the considered LDPC

ensemble (in addition to the original statistical expectation over the codewords of the code), the inequality in (35)

holds where we also need here to average over the rate R of the codes from the ensemble. Instead of averaging

over the rate R of codes from the ensemble, since the RHS of (35) is monotonically increasing with R, one can

replace the rate of any code from this ensemble with the design rate of the ensemble (which forms a lower bound

on R for every code from this ensemble). By assumption, the design rate is not less than (1 − ε)C; hence, (35)

and the requirement on the design rate yield that

E

[
H(X|Y)

n

]
≥ 1 − C −

(
1 − (1 − ε)C

)
E

[
h2

(
1 − g

aR/2
1

2

)]
(52)

where E designates the statistical expectation over all the codes from the LDPC ensemble (n, λ, ρ).
Since the binary entropy function is a concave function, Jensen’s inequality gives

E

[
h2

(
1 − g

aR/2
1

2

)]
≤ h2




1 − E

[
g

aR/2
1

]

2


 (53)

and another application of Jensen’s inequality to the exponential function (which is convex) gives

E

[
g

aR/2
1

]
≥ g

E[aR]/ 2
1 . (54)

Note that 0 ≤ g1 ≤ 1 and for every code from the ensemble aR ≥ 2 (since ρi = 0 for i = 0, 1, i.e., the degrees of

all the parity-check nodes are at least 2, then also the average right degree of any code from the ensemble cannot
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be smaller than 2); this implies that the arguments inside the binary entropy functions of (53) lie between zero and

one-half.

The loosening of the bound in the transition from (36) to (37) is due to the fact that we need an upper bound

on the rate R of a code from this ensemble; since we consider binary codes, a trivial upper bound on the rate is 1

bit per channel use (note that the rate of an arbitrarily chosen code from this ensemble may exceed the channel

capacity). Note also that due to the concavity of the binary entropy function and Jensen’s inequality, one can replace

Pb on the RHS of (37) which applies to a particular code with the average bit error probability of the ensemble,

and the upper bound on the conditional entropy still holds. This gives

h2(Pb) ≥ E

[
H(X|Y)

n

]
(55)

where Pb , E
[
Pb

]
designates the average bit error probability of the LDPC ensemble.

The combination of the chain of inequalities in (52)–(55) leads to the adaptation of the statement in Theorem 1

for arbitrary LDPC ensembles with the proper modification of the requirement on the design rate of the ensemble

(instead of the requirement of a full-rank parity-check matrix which is quite heavy for individual codes which are

selected at random from an LDPC ensemble), and the reference to the average bit error (or erasure) probability of

the ensemble.

Note that the adaptation of the statement in Theorem 1 for LDPC ensembles whose transmission takes place

over the BEC is more direct. In this case, we refer to (42); since in the latter case, h2(Pb) is replaced by Pb, then

two uses (out of three) of Jensen’s inequality become irrelevant for the BEC.

Discussion 3: [An adaptation of Theorem 1 for LDPC ensembles with random or intentional puncturing

patterns] In continuation to Discussion 2, it is also possible to adapt Theorem 1 to hold for ensembles of punctured

LDPC codes whose transmission takes place over an MBIOS channel. To this end, we refer the reader to [23,

Section 5] which is focused on the derivation of lower bounds on the average right degree and the graphical

complexity of such ensembles. The derivation of these bounds relies on a lower bound on the conditional entropy

of the transmitted codeword given the received sequence at the output of a set of parallel MBIOS channels (see

[23, Eqs. (2) and (3)]); the latter bound was particularized in [23, Sections 2–4] to the two settings of randomly

and intentionally punctured LDPC ensembles which are communicated over a single MBIOS channel. We note

that the lower bound on the conditional entropy, as given in (8), forms a particular case of the bound in [23,

Eqs. (2) and (3)] where the set of parallel MBIOS channels degenerates to a single MBIOS channel. The concept

of the proof of Theorem 1 enables one to tighten the lower bounds on the average right degree and the graphical

complexity, as presented in [23, Section 5], for both randomly and intentionally punctured LDPC ensembles. More

explicitly, by comparing the proof of (11) with the derivation of [25, Eq. (77)] under the assumption of vanishing

bit error probability, one notices that the tightening of the bound in the former case follows by combining Lemma 3

with the equality in (34) (instead of the truncation of a non-negative infinite series after its first term, as was done

for the derivation of the looser bound in [25]); this difference can be exploited exactly in the same way in [23,

Section 5] for improving the tightness of the lower bounds on the average right degree and the graphical complexity

for punctured LDPC ensembles.

Discussion 4: [Lower bounds on the conditional entropy which are based on statistical physics] Theorem 1

is proved via the lower bound on the conditional entropy (8) which holds for an arbitrary binary linear block

code that is represented by a full-rank parity-check matrix and whose transmission takes place over an MBIOS

channel. This bound is adapted above to hold for LDPC ensembles under ML decoding or any sub-optimal decoding

algorithm (see Discussion 2). A different approach for obtaining a lower bound on the same conditional entropy

for ensembles of LDPC codes and ensembles of low-density generator-matrix (LDGM) codes was introduced by

Montanari in [15]. This bounding technique is based on tools borrowed from statistical physics, and it provides

lower bounds on the entropy of the transmitted message conditioned on the received sequence at the output of

the MBIOS channel. The computational complexity of the bound in [15] grows exponentially with the maximal

right and left degrees (see [15, Eqs. (6.2) and (6.3)]) which therefore imposes a difficulty on the calculation of this

bound (especially, for continuous-output channels). Since the bounds in [15] are derived for ensembles of codes,

they are probabilistic in their nature; based on concentration arguments, they hold asymptotically in probability 1 as

the block length tends to infinity. Based on heuristic statistical mechanics calculations, it was conjectured that the

bounds in [15], which hold for general LDPC and LDGM ensembles over MBIOS channels, are tight. As opposed
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to the lower bound on the conditional entropy which is given in (8), the bounding techniques in [14] and [15],

where both rely on statistical physics, do not provide a bound which is valid for every binary linear block code.

It would be interesting to get some theory that unifies the information-theoretic and statistical physics approaches

and provides bounds that are tight on the average and valid code by code.

Proof of Corollary 1

From Remark 2, the cardinality of the fundamental system of cycles of the Tanner graph G, which is associated

with a full spanning forest of G, is equal to the cycle rank β(G). From Eq. (2), we get that β(G) > |EG |−|VG | where

|EG | and |VG | designate the number of edges and vertices. Specializing this for a Tanner graph G which represents

a full-rank parity-check matrix of a binary linear block code, the number of vertices satisfies |VG | = n(2 − R)
(since there are n variable nodes and n(1−R) parity-check nodes in the graph) and the number of edges satisfies

|EG | = n(1−R)aR. Combining these equalities gives the lower bound on the cardinality of the fundamental system

of cycles in (4).

Proof of Corollary 2

The proof of (16) and (17) is based on Remark 4 and Corollary 1. From the substitution of Pb = 0 in (11),

which is justified in Discussion 2 for LDPC ensembles, one obtains the following lower bound on the average right

degree of the LDPC ensemble as the average bit error probability of this ensemble vanishes:

aR ≥

2 ln


 1

1−2h−1
2

(
1−C

1−(1−ε)C

)




ln
(

1
g1

) . (56)

Since we assume here that the bit error probability of the ensemble vanishes as the block length tends to infinity,

then asymptotically with probability 1, the code rate of an arbitrary code from the considered ensemble does not

exceed the channel capacity. By substituting the lower bound on aR from (56) and an upper bound on R (i.e.,

R ≤ C) into (15), the asymptotic result in (16) readily follows. The proof of (17) follows similarly based on (13)

(with Pb = 0). From the last statement in Theorem 1 regarding the maximal and minimal values of the lower bound

in (11) among all the MBIOS channels with a fixed capacity, it follows that the same conclusion also holds w.r.t.

the lower bound in (16). Hence, the RHS of (16) also attains, respectively, its maximal and minimal values for the

BSC and BEC whose capacities are equal to C.

B. Proof of Theorem 2

Since the fraction of variable nodes of degree i is not greater than 1 for any degree i, (18) clearly holds (we

demonstrate later that this result is asymptotically tight as the gap to capacity vanishes, at least for degree-2 variable

nodes).

We turn now to consider the degrees of the parity-check nodes. Similarly to the proof of Theorem 1, we denote

by X a random codeword from the ensemble
(
n, λ, ρ

)
where the randomness is over the selected code from the

ensemble and the codeword which is selected from the code. Let Y designate the output of the communication

channel when X is transmitted. The lower bound on the conditional entropy of X given Y in [25, Eq. (56)] gives

H(X|Y)

n

≥ R − C +
1 − R

2 ln 2

∞∑

k=1

Γ(gk)

k(2k − 1)

= −εC +
1 − (1 − ε)C

2 ln 2

∞∑

i=2

[
Γi

∞∑

k=1

gi
k

k(2k − 1)

]
(57)

where the equality follows from the definition of Γ and since the design rate of the ensemble satisfies R = (1−ε)C.
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Applying Lemma 3 to the RHS of (57), we get

H(X|Y)

n

≥ −εC +
1 − (1 − ε)C

2 ln 2

∞∑

i=2

{
Γi

∞∑

k=1

(
gi
1

)k

k(2k − 1)

}

= −εC +
(
1 − (1 − ε)C

) ∞∑

i=2

{[
1 − h2

(
1 − g

i/2
1

2

)]
Γi

}

where the last equality follows from (34). Combining the upper bound on the conditional entropy in (36) with the

last result gives

h2(Pb) ≥ −εC +
(
1 − (1 − ε)C

) ∞∑

i=2

[
1 − h2

(
1 − g

i/2
1

2

)]
Γi

and therefore ∞∑

i=2

{[
1 − h2

(
1 − g

i/2
1

2

)]
Γi

}
≤ εC + h2(Pb)

1 − (1 − ε)C
(58)

where Pb designates the average bit error probability of the ensemble under the considered decoding algorithm.

Since all the terms in the sum on the LHS of (58) are non-negative, this sum is lower bounded by its i’th term,

for any degree i. This provides the following lower bound on the fraction of parity-check nodes of degree i:

Γi ≤ εC + h2(Pb)

1 − (1 − ε)C

1

1 − h2

(
1−g

i/2
1

2

)

≤
(
εC + h2(Pb)

)

 1

1 − C

1

1 − h2

(
1−g

i/2
1

2

)


 . (59)

This completes the proof of the statement in (19) when the transmission takes place over an arbitrary MBIOS

channel. Let us now consider the particular case where the transmission is over a BEC with erasure probability

p. In this case, gk = 1 − p for all k ∈ N, and the channel capacity is given by C = 1 − p. Therefore, (57) is

particularized to

H(X|Y)

n
≥ −ε(1 − p) +

1 − (1 − ε)(1 − p)

2 ln 2
·

∞∑

i=2

[
Γi (1 − p)i

∞∑

k=1

1

k(2k − 1)

]

= −ε(1 − p) +
(
1 − (1 − ε)(1 − p)

) ∞∑

i=2

Γi (1 − p)i (60)

where the equality holds since
∑∞

k=1
1

k(2k−1) = 2 ln 2. Applying the upper bound on the conditional entropy (41)

to the LHS of (60), we get

Pb ≥ −ε(1 − p) +
(
1 − (1 − ε)(1 − p)

) ∞∑

i=2

Γi (1 − p)i

and therefore ∞∑

i=2

{
(1 − p)i Γi

}
≤ ε (1 − p) + Pb

1 − (1 − ε)(1 − p)
(61)

where this time Pb denotes the average bit erasure probability of the ensemble. Following the same steps as above,

we get that for the BEC

Γi ≤ ε (1 − p) + Pb(
1 − (1 − ε)(1 − p)

)
(1 − p)i

(62)

≤
(
ε (1 − p) + Pb

) (
1

p (1 − p)i

)
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so indeed h2(Pb) is replaced with Pb in (19).

We turn now to consider the pair of degree distributions from the edge perspective. The average left degree (aL)
of an LDPC ensemble satisfies

1

aL

=

∫ 1

0
λ(x) dx

=

∫ 1

0

∞∑

i=2

λix
i−1 dx

=
∞∑

i=2

λi

i
(63)

which implies that the fraction of edges connected to variable nodes of an arbitrary degree i satisfies

λi ≤
i

aL

. (64)

Since the design rate of the LDPC ensemble is assumed to be a fraction 1 − ε of the channel capacity, then the

average right and left degrees are related via the equality

aL =
(
1 − (1 − ε)C

)
aR . (65)

Substituting (65) on the RHS of (64) and applying the lower bound on aR in (11) gives

λi ≤
i ln

(
1
g1

)

2
(
1 − (1 − ε)C

)
ln


 1

1−2h−1
2

(
1−C−h2(Pb)

1−(1−ε)C

)




. (66)

Using the power series for the binary entropy function in (33) and truncating the sum on the RHS after the first

term gives

1 − h2(x) ≥ (1 − 2x)2

2 ln 2
.

Substituting u = h2(x) yields (
1 − 2h−1

2 (u)
)2 ≤ 2 ln 2 · (1 − u) . (67)

Substituting (67) into the denominator on the RHS of (66), we get

λi ≤
i ln

(
1
g1

)

(
1 − (1 − ε)C

)
ln

(
1

2 ln 2
1

1− 1−C−h2(Pb)

1−(1−ε)C

)

=
i ln

(
1
g1

)

(
1 − (1 − ε)C

)
ln

(
1

2 ln 2
1−(1−ε)C
εC+h2(Pb)

)

≤
i ln

(
1
g1

)

(1 − C)
[
ln

(
1

εC+h2(Pb)

)
+ ln

(
1−C
2 ln 2

)]

which completes the proof of (20) for general MBIOS channels. For the BEC, we substitute (65) and the lower

bound on the average right degree in (13) into the RHS of (64) to get

λi ≤
i ln

(
1

1−p

)

(
1 − (1 − ε)(1 − p)

)
ln

(
1 + p−Pb

ε (1−p)+Pb

)

=
i ln

(
1

1−p

)

(
1 − (1 − ε)(1 − p)

)
ln

(
ε (1−p)+p
ε (1−p)+Pb

)

≤
i ln

(
1

1−p

)

p
[
ln

(
1

ε (1−p)+Pb

)
+ ln(p)

] . (68)
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Hence, h2(Pb) is replaced by Pb in (20) when the communication channel is a BEC. Considering the right degree

distribution of the ensemble, we have

1

aR

=

∫ 1

0
ρ(x) dx

=
∞∑

i=2

ρi

i
.

Replacing (63) with the above equality and following the same steps as above, one obtains an upper bound on the

fraction of edges connected to parity-check nodes of a given degree i. The asymptotic behavior of the resulting

upper bound on ρi is similar to the upper bound on λi as given in (68). However, a tighter upper bound on the

fraction of edges connected to parity-check nodes of degree i is derived from the equality

ρi =
iΓi

aR
. (69)

Substituting (11) and (59) in the above equality, we get

ρi ≤
εC + h2(Pb)

1 − C

ln
(

1
g1

)

2 ln


 1

1−2h−1
2

(
1−C−h2(Pb)

1−(1−ε)C

)




i

1 − h2

(
1−g

i/2
1

2

) . (70)

Applying (67) to the denominator of the second term on the RHS of (70) gives

ρi ≤
εC + h2(Pb)

1 − C

ln
(

1
g1

)

ln

(
1

2 ln 2
1

1− 1−C−h2(Pb)

1−(1−ε)C

) i

1 − h2

(
1−g

i/2
1

2

)

=
εC + h2(Pb)

1 − C

ln
(

1
g1

)

ln
(

1
2 ln 2

1−(1−ε)C
εC+h2(Pb)

) i

1 − h2

(
1−g

i/2
1

2

)

≤
ln

(
1
g1

)

1 − C

εC + h2(Pb)

ln
(

1
ε C+h2(Pb)

)
+ ln

(
1−C
2 ln 2

)
i

1 − h2

(
1−g

i/2
1

2

) .

This proves the statement in (21) regarding the fraction of edges connected to parity-check nodes of an arbitrary

finite degree i.

When the communication takes place over the BEC, we substitute (13) and (62) in (69) to get

ρi ≤
i
[
ε (1 − p) + Pb

]
(
1 − (1 − ε)(1 − p)

)
(1 − p)i

ln
(

1
1−p

)

ln
(
1 + p−Pb

ε (1−p)+Pb

) .

Applying some simple algebra, similarly to the previous derivations, the statement in (21) is validated even when

h2(Pb) is replaced with Pb.

C. Proof of Theorem 3

The average degrees of the variable nodes and the parity-check nodes of a bipartite graph which represents a code

from an LDPC ensemble are expressible in terms of the pair of the degree distributions (λ, ρ) of this ensemble,

and these average degrees are given, respectively, by aL =
(∫ 1

0 λ(x)dx
)−1

and aR =
(∫ 1

0 ρ(x)dx
)−1

. Hence, the

fraction of degree-2 variable nodes is given by

Λ2 =
λ2 aL

2
=

λ2

2

∫ 1

0
λ(x)dx

(71)
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and the design rate of this ensemble is given by

Rd = 1 − aL

aR
= 1 −

∫ 1
0 ρ(x)dx

∫ 1
0 λ(x)dx

.

Using the last equation, we rewrite the denominator of (71) as
∫ 1

0
λ(x)dx =

1

1 − Rd

∫ 1

0
ρ(x)dx . (72)

According to our assumption, the considered sequence of ensembles achieves vanishing bit error probability under

sum-product decoding and hence the stability condition implies that

λ2 = λ′(0) <
er

ρ′(1)

where r is introduced in (23). Substituting (72) in (71) and applying the inequality above leads to an upper bound

on Λ2 of the form

Λ2 <
er(1 − Rd)

2ρ′(1)
∫ 1
0 ρ(x)dx

. (73)

Relying on the convexity of the function f(t) = xt for all x > 0, Jensen’s inequality gives
∫ 1

0
ρ(x)dx

=

∫ 1

0

∑

i

ρix
i−1dx

≥
∫ 1

0
x

∑
i ρi (i−1)dx

=

∫ 1

0
x ρ′(1)dx

=
1

ρ′(1) + 1

which implies that

ρ′(1) ≥ 1
∫ 1
0 ρ(x)dx

− 1 = aR − 1 . (74)

Substituting (74) in (73) and since the ensembles are assumed to achieve a fraction 1 − ε of the channel capacity

(i.e., Rd = (1 − ε)C) under sum-product decoding with vanishing bit error probability then

Λ2 <
er(1 − Rd)

2

(
1 +

1

ρ′(1)

)

≤ er(1 − Rd)

2

(
1 +

1

aR − 1

)

=
er(1 − C)

2

(
1 +

εC

1 − C

) (
1 +

1

aR − 1

)
. (75)

Since the RHS of (75) is monotonically decreasing with average right degree, the bound still holds when aR is

replaced by a lower bound. For all m ∈ N, let Pb,m designate the average bit error probability of the ensemble(
nm, λ(x), ρ(x)

)
under the considered decoding algorithm. Applying Theorem 1 and letting Pb,m tend to zero gives

aR ≥
2 ln

(
1

1−2h−1
2

(
1−C

1−(1−ε)C

)
)

ln
(

1
g1

) . (76)

The upper bound in (22) follows by substituting (76) in (75).
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Turning to consider transmission over the BEC, the improved upper bound on the degree-2 variable nodes follows

by substituting the lower bound in (13) (when we let the bit erasure probability to vanish) into (75). Note that for

a BEC with erasure probability p, C = 1 − p and er(1 − C) = 1.

Discussion 5: [On the tightness of the upper bound (25) on the fraction of degree-2 variable nodes for

capacity-achieving LDPC ensembles over MBIOS channels] As a direct consequence of Theorem 4, then in the

limit were the gap to capacity vanishes under the sum-product decoding algorithm, the fraction of degree-2 variable

nodes of the LDPC ensembles satisfies the upper bound in (25). In the following, we consider the tightness of this

upper bound. To this end, we first present the following lemma:

Lemma 5: [On the asymptotic fraction of degree 2 variable nodes for capacity-achieving sequences of

LDPC ensembles] Let
{(

nm, λm(x) ,
∑

i

λ
(m)
i xi−1, ρm(x) ,

∑

i

ρ
(m)
i xi−1

)}

m∈N

be a sequence of LDPC ensembles whose transmission takes place over an MBIOS channel, and let C designate the

channel capacity (in units of bits per channel use). Assume that this sequence approaches the channel capacity under

the sum-product iterative decoding algorithm, and also assume that the flatness condition is asymptotically satisfied

for this sequence (i.e., let the stability condition be asymptotically satisfied with equality for this capacity-achieving

sequence). Let Λ
(m)
2 be the fraction of the variable nodes of degree 2 of the m’th ensemble in this sequence. Also,

let d
(m)
R be a random variable distributed according to the degree distribution of the parity-check nodes of the m’th

ensemble, and let a
(m)
R = E [d

(m)
R ] designate the average right degree of this ensemble. Finally, let us assume that

the limit of the ratio between the standard deviation and the expectation of the right degree distribution is finite,

i.e.,

lim
m→∞

std
(
d

(m)
R

)

a
(m)
R

= K < ∞ (77)

where std
(
d

(m)
R

)
denotes the standard deviation of the random variable d

(m)
R . Then, in the limit where m tends to

infinity, the fraction of degree-2 variable nodes satisfies

lim
m→∞

Λ
(m)
2 =

er(1 − C)

2(1 + K2)
(78)

where r is the Bhattacharyya distance, introduced in (23), which only depends on the communication channel.

Proof: By the assumption that the sequence of LDPC ensembles satisfies asymptotically the flatness condition,

we get

lim
m→∞

λ
(m)
2 ρ′m(1) = er . (79)

Based on the equality in (71)

Λ
(m)
2 =

λ
(m)
2

2

∫ 1

0
λm(x)dx

, ∀m ∈ N (80)

and therefore

lim
m→∞

Λ
(m)
2

(a)
= lim

m→∞
er

2ρ′m(1)

∫ 1

0
λm(x)dx

(b)
= lim

m→∞
er (1 − Rm)

2ρ′m(1)

∫ 1

0
ρm(x)dx

(c)
=

er(1 − C)

2
lim

m→∞
1

ρ′m(1)

∫ 1

0
ρm(x)dx

(81)
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where the equality in (a) relies on (80) and the requirement in (79), the equality in (b) follows from (1) where

Rm designates the design rate of the ensemble (nm, λm, ρm), and (c) follows by the assumption that the sequence

of LDPC ensembles is capacity-achieving. Based on the convexity of the function f(t) = xt for all x ≥ 0, then

Jensen’s inequality implies that for all m ∈ N and non-negative values of x

ρm(x) =
∑

i

ρ
(m)
i xi−1 ≥ x

∑
i(i−1)ρ

(m)
i = xρ′

m(1) .

Integrating both sides of the inequality over the interval [0, 1] gives
∫ 1

0
ρm(x)dx ≥

∫ 1

0
xρ′

m(1)dx =
1

ρ′m(1) + 1

which therefore implies that

ρ′m(1) ≥ 1
∫ 1

0
ρm(x)dx

− 1 = a
(m)
R − 1 . (82)

From Theorem 1, the asymptotic average right degree of a capacity-achieving sequence of LDPC ensembles tends

to infinity as the gap to capacity vanishes. Therefore, (82) implies that limm→∞ ρ′m(1) = ∞ . Substituting this into

the RHS of (81) gives the equality

lim
m→∞

Λ
(m)
2 =

er(1 − C)

2
lim

m→∞
1

(
ρ′m(1) + 1

) ∫ 1

0
ρm(x)dx

. (83)

Let Γ
(m)
i be the fraction of parity-check nodes of degree i in the m’th LDPC ensemble, then the following equality

holds:

ρ
(m)
i =

iΓ
(m)
i∑

j j Γ
(m)
j

and

ρ′m(1) + 1

=
∑

i

{
(i − 1)ρ

(m)
i

}
+ 1

=
∑

i

iρ
(m)
i

=

∑
i i

2 Γ
(m)
i∑

j j Γ
(m)
j

. (84)

The denominator in the RHS of (83) therefore satisfies the following chain of equalities:

(
ρ′m(1) + 1)

∫ 1

0
ρm(x)dx

=

∑
i i

2 Γ
(m)
i∑

j j Γ
(m)
j

∫ 1

0
ρm(x)dx

=

∑
i i

2 Γ
(m)
i∑

j j Γ
(m)
j

1

a
(m)
R

=

∑
i i

2 Γ
(m)
i(∑

j j Γ
(m)
j

)2

=
var

(
d

(m)
R

)
(
a

(m)
R

)2 + 1 (85)
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where var
(
d

(m)
R

)
designates the variance of the random variable d

(m)
R . Taking the limit where m tends to infinity

on both sides of (85), the definition of K in (77) yields that

lim
m→∞

(
ρ′m(1) + 1)

∫ 1

0
ρm(x)dx = 1 + K2.

The proof of this lemma is completed by substituting the last equality in the RHS of (83).

Lemma 5 shows that for capacity-achieving sequences of LDPC ensembles for which the following assumptions

hold:

• Condition 1: The stability condition is asymptotically satisfied with equality as the gap to capacity vanishes

(i.e., the flatness condition is asymptotically satisfied)

• Condition 2: The limit of the ratio between the standard deviation and the expectation of the right degree

distribution is finite (see (77))

then the asymptotic fraction of degree 2 variable nodes is bounded away from zero as the gap to capacity vanishes

(under the sum-product decoding algorithm). Moreover, if the limit in Condition 2 is equal to zero (i.e., K = 0),

then the asymptotic fraction of degree-2 variable nodes coincides with the upper bound in (25); this makes the

upper bound in (25) tight under the above two conditions for capacity-achieving sequences of LDPC ensembles

under the sum-product decoding algorithm.

As an example of a capacity-achieving sequence of LDPC ensembles which satisfies the upper bound in (25)

with equality, consider the sequence of right-regular LDPC ensembles as introduced by Shokrollahi (see [17], [24]);

this capacity-achieving sequence satisfies the flatness condition on the BEC; also, by definition, K = 0 for this

sequence since the degree of the parity-check nodes is fixed for a right-regular LDPC ensemble. Note that for the

BEC, the upper bound on the fraction of degree-2 variable nodes as given in (25) is particularized to one-half

regardless of the erasure probability of the BEC.

Remark 9: We note that the property proved in Lemma 5 for the non-vanishing asymptotic fraction of degree-2

variable nodes of capacity-achieving sequences of LDPC ensembles is reminiscent of another information-theoretic

property which was proved by Shokrollahi with respect to the non-vanishing fraction of degree-2 output nodes for

capacity-achieving sequences of Raptor codes whose transmission takes place over an MBIOS channel (see [5,

Theorem 11 and Proposition 12]). The concepts of the proofs of these two results are completely different, but

there is a duality the two results.

D. Proof of Theorem 4 and its Corollary

Since the considered sequence of ensembles achieves vanishing bit error probability under sum-product decoding,

the stability condition implies that

λ2 = λ′(0) <
er

ρ′(1)
(86)

where r is given by (23). Substituting (74) in (86) yields

λ2 <
er

aR − 1
(87)

where aR designates the common average right degree of the sequence of ensembles. The upper bounds on λ2 in

(26) and (27) are obtained by substituting (76) and (43), respectively, in (87).

Discussion 6: [Comparison between the two upper bounds on the fraction of edges connected to degree-2

variable nodes: ML versus iterative decoding] In the proof of Theorem 2, we derive an upper bound on the

fraction of edges connected to variable nodes of degree i for ensembles of LDPC codes which achieve a bit error

(or erasure) probability Pb under an arbitrary decoding algorithm (see (66) and the tightened version (68) of this
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bound for the BEC). Referring to degree-2 variable nodes and letting Pb vanish, this bound is particularized to

λ2 ≤
ln

(
1
g1

)

(
1 − (1 − ε)C

)
ln

(
1

1−2h−1
2

(
1−C

1−(1−ε)C

)
)

≤
ln

(
1
g1

)

(1 − C) ln

(
1

1−2h−1
2

(
1−C

1−(1−ε)C

)
) (88)

with the following tightened version for the BEC:

λ2 ≤
2 ln( 1

1−p)
(
1 − (1 − ε)(1 − p)

)
ln

(
1 + p

ε(1−p)

)

≤
2 ln( 1

1−p)

p
[
ln

(
1 − p + p

ε

)
+ ln

(
1

1−p

)] . (89)

It is interesting to note on some similarity between the upper bounds on λ2 as given in (88) and (89) and the

corresponding bounds given in (26) and (27). Note that the bounds in (88) and (89) are valid under ML decoding

or any other decoding algorithm while the two bounds in (26) and (27) are more restrictive in the sense that they are

valid under the sum-product decoding algorithm. These two pairs of bounds are numerically compared in Section V.
Proof of Corollary 5: A truncation of the power series on the LHS of (34) after the first term gives the inequality

1 − h2

(
1 −√

u

2

)
≥ u

2 ln 2
, 0 ≤ u ≤ 1.

Assigning u =
(
1 − 2h−1

2 (x)
)2

and rearranging terms gives

h−1
2 (x) ≥ 1

2

(
1 −

√
2 ln 2 (1 − x)

)
, 0 ≤ x ≤ 1. (90)

Assigning 0 ≤ x , 1−C
1−(1−ε)C ≤ 1 in (90) gives

h−1
2

(
1 − C

1 − C(1 − ε)

)

≥ 1

2

(
1 −

√
2 ln 2

(
εC

1 − (1 − ε)C

))

≥ 1

2

(
1 −

√
2 ln 2

(
εC

1 − C

))

and

1 − 2h−1
2

(
1 − C

1 − (1 − ε)C

)
≤

√
2 ln 2

(
εC

1 − C

)
. (91)

Substituting (91) in (76) provides the following lower bound on the average right degree of the ensembles:

aR ≥ ln
(

1
2 ln 2

1−C
εC

)

ln
(

1
g1

) . (92)

As, clearly, the average right degree of an LDPC ensemble is always greater than 1, then it follows from (92) that

aR − 1 ≥


 ln

( g1

2 ln 2
1−C
εC

)

ln
(

1
g1

)




+

=


 ln

( g1

2 ln 2
1−C

C

)
+ ln

(
1
ε

)

ln
(

1
g1

)




+

. (93)
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The proof is completed by substituting (93) in (87).

E. Proof of Proposition 1

When the transmission takes place over a BEC whose erasure probability is p, the constant c2 given in (29) takes

the form

c2 =
p

ln
(

1
1−p

) . (94)

For 0 < α < 1, let

λ̂α(x) = 1 − (1 − x)α =
∞∑

k=1

(−1)k+1

(
α

k

)
xk , 0 ≤ x ≤ 1

ρα(x) = x
1

α . (95)

Note that all the coefficients in the power series expansion of λ̂α are positive for all 0 < α < 1. Let us now define

the polynomials λ̂α,N and λα,N , where λ̂α,N is the truncated power series of λ̂α, where only the first N − 1 terms

are taken (i.e., λ̂α,N is of degree N − 1), and the polynomial

λα,N (x) ,
λ̂α,N (x)

λ̂α,N (1)
(96)

is normalized so that λα,N (1) = 1. The right-regular sequences of LDPC ensembles in [24] are of the form{(
nm, λα,N (x), ρα(x)

)}
m≥1

where 0 < α < 1 and N ∈ N are arbitrary parameters which need to be selected

properly. Based on the analysis in [22, Theorem 2.3], this sequence achieves a fraction 1− ε of the capacity of the

BEC with vanishing bit erasure probability under message-passing decoding when α and N satisfy

1

Nα
= 1 − p (97)

and

N = max

(⌈
1 − k2(p) (1 − p) (1 − ε)

ε

⌉
,
⌈
(1 − p)−

1

p

⌉)
(98)

where

k2(p) = (1 − p)
π2

6 e

(
π2

6
−γ

)
p

(99)

and γ is Euler’s constant. Combining (95) and (96), and substituting

N−1∑

k=1

(−1)k+1

(
α

k

)
= 1 − N

α

(
α

N

)
(−1)N+1

gives

λα,N (x) =

∑N−1
k=1 (−1)k+1

(
α
k

)
xk

1 − N
α (−1)N+1

(
α
N

) .

Therefore, the fraction of edges adjacent to variable nodes of degree two is given by

λ2 =
α

1 − N
α (−1)N+1

(
α
N

) . (100)

We now obtain upper and lower bounds on λ2. From [22, Eq. (67)] we have that

c(α, N)

Nα
<

N

α
(−1)N+1

(
α

N

)
≤ 1

Nα
(101)

where

c(α, N) = (1 − α)
π2

6 eα
(

π2

6
−γ+ 1

2N

)
. (102)
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Substituting (101) in (100) and using (97), we get

α

1 − c(α, N) (1 − p)
< λ2 ≤ α

1 − (1 − p)
=

α

p
. (103)

Under the parameter assignments in (97) and (98), the parameters N and α satisfy

α =
ln

(
1

1−p

)

lnN
(104)

N ≥ 1 − (1 − p) k2(p)

ε
. (105)

Substituting (104) and (105) into the right inequality of (103) gives an upper bound on λ2 which takes the form

λ2 ≤ α

p

≤
ln

(
1

1−p

)

p ln
(

1−(1−p) k2(p)
ε

)

=
ln

(
1

1−p

)

p
[
ln 1

ε + ln
(
1 − (1 − p) k2(p)

)]

=
1

c3 + c2 ln 1
ε

(106)

where c2 is the coefficient of the logarithmic growth rate in 1
ε , which coincides here with (29), and

c3 ,
p ln

(
1 − (1 − p) k2(p)

)

ln
(

1
1−p

) (107)

is a constant which only depends on the BEC. We turn now to derive a lower bound on λ2 for the asymptotic

case where the gap to capacity vanishes. From (98), we have that for small enough values of ε, the parameter N

satisfies

N =

⌈
1 − k2(p) (1 − p) (1 − ε)

ε

⌉

≤ 1 − k2(p) (1 − p) (1 − ε)

ε
+ 1

=
1 − k2(p) (1 − p)

(
1 − ε

(
1 − 1

k2(p) (1−p)

))

ε
. (108)

Substituting (104) and (108) into the left inequality of (103), we get

λ2 >
α

p

p

1 − c(α, N) (1 − p)

≥
ln

(
1

1−p

)

p ln

(
1−k2(p) (1−p)

(
1−ε

(
1− 1

k2(p) (1−p)

))

ε

)

· p

1 − c(α, N) (1 − p)

=
ln

(
1

1−p

)

p
[
ln

(
1
ε

)
+ ln

(
1 − (1 − p) k2(p)

)
+ ln(1 − ε)

]

· p

1 − (1 − p) c(α, N)

=
1

c3 + c2 ln
(

1
ε

)
+ ε̃(ε, p)

p

1 − (1 − p) c(α, N)
(109)
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where c2 is the coefficient of the logarithm in the denominator of (28) and it coincides with (94), c3 is given in

(107), and

ε̃(ε, p) =
p ln(1 − ε)

ln
(

1
1−p

) (110)

which therefore implies that for 0 ≤ p < 1
lim
ε→0

ε̃(ε, p) = 0. (111)

Using the lower bound on the parameter N in (105), then in the limit where ε vanishes, N tends to infinity (this

holds since 1− (1− p)k2(p) > 0 for all 0 < p < 1 where k2 in introduced in (99)). Also, from (98) and (104), we

get

lim
ε→0

α = 0

which, from (102), yields that

lim
ε→0

c(α, N) = 1 . (112)

Substituting (111) and (112) in (109) yields that in the limit where the gap to capacity vanishes (i.e., ε → 0), the

upper and lower bounds on λ2 in (106) and (109) coincide. Specifically, we have shown that

lim
ε→0

λ2(ε) · c2 ln

(
1

ε

)
= 1 .

Therefore, as ε → 0, the upper bound on λ2 = λ2(ε) in Corollary 5 becomes tight for the sequence of right-regular

LDPC ensembles in [24] with the parameters chosen in (97) and (98). We note that the setting of the parameters

N and α in (97) and (98) is identical to [22, p. 1615].

V. NUMERICAL RESULTS

In this section, we consider sequences of LDPC ensembles which achieve vanishing bit error probability and

closely approach the channel capacity limit under sum-product decoding. As representatives of MBIOS channels,

the considered communication channels are the binary erasure channel (BEC), binary symmetric channel (BSC)

and the binary-input AWGN channel (BIAWGNC).

Example 2: [BEC] Consider a sequence of LDPC ensembles (n, λ, ρ) where the block length (n) tends to infinity

and the pair of degree distributions is given by

λ(x) = 0.409x + 0.202x2 + 0.0768x3 + 0.1971x6 + 0.1151x7

ρ(x) = x5.

The design rate of this ensemble is R = 0.5004, and the threshold under iterative message-passing decoding is

equal to

pIT = inf
x∈(0,1]

x

λ
(
1 − ρ(1 − x)

) = 0.4810

so the corresponding channel capacity of the BEC is C = 1−pIT = 0.5190 bits per channel use, and the multiplicative

gap to capacity is ε = 1 − R
C = 0.0358. The lower bound on the average right degree in (13) with vanishing bit

erasure probability (i.e., Pb = 0) gives that the average right degree should be at least 5.0189, and practically, since

we consider here LDPC ensembles with fixed right degree then the right degree cannot be below 6. Hence, the

lower bound is attained in this case with equality. An upper bound on the fraction of edges which are connected

to degree-2 variable nodes (λ2) is readily calculated based on (87) with er = (pIT)−1 = 2.0790 and the above

lower bound on aR (for LDPC ensembles of a fixed right degree) which is equal to 6; this gives λ2 ≤ 0.4158 as

compared to the exact value which is equal to 0.409. The exact value of the fraction of degree-2 variable nodes is

Λ2 =
λ2 aL

2
=

λ2 (1 − R) aR

2
= 0.6130

as compared to the upper bound in (75), combined with the tight lower bound aR ≥ 6, which gives Λ2 ≤ 0.6232.

Example 3: [BIAWGNC] Table I considers two sequences of LDPC ensembles of design rate 1
2 which are taken

from [4, Table II]. The pair of degree distributions of the ensembles in each sequence is fixed and the block length
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of these ensembles tends to infinity. The LDPC ensembles in each sequence are specified by the following pairs

of degree distributions:

Ensemble 1:

λ(x) = 0.170031x + 0.160460x2 + 0.112837x5

+0.047489x6 + 0.011481x9 + 0.091537x10

+0.152978x25 + 0.036131x26 + 0.217056x99

ρ(x) =
1

16
x9 +

15

16
x10

Ensemble 2:

λ(x) = 0.153425x + 0.147526x2 + 0.041539x5 +

0.147551x6 + 0.047938x17 + 0.119555x18

+0.036379x54 + 0.126714x55 + 0.179373x199

ρ(x) = x11

The asymptotic thresholds of the considered LDPC ensembles under iterative sum-product decoding are calculated

with the density evolution technique when the transmission is assumed to take place over the BIAWGNC; these

calculations provide the indicated gaps to capacity as given in Table I. The value of λ2 for each sequence of LDPC

ensembles (where we let the block length tend to infinity) is compared with the upper bound given in Theorem 4

which holds for any sequence of LDPC ensembles whose bit error probability vanishes under sum-product decoding

with a certain gap (in rate) to capacity. Note that for calculating the bound in Theorem 4, the parameter r introduced

in (23) gets the form r = REb

N0
for the BIAWGNC where Eb

N0
designates the energy per information bit over the

one-sided noise spectral density, and we substitute here the threshold value of Eb

N0
under the sum-product decoding.

The average right degree of each sequence is also compared with the lower bound in Theorem 1. These comparisons

exemplify that for the examined LDPC ensembles, both of the theoretical bounds are informative. It is noted that

LDPC Gap to Lower bound Upper bound

ense- capacity aR on aR λ2 on λ2

mble (ε) (Theorem 1) (Theorem 4)

1 3.72 · 10
−3 10.938 9.249 0.170 0.205

2 2.22 · 10
−3 12.000 10.134 0.153 0.185

TABLE I

COMPARISON OF THEORETICAL BOUNDS AND ACTUAL VALUES OF λ2 AND aR FOR TWO SEQUENCES OF LDPC ENSEMBLES OF DESIGN

RATE
1

2
TRANSMITTED OVER THE BIAWGNC. THE SEQUENCES ARE TAKEN FROM [4, TABLE II] AND ACHIEVE VANISHING BIT ERROR

PROBABILITY UNDER SUM-PRODUCT DECODING WITH THE INDICATED GAPS TO CAPACITY.

the degree distributions of the examined LDPC ensembles were obtained in [27] by numerical search, based on the

density evolution technique, where the goal was to minimize the gap to capacity without taking into consideration

the values of λ2 or aR. Therefore, it might be possible to construct LDPC ensembles which achieve the same gap

to capacity with values of λ2 and aR which are even closer to the theoretical bounds.

Example 4: [BSC] Table II considers two sequences of LDPC ensembles, taken from [27], where the pair of

degree distributions of the ensembles in each sequence is fixed and the block length of these ensembles tends to

infinity. The LDPC ensembles in each sequence are specified by the following pairs of degree distributions and

design rates:
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Ensemble 1:

λ(x) = 0.291157x + 0.189174x2 + 0.0408389x4

+0.0873393x5 + 0.00742718x6 + 0.112581x7

+0.0925954x15 + 0.0186572x20 + 0.124064x32

+0.016002x39 + 0.0201644x44

ρ(x) = 0.8x4 + 0.2x5

R = 0.250

Ensemble 2:

λ(x) = 0.160424x + 0.160541x2 + 0.0610339x5

+0.153434x6 + 0.0369041x12 + 0.020068x15

+0.0054856x16 + 0.128127x19 + 0.0233812x24

+0.05285542x34 + 0.0574104x67 + 0.0898442x68

+0.0504923x85

ρ(x) = x10

R = 0.500

The thresholds of the considered LDPC ensembles under iterative sum-product decoding are calculated with the

density evolution technique when the transmission takes place over the BSC. These thresholds under sum-product

decoding, which correspond to the asymptotic case where we let the block length tend to infinity, provide the

indicated gaps to capacity in Table II. The value of λ2 for each sequence is compared with the upper bound given

in Theorem 4. Note that for calculating the bound in Theorem 4, the parameter r introduced in (23) satisfies

er = 1√
4p(1−p)

for the BSC whose crossover probability is equal to p, and we substitute here the threshold value

of p under the sum-product decoding. Also, for the calculation of this bound for such a BSC, Eq. (51) gives that

g1 = (1 − 2p)2. The average right degree of each sequence is also compared with the lower bound in Theorem 1.

These comparisons show that for the considered sequences of LDPC ensembles, both of the theoretical bounds are

fairly tight; the upper bound on λ2 is within a factor of 1.3 from the actual value for the two sequences of LDPC

ensembles while the lower bound on the average right degree is not lower than 83% of the corresponding actual

values. As with the LDPC ensembles in Table I, the ensembles referred to in Table II were obtained by the density

LDPC Gap to Lower bound Upper bound

ense- capacity aR on aR λ2 on λ2

mble (ε) (Theorem 1) (Theorem 4)

1 1.85 · 10
−2 5.172 4.301 0.291 0.371

2 6.18 · 10
−3 11.000 9.670 0.160 0.185

TABLE II

COMPARISON OF THEORETICAL BOUNDS AND ACTUAL VALUES OF λ2 AND aR FOR TWO SEQUENCES OF LDPC ENSEMBLES

TRANSMITTED OVER THE BSC. THE SEQUENCES ARE TAKEN FROM [27] AND ACHIEVE VANISHING BIT ERROR PROBABILITY UNDER

ITERATIVE SUM-PRODUCT DECODING WITH THE INDICATED GAPS TO CAPACITY.

evolution technique with the goal of minimizing the gap to capacity under a constraint on the maximal degree.

Example 5: [On the fundamental system of cycles for capacity-approaching sequences of LDPC ensembles]

Corollary 2 considers an arbitrary sequence of LDPC ensembles, specified by a pair of degree distributions, whose

transmission takes place over an MBIOS channel. This corollary refers to the asymptotic case where we let the

block length of the ensembles in this sequence tend to infinity and the bit error (or erasure) probability vanishes;

the design rate of these ensembles is assumed to be a fraction 1 − ε of the channel capacity (for an arbitrary

ε ∈ (0, 1)). In Corollary 2, Eq. (16) applies to a general MBIOS channel and a tightened version of this bound is

given in (17) for the BEC. Based on these results, the asymptotic average cardinality of the fundamental system

of cycles for Tanner graphs representing codes from LDPC ensembles as above, where this average cardinality is
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Fig. 3. Plot of the asymptotic lower bounds in Corollary 2 (see Eqs. (16) and (17)) for three memoryless binary-input output-symmetric

(MBIOS) channels. These lower bounds correspond to the average cardinality of the fundamental system of cycles for Tanner graphs

representing codes from an arbitrary LDPC ensemble; the above quantity is normalized w.r.t. the block length of the ensemble, and the

asymptotic result shown in this figure refers to the case where we consider a sequence of LDPC ensembles whose block lengths tend to

infinity (according to the statement in Corollary 2, the degree distributions of the sequence of LDPC ensembles are assumed to be fixed

and the block lengths of these ensembles tend to infinity). The bounds are plotted versus the achievable gap (in rate) between the channel

capacity and the design rate of the LDPC ensembles. This figure shows the bounds for the binary symmetric channel (BSC), binary-input

AWGN channel (BIAWGNC) and the binary erasure channel (BEC) where it is assumed that the design rate of the LDPC ensembles is fixed

in all cases and is equal to one-half bit per channel use.

normalized w.r.t. the block length, grows at least like log 1
ε . We consider here the BSC, BEC, and BIAWGNC as

three representatives of the class of MBIOS channels, and assume that the design rate of the LDPC ensembles is

fixed to one-half bit per channel use. It is shown in Fig. 3 that for a given gap (ε) to the channel capacity and

for a fixed design rate, the extreme values of this lower bounds correspond to the BSC and BEC (which attain

the maximal and minimal values, respectively). This observation is consistent with the last part of the statement in

Corollary 2.

VI. SUMMARY AND OUTLOOK

This paper considers properties related to the degree distributions of capacity-approaching LDPC ensembles, and

to the graphical complexity and the average cardinality of the fundamental system of cycles of their Tanner graphs.

Universal information-theoretic bounds which are related to these properties are derived when the transmission of

these LDPC ensembles takes place over an arbitrary memoryless binary-input output-symmetric (MBIOS) channel.

The universality of the bounds derived in this paper stems from the fact that they do not depend on the full

characterization of the LDPC ensembles but rather depend on the achievable gap between the channel capacity and

the design rate of the ensemble. Some of these bounds are also expressed in terms of the bit error (or erasure)

probability and the block length of the ensembles, and several other bounds refer to the asymptotic case where we

let the block length tend to infinity and the bit error probability vanishes. The first category of the results introduced

in this paper provides the following bounds which hold under maximum-likelihood (ML) decoding (and hence,

they also hold under any sub-optimal decoding algorithm):
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• Theorem 1 provides a lower bound on the average degree of the parity-check nodes of a binary linear block

code where it is assumed that the code is represented by an arbitrary bipartite (Tanner) graph which corresponds

to a full-rank parity-check matrix. A lower bound on the average right degree of the Tanner graph is related

to the graphical complexity of the representation of a binary linear block code by such a bipartite graph, and

also to the decoding complexity per iteration which is associated with a message-passing iterative decoder

operating on this graph. The bound in Theorem 1 applies to finite-length binary linear block codes, and it is

expressed in terms of the required bit error probability of the code under ML decoding or any other decoding

algorithm. This theorem is adapted to hold for LDPC ensembles while relaxing the rather heavy requirement

of full-rank parity-check matrices for codes from an LDPC ensemble, and addressing instead the design rate

of this ensemble with its corresponding gap to capacity (see Discussion 2 in Section IV). The adaptation of

Theorem 1 is also considered for randomly and intentionally punctured LDPC ensembles (see Discussion 3 in

Section IV). One of the implications of this theorem is introduced in Corollary 2 which provides asymptotic

lower bounds on the average cardinality of the fundamental system of cycles of LDPC ensembles in terms of

the capacity of the communication channel and the achievable gap to capacity. All of these lower bounds grow

like the logarithm of the inverse of this gap (in rate) to capacity (see also [9], [22], [23], [25]), and they provide

quantitative measures of the graphical complexity and the average number of fundamental cycles of capacity-

approaching LDPC ensembles in terms of the gap between the channel capacity and their design rate. These

bounds demonstrate that the above quantities become unbounded as the gap to capacity vanishes, and they also

provide a quantitative tradeoff between the performance of these ensembles, and the graphical complexity and

average cardinality of the fundamental system of cycles of their Tanner graphs (which are important parameters

for studying the performance and decoding complexity of iterative message-passing decoders).

• Theorem 2 provides upper bounds on the degree distributions of capacity-approaching LDPC ensembles (both

from the node and the edge perspectives), and it addresses the behavior of these degree distributions for any

finite degree in terms of the achievable gap to capacity. We discuss the implication of this theorem later.

The second category of results is specialized to iterative message-passing decoding algorithms (addressing in

particular the sum-product decoding algorithm). The derivation of these results is based on the proofs of the above

bounds combined with the stability condition. Theorems 3 and 4 provide upper bounds on the fraction of degree-2

variable nodes and the fraction of the edges connected to these nodes for LDPC ensembles; these bounds are

expressed in terms of the achievable gap to capacity of these ensembles under the sum-product decoding algorithm

where it is assumed that the block length of these ensembles tends to infinity and the bit error (or erasure) probability

vanishes. A byproduct of Theorems 3 and 4 and Lemma 5 is that while the fraction of degree-2 variable nodes stays

positive (under some mild conditions) for capacity-approaching LDPC ensembles, the fraction of edges connected

to degree-2 variable nodes vanishes, and it is upper bounded by the inverse of the logarithm of the achievable gap

to capacity. The tightness of the bounds in Theorems 1–4 is exemplified for some capacity-approaching LDPC

ensembles under sum-product decoding (see Section V). These bounds are shown to be reasonably tight for general

MBIOS channels, and are particularly tight for the binary erasure channel (BEC).

It is interesting to note that there is a fundamental property which is in common and another property which

distinguishes the behavior of the degree distribution of the variable nodes from the degree distribution of the parity-

check nodes for capacity-approaching LDPC ensembles under iterative message-passing decoding. The property

which is in common relies on Theorem 1 and its adaptation to LDPC ensembles in Discussion 2. First note that

the behavior of the average left and right degrees is similar in the sense that their ratio depends on the design

rate of the ensemble (so it depends on the channel capacity for sequences of capacity-achieving LDPC ensembles,

and is positive as long as the channel capacity is less than 1 bit per channel use). According to Discussion 2,

the average left and right degrees of an LDPC ensemble scale at least like the logarithm of the inverse of the

gap (in rate) to capacity, and therefore become unbounded for capacity-achieving sequences of LDPC ensembles

(even under ML decoding). The other property which distinguishes between the degree distributions of these two

kinds of nodes is related to the fact that under some mild conditions, the fraction of degree-2 variable nodes

stays strictly positive as the gap to capacity vanishes under the sum-product decoding algorithm (see Lemma 5

and Remark 9) whereas, according to Theorem 2, the fraction of parity-check nodes of an arbitrary finite degree

vanishes for capacity-achieving LDPC ensembles. This observation conforms with the behavior of the optimized

pairs of the degree distributions of capacity-approaching LDPC ensembles for various MBIOS channels (see, e.g.,
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[27]). More explicitly, the degrees of the variable nodes, which are obtained numerically in [27] via the density

evolution technique, span over a large range (i.e., the degrees of the variable nodes are distributed between 2 and

the maximal allowed degree) whereas the parity-check nodes are almost right concentrated (i.e., the degrees of

the parity-check nodes are almost fixed). This observation also conforms with the behavior of the right-regular

capacity-achieving sequence of LDPC ensembles over the BEC [24].

In the following, we gather what we consider to be the most interesting open problems which are related to this

research:

• The asymptotic bounds in Corollary 2 address the average cardinality of the fundamental system of cycles for

Tanner graphs representing LDPC ensembles where the results are directly linked to the average right degree of

these ensembles. Further study of the possible link between the statistical properties of the degree distributions

of capacity-approaching LDPC ensembles and some other graphical properties related to the cycles in the

Tanner graphs of these ensembles is of interest.

• The derivation of universal bounds on the number of iterations and the decoding complexity of code ensembles

defined on graphs, measured in terms of the achievable gap (in rate) to capacity, is of theoretical and practical

interest. In a currently ongoing work, this issue is addressed for the particular case of the BEC where we let

the block length of these ensembles tend to infinity.

• The lower bound on the conditional entropy which is given in (8) plays a key role in the derivation of

Theorem 1 and accordingly, it is also crucial for the derivation of the other results in this paper. As opposed to

this information-theoretic bound, the bounding techniques presented in [14] and [15] rely on statistical physics,

and therefore do not provide a bound on the conditional entropy which is valid for every binary linear block

code from the considered ensembles (for a survey paper which provides an introduction to codes defined on

graphs and highlights connections with statistical physics, the reader is referred to [16]). It would be interesting

to get some theory that unifies the information-theoretic and statistical physics approaches and provides bounds

that are tight on the average and valid code by code.

• Extension of the results in this paper to channels with memory (e.g., finite-state channels) is of interest. In

this respect, the reader is referred to [9] which considers information-theoretic bounds on the achievable rates

of LDPC ensembles for a class of finite-state channels.
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