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Abstract

We consider a queue with renewal arrivals and n exponential servers
in the Halfin-Whitt heavy traffic regime, where n and the arrival rate
increase without bound, so that a critical loading condition holds.
Server k serves at rate µk, and the empirical distribution of {µk}k=1,...,n

is assumed to converge weakly. We show that very little information
on the service rates is required for a routing mechanism to perform
well. More precisely, we construct a routing mechanism that has ac-
cess to a single sample from the service time distribution of each of
n

1

2
+ε randomly selected servers (ε > 0), but not to the actual values of

the service rates, the performance of which is asymptotically as good
as the best among mechanisms that have the complete information
{µk}k=1,...,n.

Keywords: Halfin-Whitt regime; routing policies; service time sam-
pling
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1 Introduction

In the many-server parametric regime of Halfin and Whitt [10], a critically
loaded diffusively scaled system has the property that the fraction of time
when queues are empty is neither close to 0 nor 1, a situation that is of-
ten observed in applications. Particularly, it has been suggested that this
regime is suitable for modeling large call centers [8], and various models mo-
tivated by this application have been studied, where a many-server system
operates in this regime (see [15] for a review). In models that involve het-
erogenous servers, a principal problem is to find an efficient routing policy
[1, 2, 4, 5, 6, 9, 13, 14]. In all previous works on routing control in this
regime, the proposed routing mechanisms are assumed to have complete in-
formation about the service rates of each server (where by ‘rate’ we refer
to the parameter of the exponential service time distribution, assumed by
most authors; however see [13] for more general service times). Since often
in applications the routing control mechanism has little knowledge of the
performance of each individual server, it is natural to ask whether it can
perform near optimality with less information on these parameters. Our
goal in this note is to argue that sufficient information for this purpose is a
single sample of service time from a negligible fraction of the servers.

The pioneering work of Halfin and Whitt [10] considers a queue with re-
newal arrivals and identical exponential servers, where the number of servers
and the rate of arrivals are scaled up so that the queue remains critically
loaded. The second order asymptotics of the process representing the num-
ber of customers in the system is shown to converge to a diffusion. When the
servers are heterogenous, it was shown in [1] that, in presence of customers
of a single class, the policy which routes jobs to the fastest server among
those that are free at the time of routing (and does not allow interruption
of service) is asymptotically optimal in terms of the queue length as well as
the delay of an arriving customer. Analogous results are available for the
case of random, i.i.d. service rates [3] and, under appropriate assumptions,
for hyperexponential service times [13].

We mention that works that characterize the fluid and diffusion scaling
limits are available for homogeneous servers with general service time dis-
tributions [11, 12]. The question that we address here is also very natural in
this wider context. Note, however, that for heterogenous servers with gen-
eral service times, an asymptotically optimal routing policy is not known
even when the routing mechanism has access to all service time distribu-
tions (with the exception of [13]). For this reason we confine our treatment
to the exponential case.
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As mentioned above, we assume that the routing mechanism has access
only to samples from the service time distribution of some of the servers.
We show that, perhaps counter-intuitively, very little sampling is required
for asymptotically optimal performance: It suffices to collect a single sample
from each server in a set of r randomly selected servers, where r is as small
as n

1

2
+ε (ε > 0). The proposed policy always routes jobs to non-sampled

servers if such are available, and otherwise, routes to the server for which the
sampled service time is smallest among the (sampled) servers that are avail-
able at the time. It is shown to be asymptotically optimal in the sense that
the diffusion limit of the process representing the total number of customers
in the system (characterized in Theorem 2.1) is stochastically dominated by
any subsequential limit under any (work conserving, nonanticipating) policy
(see Theorem 2.2). This includes policies that have access to the complete
information on service rates. A similar statement holds for the queue length
processes (simply by (13)).

A clear practical advantage of our approach is that it is not necessary
to invest in measuring various characteristics precisely, or collect accurate
information on the performance of the servers. In addition, the policy pro-
posed has a desired robustness property in that its performance is nearly
optimal regardless of the values of system parameters, as long as the basic
assumptions hold. These assumptions on the empirical measure of the rates
and its first and second-order limits (1)–(3) are quite general, and so are the
assumptions on the limiting distribution.

The proofs are based on an estimate on the number of errors in ordering
the servers according to their sampled data (Lemma 3.1), an estimate on
the total idle time encountered by servers that have relatively high priority
(Lemma 3.2), and the technique developed in [3] (proof of Theorem 2.1).

In the next section we describe the model and the proposed policy, and
state the main results. The proofs appear in Section 3.

2 Model and main results

We fix some notation. Denote by D the space of functions from R+ to
R that are right continuous on R+ and have finite left limits on (0,∞)
(RCLL), endowed with the usual Skorohod topology [7]. If Xn, n ∈ N and
X are processes with sample paths in D (respectively, real-valued random
variables) we write Xn ⇒ X to denote weak convergence of the measures
induced by Xn on D (respectively, on R) to the measure induced by X, as
n → ∞. For X ∈ D we write |X|∗,t := sup0≤s≤t|X(s)|. For x ∈ R, write
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x+ = max{x, 0} and x− = max{−x, 0}.
A complete probability space (Ω,F , P ) is given, supporting all random

variables and stochastic processes defined below. Expectation w.r.t. P is
denoted by E. We consider a single queue fed by renewal arrivals, with
parallel exponential servers. The model is parameterized by n ∈ N, where n
also represents the number of servers. The n servers are labeled as 1, . . . , n,
and, for the nth system, deterministic parameters µnk ∈ [µ, µ̄] are given,
where µnk represents service rate of server k, and 0 < µ ≤ µ̄ < ∞ are
constants independent of n. We assume weak convergence of the empirical
measure of {µnk},

Ln = n−1
∑

k

δµn

k
→ m, (1)

where m is a probability measure on R (supported on [µ, µ̄]). The mean
is denoted by µ =

∫
xdm. A second order type approximation is further

assumed on the rate parameters, namely that the limit

lim
n
n−

1

2

n∑

k=1

(µnk − µ) := µ̂ (2)

exists as a finite number. Denoting µ∗ = ess infm, we finally assume

lim
n→∞

#{k : µnk < µ∗ − ε}n−
1

2 = 0, ε > 0. (3)

Example 2.1 A special case of assumptions (1), (2) and (3) is when there
is a fixed number of pools of servers with ain+O(1) servers at pool i, and

where each server at pool i serves at rate bi + cin
− 1

2 (for constant ai, bi, ci;
ai > 0), a setting that is common (for example [1] in a single class setting,
and [14] in a multiclass setting).

Example 2.2 We point out that there is more flexibility in the choice of
the parameters. For example, if we have two pools of size 0.2n + n

3

4 and
0.8n + n

4

5 with rates 1 + 4n−
1

6 + n−
1

2 and, respectively, 2 − n−
1

6 , then our
assumptions still hold. A more general case is as follows. We have a fixed
number of pools of sizes ain+fi(n), with respective rates bi+ cin

− 1

2 +gi(n).
Then assumptions (1)–(3) hold provided that fi(n) = o(n), gi(n) = o(1) and
that the limit

lim
n→∞

n
1

2

∑

i

aigi(n)

exists. This is verified by a straightforward, if lengthy calculation using
µ =

∑
i aibi.
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Example 2.3 It is sometimes very natural to regard the rates {µk} as ran-
dom variables, and thus to consider the queueing process, as well as its
scaling limit, as processes in random environment. The case where the ser-
vice rates are i.i.d. random variables, drawn from a common distribution m,
was considered in [3]. In this case, the law of large numbers implies that
(1) and (3) hold with probability one, and the central limit theorem im-
plies a variation of (2), in which µ̂ is a normal random variable. Although
we assume throughout that the service rates are deterministic, we would
like to comment that all our results can be formulated for an i.i.d. random
environment, with basically the same proofs.

The initial configuration is now described. Let Qn0 be a Z+-valued random
variable, representing the initial number of customers in the buffer. Let
Bn
k,0, k = 1, . . . , n be {0, 1}-valued random variables representing the initial

state of each server, where Bn
k,0 = 1 if and only if server k initially serves

a customer. We restrict to non-idling policies, so that in particular Qn0 >
0 only if Bn

k,0 = 1 for all k = 1, . . . , n. The total number of customers
initially in the system is denoted by Xn

0 = Qn0 +
∑n

k=1B
n
k,0. Note that, by

assumption, we have the relation Qn0 = (Xn
0 − n)+. We assume

X̂n
0 := n−

1

2 (Xn
0 − n) ⇒ ξ0, (4)

where ξ0 is a random variable.
To define the arrival process, we are given parameters λn > 0, n ∈

N satisfying limn λ
n/n = λ > 0, and a sequence of strictly positive i.i.d.

random variables {Ǔ(l), l ∈ N}, with mean EǓ (1) = 1 and variance Č2 =
Var(Ǔ(1)) ∈ [0,∞). With

∑0
1 = 0, the number of arrivals up to time t for

the nth system is given by An(t) = sup{l ≥ 0 :
∑l

i=1 Ǔ(i)/λn ≤ t}. The
arrival rates are further assumed to satisfy the second order relation

lim
n
n−

1

2 (λn − nλ) = λ̂, (5)

for some λ̂ ∈ R. The ‘heavy traffic’ condition on the first order parameters
is assumed, namely

λ = µ, (6)

indicating that the system is critically loaded. For each k = 1, . . . , n, we let
Bn
k be a stochastic process taking values in {0, 1}, representing the status

of server k: when Bn
k (t) = 1 [resp., 0] we say that server k is busy [resp.,

idle]. Let Ink (t) = 1−Bn
k (t) for k = 1, . . . , n, and t ≥ 0. For k = 1, . . . , n, let

Rnk [resp., Dn
k ] be a Z+-valued process with nondecreasing right-continuous
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sample paths, representing the number of routings of customers to server
k within [0, t] [resp., the number of jobs completed by server k by time t].
Thus

Bn
k (t) = Bn

k,0 +Rnk (t) −Dn
k (t), k = 1, . . . , n, t ≥ 0. (7)

To describe the processes Dn
k , let {Sk, k ∈ N} be i.i.d. standard Poisson

processes, each having right-continuous sample paths. The processes Dn
k

are assumed to satisfy

Dn
k (t) = Sk(T

n
k (t)), k = 1, . . . , n, (8)

where

T nk (t) = µnk

∫ t

0
Bn
k (s)ds, k = 1, . . . , n. (9)

Let Xn, Qn and In be defined as

Xn(t) = Xn
0 +An(t) −

n∑

k=1

Dn
k (t),

Qn(t) = Qn0 +An(t) −

n∑

k=1

Rnk (t),

In(t) =

n∑

k=1

Ink (t).

(10)

These processes represent the number of customers in the system, the num-
ber of customers in the buffer and, respectively, the number of servers that
are idle.

The routing policy, that will be described below, does not have access
to the service rates µnk , but it has access to samples from the service time
of r of the servers, selected at random, and no information at all on service
rates of the others. More precisely, let r = rn ∈ N, r ≤ n be given, and
let Σ = Σn be a random variable uniformly distributed over the set of all
subsets of {1, . . . , n} that have cardinality r. We denote Σc = {1, . . . , n}\Σ.
For each k ∈ Σ, let σk = σnk be an independent copy drawn from the service
time distribution of server k. That is, σk is an exponential random variable
with parameter µnk and, conditioned on Σ, {σk}k∈Σ are independent. We
choose

rn = [nβr ], (11)

where βr ∈ (1
2 , 1]. Denote µ̂k = 1/σk, k ∈ Σ.
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The four stochastic primitives introduced, as listed below, are assumed
to be mutually independent, for each n:

(
Xn

0 , {B
n
k,0}k=1,...,n

)
, {Sk}k∈N, An,

(
Σn, {σnk }k∈Σn

)
. (12)

Routing is based on an ordering of the servers according to whether they
are in Σ and, within Σ, according to the value of µ̂k. A permutation Rank =
Rankn of {1, . . . , n} is defined as follows. On the probability-one event that
the µ̂k are all distinct, the set Σ is mapped by Rank onto {1, . . . , r} (and Σc

onto {r+1, . . . , n}). For k, l ∈ Σ, Rank(k) < Rank(l) if and only if µ̂k < µ̂l.
For k, l ∈ Σc, Rank(k) < Rank(l) if and only if k < l.

The routing policy favors servers ranked higher (namely those that have
high value under the map Rank). That is, when a customer arrives to the
system to find more than one idle server, the customer is routed to the server
with highest rank among those servers. Since it is assumed that the routing
policy is work conserving (non-idling), when the queue is nonempty and a
server has just finished serving, a customer (from the head of the line) is
routed to this server, and when a customer arrives to the system to find
exactly one server that is idle, it is instantaneously routed to that server.
As a result,

Qn(t) = (Xn(t) − n)+,

In(t) = (Xn(t) − n)−
(13)

holds for all t. Also, service is non-interruptible, in the sense that a customer
completes service at the server it is first assigned.

This completes the description of the process

Πn
0 := ({Bn

k }, {R
n
k}, {D

n
k },X

n, Qn, In).

It can be seen that this description uniquely determines Πn
0 . We sometimes

refer to this process as policy Πn
0 . Later we use some of the symbols above

(such as Xn) to denote quantities that have the same meaning (such as the
number of customers in the nth system) under a different routing policy Πn.
To avoid confusion, we therefore make specific reference to policy Πn

0 when
necessary.

Finally, we make a simplifying assumption about the initial occupation
of servers, namely that only servers that are ranked low may initially be
idle:

Bn
k,0 = 1{Rank(k)>In

0
}, (14)

7



where
In0 = (Xn

0 − n)− (15)

is the initial number of idle servers.
Let X̂n be a centered, normalized version of the process Xn, defined by

X̂n = n−
1

2 (Xn − n). (16)

Our main result is the following.

Theorem 2.1 Under policy Πn
0 , the processes X̂n converge weakly to the

unique solution ξ of

ξ(t) = ξ0 + σw(t) + βt+ µ∗

∫ t

0
ξ(s)−ds, t ≥ 0, (17)

where σ2 = µ(Č2 + 1), β = λ̂ − µ̂, and w is a standard Brownian motion,
independent of ξ0.

The result above is to be compared with Proposition 4.2 of [1] and Theo-
rem 2.2 of [3] (for the case of a finite number of server pools and, respectively,
random environment). In these references, equation (17) arises in the limit
under a policy defined similarly to Π0, but where the servers are ordered
according to the actual values of µk, k = 1, . . . , n. In [1] it is further shown
that this policy asymptotically achieves the best performance in a large class
of routing policies. Because our setting is different than [1], we will state
and prove an analogous result, so as to exhibit that Π0 is asymptotically
optimal.

Toward this end, let us first comment on an alternative representation
of the departure process. By (8), this process is given as

∑n
k=1D

n
k (t) =∑n

k=1 Sk(T
n
k (t)), where Sk are independent standard Poisson processes. In

fact, the departure process can also be represented as

n∑

k=1

Dn
k (t) = Sn

( n∑

k=1

T nk (t)
)
, (18)

where, for every n, Sn is a standard Poisson process, independent of the
remaining primitive data, that is, of the first, third and fourth items of
(12). This statement (along with a variation of it, stated in Section 3) is
due to a standard superposition argument for Poisson processes, for which
the reader is referred to Proposition 3.1 of [3].
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We now define a class of policies by keeping the description of this section
but abandoning the specifics of the routing mechanism. More precisely, we
write Πn ∈ Pn for any process

Πn = ({Bn
k }, {R

n
k}, {D

n
k },X

n, Qn, In)

satisfying all relations stated throughout this section, from its beginning to
the statement of Theorem 2.1, save the two paragraphs following display
(12), and satisfying, in addition, work conservation (13) and the represen-
tation (18), for some standard Poisson processes Sn, independent of the
remaining primitive data. Note, in particular, that the routing mechanism
may have access to {µk}. See Remark 3.2 about the role played by the work
conservation condition (13). We refer to any element of Pn as a policy.

Theorem 2.2 For n ∈ N and any policy Πn ∈ Pn, let X̂n be the normalized
version (16) of the corresponding process Xn. Then there exist processes Ξn

that converge weakly, as n→ ∞, to the solution ξ to (17) and

X̂n(t) ≥ Ξn(t), t ≥ 0, P -a.s., n ∈ N.

Since by Theorem 2.1, ξ is obtained at the limit under Πn
0 , the result

above demonstrates that Πn
0 asymptotically optimal.

9



3 Proofs

We begin with the following.

Lemma 3.1 Let 0 < φ < ψ < ∞, β > 1
2 , c1 > 0 and c2 > 0 be given

constants. For n ∈ N denote ℓ1 = ℓ1n = [c1n
β], ℓ2 = ℓ2n = [c2n

β], and let
φn1 , . . . , φ

n
ℓ and ψn1 , . . . , ψ

n
ℓ be positive real numbers with

sup
n,i

φni ≤ φ < ψ ≤ inf
n,i
ψni .

For n ∈ N and i ∈ {1, . . . , ℓ} let Φni [resp., Ψni ] be an exponential random
variable with parameter φni [resp., ψni ]. For each n assume that {Φni } are
mutually independent and that so are {Ψni }. Then there exist γ > 0 and
κ > 0 such that, with θn = γ log n, one has

lim
n→∞

P




ℓ1n∑

i=1

1{Φn

i
≥θn} ≤ n

1

2
+κ


 = 0, (19)

lim
n→∞

P




ℓ2n∑

i=1

1{Ψn

i
≥θn} ≥ n

1

2
−κ


 = 0. (20)

Proof. By stochastic monotonicity of the exponential random variable with
respect to its parameter, it clearly suffices to prove the claim for the case
φni = φ, ψni = ψ, all n and i. To prove the claim under this assumption, let
κ and γ be strictly positive constants satisfying

φγ < β −
1

2
− κ < β −

1

2
+ κ < ψγ. (21)

Write Φi [resp. Ψi] for Φni [resp., Ψni ]. Then for any α > 0 and {θn},

P




ℓ1n∑

i=1

1{Φi≥θn} ≤ n
1

2
+κ


 ≤ eαn

1
2
+κ

E exp


−α

ℓ1n∑

i=1

1{Φi≥θn}




= eαn
1
2
+κ (

P (x1 < θn) + e−αP (x1 ≥ θn)
)ℓ1n

= eαn
1
2
+κ

(
1 − e−φθn + e−αe−φθn

)ℓ1n

= eαn
1
2
+κ

exp
{
ℓ1n log

(
1 + e−φθn(e−α − 1)

)}

≤ exp
{
αn

1

2
+κ − ℓ1n

(
e−φθn(1 − e−α)

})
.
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For the last expression to converge to zero, we need

Kn := αn
1

2
+κ − ℓ1n

(
e−φθn(1 − e−α)

)
→ −∞.

Fix ν > 0 and set θn = γ log n, α = αn = ν log n. Then

Kn ≤ ν log n · n
1

2
+κ − (c1n

β − 1)
(
n−φγ(1 − n−ν)

)
.

Since by (21) 1
2 +κ < β−φγ, we have Kn → −∞, as desired, and thus (19)

holds.
Fix η > 0. Since (1 + x)k ≤ ekx for x > −1, we have

P




ℓ2n∑

i=1

1{Ψi≥θn} ≥ n
1

2
−κ


 ≤ e−ηn

1
2
−κ

E exp


η

ℓ2n∑

i=1

1{Ψi≥θn}




= e−ηn
1
2
−κ

(
1 − e−ψθn + e−ηe−ψθn

)ℓ2n

≤ e−ηn
1
2
−κ

exp
{
ℓ2n

(
e−ψθn(e−η − 1)

)}

= exp
{
−ηn

1

2
−κ + c2n

βn−ψγ(e−η − 1)
}
,

where on the last line above we substituted θn = γ log n. The expression on
the last line converges to zero because 1

2 − κ > β − ψγ by (21), and (20)
follows.

Remark 3.1 (a) The convergence in (19), (20) is at a geometric rate, as
the proof shows. Thus, by the Borel-Cantelli lemma, both events occur for
only a finite number of n, with probability one.
(b) As can be seen in the proof, κ and γ depend only on β, φ and ψ (cf.
(21)), and not on {ci}.

Fix ε > 0 and let α ∈ (µ∗, µ∗ + ε) be a continuity point of x 7→ m([0, x]).
In what follows, the symbols n and ε are omitted from the notation of all
random variables and stochastic processes, and from the parameters µnk . Let
M0 = [µ, µ∗ − ε), M1 = [µ∗ − ε, α) and M2 = [α, µ̄] (where [a, b) and [a, b]
are interpreted as the empty set if a > b), and set

Ki = {k ∈ {1, . . . , n} : µk ∈Mi}, i = 0, 1, 2.

Denote

I(i)(t) =
∑

k∈Ki

Ik(t), T (i)(t) =
∑

k∈Ki

Tk(t), i = 0, 1, 2. (22)
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Let also Î(i) = n−
1

2 I(i). By (8) and (10),

X̂(t) = X̂0 + n−
1

2A(t) − n−
1

2

n∑

k=1

Sk(Tk(t)). (23)

By a superposition argument for Poisson processes (cf. Proposition 3.1 of
[3]),

X̂(t) = X̂0 + n−
1

2A(t) − n−
1

2

2∑

i=0

S(i)(T (i)(t)), (24)

where S(i), i = 0, 1, 2 are standard Poisson processes, mutually independent,
and independent of the first, third and fourth items of (12). In particular,

D(i)(t) :=
∑

k∈Ki

Dk(t) = S(i)(T (i)(t)), i = 0, 1, 2. (25)

A calculation based on (6) and (24) shows (see a detailed derivation at the
end of this section)

X̂(t) = X̂0 +W (t) + bt+ F (t), (26)

where we recall that all quantities depend on n and ε, and where

W (t) = Â(t) −

2∑

i=0

W (i)(t), (27)

Â(t) = n−
1

2 (A(t) − λnt), (28)

W (i)(t) = n−
1

2 (S(i)(T (i)(t)) − T (i)(t)), i = 0, 1, 2, (29)

b = n−
1

2 (λn − nλ) − n−
1

2

n∑

k=1

(µk − µ), (30)

F (t) = n−
1

2

∫ t

0

n∑

k=1

µkIk(s)ds. (31)

Lemma 3.2 Under Πn
0 , given t̄ > 0 and ε > 0,

|Î(2)|∗,t̄ → 0 in probability, as n→ ∞. (32)
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Proof. Step 1: We will show here that there is a (deterministic) sequence

an increasing to infinity, so that ann
1

2 ≤ rn, and such that, out of the ann
1

2

servers ranked lowest, the number of those that are in K2 is o(n
1

2 ), in the
following sense:

#{k ∈ K2 : Rank(k) ≤ ann
1

2 }

n
1

2

⇒ 0. (33)

We will apply Lemma 3.1. To this end let φ ∈ (µ∗, α) be a continuity
point of x 7→ m([µ, x]). Let ψ = α. Let K̃ = {k ∈ {1, . . . , n} : µk ≤ φ}.
Since m([µ∗, φ]) > 0, it follows from (1) that, for some constant c > 0 and
with probability increasing to 1, the cardinality of K̃ is at least cn. Since
the subset Σ is uniformly distributed and the number of samples satisfies
(11), it follows that, on some events Ωn satisfying P (Ωn) → 1,

#K̃ ∩Σ ≥ c1n
βr , #K2 ∩Σ ≤ #Σ = nβr ,

for a constant c1 > 0. Recall µ̂k = 1/σk, the reciprocal to the sampled
service time. We apply Lemma 3.1 with Φi being the samples σk with index
set K̃ ∩Σ, and Ψi those with index set K2∩Σ. We obtain, that on an event
Ωn

1 ⊂ Ωn, which also satisfies limn→∞ P (Ωn
1 ) = 1,

#{k ∈ K̃ ∩Σ : µ̂k ≤ 1/θn} > n
1

2
+κ, (34)

#{k ∈ K2 ∩Σ : µ̂k ≤ 1/θn} < n
1

2
−κ, (35)

where, without loss of generality, 1
2 <

1
2 + κ < βr. Now, (34) and the way

the map Rank is defined, imply that all servers k with Rank(k) ≤ n
1

2
+κ have

µ̂k ≤ 1/θn and are in Σ. As a result,

#{k ∈ K2 : Rank(k) ≤ n
1

2
+κ} = #{k ∈ K2 ∩Σ : Rank(k) ≤ n

1

2
+κ}

≤ #{k ∈ K2 ∩Σ : µ̂k ≤ 1/θn}

≤ n
1

2
−κ,

by (35). This proves (33) with an = nκ.
Step 2: Denote

K ′ = {k ∈ {1, . . . , n} : Rank(k) > ann
1

2 },

and I ′ =
∑

k∈K ′ Ik, T
′ =

∑
k∈K ′ Tk, D

′ =
∑

k∈K ′ Dk. An argument as the
one following equation (23) shows that S′(T ′(t)) = D′(t), t ≥ 0, where S′ is
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a standard Poisson process. Set Ŝ′(t) = n−
1

2 (S′(nt) − nt) and Î ′ = n−
1

2 I ′.
We shall show that

|Î ′|∗,t̄ → 0 in probability, as n→ ∞. (36)

Note first that the probability of the event η1 := {I ′(0) = 0} converges
to one as n → ∞. Indeed, by (14), Bk,0 = 1 for all k with Rank(k) > I0.

By (4) and (15), I0 < ann
1

2 with probability converging to 1 as n → ∞.
Thus, with probability converging to 1, all servers k ∈ K ′ are initially busy,
namely P (η1) → 1 as n→ ∞. Let

Ŝ(t) = n−
1

2 (S(nt) − nt), t ≥ 0, (37)

where S is a standard Poisson process. It is well known (cf. Lemmas 2 and
4(i) of [4]) that both Â (of (28)) and Ŝ converge weakly to a zero mean

Brownian motion with diffusion coefficient λ
1

2 Č, and respectively, 1.
Given γ > 0, consider the event η := {|I ′|∗,t̄ > 2γn

1

2 }. On the event
η ∩ η1 one can find 0 ≤ s < t ≤ t̄ such that I ′(y) > 0 for all y ∈ [s, t], and

I ′(t)− I ′(s) > γn
1

2 . Since the servers in K ′ are all ranked higher than those
in the complement set, the routing policy assigns all arrivals within [s, t] to
K ′ servers. Hence by (7), (8) and using Bk = 1 − Ik, we have

γn
1

2 < I ′(t) − I ′(s) = D′(t) −D′(s) −A(t) +A(s),

and therefore

γ < Ŝ′(n−1T ′(t)) − Ŝ′(n−1T ′(s)) − Â(t) + Â(s)

+
∑

k∈K ′

µk

∫ t

s
B̂k(y)dy − λn

1

2 (t− s) − n−
1

2 (λn − λ)(t− s).

We have by (9) and (22) that n−1T (2)(t) ≤ µ̄t̄ =: τ . Also, by (5), the last
term above is bounded by c(t− s) for some constant c independent of n and
ε. Let

w̄τ (x, z) = sup
|s−t|≤z;s,t∈[0,τ ]

|x(s) − x(t)|, z > 0,

denotes the modulus of continuity for x : [0, τ ] → R. Define C(n, ε) =
n−1

∑
k∈K ′ µk − λ. Then on the event η ∩ η1, with δ = t− s, we have

γ < w̄τ (Ŝ
′, 2µ̄δ) + w̄t̄(Â, δ) + n

1

2C(n, ε)δ + cδ. (38)

14



By (1), (2), (6) and the definition of K ′,

n
1

2C(n, ε) ≤ c1 − n−
1

2

∑

k:Rank(k)≤n
1
2 an

µk ≤ c1 − µan ≤ −c2an,

for constants c1, c2 > 0 and sufficiently large n. Hence

P (|Î ′|∗,t̄ > 2γ) = P (η) ≤ p1(n, ε, γ) + p2(n, ε, γ) + P (ηc1),

where

p1(n, ε, γ) = P (there exists δ ∈ (0, a
− 1

2
n ) such that (38) holds),

p2(n, ε, γ) = P (there exists δ ∈ [a
− 1

2
n , t̄] such that (38) holds).

Note that

p1(n, ε, γ) ≤ P (w̄τ (Ŝ
′, 2µ̄a

− 1

2
n ) + w̄t̄(Â, a

− 1

2
n ) ≥ γ/2),

p2(n, ε, γ) ≤ P (w̄τ (Ŝ
′, 2µ̄t̄) + w̄t̄(Â, t̄) ≥ −ct̄+ c2a

1

2
n ).

Since Ŝ′ and Â converge to processes with continuous sample paths, both
expressions converge to zero as n → ∞. Since limn P (ηc1) = 0 and γ > 0 is
arbitrary, (36) follows.

Step 3: Since K2 ⊂ K ′ ∪ ((K ′)c ∩K2), we have

Î(2)(t) =
I(2)(t)

n
1

2

≤
I ′(t)

n
1

2

+
[#(K ′ ∪ ((K ′)c ∩K2))]

n
1

2

t̄, t ∈ [0, t̄].

By Step 1 (display (33)), the last term on the above display converges to
zero in probability. Thus by Step 2 (display (36)), statement (32) follows.
This completes the proof of the lemma.

Proof of Theorem 2.1. Based on Lemmas 3.1 and 3.2, the proof is similar
to that of Theorem 2.2 of [3] (only slightly simpler). We include it for
completeness and because the proof of Theorem 2.2 is based on it. By (26)
and (31), one has

X̂(t) = X̂0 +W (t) + bt+ µ∗

∫ t

0
X̂(s)−ds+ e(t), (39)

(where all the above quantities depend on n) and, with Îk = n−
1

2 Ik,

e(t) =

n∑

k=1

(µk − µ∗)

∫ t

0
Îk(s)ds. (40)
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Fix t̄ > 0. By (2), (5) and (30), b → β = λ̂ − µ̂. We show that the
random variables {|W (i)|∗,t̄, i = 0, 1, 2, n ∈ N} are tight. By (22) and (9),
for i = 0, 1, 2,

n−1T (i)(t) = n−1
∑

k∈Ki

µkt− n−1
∑

k∈Ki

µk

∫ t

0
Ik(s)ds. (41)

Hence 0 ≤ n−1T (i)(t) ≤ µ̄t̄ for t ≤ t̄ and all n. Thus by (29), |W (i)|∗,t̄ ≤

|Ŝ(i)|∗,µ̄t̄, where Ŝ(i)(t) = n−
1

2 (S(i)(nt)−nt). Recall from the proof of Lemma

3.2 that Ŝ(i) converge to a Brownian motion. Hence |W (i)|∗,t̄ are tight.

Next, note that |e(t)| ≤ µ̄
∫ t
0 |X̂(s)|ds. Thus the boundedness of b, the

tightness of the random variables X̂0, |W
(i)|∗,t̄ and |Â|∗,t̄, n ∈ N (as follows

from the convergence of Â), and an application of Gronwall’s lemma on (39),
by which |X̂ |∗,t̄ ≤ (|X̂0| + |W |∗,t̄ + |b|t̄) exp(2µ̄t̄), imply that {|X̂ |∗,t̄, n ∈ N}

are tight. Since by (13), Î = X̂−, we have that {|Î |∗,t̄, n ∈ N} are tight.
The supremum over t ≤ t̄ of the absolute value of the last term in (41)

converges to zero in probability, since µk are assumed to be bounded and
|Î |∗,t̄ are tight. Also, since α is a continuity point of x 7→ m([0, x]), we have
that

n−1
∑

k∈Ki

µk →

∫

Mi

xdm =: ρi, i = 0, 1, 2.

Note that ρ0 = 0. As a result, n−1(T (0), T (1), T (2)) → ρ̃ in probability,
uniformly on [0, t̄], where ρ̃(t) = (0, ρ1t, ρ2t). Recall that (Â, Ŝ(0), Ŝ(1), Ŝ(2))
are mutually independent, and that Ŝ(i) [resp., Â] converges to a standard
Brownian motion [a zero mean Brownian motion with diffusion coefficient

λ
1

2 Č] (see comment following (37)). Thus (27), (29) and the lemma on
random change of time [7, p. 151] show that W converges weakly to σw, in
the uniform topology on [0, t̄], where w is a standard Brownian motion and
σ2 = λČ2 + ρ1 + ρ2 = λČ2 + µ = µ(Č2 + 1).

By the Skorohod representation theorem, we can assume without loss of
generality that the random variables X̂0 and ξ0 and the processes W and w
are realized in such a way that, P -a.s.,

(X̂0,W ) → (ξ0, σw) as n→ ∞. (42)

Let ξ be the unique strong solution to equation (17). Then by (17), (39),
the inequality |x− − y−| ≤ |x− y|, and Gronwall’s inequality,

|X̂ − ξ|∗,t̄ ≤ (|X̂0 − ξ0| + |b− β| + |W − σw|∗,t̄ + |e|∗,t̄) exp(µ∗t̄). (43)
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Now, by (40), for n sufficiently large,

|e|∗,t̄ ≤ εt̄ |Î |∗,t̄ + µ̄t̄ |Î(2)|∗,t̄ + (µ∗ − µ)t̄ |Î(0)|∗,t̄. (44)

By (3), the last term above converges weakly to 0. Combining (32), (42),
(43) and (44),

lim sup
n

P (|X̂ − ξ|∗,t̄ > ε
1

2 ) ≤ lim sup
n

P (cε|Î |∗,t̄ > ε
1

2 ),

where c ∈ (0,∞) is a constant independent of n and ε. Note that the law of
|Î |∗,t̄ does not depend on ε. Hence by tightness of {|Î |∗,t̄, n ∈ N} the r.h.s.

in the above display converges to zero as ε → 0. Thus |X̂ − ξ|∗,t̄ → 0 in

probability. Since t̄ is arbitrary, we have X̂ ⇒ ξ.

Proof of Theorem 2.2. By (3) there exists a sequence δn > 0 tending to zero

such that ζn := #{k : µnk < µ∗ − δn}n
− 1

2 → 0. Note that (39), (40) still
hold. Define Ξ1 as the solution to

Ξ1(t) = X̂0 +W (t) + bt+ µ∗

∫ t

0
Ξ1(s)

−ds. (45)

Then by (39), ∆ := X̂ − Ξ1 is differentiable, and, using the inequality
a− − b− ≤ −(a− b)+ for a, b ∈ R, we have ∆(0) = 0, and

d

dt
∆(t) ≥ −µ∗∆(t)+ +

d

dt
e(t).

Since Îk ≤ n−
1

2 for each k, we have by (40)

d

dt
e(t) ≥ −vn, vn := δn|Î|∗,t̄ + µ∗ζn,

and ∆(0) = 0. By comparison with the ordinary differential equation
du/dt = −µ∗u

+ − vn, u(0) = 0, we obtain that ∆(t) ≥ −vnt, t ≤ t̄. Hence
X(t) ≥ Ξ(t), where we define Ξ(t) = Ξ1(t) − vnt, t ≤ t̄.

It thus remains to show that Ξ ⇒ ξ. For this let us review the proof
of Theorem 2.1. Rather than three processes D(i) (25) and correspondingly
W (i), i = 0, 1, 2, (29), we now have a single process D =

∑
kDk given in

terms of a single standard Poisson process Sn (cf. (18)). The adaptation of
relation (29) to a single process W is obvious. The arguments in the proof
of Theorem 2.1 that lead to the tightness of |Î |∗,t̄ and the convergence of W
to σw hold with obvious modifications. As in that proof, we deduce that
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(42) can be assumed without loss of generality. Equations (17), (45) and
Gronwall’s inequality thus yield

|Ξ1 − ξ|∗,t̄ ≤ (|X̂0 − ξ0| + |b− β| + |W − σw|∗,t̄) exp(µ∗t̄).

Hence (42) and the convergence of b to β imply that Ξ1 converges in prob-
ability to ξ uniformly over [0, t̄]. The random variables vn converge to zero
by tightness of |Î|∗,t̄. Since t̄ is arbitrary, we thus obtain that Ξ ⇒ ξ. This
completes the proof of the theorem.

Remark 3.2 Note that the non-idling property is used in the proof of The-
orem 2.1 (on which the above proof is based) for deducing tightness of |Î|∗,t̄
from that of |X̂|∗,t̄. As can be easily seen, |Î |∗,t̄ are not in general tight if
the restriction to non-idling policies is removed.

Derivation of equation (26). Recall that n is omitted from some of the
notation. By (24), (28)–(29),

X̂(t) = X̂0 + Â(t) −

2∑

i=0

W (i)(t) + n−1/2
[
λnt−

2∑

i=0

T (i)(t)
]

= X̂0 +W (t) + n−
1

2

[
λnt−

n∑

k=1

µk

∫ t

0
Bk(s)ds

]
,

where (27), (9) and (22) are used in the second equality. Since Bk = 1− Ik,

X̂(t) = X̂0 +W (t) + n−
1

2

[
λn −

n∑

k=1

µk

]
t+ n−

1

2

∑

k

µk

∫ t

0
Ik(s)ds.

By (6), µ = λ, hence by (30) the penultimate term above is equal to bt.
This shows (26).
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