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Constrained Linear Minimum MSE Estimation
Tomer Michaeli and Yonina C. Eldar, Member, IEEE

Abstract�We address the problem of linear minimum mean-
squared error (LMMSE) estimation under constraints on the
�lter or the estimated signal. We develop a general formula that
leads to closed form solutions for a wide class of constrained
LMMSE problems. The results are applicable to both �nite
dimensional problems as well as to the Wiener �ltering setup, in
which in�nitely-many measurements are available. Our approach
generalizes previous known results such as the generalized
Karhunen-Loeve transform (GKLT), the causal Wiener �lter and
more. As an application of our framework, we develop Wiener
type �lters under various restrictions, which allow for practical
implementations.

Index Terms�Estimation, Wiener �ltering, Constrained Esti-
mation.

I. INTRODUCTION

ACOMMON problem in Bayesian estimation is to obtain
an estimate of a random vector (r.v.) x based on a

realization of another random vector y such that some error
criterion is minimized [1]. The estimator bx = � (y) assigns
an estimated vector bx to every possible realization of y. Thus,
constructing a Bayesian estimator amounts to a mapping from
the space of measurement vectors to the space of signals based
on the joint probability function of x and y. One of the
most commonly used error criteria is the mean-squared error
(MSE), which is given by the expectation of the squared-norm
error E[kx� � (y)k2]. It is well known that the estimator
minimizing the MSE is the conditional expectation of x given
y, denoted as �0 (y) = E[xjy].
The minimum MSE (MMSE) estimator, although seemingly

simple, is not frequently used due to two main reasons. First,
in many cases it is very hard to obtain an expression for �0.
Second, one often desires to constrain the estimator to belong
to a certain class of mappings because of implementation
reasons. One way to overcome the dif�culties in computation
and implementation of the MMSE method is to restrict the
estimator to be linear. The linear MMSE estimator (LMMSE)
minimizes the MSE among all linear functions. The LMMSE
solution has a closed form that depends only on the second
order statistics of x and y [2], quantities which may be
easily estimated from a set of training data. Moreover, it is
easy to implement in practical applications as the estimation
procedure involves only matrix multiplication, i.e. bx = Ay.
The LMMSE approach also has a simple extension to the
case where x and y are jointly wide-sense stationary (WSS)
random processes, which is known as the Wiener �lter [3].
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In practical applications, there are situations that require
that either the linear estimator itself or the signal at its
output possess certain desired properties. These may stem
for example from implementation limitations, ef�ciency of
computation or the need to compress the data.
A prime example of constrained linear estimation is the

famous work of Wiener [3] on causal LMMSE estimation and
prediction of signals. Other restrictions on the Wiener �lter
include �nite impulse response (FIR) [4], �nite horizon and
general restrictions on the support of the �lter in the time
domain [5]. Constrained LMMSE estimation arises in array
processing applications as well (also termed vector Wiener
�ltering). In this context, it is often desired to reduce the
dimensionality of the measurement vector process. This is
analogous to restricting the rank of the estimator. Various
approaches were devised in the past for this problem, some
directed at minimizing the MSE and some ad hoc (see for
example [6],[7] and references therein).
Reduced rank estimators are also at the heart of signal

compression. A basic problem encountered in this �eld is
the determination of a small set of vectors that allows the
representation (via linear combinations) of a certain class of
signals. These vectors are usually chosen to minimize the MSE
between the original signal and its compact representation.
Like in array processing, this approach can be expressed as a
linear estimation problem with a rank constraint. The solution
to this problem is known as principal component analysis
(PCA) or the Karhunen-Loeve transform (KLT). One extension
to this basic concept is the design of a linear compression
transform that takes into account additive noise [8]. A more
general setting was considered in [9] and [10] in which a
compact representation is designed for the task of estimating
a different signal (rather than the representation of the original
signal itself).
There are applications in which the constraints on the

estimator have a stochastic �avor. One example is the MMSE
whitening technique which emerged recently [11] and found
many applications in the �elds of signal processing and
communication. In this methodology, a linear transformation
is designed such that, when applied to a r.v. y, it produces
the r.v. by that is as close as possible to y in an MSE sense
and whose covariance matrix is diagonal. A generalization
of this approach is the covariance shaping technique [12],
in which the transform is designed to produce a r.v. with a
prede�ned covariance matrix (not necessarily diagonal). A few
of the applications of these approaches are improvement of
least squares parameter estimation [13], multiuser detection
[14] and matched �ltering [15].
Another important class of restrictions emerges in setups

where the estimator is only one block in a larger scheme. For
example, in a relay communication system it is often desired
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to estimate a corrupted signal and then retransmit it under
power or bandwidth limitations (see e.g. [16] and references
therein). Such a setup requires the imposition of constraints on
the spectrum of the estimated signal. In speech enhancement
algorithms, the estimator is commonly used together with
a voice activity detector. The purpose of this approach is
to guaranty that the estimator, which is designed to operate
on a noisy signal, does not work in noise-only periods. An
alternative to this somewhat heuristic approach is to design an
LMMSE estimator under a power or amplitude constraint on
its output, when only noise is present at its input.
Some of the constrained linear estimation problems dis-

cussed above have a common structure: the constraint on the
estimator is linear (as de�ned in Section III). Linear constraints
can be treated using the orthogonality principle [1]. This
principle leads, for example, to the Wiener-Hopf equations
when enforcing a causality constraint on the Wiener �lter.
However, there seems to be no unifying approach to solving
LMMSE estimation problems under general restrictions.
In this paper we show that the solution to all constrained

linear estimation problems can be obtained by applying a
certain transformation to the unconstrained LMMSE estimator.
Speci�cally, the constrained estimator is a weighted projection
of the unconstrained solution onto the constraint set. Motivated
by this insight, we derive a connection between a weighted
projection operator and the non-weighted projection, which
leads to a simple formula that is applicable to almost all
constrained LMMSE estimation problems. This then allows us
to obtain closed form solutions to many constrained LMMSE
problems, including all of the examples above and many more.
Our derivation treats the in�nite dimensional Wiener �lter-

ing scenario and the �nite dimensional setting in a uni�ed
way. The intention behind this choice of exposition is to
uncover a certain intriguing structure that is common to
both type of problems. Speci�cally, we show that the causal
Wiener �lter, KLT, reduced rank estimators, MMSE whitening,
restrictions on the spectrum of the Wiener �lter and many more
constrained estimators are actually special cases of one simple
formula.
The paper is organized as follows. A brief outline of the

notations and mathematical techniques used in the paper is
provided in Section II. In Section III we explain the basic
ideas underlying the problem of constrained MMSE estimation
in general and constrained LMMSE estimation in particular.
A geometric viewpoint on constrained LMMSE estimation is
presented in Section IV. This viewpoint motivates an alterna-
tive formulation of restrictions on the estimator, which leads
to the main result, described in Section V. Using this result,
in Section VI we derive closed form solutions to various �nite
dimensional linear estimation problems. Finally, in Section VII
we address the problem of designing Wiener-type �lters under
various restrictions.

II. NOTATION AND MATHEMATICAL PRELIMINARIES
A. Notation and De�nitions
Calligraphic letters are used to denote vector spaces, sub-

spaces and sets of vectors. An inner product on a vector

space is denoted by h�; �i. The associated norm is de�ned by
kxk =

p
hx;xi. The null space and range space of a matrix

A are denoted by N (A) and R (A) respectively. The Moore-
Penrose pseudo-inverse of a matrix A is denoted by Ay and
the Hermitian conjugate is A�. If A is an in�nite dimensional
matrix then it can be viewed as an operator from `2 to `2, in
which case Ay exists if R (A) is closed and A is bounded
(i.e. supkxk�1 kAxk < 1) [17]. The j'th component of a
vector v is denoted vj and the (i; j) entry of the matrix A
is denoted Ai;j . A positive (semi) de�nite matrix is written
as A �(�)0. Brackets are used for discrete time signals and
capital letters for Fourier transforms (e.g. Z (!) = F fz [n]g).
Expectation is denoted by E [�] and conditional expectation is
written as E [�j�].
The space of matrices CM�N is equipped with the For-

benious norm, which is de�ned by kAk2 = Tr fAA�g.
This de�nition holds also for matrices with in�nitely many
columns, i.e. when M is �nite and N = 1. In this context,
by writing A 2 CM�N we mean that each row of A is in `2.
The G�weighted norm of a matrix A 2 CM�N , where G is
an N �N positive de�nite (PD) matrix, is de�ned as

kAk2G = Tr fAGA
�g . (1)

If G is positive semi-de�nite (PSD) then this is a semi-norm.
The auto covariance sequence of a WSS signal y [n] is

de�ned as Ryy [n] = E [y [m] y� [m� n]] and its spectrum
is de�ned as Syy (!) = F fRyy [n]g. Similarly, the cross
covariance sequence associated with two jointly WSS signals
x [n] and y [n] is Rxy [n] = E [x [m] y� [m� n]] and the cross
spectrum is given by Sxy (!) = F fRxy [n]g.

B. Projections onto Closed Sets
Throughout the paper we extensively use the concept of

projections onto closed sets. The projection operator onto a
closed set A in a Hilbert space H is de�ned by

PA (h) = argmin
a2A

kh� ak , (2)

where h is an arbitrary vector in H and k�k is the norm on H.
In the case H =CM�N , we use the notation P (G)A to denote
a projection with respect to a G�weighted norm, which we
refer to as the G�weighted projection onto A. Speci�cally,
the G�weighted projection of a matrix H 2 CM�N onto a
closed set A �CM�N is de�ned by

P
(G)
A (H) = arg min

A2A
kH �AkG . (3)

We shall use the concept of weighted projection also when G
has a non-empty null space.
The fact that A is closed guarantees the existence of a

solution to (3). However, generally the solution is not unique.
A suf�cient condition for the solution to be unique is that A
is a convex set and G � 0. In this paper, though, we take
interest also in cases where at least one of these requirements
is not met. To resolve this ambiguity, we shall seek among all
possible solutions the one with minimum (Forbenious) norm.
Projections onto subspaces can be expressed in terms of

frames. A set of vectors fhng in a Hilbert space H is called
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a frame for a subspace A if there exist constants 0 < A �
B <1 such that [18]

A kak2 �
X
n

jha;hnij2 � B kak2 , 8a 2 A. (4)

The projection of h 2 H onto A can be written as a linear
combination of the frame vectors PA (h) =

P
k ckhk, where

the (possibly in�nite) vector of coef�cients c can be chosen
as [18]:

c = Gyv (5)

with matrix G and vector v de�ned by

Gj;k = hhk;hji , vj = hh;hji . (6)

The matrix G is the Gram matrix associated with fhng.
We shall use the following properties of frames:
1) The representation coef�cients c of every vector a 2 A
is a sequence in `2 (i.e. if a =

P
k ckhk then c 2 `2).

2) The mapping T : `2 ! A de�ned by Tc =
P

k ckhk is
a bounded linear transformation with closed range, and
as such, it transforms closed sets in `2 into closed sets
in H.

3) The Gram matrix G of a frame is a bounded operator
with closed range and thus Gy exists.

III. GENERAL THEORY OF CONSTRAINED ESTIMATION
The problem of Bayesian estimation refers to the following

setup. We wish to estimate the r.v. x 2 CN based on a
realization of another r.v. y 2 CM , where the estimate bx is
obtained by applying a function � : CM ! CN to y. In this
paper, the error measure that is used to quantify the quality of
the estimate is the MSE, which is de�ned as E[kx� � (y)k2].
It is well known that if no restriction is posed on the estimator
� then the MSE is minimized by the conditional expectation
�0 (y) = E [x jy ].
Constrained MMSE estimation refers to the problem of

seeking the estimator � that minimizes the MSE among a
certain family of functions. Perhaps the most famous example
of a constraint imposed on � is that it be linear. This is known
as the LMMSE estimator. Other constraints may be speci�ed
as a stochastic restriction, such as E[k� (y)k2] � ", or a
deterministic expression such as k� (y)k � " or bxk � 0,
k = 1 : : :M (for every realization).
In this paper we are interested in the problem of constrained

linear MMSE estimation. A constrained LMMSE estimator
minimizes the MSE among a certain class of linear transfor-
mations. Seeking an estimator in the form of a lower triangular
or a low rank matrix are two such examples.
In the following subsections we present a rigorous treat-

ment of the problem of constrained estimation. We begin
with an overview on constrained nonlinear MMSE estimation,
elaborating on the distinction between linear and nonlinear
restrictions. We then discuss the problem of linear MMSE
estimation, focusing on a uni�ed treatment of the case where
y is �nite dimensional and the case where it is in�nite dimen-
sional. Finally, we explain the topic of constrained LMMSE
estimation. The different types of constrained problems are
shown in Fig. 1.

Fig. 1. Types of constrained estimation problems. In this paper we focus on
linear estimators subject to nonlinear (and linear) constraints.

A. Constrained Nonlinear MMSE Estimation

To make the discussion on constrained estimation mathe-
matically precise, we need to introduce a few de�nitions. Let
(
; F; P ) be a probability space of r.v.'s taking values in CM .
The set of all �nite variance r.v.'s is denoted by

LM2 =
n
x
���E hkxk2i <1o . (7)

An inner product on LM2 is de�ned by

hu;viLM2 = E [v�u] . (8)

It can be shown that LM2 is a Hilbert space given that two
r.v.'s u,v are considered identical if u = v with probability 1
(w.p.1).
Let HY be the subspace of LM2 generated by applying all

(Borel measurable) functions from CN to CM on the random
vector y:

HY =
n
� (y)

���� : CN! CM , E
h
k� (y)k2

i
<1

o
. (9)

The set HY is the set of r.v.'s in LM2 that can constitute an
estimate of x based on y. Among all r.v.'s in HY , the one that
minimizes the MSE to x is the conditional expectation of x
given y, denoted by

bx0 = E [x jy ] . (10)

Note that the MSE E[kx� bx0k2] is simply the LM2 �distance
kx� bx0k2LM2 between x and bx0. Since bx0 is the minimizer of
this distance among all r.v.'s in HY , it can be interpreted as
the projection (in the LM2 sense) of x onto the subspace HY .
The concept of constrained estimation refers to the problem

of seeking the MMSE estimator bx = � (y) under the restric-
tion that � belongs to a certain family of mappings (a subset
of all Borel measurable functions). This requirement narrows
down the set of candidate r.v.'s in LM2 from HY to a subset
A � HY . We distinguish between two types of constraints that
can be imposed on �: nonlinear and linear. Although the latter
is a special case of the former, it deserves special attention as
a vast majority of the known results in the �eld of constrained
MMSE estimation fall into this category.
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1) Linear Constraints: Let us examine the case where the
estimator � is constrained to belong to a class of mappings
M which is a subspace, i.e. �1; �2 2 M =) ��1 + ��2 2
M. Restrictions of this type are referred to herein as linear
constraints. For example, the restriction that the estimator be
linear is a linear constraint (as any linear combination of linear
functions is also a linear function). Similarly, the constraint
that bx lie in a subspace W � CM w.p.1 is a linear constraint
as it corresponds to the set of functions � whose range is
contained in W , which is clearly a subspace of mappings.
On the other hand, restrictions of the type E[kbxk2] � " orbxk � 0 for every k = 1 : : :M are not linear. We emphasize
that a linear constraint does not necessarily mean that � is
linear, for example con�ning the range of � to be contained
in a subspace W is a linear restriction but it allows the use of
nonlinear estimators.
As stated earlier, when a constraint is imposed on the

estimator �, it narrows down the set of candidate r.v.'s in LM2
from HY to a subset A � HY . In the special case of linear
constraints, the set A is a subspace of r.v.'s. If this subspace
is closed, then the MMSE estimate bxA among all r.v.'s in A
exists and is given by the orthogonal projection (in the LM2
sense) of x onto A.
From the properties of projections in Hilbert spaces one im-

mediately obtains the following characterization of the MMSE
estimator under a linear constraint, known as the orthogonality
principle. Suppose that A is a closed subspace of HY . Then
�A (y) is the MMSE estimate of x among all r.v.'s in A if
and only if

E [�� (y) (x� �A (y))] = 0, 8� (y) 2 A. (11)

Thus, the error x � �A (y) using the optimal estimate in A
has to be orthogonal to any other r.v. in A. For example, if A
is the subspace of r.v.'s that are linear functions of y then the
error of �A (y), which is the LMMSE estimator, is orthogonal
to every linear transformation of y. Similarly, in the Wiener
�ltering setting, a causal �lter h [n] is the causal MMSE �lter
if and only if the error x [m] � fh � yg [m] is orthogonal to
fg � yg [m] for every causal �lter g [n].
2) Nonlinear Constraints: While linear constraints are easy

to handle, situations where the estimator � is constrained
to belong to a general class of mappings M, which is not
necessarily a subspace, are much more challenging. We call
these type of restrictions nonlinear constraints. As before, if
the corresponding set of r.v.'s A is a closed subset of HY then
there exists a r.v. bxA in A that attains the minimum MSE and
it is given by the projection of x onto A. However, obtaining
a closed form solution to this projection in LM2 is usually
impossible.
An interesting generalization of the orthogonality principle

(11) to the case of convex (nonlinear) constraints was devel-
oped in [19] and is called the extended orthogonality principle.
This principle states that if A is a closed convex set in HY
then �A (y) is the MMSE estimate of x among all r.v.'s in A
if and only if

E
�
(�A (y)� � (y))

�
(x� �A (y))

�
� 0, 8� (y) 2 A.

(12)

Note that in contrast to the orthogonality principle, condition
(12) is an inequality and therefore does not lead to an equation,
whose solution is the MMSE estimate in A. In that sense, it is
not constructive. Nevertheless, solutions to various constrained
estimation problems were obtained in [19] using (12).

B. Linear MMSE Estimation
The focus of this paper is the design of linear estimators

under various constraints. Before giving examples of linear and
nonlinear constraints on the LMMSE estimator, we �rst study
its existence in the unconstrained setting. We take interest
in two cases. The �rst is the �nite dimensional setting, in
which x 2 CM and y 2 CN where both M and N are
�nite. The second, is the Wiener �ltering setup, in which the
value of a WSS signal x [m] is to be estimated at a certain
time instance m based on a realization of another WSS signal
fy [n]gn2Z. To treat this second situation in a uni�ed way with
the �rst, we associate an in�nite dimensional vector y with the
signal fy [n]gn2Z, and a scalar variable x with x [m]. Linear
estimation can thus always be expressed as

bx = Ay. (13)

We emphasize that in both cases of interest, x is �nite
dimensional, i.e. M < 1. In the Wiener �ltering setting,
M = 1 and N = 1 and therefore the estimator A is an
in�nite dimensional row vector.
Each element of the vector bx is a linear combination of the

elements of y. Hence, the MSE is minimized if we choose
each element of bx to be the projection in the L12 sense onto the
subspace span fy1; : : : ; yNg. If N < 1 then this is trivially
a closed subspace and the projection exists, however for an
in�nite set of measurements this is not always the case. A
suf�cient condition for span fy1; : : : ; yNg to be closed is that
the random variables fykg form a frame. To this end we
introduce the following de�nition.
De�nition 1: A sequence of random variables is called a

frame process (FP) if they form a frame for a subspace in L12,
where L12 is the set of �nite-variance random variables (7).
As mentioned above, every �nite sequence of random

variables (i.e. a �nite dimensional random vector) is a FP. In
the case where y [n] is a WSS random process, the conditions
for it to be a FP may be speci�ed in terms of its spectrum.
This is established in the next theorem.
Theorem 1: A WSS process y [n] is a frame process if and

only if there exist constants 0 < A � B < 1 such that the
spectrum of y [n] satis�es

A � Syy (!) � B, 8! 2 
y , (14)

where 
y is de�ned by


y , f! jSyy (!) 6= 0g (15)
Proof: See Appendix I.

If no restriction is posed on the matrix A in (13) and
assuming that y is a FP, then the LMMSE estimator can be
obtained using (5), leading to the known formula

A0 = RxyR
y
yy , (16)
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where Rxy = E [xy�] is the cross-covariance matrix of x
and y and Ryy = E [yy�] is the auto-covariance of y. The
matrix Ryy is the Gram matrix associated with fykg, and
since these are a FP, the pseudo inverse in (16) is well de�ned
due to property 3 in subsection II-B. Besides guaranteeing the
existence of the LMMSE estimator, the fact that we restrict
the discussion to FPs also implies that each row of the matrix
A0 is in `2. This is implied by property 1 in subsection II-B.
We emphasize that (16) applies also to the case of in�nitely
many measurements. In the Wiener �ltering case, Ryy is an
in�nite dimensional matrix and Rxy and A0 are both in�nite
row vectors. Formula (16) then reduces to the well known
Wiener �lter, as shown in Section VII.
The treatment of �nite and in�nite dimensional problems

in the same manner may seem unnatural at �rst as it involves
in�nite dimensional vectors and matrices. This route also calls
for precautions, as we shall see in the sequel. The bene�t,
though, is in enabling a uni�ed viewpoint on the subject of
constrained LMMSE estimation. We shall see that this will
allow us to reveal a certain common structure that exists in
both constrained estimation problems putting, for example, the
KLT and the causal Wiener �lter under the same umbrella.

C. Constrained LMMSE Estimation

When a constraint is imposed on the LMMSE estimator,
the set of feasible matrices A becomes a subset of CM�N .
A linear constraint corresponds to a subspace in CM�N . In
the �nite dimensional setting, examples are restricting A to
be a Toeplitz or a lower triangular matrix. Linear constraints
on the LMMSE estimator in the Wiener �ltering problem
include causal �lters, FIR �lters, and any other restriction on
the support of the �lter.
A nonlinear restriction on the LMMSE estimator is a general

set of matrices in CM�N to which the estimatorA is con�ned.
Solutions to a few nonlinearly constrained LMMSE problems
were obtained in the past. The restriction that the estimator
be a low-rank matrix is one such example. This estimator is
known as the generalized KLT (GKLT) [10]. In the special
case where x = y, this estimator reduces to the KLT which
is widely used in many applications. In the Wiener �ltering
setup, an amplitude restriction on the �lter such as jh [n]j � "
or jH (!)j � " is a nonlinear constraint. All these examples
cannot be addressed using the orthogonality principle.
It is the aim of this paper to shed some light on the

problem of LMMSE estimation under various restrictions. We
tackle this problem by transforming the constraint on the
estimator A onto a constraint on the covariance matrix Rbxbx
of the estimated vector. This representation then allows us to
reveal the structure of the constrained estimator. We provide
many examples where this approach leads to a closed form
solution both for linear as well as nonlinear restrictions. Our
emphasis is on the general framework rather than on a speci�c
application. Therefore, a few of the examples that we present
are well known results that have been extensively studied in
the past. Here we show how they can be easily obtained using
our approach.

IV. GEOMETRIC INTERPRETATION OF CONSTRAINED
LINEAR ESTIMATION

In this section we introduce a geometric interpretation to
the problem of constrained LMMSE estimation.
Assume that we wish to construct an estimator bx = Ay

where the matrix A is restricted to possess a certain structure
such as low rank, sparsity or bounded elements. Speci�cally,
we wish to examine the situation where A is constrained
to lie in a closed set W � CM�N . The solution to this
constrained estimation problem amounts to applying a certain
transformation to the unconstrained estimator A0 in (16), as
described in the following theorem.
Theorem 2 (constrained LMMSE): Let x 2 CM be a �nite

variance r.v. (i.e. E[kxk2] < 1), let y 2 CN be a FP where
possibly N =1, and let W be a closed set in CM�N . Then
among all estimators of the form bx = Ay with A 2 W , the
matrix that minimizes the MSE is

AW = P
(Ryy)
W (A0)

= arg min
A2W

kA0 �Ak2Ryy
, (17)

where A0 = RxyR
y
yy is the unconstrained LMMSE estima-

tor.
Proof: First, the fact that fykg is a frame guarantees

that the closed setW � CM�N corresponds to a closed set of
r.v.'s in HY (follows from property 2 in subsection II-B). Thus
there exists a solution to this constrained estimation problem.
Next, the MSE of the estimator (13) is given by

E
h
kx� bxk2i

= E
�
(x�Ay)� (x�Ay)

�
= E

�
Tr
�
(x�Ay) (x�Ay)�

	�
= Tr fRxxg � 2Re

�
Tr
�
R�
xyA

		
+Tr

�
AR�

yyA
	
.
(18)

Since the minimization of the MSE is over A, we may choose
to add the term Tr

�
A�
0RyyA0

	
�Tr fRxxg to (18) as it does

not depend on A. Thus, instead of minimizing the MSE we
can minimize

Tr
�
A�
0RyyA0

	
� 2Re

�
Tr
�
R�
xyA

		
+Tr

�
AR�

yyA
	

= Tr
�
(A0 �A)Ryy (A0 �A)�

	
= kA0 �Ak2Ryy

(19)

where we used the relations A0 = RxyR
y
yy and

RxyR
y
yyRyy = Rxy [20, lemma 2]. The constrained

LMMSE problem is thus

argmin
A
kA0 �Ak2Ryy

s.t. A 2 W
(20)

which means that the optimal A is an Ryy�weighted projec-
tion of A0 onto W .
Note that the relation between the unconstrained and con-

strained matrices is not a simple projection but rather an
Ryy�weighted projection. The methods coincide only if the
elements of y are uncorrelated random variables with equal
variance, in which case Ryy = �

2
yI .
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Fig. 2. The LMMSE estimate bxopt is the projection of x, as a vector
in L21, onto span fy1; y2g (top). Among all estimates of the form bxA =
a1y1 + a2y2 with kak1 � ", the one that minimizes the MSE is the
projection of bxopt, as a vector in L12, onto a parallelogram (bottom left). The
optimal coef�cients vector is a weighted projection of aopt 2 R2 onto the
box kak1 � ".

To gain geometric intuition into this result let us consider
the following example. Suppose that we wish to estimate the
real random variable x as a linear combination of the real
random variables y1 and y2. Let us denote the unconstrained
LMMSE estimator by bxopt = aopt1 y1+a

opt
2 y2. The r.v. bxopt is

the projection of x (in the L12 sense) onto span fy1; y2g. Now
suppose that we wish to restrict the vector of coef�cients to
be bounded, i.e. kak1 � ". When y1 and y2 are correlated
(i.e. not orthogonal as vectors in L12), this box constraint on a
translates into a parallelogram constraint in span fy1; y2g as
shown in Fig. 2. Projecting x onto this parallelogram can be
carried out in two stages � �rst projecting x onto span fy1; y2g
and then projecting the result bxopt onto the constraint set. This
second stage is equivalent to �nding the vector in the box
kak1 � " that minimizes the weighted distance to aopt, as
depicted in Fig. 2.
Theorem 2 gives a powerful tool for the design of linear

estimators under various nonlinear constraints. To design a
constrained linear estimator, one has to �rst compute the
matrix A0 of the unconstrained LMMSE estimator using
(16), and then project it on the constraint set W via an
Ryy�weighted projection, i.e. solve the optimization problem
(20). Unfortunately, for a general closed set W , obtaining
a closed form solution for (20) is sometimes impossible.
However, when the vector of measurements y is �nite and W
is convex, (20) can be solved numerically using any standard
optimization method.
When there is an in�nite number of measurements, such as

in the Wiener �ltering setup, it is impossible to numerically
solve (20). Furthermore, even for �nite dimensional problems,
numerical procedures often preclude insight into the affect of
various parameters on the solution. It is therefore desirable to
obtain a closed form for AW . In the next section we address
a wide class of restrictions where this is possible.

Fig. 3. Equidistant contours from A0 (according to the Ryy�weighted
norm) are vertical lines in this example (left). Therefore the optimal con-
strained estimator is the matrix in W whose �rst coordinate is closest to that
of A0. This means that we can �rst seek the horizontal component of A that
is closest to A0 and lies in the set fW , which is the projection ofW onto the
horizontal axis (right). Then, a vertical component that leads to satisfaction
of the constraint A 2W should be added.

V. AN ALTERNATIVE VIEWPOINT ON CONSTRAINED
LMMSE ESTIMATION

To better understand constrained LMMSE estimation, notice
that the MSE is not affected by the part of A that operates
on vectors in R? (Ryy). This can be seen in the weighted
projection representation in Theorem 2, as demonstrated in
Fig. 3 (left). This motivates a decomposition of A as

A = PDy
(A) + PD?

y
(A) = ADy

+AD?
y
, (21)

where Dy is the subspace de�ned by

Dy ,
�
A 2 CM�N ��N? (A) � R (Ryy)

	
. (22)

The content of A along the subspace Dy (i.e. the component
ADy ) is the part of A that affects the MSE. A direct implica-
tion of this decomposition is that, when examining a restriction
on A, one should focus on the effective constraint imposed
on ADy

. The component AD?
y
, then, can be chosen arbitrarily

as long as A satis�es the constraint. More concretely, to
minimize the MSE subject to A 2 W , one can �rst seek the
component ADy that minimizes the MSE subject to ADy 2fW , where fW ,

�
PDy

(A) jA 2 W
	
. Once the optimal ADy

is available, any AD?
y
such that A 2 W can be used. This

approach is shown in Fig. 3 (right), in which x 2 R, y 2 R2
andRyy = ( 1 0 )T ( 1 0 ) so thatA 2 R1�2,R (Ryy)
coincides with the horizontal axis and the LMMSE estimator
A0 lies on this axis as well.
In view of the above discussion, we now address the

problem of restricting the component ADy
of the estimator A.

When a constraint is imposed on ADy it directly affects the
covariance Rbxbx of the estimated vector. Therefore, instead of
specifying restrictions on ADy

we may state the desired prop-
erties ofRbxbx. It is easily veri�ed that every restriction onADy

can be cast as a constraint on Rbxbx. As we show, the bene�t of
this approach is that in contrast to Theorem 2, the constrained
LMMSE estimator in this case can be obtained by employing
a non-weighted projection operator. These operators have a
closed form for many constraint sets, hence allowing to obtain
explicit solutions to a large variety of interesting problems.
We begin by noticing that due to (13), every factorization

of Ryy induces a factorization of the covariance matrix of the
estimated vector:

Rbxbx = ARyyA
� = AUyU

�
yA

� = U bxU�bx, (23)
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where we de�ned
U bx , AUy . (24)

We use the convention that U bx is an M �N matrix although
Rbxbx is M � M . Since R (Uy) = R (Ryy), (24) can be
written alternatively as U bx = ADyUy .
Our purpose is to seek the LMMSE estimator under a

constraint onU bx. Clearly, once the factorizationUy is chosen,
a constraint on U bx translates into a constraint on ADy via
(24). Note that by de�nition U bx 2 Dy and thus for a solution
to exist, the constraint set must include at least one matrix in
Dy . More precisely, if we impose the restriction U bx 2 V then
the effective constraint on U bx is actually U bx 2 V \ Dy , and
this intersection should not be empty.
The following theorem provides the solution to this con-

strained estimation problem.
Theorem 3: Let x 2 CM be a �nite variance r.v. (i.e.

E[kxk2] < 1) and let y 2 CN be a FP where possibly
N =1. Suppose that Uy is a factorization of the covariance
matrix Ryy , i.e. Ryy = UyU

�
y , and let V be a closed set in

CM�N that contains at least one matrix V with the property
N? (V ) � R (Ryy). Then among all estimators of the formbx = Ay with U bx = AUy 2 V , a matrix that minimizes the
MSE is

A = PV\Dy (A0Uy)U
y
y , (25)

where A0 is the unconstrained LMMSE estimator (16) and
Dy is the set de�ned in (22).
Before proving the theorem, we note that (25) has been

proved in the past for several special cases, although presented
differently (see e.g. [10]). Here we provide a rigorous proof
which applies to the general case and includes also the in�nite
dimensional setting N = 1. This will allow the solution of
constrained Wiener �ltering problems using the same tools, as
we discuss in Section VII.

Proof: We �rst need to show that the pseudo-inverse
operation in (25) is well de�ned. We prove in Appendix II
that the fact that y is a FP guarantees that Uy is a bounded
operator with closed range. This implies that U y

y exists [17].
Next, for the projection PV\Dy to be well de�ned we need

to verify that V \ Dy is a closed set. Since Ryy is a Gram
matrix corresponding to a frame (as y is a FP), its range is
closed, which implies that Dy in (22) is closed. The set V is
closed by assumption and therefore the intersection V \ Dy is
also closed.
The constraintU bx 2 V is equivalent toU bx 2 V \ Dy , as by

de�nition U bx 2 Dy . It follows from (24) that this corresponds
to the restriction A 2 W , where W is de�ned by

W = fA j(AUy) 2 V \ Dy g . (26)

From the proof of Theorem 2 we know that the optimal A is
the weighted projection

arg min
A2W

Tr
�
(A0 �A)Ryy (A0 �A)�

	
= arg min

A2W
Tr
�
(A0Uy �AUy) (A0Uy �AUy)

�	 .
(27)

Fig. 4. In a non-Dy-seperable constraint set V , there exists at least one
element whose projection onto Dy falls outside V (left). On the other hand,
the projection ontoDy of any element in aDy-seperable set is also an element
in V (right).

Since AUy = ADy
Uy , both the set W in (26) and the

objective in (27) depend solely on the component ADy
of

A. Therefore, ADy
is the solution to

arg min
ADy2W

Tr
n�
A0Uy �ADyUy

� �
A0Uy �ADyUy

��o ,
(28)

and AD?
y
can be chosen arbitrarily.

A multiplication by Uy from the right is a bijective
transformation on Dy , thus, making the change of variables
B = ADy

Uy , the optimal B is the solution of

BV = arg min
B2V\Dy

Tr
�
(A0Uy �B) (A0Uy �B)�

	
= arg min

B2V\Dy

kA0Uy �Bk2

= PV\Dy (A0Uy) . (29)

This means that BV is the projection of A0Uy onto the set
V \ Dy . The optimal ADy

then must satisfy BV = ADy
Uy

and AD?
y
can be chosen to be the zero matrix. This corre-

sponds to A = BVU
y
y , which, among all possible solutions,

has the minimal Forbenious norm.
Theorem 3 implies that every linear estimation problem with

a constraint of the form U bx 2 V may be addressed within our
framework, given that there exists a closed form expression
for the projection of a matrix onto the set V \ Dy . The choice
of a speci�c factorization of Ryy , together with the choice of
the feasible set V , de�ne the constraint posed on the estimator
matrix A 2 W .
IfRyy is non-singular then Dy = CM�N and the projection

PV\Dy
in Theorem 3 simpli�es to PV . When Ryy is singular,

there is still a broad family of constraints for which this prop-
erty holds. These restrictions commonly arise in applications,
as we demonstrate in Sections VI and VII.
De�nition 2: A constraint set V is called separable with

respect to Dy , if for every matrix V 2 V the relation
PDy

(V ) 2 V holds. In other words, a Dy-separable set is
closed under projections onto Dy , as demonstrated in Fig. 4.
In cases where the restriction posed on U bx is separable, the

projection PV\Dy
in Theorem 3 can be replaced by PV . This

is stated formally in the next theorem.
Theorem 4: Consider the setup of Theorem 3, where V is

a separable constraint. Then among all estimators of the formbx = Ay with U bx = AUy 2 V , a matrix that minimizes the
MSE is

A = PV (A0Uy)U
y
y , (30)

where A0 is the unconstrained LMMSE estimator (16).
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Proof: It is known from Theorem 3 that A =
PV\Dy (A0Uy)U

y
y . Thus, to prove the theorem we need to

show that PV\Dy (A0Uy) = PV (A0Uy).
Let us denote D = A0Uy and assume to the contrary that

PV (D) =2 Dy . Since Dy is a closed subspace in CM�N and
D 2 Dy , the Pythagorean theorem implies that

kD � PV (D)k2

=


D � PDy

(PV (D))


2 + 

PDy

(PV (D))� PV (D)


2

�


D � PDy

(PV (D))


2 . (31)

Now, since PV (D) 2 V and V is separable, we have
that PDy (PV (D)) 2 V as well. By de�nition, the matrix
PDy

(PV (D)) also lies in Dy and therefore PDy
(PV (D)) 2

V \ Dy . We have established, thus, that there exists a matrix
in V \ Dy that is closer to D than PV (D), contradicting the
assumption that PV (D) =2 Dy .
In the next sections we present examples for various

constrained estimation problems that can be solved using
Theorems 2, 3 and 4.

VI. FINITE DIMENSIONAL CONSTRAINED ESTIMATION
PROBLEMS

In this section we derive closed form solutions to some
constrained linear estimation problems with x 2 CM and y 2
CN , where M;N <1.

A. Estimation with a Lower-Triangular Matrix
A familiar problem in constrained linear estimation is to

impose that the estimator be causal. In the �nite dimensional
setting, causality means that every element of bx is a function
of the past and present elements of y only. This corresponds
to the requirement that the matrix A be lower-triangular.
We assume that x and y are of the same dimensions, so

that A is a square matrix. Moreover, it is assumed that Ryy is
non-singular. To obtain a solution to this problem within our
framework, we need to cast the constraint as a restriction on
some factorization U bx of Rbxbx. This is achieved by choosing
Uy to be the Cholesky factorization of Ryy and imposing that
U bx = AUy be lower triangular. Since Uy is lower triangular
by de�nition, this implies that A is lower triangular as well.
Our constraint set is thus

V =
�
V
��V 2 CM�M is lower triangular

	
. (32)

From Theorem 3, the solution to this problem is given by

A = PV (A0Uy)U
�1
y

= fA0Uyg+U
�1
y

=
�
RxyR

�1
yyUy

	
+
U�1
y

=
�
RxyU

��
y

	
+
U�1
y , (33)

where the operator f�g+ sets the elements above the main
diagonal to zero and the notation U��

y stands for
�
U�1
y

��.
A causality constraint is actually a linear one, as V in

(32) is a subspace in CM�M . Therefore, (32) can also be
obtained using the orthogonality principle (11). However, as
demonstrated above, the utilization of Theorem 3 makes the
derivation straightforward.

B. Estimation with a Prede�ned Range Space
There are situations where the estimated vector bx is ob-

tained as a linear combination of a set of given vectors.
These vectors may be several prede�ned templates, such as
the �rst few basis functions in the DCT transform, as used e.g.
in several image coding techniques [21]. Alternatively, these
vectors may be templates learned in advance, such as in the
Eigenfaces methodology [22]. Assuming that the given set of
vectors span a subspace W � CM , this situation corresponds
to a constrained linear estimation problem with the constraint
R (A)� W . Since U bx = AUy , we may alternatively cast
the constraint as

R (U bx)� W . (34)

Note that here there is no importance which factorization Uy

is used.
Let us de�ne the set V to be

V = fV jR (V )� Wg . (35)

This set is separable with respect to Dy . To see this, we note
that the the projection of a M � N matrix V onto the set
Dy can be shown to be given by PDy (V ) = V PR(Ryy),
where PR(Ryy) is the M � M projection matrix onto the
subspaceR (Ryy). Therefore, ifR (V )� W then clearly also
R
�
PDy

(V )
�
� W , implying that V is separable.

It is easily veri�ed that the projection of aM�N matrix A
onto the set V is given by PV (A) = PWA, where PW is the
M �M projection matrix onto the subspace W . Therefore,
from Theorem 4, the linear MMSE estimate of x given y
under constraint (34) is given by

A = PV (A0Uy)U
y
y

= PWA0UyU
y
y

= PWRxyR
y
yyUyU

y
y

= PWRxyR
y
yy , (36)

where the last equality follows from the fact that UyU
y
y =

PR(Ryy) = PN?(Ry
yy). We conclude that in order to con-

strain bx to belong to a subspace W , one has to �rst compute
the unconstrained linear estimate of x, and then project it onto
the subspace W .

C. Reduced Rank Estimator
The concept of designing an estimator with a prede�ned

range space usually arises as means for compact representation
of bx. Many times there is a need not only to representbx ef�ciently, but also to calculate bx based on a compact
representation of y. Speci�cally, assuming that x 2 CM
and y 2 CN , we wish to obtain an estimate bx given a
representation of y with K < N coef�cients. Since we are
concerned with linear estimators, this requirement implies that
A = UV �, where both U and V have K columns. The
vector c = V �y, then, is the compact representation of y,
and bx = Uc is the desired estimate. This constraint can
be expressed as rank (A) � K. Note that as opposed to
Subsection VI-B, where the range space of A was assumed
to be given in advance, we now wish to �nd the optimal
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K dimensional range space and also the optimal (N �K)
dimensional null space.
A solution to the LMMSE estimator under a rank constraint

was �rst derived in [2] and [9] for the case where Ryy is
nonsingular. It was later rediscovered in [8], where the authors
treated the special case of additive independent noise y = x+
n, naming it relative KLT (RKLT). Finally, it was developed
in [10] (without knowledge of [2] and [9]) in the most general
setting, without the assumption that Ryy is nonsingular, under
the name generalized KLT (GKLT). Here we show that the
GKLT can be easily obtained using Theorem 4.
To treat this problem within our framework, we notice

that any estimator A can be changed into APR(Ryy) or
equivalently into AUyU

y
y , without changing its MSE. Now,

it is easily veri�ed that rank(AUyU
y
y) = rank (AUy) and

thus, we may alternatively pose a rank constraint on U bx =
AUy:

rank (U bx) � K. (37)

Note that in cases where rank (Uy) � K, the unconstrained
LMMSE estimator itself satis�es (37) and thus it is optimal.
Our feasible set of factorizations U bx is therefore

V = fV jrank (V ) � K g . (38)

This set is separable as projecting a matrix onto Dy can only
decrease its rank (i.e. rank (V ) � K ) rank

�
PDy (V )

�
�

K). The projection of a matrix onto the set V is obtained
by setting its smallest singular values to zero, leaving only
the largest K unchanged. Therefore, using Theorem 3, the
LMMSE estimator under a rank constraint is given by

A = PV (A0Uy)U
y
y

= trunK (A0Uy)U
y
y

= trunK

�
Rxy

�
U1=2
y

�y�
U y
y , (39)

where trunK (�) denotes the desired K�term truncation of the
singular value decomposition representation of its argument.
In the special case x = y, (39) is the minimizer of

E[kx�Axk2] among all rank-K matrices, which is the well
known KLT.

D. Quadratic Constraint
Consider the family of estimators of the form (13) with a

matrix A that is constrained to have bounded weighted norm:

Tr fAWA�g � " (40)

where " > 0 and W � 0. In this case, the solution
can be obtained by directly solving (20). De�ning the set
W = fA jTr fAWA�g � "g and using the method of La-
grange multipliers, the solution to (20) can be easily shown to
be A = A0Ryy (Ryy + �W )

y, where � � 0 is the minimal
value for which (40) holds. Using the fact thatA0Ryy = Rxy ,
the constrained LMMSE estimator can be expressed as

A = Rxy (Ryy + �W )
y . (41)

Comparing (41) with the unconstrained estimator (16), we see
that imposing a quadratic constraint on the matrix A amounts

to adding a regularization term to Ryy . As a special case of
(40) we may constrain the Forbenious norm of the matrixA by
choosingW = I , which yields a Tikhonov-like regularization.
Constraint (40) may also be used to bound the variance ofbx. To do so we use the fact that Rbxbx = ARyyA

�, hence by
setting W = Ryy (40) becomes

Tr fRbxbxg � " (42)

and the estimator (41) reduces to

A = cRxyR
y
yy , (43)

where c is the largest value for which (42) holds.
A more general interpretation of (40) results from associ-

ating W with a covariance matrix of a random vector z, i.e.
W = Rzz . The estimator (41) is thus designed to reject any
existence of the interference z found at its input. Interestingly,
the form of (41) is identical to an unconstrained estimator de-
signed to estimate x from a noisy version of the measurementsey = y+p�z instead of using the measurements themselves.
Further discussion on the z-resistant estimator is presented in
Section VII in the context of Wiener �ltering.

VII. CONSTRAINED WIENER FILTER

A challenging task in the context of constrained estimation
is to impose restrictions on the Wiener �lter. The dif�culty in
this type of problems stems from the fact that they correspond
to in�nite dimensional optimization problems. Thus, in general
no numerical procedure can be carried out in order to obtain a
solution. Perhaps the most important example for a constraint
imposed on the Wiener �lter is a causality restriction. Inter-
estingly, a closed form solution for the MMSE �lter under
this constraint was derived in [3] and is commonly known as
the causal Wiener �lter. A causality constraint is a linear one
and therefore can be studied using the orthogonality princi-
ple, which leads in this case to the Wiener-Hopf equations.
However, here we are interested in obtaining closed form
solutions also to non-linearly constrained �ltering problems.
In this section we derive an expression for the MMSE �lter
under certain nonlinear constraints by utilizing Theorem 3.
In order to derive an expression for a constrained Wiener

�lter, we �rst develop the unconstrained Wiener solution
within our framework. We assume that x [n] and y [n] are
complex valued jointly WSS signals. Our problem is to design
a �lter hm [n] that minimizes the MSE E[jx [m]� bx [m]j2] at
a certain time instance m, thus

bx [m] = 1X
k=�1

hm [k] y [m� k] . (44)

To express this as a standard LMMSE estimation problem, we
use the following de�nitions:

A =
�
� � � hm [�1] hm [0] hm [1] � � �

�
, (45)

y =
�
� � � y [m+ 1] y [m] y [m� 1] � � �

�T , (46)
x = x [m] . (47)
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The estimator A is therefore an in�nite row vector, y is an
in�nite column vector and x is a scalar. Using this representa-
tion, the cross-covariance matrix Rxy is an in�nite row vector
corresponding to the cross covariance sequence Rxy [n] of the
processes x [n] and y [n], i.e.

(Rxy)j = E [x [m] y
�[m� j]] = Rxy [j] . (48)

Similarly, the auto-covariance Ryy is an in�nite Toeplitz ma-
trix which is related to the auto covariance sequence Ryy [n],
through

(Ryy)j;k = E [y [m� j] y
� [m� k]] = Ryy [k � j] . (49)

As discussed in Section III, linear estimation problems in-
volving in�nitely many measurements do not necessarily have
a solution. To ensure the existence of a solution we assume that
y [n] is a FP. Speci�cally, we assume that A � Syy (!) � B
for every ! 2 
y , where 
y , f! jSyy (!) 6= 0g and A, B
are positive �nite constants.
The LMMSE estimator is given by (16) A0 = RxyR

y
yy .

Since both Rxy and Ryy are independent of m, the optimal
�lter is also independent of m. Using the fact that Ryy is an
in�nite Toeplitz matrix that corresponds to convolution with
Ryy [n] and Rxy is an in�nite row vector that corresponds to
the sequence Rxy [n], it is easily veri�ed that the frequency
response of the optimal �lter H (!) can be chosen as

H (!) =

(
Sxy(!)
Syy(!)

! 2 
y
0 ! =2 
y .

(50)

There are applications which demand that either the �lter
itself or the spectrum at the output of the �lter posses certain
properties. Many of these constraints can be handled using the
theory of constrained linear estimation developed in Section
IV, as demonstrated in the following subsections.

A. Constraints on the Output Spectrum
When a constraint is imposed on the Wiener �lter it affects

the spectrum of the estimated signal Sbxbx (!) at its output.
Therefore, one possible way for specifying a restriction on the
Wiener solution is to state the desired properties of Sbxbx (!).
Such an approach is more natural for example in applications
where the signal bx [n] is to be transmitted under bandwidth or
power restrictions, or to be coded ef�ciently. We will show in
this subsection that constraints of this type may be addressed
easily using theorems 3 and 4.
The estimated signal bx [n] is obtained by convolving the

measurements with the Wiener �lter, i.e. bx [n] = y [n] � h [n].
This implies that the spectrum of bx [n] is related to the
spectrum of y [n] through the equation

Sbxbx (!) = Syy (!) jH (!)j2 . (51)

Let Uy (!) be a factorization of Syy (!), i.e. Syy (!) =
Uy (!)U

�
y (!). Note that we do not require spectral factor-

ization in the sense that uy [n] be a causal sequence, but any
decomposition of Syy (!) into a multiplication of two conju-
gate functions. For example Uy (!) =

p
Syy (!) is a valid

choice. The factorization of Syy (!) induces a factorization of
Sbxbx (!) as

Sbxbx (!) = (Uy (!)H (!)) (Uy (!)H (!))�
= Ubx (!)U�bx (!) , (52)

where we de�ned

Ubx (!) , Uy (!)H (!) . (53)

Now, we wish to con�ne the factorization Ubx (!) to belong
to a certain family of functions with desired properties. This
requirement can be written as

Ubx (!) 2 V , (54)

where V is a closed set in L2 [��; �].
Two things must be noticed regarding the representation of

restrictions in the form of (54). First, constraints on Ubx (!)
only affect the content of H (!) in supp fSyy (!)g. This is
not a limitation, though, as H (!) can be chosen arbitrarily
for frequencies outside supp fSyy (!)g without changing the
MSE. Second, since supp fUbx (!)g � supp fSyy (!)g by
de�nition, for a solution to exist we must require that V
contain at least one function whose support is contained in
supp fSyy (!)g.
The relation Syy (!) = Uy (!)U�y (!) can be written in the

time domain as Ryy [n] = uy [n]�u�y [�n] or in matrix form as
Ryy = UyU

�
y , where Ryy is the matrix given in (49) and Uy

is the in�nite Toeplitz matrix de�ned by (Uy)j;k = uy [k � j].
Combining this matrix representation with (53) and using the
fact that A is the in�nite row vector corresponding to the
sequence fh [n]g, we see that (54) can be written as

AUy 2 eV , (55)

where eV denotes the closed set in `2 in the time domain
corresponding to V in (54), which was speci�ed in the
frequency domain. This matrix representation also allows to
identify that the subspace Dy in (22) corresponds to the set
of functions fD (!) jsupp fD (!)g � supp fSyy (!)gg.
The representation in (55) matches exactly the situation

discussed in Theorem 3. Thus the MMSE �lter under this
constraint is PeV\ eDy

(A0Uy)U
y
y , where A0 is the uncon-

strained Wiener �lter and eDy denotes the set of sequences in
the time domain corresponding to Dy , which was speci�ed in
the frequency domain. The frequency response of the optimal
constrained �lter is thus

H (!) =
1

Uy (!)
PV\Dy

�
Uy (!)

Sxy (!)

Syy (!)

�
=

1

Uy (!)
PV\Dy

�
Sxy (!)

U�y (!)

�
. (56)

Note that because of (50) and due to the pseudo-inverse
operation, wherever a division by Uy (!) appears the value
of the fraction should be set to zero for frequencies where
Uy (!) = 0. To simplify the exposition, this fact was omitted
from (56) and will be omitted throughout the rest of the paper.
Our freedom to design different constraints for which (56)

may be used is in choosing the factorization Uy (!) (which
affects Ubx (!) via (53)) and specifying the set V .
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In the Wiener �ltering setup, a separable constraint is a
set of functions V such that for every V (!) 2 V , setting
V (!) = 0 for every ! =2 supp fSyy (!)g leads to a function
that is also in V . As explained in Section V, under constraints
of this type the optimal �lter becomes

H (!) =
1

Uy (!)
PV

�
Sxy (!)

U�y (!)

�
. (57)

In the following subsections we present a few examples, all
of which have separable constraints.

B. Causality Constraint

As a special case of (57), we may obtain the causal
Wiener �lter. Assuming that Syy (!) > 0 at all frequencies, a
causality constraint on h [n] may be enforced by imposing that
ubx [n] = (h � uy) [n] be a causal sequence, given that uy [n]
is causal as well. Therefore, let us de�ne Uy (!) to be the
spectral factorization of Syy (!), i.e. Uy (!) = S+ (!) and
U�y (!) = S� (!), where S+ (!) is the Fourier transform of
a causal series. The set of functions V 2L2 [��; �] to which
Ubx (!) must belong is then the set of all Fourier transforms
of causal series

V =
�
V (!)

��F�1 fV (!)g [n] = 0; n < 0	 . (58)

Substituting this speci�c choice of V and Uy (!) in (57), we
obtain the known expression for the causal Wiener �lter [3]

H (!) =
1

S+ (!)

�
Sxy (!)

S� (!)

�
+

. (59)

The operator f�g+ corresponds to the projection operator
PV (�), which simply sets the non-causal coef�cients of its
argument to zero in the time domain.

C. Total Power Constraint

Suppose we enforce a power limitation on the estimated
signal. To cast this as a constraint on Ubx (!), we can write
E
h
jbx [n]j2i = Z �

��
Sbxbx (!) d! =

Z �

��
jUbx (!)j2 d! � ".

(60)
Note that here the choice of Uy (!) makes no difference.
Therefore, the feasible set of Ubx (!) is a ball in L2 [��; �]:

V =
�
V (!)

����Z �

��
jV (!)j2 d! � "

�
. (61)

The operator PV (�) in this case simply scales its argument to
comply with the desired L2-norm. Hence the optimal �lter is

H (!) =
1

Uy (!)
c
Sxy (!)

U�y (!)
= c

Sxy (!)

Syy (!)
, (62)

where c � 1 is the largest value for which (60) holds. We
conclude that in order to optimally bound the power at the
output of the �lter all one needs to do is concatenate an
attenuator after the unconstrained Wiener �lter.

D. Total Power Resistance to Interference
As a generalization of the power constraint (60), we may

wish to design a �lter that is resistant to a different input
signal. Speci�cally, suppose that in a certain application one
has a reason to suspect that an undesired signal z [n] with
spectrum Szz (!) might be fed to the �lter. A robust approach
is then to design a �lter that minimizes the MSE between x [n]
and y [n] �h [n] subject to the constraint that the power of the
signal z [n] � h [n] does not exceed a certain level. To address
this constraint within our framework we need to express this
as a restriction on Ubx (!). This can be done by writing
E
h
jz [n] � h [n]j2

i
=

Z �

��
jH (!)j2 Szz (!) d!

=

Z �

��
jH (!)j2 Syy (!)

Szz (!)

Syy (!)
d!

=

Z �

��
jUbx (!)j2 Szz (!)

Syy (!)
d!. (63)

The constraint set is thus a weighted L2 ball:

V =
�
V (!)

����Z �

��
jV (!)j2 Szz (!)

Syy (!)
d! � "

�
. (64)

Using (57) with the formula for projection onto a weighted
L2 ball (109), the optimal �lter is

H (!) =
1

Uy (!)

Sxy (!)

U�y (!)

1

1 + �Szz(!)Syy(!)

=
Sxy (!)

Syy (!)

1

1 + �Szz(!)Syy(!)

, (65)

where � � 0 is the minimal value for which (64) holds.
The intuition behind the power z-resistant Wiener �lter

is simple. At frequencies for which Szz (!) is zero or very
small with respect to Syy (!), the �lter is identical to the
unconstrained Wiener solution (50). This is because large
spectral components found at those frequencies are more likely
to come from the measurement signal y [n] rather than the
interference signal z [n]. On the other hand the �lter strongly
attenuates frequencies for which Szz (!) is large with respect
to Syy (!). Any spectral content found at those frequencies is
probably from the signal z [n].
An interesting fact is that the power z-resistant Wiener �lter

is identical to the unconstrained Wiener solution designed to
estimate x [n] from the measurements ey [n] = y [n]+p�z [n],
where z [n] is a process independent of x [n] and y [n]. Hence,
the effect of constraining the �lter to belong to the class
de�ned in (63) can be understood as designing a �lter to
estimate x [n] from a noisy version of the measurements
instead of using the measurements themselves.

E. An L2 Constraint on H (!)
If the lower bound on Syy (!) in (14) is very small, then

there may be frequencies at which Syy (!) is close to zero.
This typically causes the impulse response of the �lter to
attain large values and have a slow decay, properties which
may be undesirable in practical implementations. To overcome
these dif�culties, we may constrain the `2 norm of the �lter's
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impulse response. Equivalently, we can restrict the L2 norm
of H (!). This is done by setting Szz (!) = 1 in (63), which
leads to the restrictionZ �

��
jH (!)j2 d! � ". (66)

The optimal �lter is then given by a simple regularization (65):

H (!) =
Sxy (!)

Syy (!) + �
, (67)

where � � 0 is the minimal value for which (66) holds.
This modi�cation of the Wiener �lter barely affects fre-

quencies at which Syy (!) is large. However it does prevent
the denominator from being too small, which precludes the
�lter from exploding.

F. Total Amplitude Constraint
The power limitation

R �
�� Sbxbx (!) d! � " in (60) puts

a heavy penalty on frequencies where Sbxbx (!) is large. In
many applications this is an over-pesimistic modeling of the
underlying physical limitations. For example, one may be
willing to trade a small frequency band where Sbxbx (!) is very
large for a large band with zero content. Such a behavior
can be achieved by replacing the power limitation with an
amplitude constraint

R �
��
p
Sbxbx (!)d! � ". Similar to (60),

we may express such a constraint in terms of Ubx (!) asZ �

��

p
Sbxbx (!)d! =

Z �

��
jUbx (!)j d! � ". (68)

The corresponding set V is therefore the L1-ball

V =
�
V (!)

����Z �

��
jV (!)j d! � "

�
. (69)

The operator PV (�) associated with an L1-ball (103) leads to
the following �lter

H (!) =

8><>:
0

jSxy(!)jp
Syy(!)

� �

Sxy(!)
Syy(!)

�
1� �

p
Syy(!)

jSxy(!)j

�
jSxy(!)jp
Syy(!)

> �
(70)

where � � 0 is the minimum value for which (68) is satis�ed.
This �lter can be viewed as the result of a applying

a soft threshold operation on the unrestricted Wiener �lter
(50). Interestingly, the term jSxy (!)j

.p
Syy (!) plays an

important role in shaping the �lter's frequency response. This
term is related both to the amplitude

p
Sbxbx (!) at the output

of the Wiener solution (50) and to its MSE. Speci�cally, when
the signal y [n] is fed to the Wiener �lter (50),

p
Sbxbx (!) =

jSxy (!)j
.p

Syy (!) and the MSE is given by Rxx [0] �R �
�� jSxy (!)j

2
/Syy (!) d!. This means that frequencies at

which jSxy (!)j2 /Syy (!) is small have a minor contribution
to the MSE. Therefore, in order to optimally bound the total
amplitude at the output of the �lter, one should discard exactly
those frequency components. Note that at the rest of the
frequencies, the constrained �lter is a shrunk version of the
unrestricted solution.

G. Total Amplitude Resistance to Interference
Let us now return to the problem of designing a �lter

that is resistant to a different input signal z [n] with spec-
trum Szz (!). As opposed to the power resistance constraintR �
�� jH (!)j

2
Szz (!) d! � " imposed in (63), we now wish

to bound the total amplitude of h [n]�z [n]. Speci�ed in terms
of Ubx (!), this constraint becomes
�Z

��

jH (!)j
p
Szz (!)d! =

�Z
��

jH (!)j
q
Syy (!)

s
Szz (!)

Syy (!)
d!

=

�Z
��

jUbx (!)j
s
Szz (!)

Syy (!)
d! � ".

(71)

As discussed in the previous subsection, such a constraint al-
lows to obtain a large frequency band where jH (!)j2 Szz (!)
is identically zero at the cost of a small band where it is
very large. This essentially concentrates the affect of the
interference into a small portion of the frequency axis [��; �].
The feasible set V corresponding to (71) is a weighted L1 ball

V =
(
V (!)

�����
Z �

��
jV (!)j

s
Szz (!)

Syy (!)
d! � "

)
. (72)

Using (57) with the formula for projection onto a weighted
L1 ball (103), the amplitude z-resistant �lter is

H (!) =

8><>:
0

jSxy(!)jp
Szz(!)

� �

Sxy(!)
Syy(!)

�
1� �

p
Szz(!)

jSxy(!)j

�
jSxy(!)jp
Szz(!)

> �,
(73)

where � � 0 is the minimum value for which (71) holds.
The above �lter is again related to the unconstrained �lter

via a soft threshold operation. However, in contrast to (70),
here the frequency band of H (!) is determined by the term
jSxy (!)j

.p
Szz (!) . This ensures that frequencies at which

the interference is most signi�cant (i.e. wherever Szz (!) is
large) are zeroed out.

H. An L1 Constraint on H (!)
There may be situations where an amplitude limitation is

needed to be posed on the �lter's frequency response rather
than on the output spectrum. As we saw in the two preceding
subsections, such a constraint leads to a �lter with a small
bandwidth. Filters of this type may be implemented e.g. by
a �lter-bank of band pass �lters. In order to pose an L1
restriction on H (!) we simply substitute Szz (!) = 1 in (71)
to obtain

�Z
��

jH (!)j d! � ". (74)

Making the same substitution in (73), the optimal L1�
constrained �lter is

H (!) =

(
0 jSxy (!)j � �
Sxy(!)
Syy(!)

�
1� �

jSxy(!)j

�
jSxy (!)j > �.

(75)
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We see that now, the set of frequencies that is discarded is
determined by jSxy (!)j. Interestingly, this �lter has the same
structure as (70) with jSxy (!)j here replacing

p
Sbxbx (!).

I. Per-Frequency Magnitude Constraint
There are applications that demand that the spectrum

Sbxbx (!) at the output of the �lter be bounded for every !.
Neither the total power constraint (60) nor the total amplitude
one (68) can be of help in enforcing such a limitation. Suppose
that we are interested in the restriction Sbxbx (!) � B2 (!) for
some given function B (!) > 0. This constraint may be written
in terms of Ubx (!) as

Sbxbx (!) = jUbx (!)j2 � B2 (!) . (76)

Our feasible set V is thus the weighted L1 ball

V = fV (!) jjV (!)j � B (!) ; 8! 2 [��; �]g . (77)

The projection associated with this set (99) leads to the
following �lter:

H (!) =

8<:
Sxy(!)
Syy(!)

jSxy(!)jp
Syy(!)

� B (!)
B(!)p
Syy(!)

Sxy(!)
jSxy(!)j

jSxy(!)jp
Syy(!)

> B (!) .
(78)

J. Per-Frequency Resistance to Interference
Suppose that we wish to construct a �lter that minimizes

the MSE between x [n] and y [n]�h [n] and that, when fed the
signal z [n], the spectrum at its output is bounded for every
frequency. Speci�cally, we wish to obtain jH (!)j2 Szz (!) �
B2 (!). Let us express this as a constraint on Ubx (!):

jH (!)j2 Szz (!) = jH (!)j2 Syy (!)
Szz (!)

Syy (!)

= jUbx (!)j2 Szz (!)
Syy (!)

� B2 (!) . (79)

This restriction corresponds to the constraint set

V =
(
V (!)

�����jV (!)j
s
Szz (!)

Syy (!)
� B (!) ; 8! 2 [��; �]

)
.

(80)
This too is a weighted L1 ball the projection onto which leads
to the �lter

H (!) =

8<:
Sxy(!)
Syy(!)

jSxy(!)j
Syy(!)

� B(!)p
Szz(!)

B(!)p
Szz(!)

Sxy(!)
jSxy(!)j

jSxy(!)j
Syy(!)

> B(!)p
Szz(!)

.
(81)

K. Restriction on the Magnitude and Support of H (!)
Implementation considerations may sometimes dictate the

use of �lters whose magnitude is bounded by some value. We
notice that the restriction jH (!)j � B (!) is a special case of
(79) with Szz (!) = 1. Substituting Szz (!) = 1 in (81) we
get the optimal �lter under a magnitude constraint:

H (!) =

(
Sxy(!)
Syy(!)

jSxy(!)j
Syy(!)

� B (!)
B (!)

Sxy(!)
jSxy(!)j

jSxy(!)j
Syy(!)

> B (!) .
(82)

Using (82) we may construct a Wiener �lter with a prede-
�ned support in the frequency domain, say 
s � [��; �]. To
do so we set B (!) ! 1 for ! 2 
s and B (!) = 0 other-
wise. This choice of upper bound on Sbxbx (!) is equivalent to
demanding that Syy (!) jH (!)j2 vanishes outside the set 
s.
This constraint is satis�ed only if H (!) = 0 at frequencies
outside 
s for which Syy (!) > 0. As for frequencies outside

s where Syy (!) = 0, we may choose to set H (!) = 0
anyway as it does not affect the MSE. Therefore we have that
under the constraint

H (!) = 0; 8! =2 
s (83)

the optimal �lter is

H (!) =

(
Sxy(!)
Syy(!)

! 2 
s
0 ! =2 
s.

(84)

L. Generalized MMSE Whitening
The concept of whitening a signal arises in a variety of

contexts in the �elds of signal processing and communication
(see [11] and references therein). In [11] a linear MMSE
whitening approach was developed. The proposed scheme was
to construct a �lter that minimizes the MSE between its input
and output subject to the constraint that the spectrum of the
output signal is white. In other words, the �lter is one that
results in a white output by [n] that is as close as possible to
the input y [n], in an MSE sense.
We wish to generalize this approach by constructing a �lter

that produces a white output that approximates the original
signal x [n] in an MSE sense. Recall that we assume that there
is a positive lower bound on the spectrum of the input signal,
i.e. Syy (!) � A > 0. Here we also assume that the desired
white spectrum satis�es Sbxbx (!) = C � A.
By setting B2 (!) = C in (76) we get the constraint

Sbxbx (!) � C which will clearly be active for all frequencies.
Therefore practically we pose the restriction

Sbxbx (!) = C.
The optimal �lter is obtained by replacing B2 (!) with C in
(78):

H (!) =

8<:
Sxy(!)
Syy(!)

jSxy(!)j2
Syy(!)

� Cq
C

Syy(!)
Sxy(!)
jSxy(!)j

jSxy(!)j2
Syy(!)

> C.
(85)

Notice that by assumption

C = Sbxbx (!) = jH (!)j2 Syy (!) =
=

����Sxy (!)Syy (!)

����2 Syy (!) = jSxy (!)j2

Syy (!)
(86)

and hence the condition jSxy (!)j2 /Syy (!) � C in (85) is
never satis�ed. This simpli�es the formula for the generalized
whitening �lter:

H (!) =

s
C

Syy (!)

Sxy (!)

jSxy (!)j
(87)

If we set x [n] = y [n] then we get the whitening �lter
derived in [11]: H (!) =

p
C /Syy (!) . The departure of
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the generalized �lter from the standard one is in the phase
component. In order for bx [n] to be as close as possible in
the MSE sense to the signal x [n], the �lter's phase should be
identical to that of Sxy (!).

M. Bandwidth Constraint on the Output Spectrum
Consider the situation where the signal bx [n] is to be

transmitted over a channel with bandwidth limitation or to
be coded with a method that leaves only its strongest spectral
components unchanged. These situations require that Sbxbx (!)
have a small support. As we saw previously, one way to
comply with this requirement is to impose an L1 constraint onp
Sbxbx (!). However such an approach is suboptimal in this

setting as we would not like to pay a penalty proportional top
Sbxbx (!) for frequencies at which Sbxbx (!) > 0. Rather, we

would like our penalty to be proportional only to the size of the
set 
Sbxbx , f! jSbxbx (!) > 0g. This requirement is translated
into an L0 constraint on Ubx (!) as

�Z
��

X
Sbxbx (!) d! =
�Z

��

X
Ubx (!) d! � ", (88)

where 
Ubx , f! jUbx (!) > 0g and X
 (!) is the indicator
function, which equals 1 for every ! 2 
 and zero otherwise.
Using (57) with the formula for projection onto an L0 ball
(114), the optimal �lter is

H (!) =

8<: 0
jSxy(!)jp
Syy(!)

� �
Sxy(!)
Syy(!)

jSxy(!)jp
Syy(!)

> �
(89)

where � is the smallest value for which the band restriction
(88) is satis�ed.
This �lter is the result of a hard-threshold operation on

the unrestricted Wiener �ler (50). This �lter highly resembles
the �lter (70), which is optimal under an L1 restriction
on

p
Sbxbx (!). The difference is in frequencies at which

jSxy (!)j > �
p
Syy (!). In the L0 approach, once we choose

not to set to zero a certain frequency band, there is no
additional penalty on the magnitude of the spectrum at this
band. Therefore at those frequencies H (!) in (89) coincides
with the unrestricted Wiener �lter.

N. Summary
Besides providing tools for practitioners, the various ex-

amples presented in subsections VII-B-VII-M exhibit several
interesting structures worth mentioning. We now summarize
the results by dividing them into several categories.
The �rst categorization we consider is induced by the value

of p for a weighted Lp restriction posed on the estimator.
In subsections VII-C, VII-D and VII-E L2-type constraints
are addressed. The optimal �lter in all these cases contains
some kind of a regularization term in the denominator1. In
subsections VII-F, VII-G and VII-H L1-type restrictions are
considered. In these examples, the result is related to the
unconstrained �lter via a soft threshold operation. Subsections

1In subsection VII-C the regularization is proportional to Syy (!).

VII-I, VII-J and VII-K treat a few variations of L1 constraints.
These impose a modi�cation of the unconstrained solution
through a clipping operation. Finally, subsection VII-M dis-
cusses an L0 restriction, where a hard-threshold operation
emerges.
Qualitatively, the L1 and L0 are two extremes, where the

former affects only frequency components with large values
and the latter affects only those with small magnitude. In this
respect, the L1 and L2 restrictions occupy the middle of the
scale as both affect the �lter at all frequencies. Still, the L1
constraint can be viewed as more similar in nature to L0 as it
causes several frequency bands to be zeroed out completely.
The second categorization we consider is by the designation

of the constraint. In subsections VII-C, VII-F, VII-I and VII-M
the restriction is imposed on the output of the �lter. In all these
examples the term jSxy (!)j2 /Syy (!) plays an important
role. This quantity is no other than the spectrum at the output
of the unconstrained Wiener �lter. Speci�cally, when the signal
y [n] is fed to the Wiener �lter (50), the spectrum at its
output is Sbxbx (!) = jSxy (!)j2 /Syy (!) . In the L0 and L1
cases (subsections VII-M and VII-F) frequencies for which
this value is small are suppressed. In the L1 case (subsection
VII-I) frequencies for which it is large are clipped. Finally,
the L2 case (subsection VII-C) is not obtained as a threshold
operation, however it can be viewed as operating in the same
manner on small and large values of this term.
Resistance to interference is considered in subsections VII-

D, VII-G and VII-J. These �lters seem to share no structural
resemblance except one obvious property. The larger Szz (!)
is, the greater the tendency to suppress the magnitude of the
�lter.
In subsections VII-E, VII-H and VII-K the constraint is

imposed on the �lter itself. These examples may be useful
when implementation considerations are involved. Thus, we
point out a rule of thumb for the assessment of the affect of
restrictions on the �lter. The behavior of the L1-constrained
�lter (subsection VII-K) is dictated by comparing the value
of jSxy (!)j /Syy (!) against a threshold. In the L1 and L2
methods (subsections VII-H and VII-E), on the other hand,
the values of jSxy (!)j and Syy (!) respectively are compared
to a threshold. As before, the L1 approach induces a clipping
operation, the L1 method induces a soft threshold operation
and in the L2 case a soft decision technique is employed.

VIII. CONCLUSION

We derived a general framework for treating linear MMSE
estimation problems under nonlinear constraints. The approach
is general in that it allows the treatment of both �nitely-
many as well as in�nitely many measurements (as in the
Wiener �ltering setup). Using our proposed framework we
obtained closed form solutions to many constrained linear
estimation problems. In the �nite dimensional case, these
include estimation with a lower-triangular matrix, prede�ned
range space and low-rank. In the �nite dimensional case,
formulas for various nonlinear constraints on the frequency
response of the Wiener �lter have been derived.
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APPENDIX I
PROOF OF THEOREM 1

A necessary and suf�cient condition for the set of r.v.'s
fy [n]g to form a frame for a subspace A in L12 is the existence
of scalars 0 < A � B <1 such that condition (4) holds:

AE
h
jaj2

i
�
X
n2Z

jE [a�y [n]]j2 � BE
h
jaj2

i
, 8a 2 A.

(90)
Every random variable a in A can be written as a linear
combination of fy [k]g, i.e. a =

P
k2Z h [k] y [k] with h 2 `2.

Using this representation, the term E
h
jaj2

i
in (90) becomes

E

24�����X
k2Z

h [k] y [k]

�����
2
35 =X

k2Z

X
l2Z

h [k]h� [l]E [y [k] y� [l]]

=
X
k2Z

X
l2Z

h [k]h� [l]Ryy [k � l]

=
X
k2Z

h [k] (h� �Ryy) [k]

=
1

2�

Z �

��
jH (�!)j2 Syy (!) d! (91)

where the last equality follows from Parseval's theorem.
Similarly, the term

P
n2Z jE [a�y [n]]j

2 in (90) can be written
as X

n2Z

�����E
"X
k2Z

h� [k] y� [k] y [n]

#�����
2

=
X
n2Z

�����X
k2Z

h� [k]Ryy [n� k]
�����
2

=
X
n2Z

j(h� �Ryy) [n]j2

=
1

2�

Z �

��
jH (�!)j2 S2yy (!) d!. (92)

Using these two expressions, the condition for fy [k]g to form
a frame is the existence of scalars 0 < A � B <1 such that

A

Z �

��
jH (�!)j2 Syy (!) d! �

Z �

��
jH (�!)j2 S2yy (!) d!

� B
Z �

��
jH (�!)j2 Syy (!) d!,

(93)

for every H 2 L2 [��; �]. We see that the content of H (�!)
outside the set 
y de�ned in (15) has no importance from the
viewpoint of (93). As for other frequencies, the maximal A and
minimal B are min!2
y Syy (!) and max!2
y Syy (!) re-
spectively. Hence, the r.v.'s fy [k]g form a frame for a subspace
in L21 if and only if there exist constants 0 < A � B < 1
such that the spectrum of y [n] satis�es A � Syy (!) � B,
! 2 
y .

APPENDIX II
CLOSED RANGE PROPERTY

Suppose that y [n] is a WSS FP and that Uy is a factor-
ization of its covariance matrix, i.e. Ryy = UyU

�
y . We wish

to show that Uy is a bounded operator from `2 to `2 with
closed range. We shall present a proof only for the case where
Uy is a Toeplitz matrix as this is the only situation of interest
in this paper (see Section VII). The proof can be extended to
the case where Uy is not Toeplitz and also to general FP's
(which are not necessarily WSS), however it is outside the
scope of this paper. The arguments brought in this appendix
can be also used to prove that U�

y is a bounded operator with
closed range.
We shall prove our claim by showing that Uy = URzz

where Rzz is the covariance matrix of some WSS FP and
U is a unitary matrix. The matrix Rzz is a Gram matrix
corresponding to a frame and thus it is bounded and its range
is closed. The concatenation of a unitary transform obviously
does not affect these properties.
Since Uy is an in�nite dimensional Toeplitz matrix, it

corresponds to convolution with a sequence uy [n]. Thus,
the relation Ryy = UyU

�
y can be written as Ryy [n] =

uy [n] � u�y [�n], or in the frequency domain as Syy (!) =
Uy (!)U

�
y (!). Let us write Uy (!) =

p
Syy (!)U (!), where

jU (!)j = 1 is the phase component of Uy (!) and
p
Syy (!)

is its amplitude. Transforming back to the time domain, we
see that the matrix Uy can be written as Uy = URzz , where
Rzz is a Toeplitz matrix corresponding to a sequence Rzz [n]
whose Fourier transform is Szz (!) =

p
Syy (!), and U is

a unitary Toeplitz matrix corresponding to a sequence u [n]
whose Fourier transform is U (!).
It remains to show that Rzz is indeed a covariance matrix

of a WSS FP z [n]. But since y [n] is a WSS FP, its spectrum
Syy (!) satis�es (14) with bounds, say A and B. This implies
that Szz (!) satis�es (14) with bounds

p
A and

p
B, and thus

z [n] is a WSS FP.

APPENDIX III
PROJECTIONS ONTO Lp BALLS

Let f : R ! C be a scalar function. The Lp norm of f is
de�ned as

kfkp =

8<:
�R
R jf (t)j

p
dt
� 1
p 1 � p <1

sup
t2R

jf (t)j p =1 (94)

The L0 pseudo-norm of f is de�ned by

kfk0 =
R
RX
f (t) dt (95)

where 
f , ft jjf (t)j 6= 0g. We are interested in obtaining a
closed form solution to the problem of projecting in the L2
sense a given function g onto a weighted Lp ball. Our problem
is thus

argmin
f

R
R jg (t)� f (t)j

2
dt

s.t. f 2 A
(96)

where A =
n
f
���kWfkp � "o, g 2 L2 and W is a diagonal

operator de�ned by (Wf) (t) = w (t) f (t). In what follows
we give the solution to (96) for p = 1; 2;1 with a general
PSD operatorW and also for p = 0 withW being the identity
operator. A suf�cient condition for the set A to be closed is
that the operator W be bounded from above and also bounded
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from below on N? (W ) [17], hence it is assumed that w (t)
satis�es A � w (t) � B wherever w (t) 6= 0, where 0 < A �
B <1.
We shall use the following property of projections onto

closed convex sets. Suppose that A is a closed convex set
in some Hilbert space H, then PA (h) 2 A is the projection
of h 2 H onto A if and only if [17]

Re fhh� PA (h) ; PA (h)� aig � 0, 8a 2 A. (97)

A. Projection onto a diagonaly-weighted L1 ball
Lemma 1: Let A be the weighted l1 ball (box) de�ned by

A =
�
f 2 L2

����sup
t2R

fw (t) jf (t)jg � "
�
. (98)

Then the solution of (96) is

fA (t) =

(
g (t) jg (t)j � "

w(t)
"

w(t)
g(t)
jg(t)j jg (t)j > "

w(t)

(99)

for every t for which w (t) 6= 0 and fA (t) = g (t) otherwise.
Proof: First, we notice that fA in (99) is indeed in A,

i.e. supt2R fw (t) jf (t)jg � " and also fA 2 L2 (as g 2 L2).
It suf�ces to show that fA in (99) satis�es the condition (97)

Re
�R
(g (t)� fA (t)) (fA (t)� a (t))� dt

	
� 0; 8a 2 A.

(100)
To prove (100), we show that Ref(g (t)� fA (t))

(fA (t)� a (t))�g � 0 for every t. Clearly, if t is such that
w (t) = 0 then this term is zero as g (t) � fA (t) = 0. Now
assume that w (t) > 0, then when fA (t) = g (t) this term
vanishes and otherwise,

Re

��
g (t)� "

w (t)

g (t)

jg (t)j

��
"

w (t)

g� (t)

jg (t)j � a
� (t)

��
=

"

w (t)
jg (t)j � "2

w2 (t)
�
�
1� "

w (t)

1

jg (t)j

�
Re fa� (t) g (t)g

� "

w (t)
jg (t)j � "2

w2 (t)
�
�
1� "

w (t)

1

jg (t)j

�
"

w (t)
jg (t)j

= 0 (101)

where the inequality follows from the fact that since a 2 A
we have in particular also that w (t) ja (t)j � " for every
t. Hence using the Cauchy-Schwartz inequality we obtain
Re fa� (t) g (t)g � ja (t)j jg (t)j � "

w(t) jg (t)j.

B. Projection onto a diagonaly-weighted L1 ball
Lemma 2: Let A be the weighted L1 ball de�ned by

A =
�
f
��R w (t) jf (t)j dt � "	 . (102)

Then the solution of (96) is

fA (t) =

(
0 jg (t)j � �w (t)
g (t)� �w (t) g(t)

jg(t)j jg (t)j > �w (t) , (103)

where � � 0 is the minimum value for which fA 2 A.

Proof: We will show that with fA given by (103),

Re

�Z
f�A (t) (g (t)� fA (t)) dt

�
� Re

�Z
a� (t) (g (t)� fA (t)) dt

�
; 8a 2 A. (104)

If g 2 A then � = 0 and fA (t) = g (t) so that (104) is
satis�ed. Now assume that g =2 A. It is clear that in this case
the constraint in (102) is active, i.e.

R
Rw (t) jf (t)j dt = ".

From (103) we see that

g (t)� fA (t) =
(
g (t) jg (t)j � �w (t)
�w (t) g(t)

jg(t)j jg (t)j > �w (t) (105)

This means that if t is such that jg (t)� fA (t)j < �w (t)
then g (t) < �w (t), which implies that fA (t) = 0. For
the rest of R we have g (t) � fA (t) = �w (t) g (t) /jg (t)j .
Moreover, it is easily veri�ed that for the latter case we
also have g (t) /jg (t)j = fA (t) /jfA (t)j . Therefore we can
write g (t) � fA (t) = �w (t) fA (t) /jfA (t)j at these points.
To summarize these two facts, either fA (t) = 0 or g (t) �
fA (t) = �w (t) fA (t) /jfA (t)j , hence the term on the left-
hand side of (104) reduces to

Re

�Z
f�A (t) (g (t)� fA (t)) dt

�
= Re

�Z
f�A (t) �w (t)

fA (t)

jfA (t)j
dt

�
= �

Z
w (t) jfA (t)j dt. (106)

As for the term on the right-hand side of (104), we have

Re

�Z
a� (t) (g (t)� fA (t)) dt

�
�
Z
ja (t)j (g (t)� fA (t)) dt

� �
Z
w (t) ja (t)j dt

� �
Z
w (t) jfA [k]j dt, (107)

where the �rst inequality is a Cauchy-Schwartz one, the second
inequality follows from the fact that jg (t)� fA (t)j � �w (t)
for every t, and the last inequality is a consequence of a
satisfying

R
w (t) ja (t)j � " whereas fA is known to satisfyR

w (t) jfA (t)j = ".

C. Projection onto a diagonaly-weighted L2 ball
Lemma 3: Let A be the weighted L2 ball de�ned by

A =
n
f
���R w (t) jf (t)j2 dt � "o (108)

Then the solution of (96) is

fA (t) =
1

1 + �w (t)
g (t) (109)

where � � 0 is the minimum value for which fA 2 A.
Proof: First we notice that (108) poses no limitation on

f (t) at points t for which w (t) = 0. Therefore, to minimize
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the L2 distance to g one must set fA (t) = g (t) wherever
w (t) = 0, which is indeed the case in (109). At the rest of
the real line, fA (t) must satisfy condition (97), which can be
written as

Re

8<:
Z

w

f�A (t)w (t)
(g (t)� fA (t))

w (t)
dt

9=;
� Re

8<:
Z

w

a� (t)w (t)
(g (t)� fA (t))

w (t)
dt

9=; ; 8a 2 A,

(110)

where 
w , ft jw (t) 6= 0g. Clearly, among all functions
a 2 A, the one that maximizes the right hand side of (110)
is proportional to (g (t)� fA (t)) /w (t) . Hence, in order for
(110) to be satis�ed for every a 2 A, the function fA must
be chosen as

fA (t) = �
(g (t)� fA (t))

w (t)
, (111)

where � > 0 is the maximal value for which fA 2 A. Now,
solving for fA (t) leads to

fA (t) =
1

1 + ��1w (t)
g (t) , (112)

which is identical to (109) with � = ��1.

D. Projection onto an L0 ball
Lemma 4: Let A be the weighted L0 ball de�ned by

A =
�
f
��R X
f (t) dt � "	 , (113)

where 
f , ft jjf (t)j 6= 0g. Then the solution of (96) is

fA (t) =

�
0 jg (t)j � �
g (t) jg (t)j > � (114)

where � � 0 is the minimum value for which fA 2 A.
Proof: The L2 distance between g and any function f 2

A can be written asZ
jg (t)� f (t)j2 dt =

Z

f

jg (t)� f (t)j2 dt+
Z

cf

jg (t)j2 dt,

(115)
where 
cf is the complementary of the set 
f . This distance
depends on two factors � the set 
f and the content of f (t) in

f . For every choice of 
f , (115) is minimized if we choose
f (t) = g (t) for every t 2 
f as this causes the �rst term
to vanish. The set 
f should be chosen such that the second
term is minimized. This is accomplished by setting 
cf =
ft jjg (t)j � �g with � being the smallest value for which fA 2
A.
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