
 1

 Zero latency synchronizers

using four and two phase protocols

Rostislav (Reuven) Dobkin and Ran Ginosar

VLSI Systems Research Center, Technion—Israel Institute of Technology, Haifa

32000, Israel

rostikd@tx.technion.ac.il

October 2007

Abstract

Synchronizers typically incur long latency of multiple clock cycles, resulting in low throughput.

This work presents a number of novel fast synchronizers, based on four and two-phase protocols: a four

and two-phase two-flop synchronizer which reduces the data cycle from 6-12 down to 2-4 clock cycles,

and a four- and two-phase LDL synchronizer which strives for maximum throughput and "zero-

latency," namely data transfers that incur no extra penalty due to synchronization. These synchronizers

are useful for data transfers over long interconnects. Simulations of best- and worst-case scenarios are

presented which demonstrate the improved performance of the novel synchronizers. The results are

compared to two-clock FIFO and to conventional two-flop synchronizers.

1. Introduction

Advanced silicon technologies enable the incorporation of an increasing number of modules in a

single chip, constituting Systems on Chip (SoCs) devices. A SoC typically consists of multiple-clock

domains, resulting from requirements for different external frequencies, the integration of modules that

were designed to operate on different frequencies, and clock gating and partitioning of large and fast

clock trees. Moreover, in order to reduce power consumption, frequency and voltage may also be

changed dynamically in DVFS systems [1]- [3], leading to dynamically changing clock relations during

chip operation.

A SoC constructed of multiple modules, each working with uncorrelated local clock, is termed a

Globally Asynchronous, Locally Synchronous (GALS) system [4] [5]. Data synchronization and

communication across clock domains in GALS architectures is a major challenge. Non-scaling

interconnect complicates even more the synchronization problem. Increasing global wire delays incur

high overhead, directly affecting communication performance. In addition, long wires have high

variability in delay, both due to process variations and noise [6] [7].

Asynchronous solutions for global communication across clock domains are preferred over

synchronous ones since they eliminate the need for re-synchronization when crossing clock domains,

do not require complex clock distributions and are more flexible under changing voltage and

temperature conditions [8]- [12]. Thanks to these advantages, ITRS [13] predicts that by the year 2020,

40% of SoC global signaling will be performed asynchronously.

Dynamically changing clock frequencies and wire delay variations call for robust synchronizers that

provide high data rate and low latency. The mutual relationships of pairs of clock domains are

classified in Table 1 according to the frequency and phase differences of the two domains.

Mesochronous domains share the same frequency and have a constant phase difference between them,

which can be compensated by relatively simple synchronizers [24] [42], e.g. by a small FIFO. Adaptive

phase compensation can be employed to connect multi-synchronous domains, in which the phase drifts

slowly over time [40] [41], as well as plesiochronous domains [43], where a very small frequency

difference can be viewed as a phase drift. When two different-frequency clocks are used in the periodic

lesley
Text Box
CCIT Report #642 October 2007

 2

case, a predictive synchronizer foresees and prevents contentions [44]. In the general asynchronous

case, when the timing of input is unknown, the family of two-flop synchronizers and two-clock FIFOs

can be employed. The synchronizers for the asynchronous class are universal because they also support

all other classes. However, universal synchronizers do not take advantage of knowing the clock

relationships and hence they are sub-optimal for other classes, incurring performance overhead. All the

synchronizer types should be employed carefully, matching system requirements in terms of rate,

latency and reliability, and avoiding common pitfalls [23].

Table 1: Clock relationship classes

Class Δφ Δf Synchronization

Synchronous 0 0 None

Mesochronous φC 0 Phase compensation

Multi-

synchronous

drifts 0
Adaptive phase compensation

Plesiochronous varies Δf<ε Adaptive phase compensation

Periodic Δf>ε Predictive

Asynchronous Two-Flop, two-clock FIFO

Simple “two-flop” synchronizer typically incurs significant multi-cycle latency and limits

throughput. An alternative solution is provided by two-clock FIFO synchronizers. However, they are

intended only for cases when the two clock domains are physically close to each other, because they

are intolerant to delay variations over long wires. Further, they incur additional latency when the FIFO

is empty. Other synchronizers employ stoppable clocks [14]- [21]. They must take into account

additional latency due to clock tree delays [22].

Two novel two-flop synchronizers are presented in this work. They employ four-phase and two-

phase two-flip-flop synchronization circuits, and are shown to minimize latency and enhance

throughput relative to conventional two-flop synchronizers.

The zero latency synchronizers proposed in this paper provide even higher throughput. They enable

correct data sampling at the earliest possible edge of the sampling clock. The synchronizers are based

on Locally Delayed Latching (LDL) [39] and requires no stopping of the clock. The proposed circuits

employ standard interfaces, enabling seamless integration in modular SoC designs.

This paper considers the synchronization of mutually-asynchronous clock domains, namely where

the two clock frequencies are unrelated and could also change over time. Synchronizers which are

optimized for mesochronous and multi-synchronous clock domains are treated elsewhere [40] [41].

The paper is organized as follows. Sect. 2 compares low latency solutions, including a novel two-

phase two-flop synchronizers, Sect. 3 presents zero latency LDL synchronizers, and simulations are

described in Sect. 4.

2. Low latency synchronizers for asynchronous clock domains

2.1. Two-flop synchronizers

A. Four-phase synchronizer

Standard asynchronous “two-flop” synchronizers are widely employed in industry [23] [24]. The

main assumption of such synchronizer is that the time reserved for metastability resolution provides a

satisfactory MTBF (mean time between failures). Latency of the simple synchronizer can be improved

by employment of multiple sampling and either speculative or non-speculative voting [25] [26].

A simple synchronizer is shown in Figure 1. The flip-flops sampling the asynchronous signals REQ

and ACK may become metastable. One clock cycle is preserved for the metastability resolution, and no

logic is allowed on the red lines. The exact time required for single synchronizer metastability

resolution is derived from system MTBF requirement. When the time required for metastability

resolution is longer than one clock cycle, additional flip-flops can be inserted before first flip-flop.

Alternatively, when the requirement is shorter than one half clock cycle, a first falling edge flip-flop

can be used. The receiver may also employ a FULL signal, pausing the synchronizer when the receiver

is not ready to receive (ACK signal is not returned until FULL becomes low). In this work we consider

a simple version, which assumes that the receiver is always ready. In this case the cross-lined flip-flops

can be omitted, reducing the data cycle by two receiver clocks. Additionally, the data register at the RX

side may also be omitted

 3

Figure 1: Simple four-phase synchronizer

The transmitter FSM and overall STG are shown in Figure 2. Note that ‘+’ indicates a rising edge

and ‘-‘ denotes a falling edge. The REQ is sent after input valid indication VI, provided that the

synchronizer has finished its previous cycle (A2 is low). Output valid VO is pulsed for one RX cycle

after a new data word has been received and synchronized, and sent indication SNT is pulsed for one

TX cycle after A2 is received.

VI=1

&& A2=0

REQ=0

WDATA

REQ=1

WACK

A2=1

VI=0 || A2=1

A2=0

REQ+

A2+

REQ-

A2-

R2+

ACK+

R2-

ACK-

Figure 2. Sender FSM and synchronizer STG

The simple synchronizer enables reliable communication between two clock domains.

Unfortunately, that synchronizer is limited to low data rates. In typical cases of mutually-asynchronous

clocks, 6 TX cycles and 6 RX cycles are required for a complete and acknowledged transfer of a single

word.

In Figure 3 an aggressive fast two-flop four-phase synchronizer is shown. The synchronization

circuit in the receiver clock domain (right hand side) comprises F1 and the Enable input of REGR. F4

provides for acknowledgement, and F2, F3 generate a data valid single-cycle pulse. The time reserved

for metastability resolution is one clock cycle, minus the setup time of the enable input to REGR.

However, since the output of F1 branches to other targets, the resolution time is actually the minimum

over all the (red) logic paths to F2, F3 and F4. The sender clock domain can be described similarly.

Beware that the red lines require special treatment to allow for sufficient resolution time. They should

not be combined with other parts of the logic. While other logic may be synthesized normally, caution

should be applied to avoid manipulation of the red lines by the logic synthesizer and physical design

software. In particular, note that certain registers have two separate enable inputs: one normal and one

red, which cannot be simply merged by logic. When fast clocks are used, a single cycle time may be

insufficient for reliable operation; the time for metastability resolution can then be extended by

inserting additional flip-flops in front of F1 or F5.

The operation of the synchronizer is explained by means of the TX FSM in Figure 4. At the

beginning, the synchronizer waits for data (rising VI). The transmitter output registers (REGD and

REGV) are enabled and will send out the new data word and REQ on the next rising edge of TX clock.

At the receiver side, DATA is sampled by REGR and a VO pulse is generated. The timing depends on

metastability resolution and may be delayed by an extra clock cycle. Note that metastability of the first

sampling flip-flop can only result in non-determinism in timing, and R2 is not expected to assume an

illegal voltage level (except, maybe, once per MTBF…). The receiver then produces the rising ACK

signal. Once sampled, A2 disables TX output registers (REGD and REGV) and asynchronously resets

REQ. The output registers stay disabled until the four-phase REQ/ACK handshake is over. The falling

edge of R2 triggers an asynchronous de-assertion of ACK. Following the synchronized falling edge of

A2, the transmitter enables the next data cycle once a new data word is available.

 4

For a mesochronous operation, the minimal data cycle time (REQ+ REQ+) is six clock cycles in

the worst case (the two clocks are in phase), but only four clock cycles when the two clocks are out of

phase (Figure 5). The synchronizer supports any relation between the transmitter and receiver clocks.

When the clocks are mutually asynchronous then the data cycle depends largely on the slower clock. If

the ratio is larger than two, then the data cycle is three clock cycles of the slower clock.

Figure 3. Fast two-flop four-phase synchronizer

VI=1 &&

A2D=0
EN=1

WDATA

SNT=0

DONE

EN=0

WACK

SNT=0

A2P=1

VI=0 || A2D=1

EN=0

SNT=1

A2P=0

Figure 4. TX FSM of the fast four-phase synchronizer

Figure 5: Mesochronous operation of the fast four-phase synchronizer:

(a) in phase clocks (b) off-phase clocks.

 5

B. Two-phase synchronizer

The main drawback of the synchronizer in Figure 3 is its high latency, which significantly affects

data rate, preventing data transfer continuously on each clock cycle. The synchronization data-rate can

be significantly improved by employing a two-phase protocol over the channel. This is particularly

important for long range communication where wires incur additional high latency.

The fast two-phase synchronizer is shown in Figure 6. The synchronization circuit in the receiver

clock domain (right hand side) comprises F1, the XOR gate and the Enable input of REGR. The XOR

gate and the toggle F2 convert the two phase REQ into four-phase RXE and a single-cycle pulse VO.

F4 provides for acknowledgement. The time reserved for metastability resolution is one clock cycle,

minus the logic path delay from F1 the enable input of REGR. However, since the output of F1

branches to other targets, the resolution time is actually the minimum over all the (red) logic paths to

F2, F3 and F4. The sender clock domain can be described similarly. Beware that the red lines require

special treatment to allow for sufficient resolution time. They should not be combined with other parts

of the logic. While other logic may be synthesized normally, caution should be applied to avoid

manipulation of the red lines by the logic synthesizer and physical design software. In particular, note

that certain registers have two separate enable inputs: one normal and one red, which cannot be simply

merged by logic. When fast clocks are used, a single cycle time may be insufficient for reliable

operation; the time for metastability resolution can then be extended by inserting additional flip-flops

in front of F1 and/or F5.

The synchronization circuit in the receiver clock domain (right hand side) comprises F1, the XOR

gate and the Enable input of REGR. The XOR gate and the toggle F2 convert the two-phase REQ into

four-phase RXE and a single-cycle pulse VO. F4 provides for acknowledgement. The time reserved for

metastability resolution is one clock cycle, minus the logic path delay from F1 the enable input of

REGR. However, since the output of F1 branches to other targets, the resolution time is actually the

minimum over all the (red) logic paths to F2, F3 and F4. The sender clock domain can be described

similarly. Beware that the red lines require special treatment to allow for sufficient resolution time.

They should not be combined with other parts of the logic. While other logic may be synthesized

normally, caution should be applied to avoid manipulation of the red lines by the logic synthesizer and

physical design software. In particular, note that certain registers have two separate enable inputs: one

normal and one red, which cannot be simply merged by logic. When fast clocks are used, a single cycle

time may be insufficient for reliable operation; the time for metastability resolution can then be

extended by inserting additional flip-flops in front of F1 and/or F5.

The synchronizer operation is explained by the transmitter STG and FSM in Figure 7 and Figure 8

respectively. Note that TXS (the TX state) is derived from the (red) synchronization circuit and hence,

its toggle time depends on metastability resolution, and can happen either one or two cycles after

latching F5. The TX FSM accommodates this variability of toggling time by providing for either case.

The output registers REGD and REGV are controlled by the FSM and by TXE (TX enable), the red-

marked resolving signal from the sampling flip-flop.

In mesochronous operation, the minimal data cycle time (REQ+ REQ+) is four clock cycles in

the worst case, when the two clocks are in phase, and only three clock cycles when the clocks are out

of phase (Figure 9). When the two clocks are mutually asynchronous, the data cycle depends largely on

the slower clock and, if the clock ratio is larger than two, the data cycle is two clock cycles of the

slower clock (Figure 10). Table 2 summarizes the data cycle figures for all cases and for simple and

fast four- and two-phase synchronizers.

Figure 6: Fast two-flop two-phase synchronizer

 6

Receiver Clock DomainSender Clock Domain

SNT+

RXE+ RXE-REQ+

ACK+

REQ-

ACK-

SNT-

VI+VI-

VO+ VO-

Figure 7. STG of the fast two-phase synchronizer

Figure 8: TX FSM of the fast two-phase synchronizer

Figure 9: Mesochronous operation of the fast two-phase synchronizer:

(a) clocks in phase (b) off-phase clocks

 7

Figure 10: Asynchronous clock domains. One clock is three times faster leading to data cycle of

two clock cycles of the slower clock

Table 2: Data cycles of two-flop synchronizers

 Simple Four-Phase Fast Four-Phase Fast Two-phase

 Best

(off-phase)

Worse

(in-phase)

Best

(off-phase)

Worse

(in-phase)

Best

(off-phase)

Worse

(in-phase)

Mesochronous Clocks 10 12 4 6 3 4

Asynchronous Clocks 6⋅TX+6⋅RX 3⋅TX+3⋅RX 2⋅TX+2⋅RX

2.2. Two-clock FIFO

The two-clock FIFO synchronizer enables transferring data on each clock cycle if the FIFO is

neither full nor empty. The FIFO, however, is a more complex design that incurs higher data latency

and does not support communications over long interconnect. Long link delays affect both latency and

data rate between two communicating modules. In [27], a mixed-timing FIFO was proposed for

communication between arbitrary combinations of synchronous and asynchronous domains. Mixed

timing relay stations were also introduced for more efficient treatment of long interconnects. Source-

synchronous communication, based on a self-timed single-stage FIFO with a single stage for

mesochronous clock domains was presented in [28] and expanded to multi-synchronous,

plesiochronous and asynchronous cases in [29]. The extensions are more complex relative to the

mesochronous case, requiring additional special treatment at the transmitter and receiver sides.

2.3. Stoppable clocks

Data synchronization can be also performed by controlling the capturing clock. Stoppable local

clocks technique was proposed for GALS systems in [15]- [20] [30]- [32]. The technique incorporates a

local ring-oscillator clock generator in each synchronous “island” with a set of MUTEXes [33] that

stop the clock temporarily when new input data arrive. Handshake clocks [13] can be employed,

stopping the capturing clock based on inputs from other domains. A stoppable clock technique suitable

for linear pipelines was presented in [21]. In order to achieve performance enhancement stoppable

clock techniques are sometimes accompanied by FIFOs [15] [30].

2.4. Categorizing synchronizer

Based on the works listed above, we categorize the synchronization approaches into a number of

simple cases (Figure 11). When the transmitter and receiver belong to the same clock domain and are

placed close to each other, no synchronization is required (a). A FIFO can be inserted for additional

buffering (b). Fast synchronizers should be employed when transferring data between different clock

domains, to enable high throughput and low latency and to reach as much as possible the performance

of intra-clock domain transfers as in (a). A two-clock FIFO (c) may achieve high data rates, but it

incurs higher latency. Stoppable-clock synchronizers (d) communicate with local clock generators to

minimize the latency, and LDL synchronizers (also described by d) control the synchronous interfaces

by introducing dynamic local clock delays. For long-range interconnect, wire delays degrade

significantly the data cycle regardless of the synchronization circuits speed. In order to improve the

throughout, pipelining can be employed along the link (e). The pipeline can be either synchronous

(with TX or RX clocks) or asynchronous.

 8

To facilitate modularity and ease of integration, the transmitter and receiver should not be aware of

the synchronizer and should provide standard interfaces, not only in (a)—(c) but also in (d)—(e) of

Figure 11.

Figure 11: Fast synchronization: (a) single clock domain transfer, (b) buffered single clock

domain transfer, (c) two-clock FIFO synchronizer, (d) stoppable clock and LDL synchronizers,

(e) synchronization over long interconnect

3. Zero latency synchronizer

LDL synchronizer can achieve zero latency. The section starts with definitions, presents LDL

concepts, and describes LDL input and output

3.1. Definitions

The latency of a synchronizer is defined as the time from the writing a data word into the output

register of the sender (TX) to writing the same data into the first register of the receiver (RX). The data

cycle is the time between two successive writings of the first register of the receiver. Throughput (in

data words) is the inverse of the data cycle. The data cycle and throughput of intra-clock domain

transfer are the clock cycle and the clock frequency, respectively, and we wish to attain the same goal

in fast synchronizers whenever possible. Synchronizers that achieve that add no extra penalty due to

synchronization to the basic latency of intra-clock domain transfers, and are hence called zero latency

synchronizers. Figure 12 shows a timing example of a zero latency synchronizer: the TX data is

sampled on the first RX clock following the transfer.

Figure 12: Zero latency synchronization

Interconnect delay affects both latency and throughput of the synchronizer. The latency is extended

by the delay, while the data cycle is extended by four and two times the interconnect delay in four- and

two-phase synchronizers, respectively. Pipelining the communication link reduces this data cycle

penalty at the expense of additional latency.

 9

3.2. Locally-delayed latching

Locally delay latching [22] does not requires stopping the clock of locally synchronous islands.

LDL is unaffected by any dynamic scaling of the clock cycle [1]- [3]. An asynchronous port (Figure 13)

controls both the input latch and Y1, the clock input to the first sampling register. The local clock Y is

uninterrupted. The port issues a valid indication for each new data word and prevents write-after-read

hazards.

CLOCK

LEAVES

LATCHINPUT DATA REG2

ACK

CL

REQ

CONTROL

YY1L

Y

Port

Locally

Synchronous
Island

DL

Valid

REG1

Figure 13: LDL input port connected to a synchronous island

Instead of stopping the clock Y, Y1+ is delayed when a conflict is imminent. Y1– is unaffected:

only the high-phase (HP) is shortened. A port request is accepted only during the low-phase of Y,

latching the incoming data (L+) and delaying Y1+ when needed. The conflicts between Y+ and REQ+

are resolved by a MUTEX inside the control. The time budgets of LDL synchronization are shown in

Figure 14. In case of conflict (REQ+ and Y+), certain time is preserved for metastability resolution

(M/S). Once metastability is resolved, the controller latches the incoming data (taking DCTRL time). All

this must complete at least HP time before Y–, so that the clock Y1 can be pulsed for at least HP time

(the minimal pulse width required by the technology, usually 2-3 gate delays). Thus, the minimal high

phase of the Y clock is bounded by M/S+DCTRL+HP. In case of a symmetric clock, this defines the

minimal half clock cycle. Note that M/S and HP are system requirements, while DCTRL depends on the

implementation of the controller.

Figure 14: LDL time budgets

The metastability resolution time requirement is derived from global SoC MTBF requirement.

Assuming SoC MTBF requirement of 100 years and 100 synchronizers in the SoC, the desired MTBF

of a single synchronizer should be 10,000 years [34]. This requirement can be achieved if the M/S

period in Figure 14 is at least 43τ [22], where τ is the metastability resolution time constant and is

assumed to be about one FO4 gate delay [35] [33].

For T=100τ, this implies that almost one half of a symmetric clock cycle should be allowed for

resolution. For slower SoCs, e.g. where the fastest clock cycle is 160τ, a quarter clock cycle suffices to

achieve this MTBF. LDL can support faster clocks than T=100τ by extending the total time budget

(changing the duty cycle by enlarging the relative portion of the high phase) using low complexity

minimal phase generation circuit [22]. For more aggressive designs (such as high-speed processors or

high speed ASIC modules) where T<50τ, a different approach based on multi-cycle resolution time or

on multi-synchronous clocking is required.

 10

The said three time intervals and interconnect delay between TX and RX are the main parameters

influencing LDL synchronization performance in terms of latency and throughput. In addition, standard

interfaces are required at the transmitter and the receiver in order to support seamless integration into

standard HDL design. In the following, a FIFO-like interface is employed.

3.3. LDL input port

Figure 15 shows the LDL input port. An asynchronous controller provides for handshake with the

external interface and for control of the MUTEX. In order to assure fastest operation, the external

interface of the controller should be decoupled as much as possible from its internal interface. The

ACK should be generated as soon as the data is latched inside REG, especially in the case of long

range interconnect between TX and RX.

When the controller has data, it raises output ASK, which eventually leads LATCHED+ that

captures the new data into REG. At that time, Y1 is kept low. We now compare the four- and two-

phase versions of the asynchronous controller.

Figure 15: LDL input port

A. Four-phase input port

The STG specification of the asynchronous controller four-phase is shown in Figure 16a. The

implementation of Figure 16b is simpler and faster than in [22]. The operation is exemplified in Figure

16c. DCTRL comprises the latency LATCHED+ ASK- ASK'- (see Figure 15). Note that DCTRL also

depends on the load presented by REG, which depends on the data width.

The main drawback of this fast controller is the external interconnect delay penalty paid four times

for each data transfer. When long-range interconnect is considered, this penalty is much higher than the

internal delay of the controller.

REQ+

ACK+

REQ-

ACK-

ASK+

Latched+

ASK-

Latched-

REQ+

ACK+

REQ-

ACK-

ASK+

Latched+

ASK-

Latched-

Figure 16: Four-phase input-port asynchronous controller

 11

B. Two-phase input port

The two-phase protocol reduces the penalty of external interconnect delay by one half relative to the

four-phase protocol. The two-phase controller STG, its circuit implementation and example waveforms

are shown in Figure 17. This simple circuit employs only standard library cells, and it converts the two-

phase protocol of REQ/ACK into the four-phase protocol of ASK/LATCHED.

REQ

ASK

LATCHED

ACK

ASK

LATCHED

REQ
R

S

T
t

s

TACK

(a)

(c)

(b)

Figure 17: Two-phase input-port asynchronous controller

3.4. Output port

The output port is shown in Figure 18, in addition to special interface circuitry within the

synchronous island. The output port interfaces the synchronous island by two signals, similarly to a

standard FIFO handshake: VALID and FULL. Upon FULL, additional data are stalled. In addition, the

output port generates the possibly delayed clock Y1.

DATAS-DATA

REGV

REGD

Output

Async.

Ctrl

MUTEX

ROUT

AKIN

CLOCK

LEAVES

Output Port

Locally

Synhronous
Island

E

REGF
FULL

VALID

TA1

E

VALIDIN AR

TA2

FULL

C

Figure 18: LDL output port

The output port must synchronize FULL, as specified in Figure 19: the assertion of VALID on Y1+

sets FULL, blocking the transmission of the next word. FULL is de-asserted following the toggle of

AKIN and only during the low-phase of the clock Y (also Y1), thus preventing contention at the

sampling register REGF.

 12

FULL+

Y1+Y1-

0

1

FULL-

VALID+VALID-

0

1

AKIN

Figure 19: FULL signal generation

The overall transmitter operation is demonstrated in Figure 20. For each new data, VALID is

asserted, leading to raising FULL and self-reseting VALID. If the targeted input port acknowledges

(toggling AKIN) within a single TX clock cycle (de-asserting FULL), new data can be sent on the next

clock cycle (case #1 in Figure 20). Thus, data can be transferred on each clock cycle of TX. When

FULL is high during the rising edge of TX clock, the data is not changed (output flip-flops are

disabled, case #2 in Figure 20). In the intermediate situation, when incoming acknowledge contends

with clock Y, there are two possible cases. In the first case clock Y wins over the acknowledge signal

ASK and therefore FULL is de-asserted only on the next falling edge of Y (one clock penalty in

sending data, case #3 in Figure 20). In the second case, the acknowledge signal ASK wins over clock

Y. Then, FULL is de-asserted and later on clock Y1 is unblocked, resulting in shortened Y1 cycle (case

#4 in Figure 20). Note that in both #3 and #4 cases we have to retain the next data over the normal

clock edge, which is obtained by connecting DATA and VALID registers to clock Y1. In the following

we discuss implementation issues of the output port and its interface.

Figure 20: LDL output port operation

A. Timing assumptions

The LDL output port of Figure 18 requires two timing assumptions as follows.

TA1: Whereas both E+ (the enable of REGD, REGV) and Y1+ emanate from FULL−, the former

must precede the latter (Eq. (1)). This requirement is easily met in the circuit (TA1=0 in Figure 18).

 1: () (1) SUTA Delay FULL E Delay FULL ASK Y T−→ + < −→ −→ + − (1)

Figure 21: Timing assumption #1

TA2: Hold time should be satisfied for registers REGD, REGV. Clock Y1 is phase shifted relative

to Y by the MUTEX metastability resolution time in cases of contention between Y and ASK (case #3

in Figure 20). Note that the skew incurred by non-conflict MUTEX delay is eliminated by balancing Y

and Y1 clock trees. In the case of contention, the skew between Y and Y1 can be as large as

TMUTEX+DCTRL. Thus:

 2 : H MUTEX CTRLTA T T D> + (2)

The value of TMUTEX+DCTRL is very high and therefore hard to meet by simple delay line. Below we

present a possible implementations of the interface that supports the requirement of (2).

 13

B. Four-phase output port

The four-phase controller specification is shown in Figure 22a. The straightforward implementation

by Petrify [36] leads to a relatively complex and slow circuit (Figure 22b), which operation is shown in

Figure 22c. Along with the internal latency overhead, the main drawback of this controller is the

penalty of external interconnect delay paid four times per each data transfer.

c
s
c
0

RI+

ASK+

RI-

ASK-

RO+

AO+

RO-

AO-

Figure 22: Four-phase output-port asynchronous controller

C. Two-phase output port

The STG of the asynchronous controller of the output port, its circuit and example waveforms are

shown in Figure 23. The circuit converts the four-phase RI/ASK protocol to the two-phase RO/AO.

The controller delay DCTRL consists of the delay of the C-element (R+ RI− in Figure 18) and the

internal controller delay RI− ASK− (a single gate delay). The critical delay of the output port is very

similar to that of the input port.

RI+

ASK+

RI-

ASK-

RO+

AO+

RO-

AO-

Figure 23: Two-phase output-port asynchronous controller

D. Synchronous interface to the output port

The zero latency LDL synchronizer supports throughput of one DPC (data item per cycle). To

enable that, the synchronous interface must be able to supply data words at the highest rate, while

satisfying the timing assumptions above. In this section we show an implementation example that can

 14

be used either as an additional stage of the synchronous module or can be integrated into a special,

synchronous FIFO that is connected to the LDL output port.

SDATA (Figure 18) may carry new data only if FULL was low at the previous clock cycle. When

FULL is set, REGD contains a data item, a second data item is provided on SDATA but cannot be

stored into REGD, and the synchronous pipeline behind may be ready to overwrite SDATA on the next

rising edge of clock Y. To avoid loss of the word currently on SDATA, an auxiliary registers [37]

RAUX, RAUXV are added (Figure 24). The hold requirement (2) is satisfied by the negative edge

triggered PRE_REGD and PRE_REGV registers, which stabilize the inputs of REGD, REGV during

next Y1+, even when Y1 is skewed relative to Y and the data on SDATA has changed. Note that

SDATA and VALIDIN must be valid within half a cycle, which is easily met.

DATAsdata_int

REGV

REGD

ROUT

AKIN

CLOCK

LEAVES

LDL
OP

Locally
Synhronous
Island

E

REGF
FULL

VALID

ERAUX 0

1

E

PRE
REGV

PRE

REGD

data

Y1

RAUX

V

1

0

E
AR

Y1

Y1

Y1 Y1

Y1

Figure 24: Synchronous output interface – detailed scheme

Another approach to fulfill the hold requirement (2) is shown in Figure 25. In this circuit, after each

clock Y rise, SDATA_INT is switched to the value that is stored inside RAUX registers, holding the

old value on the SDATA bus until FULL_INT indication is updated during the corresponding Y1 rise.

In case FULL_INT equals to logic high (FULL signal was sampled) the SDATA bus stays connected

to the RAUX register, preserving the non-sent data word at the REGD input. In the other case, when

FULL_INT equals to logic zero (the data that was previously on SDATA_INT bus was sampled into

REGD), the latch L is reset and SDATA_INT is connected to SDATA bus, preparing a new data value

at the input of REGD. The pulse generators outputs used in Figure 25 are slightly delayed relative to

each other in order to prevent possible concurrent rise.

 15

DATASDATA_INT

REGV

REGD

ROUT

AKIN

CLOCK
LEAVES

LDL

OP

Locally
Synhronous
Island

E

REGF

Y1

FULL

VALID

Y1

Y1

Y1

ERAUX 0

1

E

Latch

R

S*

RAUX

V

1

0

E

TA2

TA2

Pulse on each Y rise,

sets Latch to high (keep

pushing old data)

Pulse on each Y’ rise when new

data should be set
NOT empty – prv data was sent out

~TPD of FF

Delay Line

AR

Figure 25: Output port interface. Small hold requirement on the DATA and VALID wires (of a

few gate delays)

4. Performance results and analysis

In this section we compare the performance of the zero latency LDL synchronizer with the fast two-

phase two-flop synchronizer of Sect. 2 and with standard two-clock FIFO synchronizer. We use a

standard FIFO from Synopsys DesignWare library [38], setting internal synchronizer depths to two. A

FIFO depth of 10 and bursts of 1,000 words were used in the simulation.

4.1. Latency

Figure 26(a) shows upper and lower bounds of the LDL synchronizer latency for back-to-back

connection (no interconnect delay). The latency is lower than half a cycle when RX clock is faster than

TX, clearly indicating zero latency. When RX clock is slower than TX (higher than 1 on the horizontal

axis), the latency grows with the RX clock cycle. In (b), the upper and lower bounds are shown for

different interconnect delays DI. Note that the lower bound is always limited by the interconnect delay.

Note that mesochronous clocks result in increased latency difference between best and worst cases, as

well as other special values of the ratio of cycle times (see Sect. 4.3) .

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 0.5 1 1.5 2 2.5 3 3.5

RX cycle / TX cycle

F
o

rw
a

rd
 L

a
te

n
c

y
 [

T
X

 C
lo

c
k

 C
y

c
le

]

DI=0.5 TxClk

DI=1.0 TxClk

DI=2.0 TxClk

DI=3.0 TxClk

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 0.5 1 1.5 2 2.5 3 3.5

RX cycle / TX cycle

F
o

rw
a

rd
 L

a
te

n
c

y
 [

T
X

 C
lo

c
k

 C
y

c
le

]

(a) (b)

Figure 26: LDL synchronization latency bounds

Figure 27 shows that the worst case latency of the FIFO is the longest, and the LDL synchronizer

incurs the least latency. The two-flop synchronizer latency lies in-between.

 16

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0 0.5 1 1.5 2 2.5 3 3.5

RX Clock / TX Clock

F
o

ra
w

a
rd

 L
a
te

n
c
y
 [

T
X

 C
lo

c
k
 C

y
c
le

]

FIFO

2-Flop

LDL

Figure 27: Latency of LDL, 2-flop and 2-Clock FIFO synchronizers

The LDL synchronizer outperforms the two-flop synchronizers even when the interconnect delays

are considered (Figure 28). The simulations show latency reduction down to a factor of three. Note that

the FIFO is not included in this comparison since a standard FIFO is not suitable for operation in the

presence of long interconnect delays.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0 0.5 1 1.5 2 2.5 3 3.5

RX Clock / TX Clock

F
o

rw
a
rd

 L
a

te
n

c
y
 [

T
X

 C
lo

c
k
 C

y
c
le

]

2-Flop

LDL

Figure 28: Latency of LDL and 2-Flop synchronizers for 1.0·TX-CLK interconnect delay

4.2. Data Rate

Bounds of data rate of the LDL synchronizer are shown in Figure 29 for different interconnect

delays. Note that twice the interconnect delay, namely the flight time of REQ and ACK, is the

theoretical lower bound of the data cycle. To the right of ‘1’, the upper bound is hyperbolic as the data

rate is bounded by the inverse of RX cycle. The level lines demonstrate the effect of DI. Only in certain

cases the upper and lower bounds differ, similarly to Figure 26.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4

RX Clock / TX Clock

W
o

rd
s

 p
e

r
T

X
 c

lo
c

k
 c

y
c

le

DI=0.0 TX-CLK

DI=0.4 TX-CLK

DI=0.5 TX-CLK

Dl=1.0 TX-CLK

DI=2.0 TX-CLK

Figure 29: LDL synchronization throughput bounds

 17

LDL and FIFO throughputs are similar as evident from the overlapping charts in Figure 30 and are

about twice faster than the fast two-flop two-phase synchronizer (as expected, see Table 2). As the

interconnect delay grows, the synchronizer overhead becomes relatively smaller, and the synchronizers

converge to relatively similar performance, but LDL always outperforms the two-flop synchronizer.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2 2.5 3 3.5

RX Clock / TX Clock

DI>0

W
o

rd
s
 p

e
r

T
X

 c
lo

c
k
 c

y
c
le

LDL, DI=0.5

2-flop, DI=0.5

LDL, DI=1.0

2-flop, DI=1.0

LDL, DI=2.0

2-flop, DI=2.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.5 1 1.5 2 2.5 3 3.5

RX Clock / TX Clock

DI=0

W
o

rd
s

 p
e

r
T

X
 c

lo
c

k
 c

y
c

le

LDL

FIFO

2-Flop

Figure 30: Throughput comparison for LDL, 2-Flop and FIFO synchronizers

4.3. Data transfer and clock relation taxonomy

Certain clock relationships may bring synchronizers to work in best or worst case regions of their

performance (see the upper and lower bounds in Figure 26 and Figure 29). In this section we categorize

the relationship and discuss the different performance cases.

We distinguish two types of data transfer that lead to different synchronizer performance: single

data word transfer, and the transfer of data burst (Figure 31). In case of single word transfer, the best

case (BC) latency is DI, the latency of interconnect. In the worst case (WC), the data word just misses

the rising edge of RX clock and is detained for an additional RX clock cycle, TRX. This is also

exemplified in Figure 32.

 ,

,

I RX

SINGLE WORD

I

D T WC
L

D BC

+⎧
= ⎨
⎩

 (3)

On burst transfer, the synchronization of one word may affect the synchronization of the next one.

Clock relations also affect the performance. We distinguish informally two cases, “short” and “long”

locks. Long locked clocks conflict rarely, either because they have similar frequencies or one is

significantly slower than the other. As a result, the relative phase of the two clocks drifts (namely

changes slowly, or changes very little from one cycle to the next). Short locked clocks, on the other

hand, demonstrate a short period between successive clock conflicts.

 When there is a short periodic relation between the clocks ("short-lock"), then a certain number of

same relation cases appear periodically. In this case the data transfer can be held stable in a specific

case. In some cases, due to delays, the short-lock cannot be locked at the WC/BC cases and moves to

an average point between them. In Figure 33 an example of stable and unstable cases is shown. Two-

phase REQ/ACK protocol is assumed. Data is latched at the receiver side during low phase of RX-CLK

upon a pending request REQ. ACK is generated asynchronously for each new data latching. Stable case

(Figure 33a) is shown for back-to-back connection, DI=0, and clock ratio of two. In this case the

latency is 2⋅TTX and it is equal to the WC latency of single word synchronization (Eq. (3)). When an

interconnect delay is incurred (DI=0.5⋅TTX in Figure 33b), the WC latency for a single word

synchronization is 2.5⋅TTX (Eq. (3)). However, the WC latency is paid only for the first cycle of the

burst, while for the subsequent cycles, thanks to the forward and backward interconnect delays, the

latency converges to another value of 1.5⋅TTX. Note that first cycle acknowledge ACK is blocked since

it arrives at TX after TX-CLK rise and therefore it is served only on the next TX-CLK cycle.

 18

Figure 31: Synchronization Best- and Worst-cases for different data patterns and clock relations

Figure 32: Best and Worst case request arrivals

TX-CLK

REQ

RX-CLK

DI

ACK

L=2.5 x TTX

Blocked

X

L=1.5 x TTX L=1.5 x TTX

RX-CLK

TX-CLK

REQ L=2 x TTX

ACK

L=2 x TTX

(a)

L=2 x TTX

(b)

Figure 33: (a) Stable and (b) unstable worst cases for burst synchronization. REQ and ACK are

shown for RX side

5. Conclusions

Aggressive novel synchronizers that employ four- and two-phase protocols have been presented.

The synchronizers are based on a two-flop and a LDL families. They facilitate clock domain crossings

both when the two domains are physically adjacent and when they are separated by long interconnect.

The two-flop synchronizer is shown to introduce only minimal latency, and to enable short data

cycles of 2-4 clock cycles, compared to 6-12 clock cycles of a simple two-flop synchronizer. The LDL

 19

synchronizer is termed ‘zero latency’ because it does not add any latency penalty when crossing clock

domains, and it enables sending data every clock cycle. The LDL zero latency synchronizer consists of

asynchronous input and output ports, and certain modifications of the synchronous islands of a GALS

system. The LDL synchronizer outperforms standard synchronizers (FIFO and 2-flop) in terms of

latency and throughput. The presented circuits have standard interfaces and require standard logic cells,

thus enabling straightforward integration into standard designs.

References

[1] G. Semeraro, D.H. Albonesi, S.G. Dropsho, G. Magklis, S. Dwarkadas, M.L. Scott, "Dynamic frequency

and voltage control for a multiple clock domain microarchitecture," Proc. of IEEE/ACM International

Symposium on Microarchitecture, pp. 356-367, 2002.

[2] L. S. Nielsen, C. Niessen, J. Sparsø, and C. H. van Berkel. Low-power operation using self-timed and

adaptive scaling of the supply voltage. IEEE Transactions on VLSI Systems, 2(4):391-397, December 1994.

[3] W.R. Daasch, C.H. Lim, G. Cai, "Design of VLSI CMOS Circuits Under Thermal Constraint," IEEE

Transactions on VLSI Systems, 49(8), 589-593, Aug. 2002.

[4] D.M. Chapiro, "Globally-Asynchronous Locally-Synchronous Systems," PhD Dissertation, Stanford

University, 1984.

[5] D. Bormann, P. Cheung, "Asynchronous Wrapper for Heterogeneous Systems," Proc. of ICCD, pp.:307 -

314, 1997.

[6] L. Scheffer, "An Overview of On-chip Interconnect Variation," Proc. SLIP, pp. 27-28, 2006

[7] R. O. Topaloglu, A. B. Kahng, "Generation of Design Guarantees for Interconnect Matching," Proc. SLIP,

pp. 29-34, 2006.

[8] J.Bainbridge and S.Furber, "Chain: a Delay-Insensitive Chip Area Interconnect," IEEE Micro, 22(5):16-23,

2002.

[9] E. Beigne, F.Clermidy, P.Vivet, A.Clouard, M. Renaudin, "An Asynchronous NOC Architecture Providing

Low Latency Service and Multi-Level Design Framework," Proc. of ASYNC, 54-63, 2005.

[10] T Felicijan, S.B. Furber, "An Asynchronous On-Chip Network Router with Quality-of-Service (QoS)

Support," Proc. of IEEE Int. SOC Conf., 274-277, 2004.

[11] T. Bjerregaard, J. Sparso, "A Scheduling discipline for latency and Bandwidth Guarantees in Asynchronous

Network-on-chip", Proc. ASYNC, 34-43, 2005.

[12] R. Dobkin, V. Vishnyakov, E. Friedman and R. Ginosar, "An Asynchronous Router for Multiple Service

Levels Networks on Chip," Proc. ASYNC, 44-53, 2005.

[13] International Technology Roadmap for Semiconductors (ITRS), 2005, www.itrs.net

[14] J. Kessels, A. Peeters, P. Wielage, and S.J. Kim, "Clock Synchronization through Handshake Signaling,"

Proc. of ASYNC’02, pp. 59-68, 2002.

[15] S. Moore, G. Taylor, R. Mullins, P. Robinson, "Point to Point GALS Interconnect," Proc. of ASYNC'02, pp.

69-75, 2002.

[16] S. Oetiker, F.K. Gürkaynak, T. Villiger, H. Kaeslin, N. Felber, W. Fichtner, "Design Flow for a 3-Million

Transistor GALS Test Chip," ACiD workshop, 2003.

[17] T. Villiger, H. Kaeslin, F.K. Gürkaynak, S. Oetiker, Wolfgang Fichtner, "Self-Timed Ring for Globally-

Asynchronous Locally-Synchronous Systems," Proc. of ASYNC’03, pp. 141-150, 2003.

[18] J. Muttersbach, T. Villiger, W. Fichtner, "Practical Design of Globally-Asynchronous Locally-Synchronous

Systems," Proc. of ASYNC’00, pp. 52-61, 2000.

[19] K. Y. Yun, R.P. Donohue, "Pausible clocking: a first step toward heterogeneous systems," Proc. of

Computer Design: VLSI in Computers and Processors, ICCD'96, pp. 118–123, 1996.

[20] K. Y. Yun, R.P. Donohue, "Pausible clocking-based heterogeneous systems," IEEE Transactions on VLSI

Systems, 7(4), pp. 482-488, 1999.

[21] A. E. Sjogren and C. J. Myers, "Interfacing Synchronous and Asynchronous Modules within a High-Speed

Pipeline," IEEE Transactions on VLSI Systems, 8(5), pp. 573–583, 2000.

[22] R. Dobkin, R. Ginosar and C. P. Sotiriou, "High Rate Data Synchronization in GALS SoCs," TVLSI,

14(10):1063-1074, 2006.

[23] R. Ginosar, "Fourteen Ways to Fool Your Synchronizer," ASYNC, 89-96, 2003.

[24] W.J. Dally, J.W. Poulton, Digital Systems Engineering, Cambridge university press, Cambridge, UK, 1998.

[25] D.J. Kinniment, A. Yakovlev, "Low latency synchronization through speculation," PATMOS, 278-288,

2004.

[26] S.J. Kim, J.G. Lee, K. Kim, "A parallel flop synchronizer for bridging asynchronous clock domains," AP-

ASIC, 184-187, 2004.

[27] T. Chelcea, S. M. Nowick, "Robust interfaces for mixed-timing systems," IEEE Transactions on VLSI,

12(8), 857-873, 2004.

[28] A. Chakraborty, M. R. Greenstreet, "Efficient self-timed interfaces for crossing clock domains," Proc. of

ASYNC 2003, pp. 78-88, 2003.

[29] A. Chakraborty, M. R. Greenstreet, "A minimal source-synchronous interface," Proc. ASIC/SOC

Conference, pp.443 – 447, 2002.

[30] S. Chakraborty, Joycee Mekie, and D.K. Sharma, "Reasoning about Synchronization Techniques in GALS

 20

Systems: A Unified Approach," Proc. Workshop on Formal Methods in GALS Architectures (FMGALS),

2003.

[31] J. Mekie, S. Chakraborty, D.K. Sharma, "Evaluation of pausible clocking for interfacing high speed IP cores

in GALS framework," Proc. of VLSI Design, pp. 559-564, 2004.

[32] R. Mullins, S. Moore, "Demystifying Data-Driven and Pausible Clocking Schemes," Proc. of ASYNC'07, pp.

175-185, 2007.

[33] C.L. Seitz, “System timing,” in C.A. Mead and L.A. Conway, eds., Introduction to VLSI Systems, ch. 7,

Addison-Wesley, 1980.

[34] R. Ginosar, "MTBF of multi-synchronizer SoC,"

http://www.ee.technion.ac.il/~ran/papers/MTBFmultiSyncSoc.pdf.

[35] C. Dike and E. Burton, "Miller and Noise Effects in a Synchronizing Flip-flop," IEEE Journal of Solid-State

Circuits, 34(6), pp. 849-855, 1999.

[36] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev, "Petrify: a tool for

manipulating concurrent specifications and synthesis of asynchronous controllers," IEICE Transactions on

Information and Systems, Vol. E80- D, No. 3, 315– 325, 1997.

[37] L. Carloni, A. Sangiovanni-Vincentelli, "Coping with latency in SoC design," IEEE Micro, special issue on

SoC, 22(5):24- 35, 2002.

[38] Synopsys Design Ware FIFO,

www.synopsys.com/products/designware/docs/doc/dwf/datasheets/dw_fifo_s2_sf.pdf.

[39] R. Dobkin, R. Ginosar, C. Sotiriou, "Data Synchronization Issues in GALS SoCs," ASYNC, 170-179, 2004.

[40] Y. Semiat, R.Ginosar, "Timing Measurements of Synchronization Circuits," ASYNC, 68-77, 2003.

[41] R. Kol, R. Ginosar, "Adaptive Synchronization", ICCD, 188-189, 1998.

[42] T. H.-Y. Meng, Synchronization Design for Digital Systems(Eds.): Kluwer Academic Publishers, 1991.

[43] L.R. Dennison, W.J. Dally, D. Xanthopoulos, "Low-latency plesiochronous data retiming," Advanced

Research in VLSI, pp. 304–315, 1995.

[44] U. Frank, T. Kapschitz and R. Ginosar, “A predictive synchronizer for periodic clock domains,” J. Formal

Methods in System Design, 28(2):171-186, 2006.

