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Generalized SURE for Exponential Families:

Applications to Regularization

Yonina C. Eldar

Abstract

Stein’s unbiased risk estimate (SURE) was proposed by Stein for the independent, identically distributed (iid)

Gaussian model in order to derive estimates that dominate least-squares (LS). In recent years, the SURE criterion

has been employed in a variety of denoising problems for choosing regularization parameters that minimize an

estimate of the mean-squared error (MSE). However, its use has been limited to the iid case which precludes many

important applications. In this paper we begin by deriving a SURE counterpart for general, not necessarily iid

distributions from the exponential family. This enables extending the SURE design technique to a much broader

class of problems. Based on this generalization we suggest a new method for choosing regularization parameters

in penalized LS estimators. We then demonstrate its superior performance over the conventional generalized cross

validation approach in the context of image deblurring. The SURE technique can also be used to design estimates

without predefining their structure. However, allowing for too many free parameters impairs the performance of the

resulting estimates. To address this inherent tradeoff we propose a regularized SURE objective. Based on this design

criterion, we derive a wavelet denoising strategy that is similar in sprit to the standard soft-threshold approach but

can lead to improved MSE performance.
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I. Introduction

Estimation in multivariate problems is a fundamental topic in statistical signal processing. One of the most

common recovery strategies for deterministic unknown parameters is the well-known maximum likelihood

(ML) method. The ML estimator enjoys several appealing properties, including asymptotic efficiency under

suitable regularity conditions. Nonetheless, its mean-squared error (MSE) can be improved upon in the

non-asymptotic regime in many different settings.

In their seminal work, Stein and James showed that for the independent, identically-distributed (iid) linear

Gaussian model, it is possible to construct a nonlinear estimator with lower MSE than that of ML for all

values of the unknowns [1], [2]. Various modifications of the James-Stein method have since been developed

that are applicable to the non-iid Gaussian case as well [3], [4], [5], [6], [7].

The James-Stein approach is based on the Stein unbiased risk estimate (SURE) [8], [9], which is an unbiased

estimate of the MSE. Since the MSE in general depends on the true unknown parameter values it cannot

be used as a design objective. However, using the SURE principle leads to a relatively simple technique for

determining methods that have lower MSE than ML. The idea is to choose a class of estimates, and then

select the member from the class that minimizes the SURE estimate of the MSE. This strategy has been

applied to a variety of different denoising techniques [10], [11], [12], [13]. Typically, in these problems, implicit

prior information on the signal to be recovered is incorporated into the chosen structure of the estimate. For

example, in wavelet denoising the signal is assumed to be sparse in the wavelet domain which motives the use

of threhoslding. Only the value of the threshold is determined by the SURE principle.

The SURE method is appealing as it allows to directly approximate the MSE of an estimate from the

data, without requiring knowledge of the true parameter values. However, it has two main drawbacks which

severely limit its use in practical applications. The first restriction is that it was originally limited to the

iid Gaussian case. Several extensions have been developed for different independent models. In particular, a

SURE principle for iid, infinitely divisible random variables with finite variance is derived in [14]. Extensions

to independent variables from a continuous exponential family are treated in [15], [16], while the discrete

exponential case is discussed in [17]. All of these generalizations are confined to the independent case which

precludes a variety of important applications such as image deblurring.

The second drawback of using SURE as a design criterion is that in order to get meaningful estimators
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the basic structure of the estimate must be determined in advance. If no parametrization is assumed, then

there are too many free variables to be optimized, and the SURE method will typically not lead to good MSE

behavior.

In this paper we extend the basic SURE principle in two directions, in order to circumvent the two funda-

mental drawbacks outlined above. First, in Section III, we generalize SURE to multivariate, possibly non-iid

exponential families. In particular, we develop an unbiased estimate of the MSE for a general Gaussian vec-

tor model. Exponential probability density functions (pdfs) play an important role in statistics due to the

Pitman-Koopman-Darmois theorem [18], [19], [20], which states that among distributions whose domain does

not vary with the parameter being estimated, only in exponential families is there a sufficient statistic with

bounded dimension as the sample size increases [21]. Furthermore, efficient estimators exist only when the

underlying model is exponential. Many known distributions are of the exponential form, such as Gaussian,

gamma, chi-square, beta, Dirichlet, Bernoulli, binomial, multinomial, Poisson, and geometric distributions.

Our result has important practical value as it extends the applicability of the SURE technique to more general

estimation models, and in particular to scenarios in which the observations are dependent. This is the case,

for example, when using overcomplete wavelet transforms, and in image deblurring.

An immediate application of this extension is to the general linear Gaussian model. In this setup, we seek

to estimate a parameter vector θ from noisy, blurred measurements x = Hθ +w where w is a Gaussian noise

vector. One of the most popular recovery strategies in this context is the regularized least-squares method.

In this approach, the estimate is designed to minimize a regularized least-squares objective where a typical

choice of penalization is the ℓ2 norm. This technique is commonly referred to as Tikhonov regularization

[22]. An important aspect of the Tikhonov technique, which significantly impacts its performance, is selecting

the regularization parameter. A variety of different methods have been proposed for regularization selection

[23], [24], [25], [26], [27], [28]. One of the most popular techniques is generalized cross-validation (GCV) [29].

Here, we suggest an alternative strategy based on our extended SURE criterion. Specifically, we use SURE to

evaluate the MSE of the Tikhonov approach for any choice of regularization, and then select the value that

minimizes the SURE estimate. This allows SURE-based optimization of a broad class of deblurring methods.

Using several test images, we demonstrate that this strategy can lead to significant performance improvement

over the standard GCV criterion in the context of image deblurring.
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Finally, to circumvent the need for pre-defining a particular structure when applying SURE, in Section VI we

propose an alternative approach based on regularizing the SURE objective. Specifically, we suggest adding a

regularization term to the SURE expression and choosing an estimate that minimizes the regularized function.

In this way, we can control the properties of the estimate without having to aprioiri assume a specific structure.

We then illustrate this strategy in the context of wavelet denoising. Instead of assuming a threshold estimate

and choosing the threshold to minimize the SURE criterion, as in [10], we design an estimate that minimizes an

ℓ1 regularized SURE objective. The resulting denoising scheme has the form of a threshold with a particular

form of shrinkage, that is different than that obtained when using soft or hard thresholding. To evaluate our

method, we compare it with SureShrink of Donoho and Johnstone, by repeating the simulations reported in

their paper. As we show, the recovery results tend to be better using our technique. Moreover, our approach

is general as it is not tailored to a specific problem. We thus believe that using a regularized SURE principle

together with the generalized SURE developed here can extend the applicability of SURE-based estimators

to a broad class of problems.

The remaining of the paper is organized as follows. In Section II we introduce the basic concept of MSE

estimation. An extension of SURE to exponential families is developed in Section III. We then specialize the

results to the linear Gaussian model in Section IV. Applications to regularization selection are discussed in

Section V. The regularized SURE criterion, together with an application to wavelet denoising, are developed

in Section VI.

II. MSE Estimation

We denote vectors by boldface lowercase letters, e.g., x, and matrices by boldface uppercase letters e.g.,

A. The ith component of a vector y is written as yi, and (̂·) is an estimated vector. The identity matrix is

written as I, AT is the transpose of A, and A† denotes the pseudo-inverse.

We consider the class of problems in which our goal is to estimate a deterministic parameter vector θ

from observations x which are related through a pdf f(x;θ). We further assume that the pdf belongs to the

exponential family of distributions and can be expressed in the form

f(x; θ) = r(x) exp{θT φ(x) − g(θ)}, (1)



5

where r(x) and φ(x) are functions of the data only, and g(θ) depends on the unknown parameter θ.

As an example of an application where the model (1) can occur, consider the location problem of estimating

a parameter vector θ ∈ Rm from observations x ∈ Rn related through the linear model:

x = Hθ + w, (2)

where w is a zero-mean Gaussian random vector with covariance C ≻ 0. The pdf of x is then given by (1)

with

r(x) = 1√
(2π)n det(C)

exp{−(1/2)xTC−1x};

φ(x) = HTC−1x;

g(θ) = (1/2)θTHTC−1Hθ. (3)

Other examples of distributions in the exponential family include Poisson with unknown mean, exponential

with unknown mean, gamma, and Bernoulli or binomial with unknown success probabilities.

Given the model (1), a sufficient statistic for estimating θ is given by

u = φ(x). (4)

Therefore, any reasonable estimate of x will be a function of u. More specifically, from the Rao-Blackwell

theorem [30] it follows that if θ̂ is an estimate of θ which is not only a function only u, then the estimate

E{θ̂|u} has lesser or equal MSE than that of θ̂, for all θ. Therefore, in the sequel, we only consider methods

that depend on the data via u.

Let θ̂0 be a particular estimate of θ, and suppose we would like to improve its MSE, where the MSE of an

estimate θ̂ is defined by E{‖θ̂ − θ‖2}. Thus, our goal is to design a method with lower MSE for all values of

θ. To this end we may consider estimators of the form

θ̂ = θ̂0 + h(u), (5)

for some function h(u), and then choose h(u) to minimize the MSE. Denoting by ǫ(θ) the MSE of θ̂0, we can
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express the MSE of θ̂ as

E
{

‖θ̂ − θ‖2
}

=

= E
{

‖θ̂0 − θ + h(u)‖2
}

= ǫ(θ) + E
{

‖h(u)‖2
}

− 2E
{

hT (u)(θ − θ̂0)
}

. (6)

In order to minimize the MSE over h(u) we need to explicitly evaluate the expression

f(h,θ) = E
{

‖h(u)‖2
}

− 2E
{

hT (u)(θ − θ̂0)
}

. (7)

Evidently, the MSE will depend in general on θ, which is unknown, and therefore cannot be minimized.

Instead, we may seek an unbiased estimate of f(h,θ) and then choose h to minimize this estimate. Specifically,

suppose we construct a function g(h(u)) that depends only on u (and not on θ), such that

E {g(h(u))} = E
{

hT (u)θ
}

. (8)

Then

f̂(h) = ‖h(u)‖2 − 2(g(h(u)) − hT (u)θ̂0), (9)

is an unbiased estimate of f(h,θ), since clearly E{f̂(h)} = f(h, θ). A reasonable strategy therefore is to select

h(u) to minimize our assessment f̂(h) of the MSE. This approach was first proposed by Stein in [8], [9] for

the iid Gaussian model (2) with C = I and H = I.

To apply the design technique outlined above we need to construct an unbiased estimate g(h(u)) of

E{hT (u)θ}. In the next section we derive such a function for the general exponential model (1). In practice,

it is typically assumed that h(u) has a particular structure, so that it is parameterized by some vector α.

The value of α is then chosen to minimize the SURE estimate of the MSE. In Sections IV and V we apply

this technique to several examples and propose an alternative to the popular GCV method for Tikhonov

regularization. In Section VI, we suggest a regularized SURE strategy for determining h(u) without the need

for parametrization, and demonstrate its performance in the context of wavelet denoising.
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III. Extended SURE Principle

The following theorem provides an unbiased estimate of E
{

hT (u)θ
}

which depends only on u and not on

the unknown parameters θ.

Theorem 1: Let x denote a random vector with exponential pdf given by (1), and let u = φ(x) be a sufficient

statistic for estimating θ from x. Let h(u) be an arbitrary function of θ that is weakly differentiable in u and

such that E {|hi(u)|} is bounded where hi(u) is the ith component of h(u). Then

E
{

hT (u)θ
}

= −E

{

Tr

(

dh(u)

du

)}

− E

{

hT (u)
d ln q(u)

du

}

, (10)

where

q(u) =

∫

r(x)δ(u − φ(x))dx, (11)

and δ(x) is the Kronecker delta function.

From the theorem, it follows that

−Tr

(

dh(u)

du

)

− hT (u)
d ln q(u)

du
(12)

is an unbiased estimate of E{hT (u)θ}.

Note, that as we show in the proof of the theorem, the pdf fu(u) of u is given by

fu(u) = exp{θTu − g(θ)}q(u). (13)

Therefore, an alternative to computing q(u) using (11) is to evaluate the pdf of u and then use (13).

Proof: To prove the theorem we first determine the pdf of u. Since u = φ(x) we have that [30, p. 127]

fu(u) =

∫

f(x;θ)δ(u − φ(x))dx. (14)



8

Substituting (1) into (14),

fu(u) = exp{θTu − g(θ)}
∫

r(x)δ(u − φ(x))dx

= exp{θTu − g(θ)}q(u). (15)

Now,

E
{

hT (u)θ
}

=

=

∫

hT (u)θ exp{θTu − g(θ)}q(u)du

=
m

∑

i=1

∫

hi(u)θi exp{θTu − g(θ)}q(u)du. (16)

Noting that

θi exp{θTu − g(θ)} =
d exp{θTu − g(θ)}

dui

, (17)

we have

∫ ∞

−∞

hi(u)θi exp{θTu − g(θ)}q(u)dui =

=

∫ ∞

−∞

hi(u)q(u)
d exp{θTu − g(θ)}

dui

dui

= −
∫ ∞

−∞

dhi(u)q(u)

dui

exp{θTu − g(θ)}dui, (18)

where we used the fact that |hi(u)q(u) exp{θTu− g(θ)}| → 0 for |ui| → ∞ since E{hi(u)} is bounded. Now,

dhi(u)q(u)

dui

=
dhi(u)

dui

q(u) +
dq(u)

dui

hi(u). (19)
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Substituting (18) and (19) into (16),

E
{

hT (u)θ
}

=

= −
m

∑

i=1

∫

dhi(u)q(u)

dui

exp{θTu − g(θ)}du

=
m

∑

i=1

(

−E

{

dhi(u)

dui

}

− E

{

dq(u)

dui

hi(u)

q(u)

})

= −E

{

Tr

(

dh(u)

du

)}

− E

{

hT (u)
d ln q(u)

du

}

, (20)

which completes the proof of the theorem.

Based on Theorem 1 we can develop a generalized SURE principle for estimating an unknown parameter

vector θ in an exponential model. Specifically, let θ̂0 = θ̂ML be an ML estimate of θ based on the data x, let

ǫML(θ) be its MSE and let θ̂ = θ̂ML + h(u) be an arbitrary estimate of θ where h(u) satisfies the regularity

conditions of Theorem 1. Then, combining (6) and Theorem 1, an unbiased estimate of the MSE of θ̂ is given

by

S(h) = ǫML(θ) + ‖h(u)‖2

+2Tr

(

dh(u)

du

)

+ 2hT (u)

(

d ln q(u)

du
+ θ̂ML

)

. (21)

We may then design θ̂ by choosing h(u) to minimize S(h).

Another application of the SURE approach is to the problem of determining unknown regularization pa-

rameters which comprise a given estimation strategy. In the context of wavelet denoising, this method is used

in the popular SureShrink method [10]. Extending this technique, our general SURE objective (21) can be

used to select regularization parameters in more general models. We next discuss these ideas in the context

of linear Gaussian problems.

IV. Linear Gaussian Model

In this section we specialize our results to the linear Gaussian model (2) with H an n × m matrix with

n ≥ m.

To use Theorem 1 we need to compute the pdf q(u) of u. This can be done by defining a transformation

between u and x. Since u = HTC−1x, it must lie in the range R(HT ) of HT . If H has full column-rank,
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then the range is the entire space Rm. Given u ∈ R(HT ), the possible choices of x are

x = H(HTC−1H)†u + Cv, (22)

where v is an arbitrary vector in the null space N (HT ) of HT . It follows that given u ∈ R(HT ) there is a

one-to-one correspondence between the vector y = [uT vT ]T and x. Furthermore, this relationship is linear.

Thus we can write y = Ax for some invertible matrix A. Now,

q(u0) =

∫

r(x)δ(u0 − φ(x))dx

= |A−1|
∫ ∫

r(A−1y)δ(u0 − u)dudv (23)

where we used the change of variables y = Ax and the fact that y = [uT vT ]T . Since A−1y = x, we can

use x of (22) to write

r(A−1y) = K exp{−(1/2)uT (HTC−1H)†u}·

exp{−(1/2)vTC−1v}, (24)

where K is a constant and we used the fact that HTv = 0. Substituting (24) into (23),

q(u0) = K exp{−(1/2)uT

0 (HTC−1H)†u0}
∫

exp{−(1/2)vTC−1v}dv. (25)

Therefore,

d ln q(u)

du
= −(HTC−1H)†u. (26)

It then follows from Theorem 1 that

E
{

hT (u)(θ − θ̂ML)
}

= −E

{

Tr

(

dh(u)

du

)}

, (27)
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where we denoted

θ̂ML = (HTC−1H)†HTC−1x. (28)

Note, that θ̂ML is an ML estimate of θ for the model (2). If H has full column rank, then this is the unique

ML solution.

We summarize our results for the linear Gaussian model in the following proposition.

Proposition 1: Let x denote measurements of an unknown parameter vector θ in the linear Gaussian model

(2), where w is a zero-mean Gaussian random vector with covariance C ≻ 0. Let h(u) with u = HTC−1x be

an arbitrary function of θ that is weakly differentiable in u and such that E {|hi(u)|} is bounded. Then

E
{

hT (u)(θ − θ̂ML)
}

= −E

{

Tr

(

dh(u)

du

)}

, (29)

where θ̂ML is an ML estimate of θ and is given by (28). An unbiased estimate of the MSE of θ̂ = θ̂ML + h(u)

is

S(h) = ǫML(θ) + ‖h(u)‖2 + 2 Tr

(

dh(u)

du

)

. (30)

Note that in deriving (30) we used (21) and (26).

A special case of Proposition 1 is the iid Gaussian model in which H = I and C = σ2I. This example was

originally treated by Stein in [8], [9]. For this setup, he showed that

E
{

hT (x)(θ − x)
}

= −σ2
n

∑

i=1

E

{

dh(x)

dxi

}

, (31)

based on which he suggested the SURE estimate of the MSE:

nσ2 + ‖h(x)‖2 + 2σ2
n

∑

i=1

dh(x)

dxi

. (32)

It is easy to see that (31) and (32) are a special case of Proposition 1. Indeed, in the iid model we have that

u = (1/σ2)x, and θ̂ML = x. Consequently dh(u)/du = σ2dh(x)/dx and ǫML = nσ2.

A. Examples

To illustrate the use of the SURE principle, suppose that we consider estimators of the form θ̂ = αθ̂ML

where θ̂ML is given by (28), and we would like to select a good choice of α. To this end, we minimize the
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SURE unbiased estimate of the MSE given by Proposition 1 with h(u) = (α − 1)θ̂ML.

For this choice of h(u), minimizing S(h) is equivalent to minimizing

(1 − α)2‖θ̂ML‖2 + 2(α − 1)Tr
(

(HTC−1H)†
)

. (33)

The optimal choice of α is

α = 1 − Tr
(

(HTC−1H)†
)

‖θ̂ML‖2
, (34)

resulting in the estimate

θ̂ =

(

1 − Tr
(

(HTC−1H)†
)

‖θ̂ML‖2

)

θ̂ML. (35)

The estimate of (35) coincides with the balanced blind minimax method proposed in [7, Eq. (45)], which

was derived based on a minimax framework. Here we see that the same technique results from applying

our generalized SURE criterion. A striking feature of this estimate, proved in [7], is that when H∗C−1H is

invertible and its effective dimension is larger than 4, it dominates ML for all values of θ (see Theorem 3 in

[7]). This means that its MSE is always lower than that of the ML method, regardless of the true value of θ.

When H = I and C = σ2I, (35) reduces to

θ̂ =

(

1 − nσ2

‖x‖2

)

x, (36)

which coincides with Stein’s estimate [1]. This technique is known to dominate ML for n ≥ 3.

If in addition we require that α ≥ 0, then the estimate of (35) becomes

θ̂ =

[

1 − Tr
(

(HTC−1H)†
)

‖θ̂ML‖2

]

+

θ̂ML, (37)

where we used the notation

[x]+ =











x, x ≥ 0;

0, x ≤ 0.

(38)

The method of (37) is a positive-part version of (35). In the iid case, it reduces to the positive-part Stein’s

estimate [31], which is known to dominate the standard Stein approach (36).

Next, consider the case in which H = I and C = D with D = diag (σ2
1, . . . , σ

2
n) and suppose we seek a
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diagonal estimate of the form θ̂i = αixi. Since the ML solution in this case is θ̂ML = x, hi(u) = (αi − 1)xi,

and the unbiased estimate of (30) becomes

n
∑

i=1

σ2
i +

n
∑

i=1

(1 − αi)
2x2

i + 2
n

∑

i=1

σ2
i (αi − 1). (39)

Minimizing with respect to αi yields

αi = 1 − σ2
i

x2
i

. (40)

Restricting the coefficients αi to be non-negative leads to the estimate

θ̂i =

[

1 − σ2
i

x2
i

]

+

xi. (41)

In contrast to θ̂ of (35), which dominates the ML method, it can be proved that the estimate of (41) is

not dominating. Thus, we see that by allowing for too many free parameters, we impair the performance

of the SURE-based estimate. On the other hand, assuming strong structure, as in (35), severely restricts

the class of estimators and consequently limits the possible performance advantage which can be obtained.

In Section VI we suggest a regularized SURE strategy in order to overcome this inherent tradeoff between

over-parametrization and performance.

V. Application to Regularization Selection

A popular strategy for solving inverse problems of the form (2) is to use regularization techniques in

conjunction with a least-squares objective. Specifically, the estimate θ̂ is chosen to minimize a regularized

least-squares criterion:

(x − Hθ̂)C−1(x − Hθ̂) + λ‖Lθ̂‖ (42)

where the norm is arbitrary. Here L is some regularization operator such as the discretization of a first or

second order differential operator that accounts for smoothness properties of θ, and λ is the regularization

parameter [25], [24]. An important problem in practice is the selection of λ, which strongly effects the recovery

performance. One of the most popular approaches to choosing λ is the generalized cross-validation (GCV)

method [29].

Based on our generalized SURE criterion, we propose a new method for regularization selection. Specifically,
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we choose λ to minimize the SURE objective (30). As we demonstrate for the case in which the norm in (42)

is the ℓ2-norm, this method can dramatically outperform GCV in practical applications.

For concreteness, suppose that the squared-ℓ2 norm is used in (42). The solution then has the form

θ̂ = (Q + λLTL)−1HTC−1x, (43)

where for brevity we denoted

Q = HTC−1H. (44)

The estimate (43) is commonly referred to as Tikhonov regularization [22]. In the GCV method, λ is chosen

to minimize

G(λ) =
1

Tr2(I − (Q + λLTL)−1Q)

n
∑

i=1

(xi − [Hθ̂]i)
2. (45)

To apply the SURE criterion, we rewrite the estimate (43) as θ̂ = θ̂ML + h(u) where u = HTC−1x and

h(u) = −λ(Q + λLTL)−1LTLQ−1u. (46)

We then suggest choosing the value of λ that minimizes

S(λ) = ‖h(u)‖2 − 2λ Tr
(

(Q + λLTL)−1LTLQ−1
)

, (47)

which can be easily determined numerically.

Since S(0) = 0 it follows immediately that if the optimal λ is not zero, then S(λ) < 0 for all x which implies

that E(S(λ)) < 0. Since

E
{

‖θ̂ − θ‖2
}

− ǫML(θ) = E(S(λ)), (48)

we conclude that the resulting Tikhonov estimate will lead to smaller MSE than the ML technique for all

values of θ. Note, that for the GCV choice of λ it is no longer true in general that S(λ) < 0.

To demonstrate the performance of our new regularization method, we tested it in the context of image

deblurring using the HNO deblurring package for Matlab1 based on [32]. We chose several test images, and

1The package is available at http://www2.imm.dtu.dk/~pch/HNO/.
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blurred them using a Gaussian point-spread function of dimension 9 with standard deviation 6. We then

added zero-mean, Gaussian white noise with variance σ2. In Figs. 1 and 2 we compare the deblurred images

resulting from using the Tikhonov estimate (43) with L = I where the regularization parameter is chosen

according to our new SURE criterion (left) and the GCV method (right), for different noise levels.

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Deblurring of Lena using Tikhonov regularization with SURE (left) and GCV (right) choices of regularization
and different noise levels: (a), (b) σ = 0.01 (c),(d) σ = 0.05 (e),(f) σ = 0.1.

As can be seen from the figures, our SURE based approach leads to a substantial performance improvement

over the standard GCV criterion. This can also be seen in Tables I and II in which we report the resulting
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Deblurring of Cameraman using Tikhonov regularization with SURE (left) and GCV (right) choices of regular-
ization and different noise levels: (a), (b) σ = 0.01 (c),(d) σ = 0.05 (e),(f) σ = 0.1.

MSE values.

VI. Regularized SURE Method

A crucial element in guaranteeing success of the SURE method is to choose a good parameterization of

h(u). However, in many contexts, such a structure may be hard to find. On the other hand, letting the SURE

criterion select many free parameters can deteriorate its performance. One way to treat this inherent tradeoff
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TABLE I

MSE for Tikhonov Deblurring of Lena

σ = 0.01 σ = 0.05 σ = 0.1

GCV 0.0022 0.0077 0.0133

SURE 0.0011 0.0025 0.0042

TABLE II

MSE for Tikhonov Deblurring of Cameraman

σ = 0.01 σ = 0.05 σ = 0.1

GCV 0.0033 0.0121 0.0221

SURE 0.0016 0.0039 0.0064

is by regularization. Thus, instead of minimizing the SURE objective we suggest minimizing a regularized

version:

S(h, λ) = S(h) + λg(θ̂ML + h(u))

= ǫML(θ) + ‖h(u)‖2 + 2 Tr

(

dh(u)

du

)

+2hT (u)

(

d ln q(u)

du
+ θ̂ML

)

+ λg(θ̂ML + h(u)), (49)

where λ is a regularization parameter and g(θ̂ML + h(u)) is a regularization function. For example, we may

choose g(v) = ‖v‖ where the norm is arbitrary. The parameter λ is determined by applying the conventional

SURE (21) to the estimate h(u, λ) resulting from solving (49) with λ fixed. When u is Gaussian, (49) reduces

to

S(h, λ) = ǫML(θ) + ‖h(u)‖2

+2Tr

(

dh(u)

du

)

+ λg(θ̂ML + h(u)). (50)

As an example, consider the iid Gaussian model in which x = θ + w where w is a Gaussian noise vector

with iid zero-mean components of variance σ2. Assuming that θ represents the wavelet coefficients of some

underlying signal x, a popular estimation strategy is wavelet denoising in which each component of x is

replaced by a soft or hard-thresholded version. In particular, in their landmark paper, Donoho and Johnstone
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[10] developed a soft-threshold wavelet denoising method in which

θ̂i =











|xi| − t, |xi| ≥ t;

0, |xi| ≤ t,

(51)

where t is a threshold value. They suggest selecting t to minimize the SURE criterion, and refer to the resulting

estimate as SureShrink (to be more precise, in SureShrink t is determined by SURE only if it lower than some

upper limit). In developing the SureShrink method, the function h(x) is restricted to be a component-wise

soft threshold. The motivation for this choice is that the wavelet coefficients below a certain level tend to

be sparse. It is well known that soft-thresholding can be obtained as the solution to a least-squares criterion

with an ℓ1 penalty:

min
{

‖x − θ‖2 + λ‖θ‖1

}

. (52)

Thus, in principle we can view the SureShrink approach as a 2-step procedure: We first determine the estimate

that minimizes an ℓ1 penalized least-squares criterion. We then choose the penalization factor to minimize

SURE.

Instead, we suggest choosing an estimate that directly minimizes an ℓ1 regularized SURE objective, where

the only assumption we make is that the processing is performed component wise. Thus, θ̂i = αixi for some

coefficients αi(x) ≥ 0. Since u = (1/σ2)xi, hi(u) = σ2(αi − 1)ui. With this choice of h(u), minimizing (50) is

equivalent to minimizing the following objective:

L(α) =

n
∑

i=1

(αi − 1)2x2
i + 2σ2

n
∑

i=1

αi + λ

n
∑

i=1

|αi||xi|. (53)

The optimal choice of αi ≥ 0 is

αi =

[

1 − σ2 + λ|xi|
x2

i

]

+

. (54)

The resulting estimate can be viewed as a soft-thresholding method, with a particular choice of shrinkage

(different than the standard approach (51)) when the value of xi exceeds the threshold. The precise threshold

value is equal to the largest value xi for which αi = 0 and is given by

t =
1

2

(

λ +
√

λ2 + 4σ2
)

. (55)
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To choose λ, we substitute the estimate θ̂i = αi(λ)xi with αi(λ) given by (54) into the SURE criterion (30),

and minimize with respect to λ. For this choice, the SURE objective becomes

nσ2 +
n

∑

i=1

min

(

x2
i ,

(

σ2

|xi|
+ λ

)2
)

+ 2σ2
n

∑

i=1

si(λ), (56)

where

si(λ) =











−1, σ2 + λ|xi| ≥ |xi|2

σ
2

x
2

i

, σ2 + λ|xi| < |xi|2.
(57)

The value of λ can be easily determined numerically.

To demonstrate the advantage of our method over conventional soft-thresholding we implemented our

approach on the examples taken from [10]. Specifically, we used the test functions Blocks, Bumps, HeaviSine

and Doppler defined in [10]. The length of all signals is 2048 and the noise variance is σ2 = 4. We used the

Daubechies 8 symmetrical wavelet, and L = 5 levels are considered. In Table III we report the empirical MSE

values of the original noisy signals, and 3 wavelet denoising schemes: SureShrink which is the method of [10]

with the threshold selected using SURE, our proposed regularized SURE method (RSURE), and OracleShrink

which is a soft-threshold where the threshold value is selected to minimize the squared-error between the true

unknown wavelet coefficient, and its denoised version. Clearly this approach is only for comparison and serves

as a benchmark on the best possible performance that can be obtained using any soft threshold. As can

TABLE III

MSE for Different Soft Denoising Schemes

Blocks Bumps HeaviSine Doppler

Original 4.054 4.072 4.153 3.945

SureShrink 0.744 0.875 0.205 0.290

RSure 0.694 0.816 0.169 0.273

OracleShrink 0.690 0.828 0.118 0.283

be seen from the table, the regularized SURE method performs better in all cases than SureShrink. It is

also interesting to see that it sometimes even outperforms OracleShrink which is based on the true unknown

θ. The reason the performance can be better than the oracle is that the shrinkage performed in RSURE is

different than the conventional soft threshold.

In Table IV we repeat our experiments where now we use the estimates resulting from the standard SURE
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criterion. Specifically, we consider the positive-part Stein estimate (35) referred to as SteinShrink and the

estimate (41) which we refer to as ScalarShrink. Evidently, using the SURE estimate without regularization

TABLE IV

MSE for Different Denoising Schemes

Blocks Bumps HeaviSine Doppler

ScalarShrink 1.043 1.362 0.161 0.594

SteinShrink 1.681 1.730 1.508 1.413

deteriorates the performance significantly. Thus, SURE alone is not generally sufficient to obtain good esti-

mates. However, adding regularization dramatically improves the behavior without the need to pre-specify

the desired structure.

Finally, in Table V we repeat the experiments of Table III to determine the threshold values, but once the

values are found we apply hard-thresholding on the coefficients. As can be seen from the table, even though

TABLE V

MSE for Different Hard-Thresholding Schemes

Blocks Bumps HeaviSine Doppler

SureShrink 1.902 1.961 0.988 0.630

RSure 1.560 1.912 0.766 0.700

the thresholding operation is now the same in both methods, RSURE performs significantly better. Thus,

the threshold determined from this method is superior to that resulting from the SURE criterion without

regularization. Here again the importance of regularization is demonstrated.

VII. Conclusion

In this paper, we developed an unbiased estimate of the MSE in multivariate exponential families by ex-

tending the SURE method. This generalized principle can now be used in exponential multivariate estimation

problems to develop estimators with improved performance over existing approaches. As an application,

we suggested a new strategy for choosing the regularization parameter in penalized inverse problems. We

demonstrated via several examples that when using ℓ2 regularization this method can significantly improve

the MSE over the standard GCV approach. We also suggested a regularized SURE criterion for selecting es-

timators without the need for pre-specifying their structure. Applying this objective in the context of wavelet

denoising, we proposed a new type of soft-thresholding which minimizes a penalized estimate of the MSE.
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As we demonstrated, this strategy can lead to improved MSE behavior in comparison with soft and hard

thresholding methods.

The main contribution of this work is in introducing the generalized SURE criterion and the regularized

SURE method and demonstrating their applicability in several examples. In future work, we intend to develop

these applications in more detail and further explore the practical use of the proposed design objectives.
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