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Abstract

We generalize the Gel’fand-Pinsker model to encompass the setup of a memoryless multiple-
access channel. According to this setup, only one of the encoders knows the state of the channel (non-
causally), which is also unknown to the receiver. Two independent messages are transmitted: a common
message and a message transmitted by the informed encoder. We find an explicit characterization of
the capacity region of this channel. An explicit characterization of the capacity region is also provided
for the same channel with causal channel state information.Further, we apply the general formula
to the Gaussian case with non-causal channel state information, under an individual power constraint
as well as a sum power constraint. In this case, the capacity region is achievable by a generalized
writing-on-dirty-paper scheme.

I. INTRODUCTION

Communication over state-dependent channels has become a widely investigated research
area. The framework of channel states available at the transmitter dates back to Shannon [1],
who characterized the capacity of a state-dependent memoryless channel whose states are i.i.d.
and available causally to the transmitter. In their celebrated paper [2], Gel’fand and Pinsker
established a single-letter formula for the capacity of thesame channel under the conceptually
different setup where the transmitter observes the channelstates non-causally. The main tool
in proving achievability in this setup is the binning encoding principle [2]. Costa [3] applied
Gel’fand Pinsker’s (GP) result to the Gaussian case, where there are two additive Gaussian noise
sources, one of which, the interference, takes the role of the channel state. Costa originated
the term “writing on dirty paper” which stands for an application of GP’s binning encoding
scheme that adapts the transmitted signal to the channel states sequence rather than attempting
to cancel it. This results in a surprising phenomenon - the operative upper bound, of a channel
having no interference, can be attained, even though the channel states are not known to the
receiver. It was shown in [4],[5], that this principle continues to hold even if the interference
is not Gaussian. Extensions of these channel models to the multi–user case were performed by
Gel’fand and Pinsker in [6] who showed that interference cancelation is also possible in the
Gaussian broadcast channel, and the Gaussian Multiple Access Channel (MAC). Kim et al.
[7] showed that a similar thing happens for the physically degraded Gaussian relay channel.
Steinberg and Shamai [8] provided achievable rates for the broadcast channel with states
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known non-causally at the transmitter. Another multi–userextension, where the channel state
information (CSI) is causally available at the transmitters [1], was made by Steinberg [9] for
the capacity region of the degraded broadcast channel. In [10], the capacity of the physically
degraded relay channel with causal CSI was found. For other related work see [11], [12], [13],
[14].

Much research interest has been devoted to applications of these channel models, for ex-
ample, watermarking, [15], [16], [17], [18], [19], multi-input-multi-output (MIMO) broadcast
channels, [20], where dirty-paper coding happens to be a central ingredient in achieving the
capacity region, and cooperative networks, [21].

In [22] and [23], the problem of a two-user GP MAC with CSI known non-causally to only
one of the encoders, and each encoder transmitting a separate message, is addressed. While the
symmetric (interference known to all the encoders) Gaussian setup of [6] enables interference
cancelation and the capacity region is characterized fully, here, only inner and outer bounds
on the capacity region of the additive white Gaussian MAC as well as the general discrete
channel are derived. In the asymmetric case, even in the Gaussian model the capacity region,
yet unknown, is degraded in general as compared to the no interference case. The inner bound
on the capacity region is attained by a generalized dirty paper coding (DPC) scheme used by
the informed encoder, that allows arbitrary correlation between the codeword and the known
CSI. Another paper in which asymmetric CSI at the transmitters is studied is [24], where full
CSI at the decoder is assumed.

In this paper, which generalizes a former conference version [25], we consider the GP
memoryless two-user MAC, with CSI available non-causally to one of the encoders but not
to the other encoder nor to the receiver. The problem considered here is that of two users
transmitting a common message, and the informed encoder transmitting a private message.
We refer to this channel as a Generalized GP (GGP) channel. Wecharacterize the capacity
region for the general finite-alphabet case with a single-letter expression. This is enabled by a
generalized binning coding scheme. It is argued that the single-letter characterization remains
the same even if one allows feedback at the informed encoder,but not at the uninformed encoder
(similarly to the single-user GP channel setting [26]). While feedback does not increase the
ultimate rate, it simplifies considerably the signalling technique which is capable of approaching
capacity [26]. We specialize the expression of the capacityregion to the case where it is only a
common message that is being transmitted. Transmission of asingle common message source
can be regarded as a single-user channel, in the sense that there is one message source and one
destination. The capacity in this case is referred to as acommon message capacity. We also
generalize [1] by providing a single-letter expression forthe same setup considered in the GGP
channel with the exception that the CSI is availablecausallyto one encoder only. The channel,
in this case, is referred to as an asymmetric causal state-dependent channel. Further, we consider
the Gaussian channel with non-causal CSI under both an individual power constraint and a sum
power constraint. In contrast to Costa’s setup and to the symmetric Gaussian MAC [7], where
the very trivial operative upper bound of a channel having nointerference is achievable, in our
setup one cannot hope for complete interference cancelation. This renders the converse part of
the theorem a more ambitious task. We define therefore an equivalent notion of interference
cancelation that is adequate to our setup. We present an operative outer bound on the achievable
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rate pairs and point out the loss due to the asymmetric side information. The resulting outer
bound is shown to be achievable in the Gaussian case, yielding a closed-form expression for
the capacity region. We further specialize the results to the common message capacity case, and
we characterize the optimal strategy of the informed encoder balancing the tradeoff between
enhancing the signal of the uninformed encoder, decreasingthe interference, and transmitting
an additional information about the message that is not transmitted by the uninformed encoder.
We point out the optimal power allocation between the two users when the sum power constraint
is concerned. Another interesting insight derived from theproof is the capacity region of a
class of finite alphabet and Gaussian parallel channels withnon-causal side information at the
transmitter.

A Cognitive Radio (see, [27], [28], [29], [30]) is a device, added to an existing system having
licensed users, that is capable of sensing its environment and making use of that knowledge
to increase the spectral efficiency of the system. A useful model for the cognitive radio is as
a transmitter with side information about the primary (licensed) transmission. An assumption
made in the models considered in [27], [30] is that the cognitive radio has non-causal knowledge
of the codeword of the primary user. In our setup, the informed encoder can be thought of as a
cognitive radio, which identifies the channel states (that can stand for other interfering signals)
helps the licensed user to transmit the message, exploitingits side information, and transmits
an additional message. The model applies also to cooperative transmission in the realm of the
cognitive paradigm (that is one of the nodes is cognizant of the channel state which stands for
information transmitted in the system). Another application of our results is to watermarking,
where two encoders are jointly embedding the watermark. Thefirst performs the embedding in
a generic way, i.e., independently of the actual covertext,and the second embeds information
in a covertext-dependent method. Our work accounts also forother scenarios of cooperative
communication used to increase performance [21], [31], andthis will be detailed in [32].

The rest of this paper is organized as follows. In Section II we state the problem more
explicitly and define some notation that will be used throughout the paper. Section III is
devoted to establishing a single-letter expression for theGGP channel capacity region in the
discrete case, an outer bound on the capacity region, and thecapacity region of a special class
of GGP channels, referred to as degenerate parallel channels. The causal case is treated in
Section IV where we provide the capacity region formula for the asymmetric causal state-
dependent channel. In Section V we apply the single-letter expression of the GGP channel to
the Gaussian channel with non-causal CSI, and establish an explicit closed-form expression.
Section VI concludes with a summary of the main contributions of this paper.

II. NOTATION AND PROBLEM SETUP

Throughout the paper, random variables will be denoted by capital letters, while deterministic
realizations thereof will be denoted by lower-case letters. We shall use the short-hand notation
xj

i to abbreviate(xi, xi+1, ..., xj), and xn = (x1, ..., xn). For convenience, then-vector xn

will occasionally be denoted by the boldface notationx as well. The probability law of a
random variableX will be denoted byPX , and the conditional probability distribution ofY
givenX will be denoted byPY |X . The alphabet of a scalar RV,X, will be designated by the
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corresponding caligraphic letterX . The set of probability distributions defined on an alphabet
X , will be denoted byP(X ). The cardinality of a setA will be denoted by|A|.

A stationary memoryless state-dependent multiple-accesschannel is defined by a distribution
QS on the setS and the channel conditional probability distributionWY |S,X1,X2 from S×X1×
X2 to Y . Let Xn

(1) = (X1(1), ..., X1(n)) andXn
(2) = (X2(1), ..., X2(n)) designate the inputs of

transmitters1 and2 to the channel, respectively. The output of the channel is denoted byY n.
The stationarity and memorylessness assumptions imply that

PY n|Sn,Xn
(1)

,Xn
(2)

(yn|sn, xn, x̃n) =

n
∏

i=1

WY |S,X1,X2(yi|si, xi, x̃i).

The symbolsSi, X1(i), X2(i) andYi represent the channel state, the channel inputs produced
by two distinct encoders, and the channel output, at time index i, respectively. We assume that
the channel statesSn are i.i.d., each distributed according toQS. As can be seen is Figure 1,
the setup we consider is asymmetric in the sense that only encoder2 is informed of the channel
states, while neither the other encoder nor the decoder knowthe channel states. Unlike the
ordinary MAC, with partially known state information, we allow a common message source
fed to both encoders, and an independent message that is to betransmitted by the informed
encoder. When encoder2 observes the CSI non-causally, we shall refer to this channel as a
Generalized Gel’fand-Pinsker (GGP) channel, when encoder2 observes the states causally, the
channel will be referred to as an asymmetric causal state-dependent channel.

A sub-class of GGP channels that will be of special interest is the following. Amemoryless
parallel channel with non-causal asymmetric side information is a GGP channel withY =
(Y1, Y2) and

WY1,Y2|S,X1,X2
= WY1|X1,SWY2|X2,S. (1)

In words, this is a GGP channel with two outputsY1(1), ..., Y1(n) andY2(1), ..., Y2(n) that are
both observed by the receiver. If, in addition, one has

WY2|X2,S = WY2|X2 (2)

we shall say that the parallel channel is degenerate.
The common message,Wc, and the private message,W2, are independent random variables

uniformly distributed over the sets{1, ...,Mc} and {1, ...,M2}, respectively, whereMc =
⌊enRc⌋ andM2 = ⌊enR2⌋. An (eRc , eR2, n)-code for the GGP channel consists of two encoders
ϕ

(1)
n , ϕ

(2)
n and a decoderψn: the first encoder, unaware of the CSI is defined by a mapping

ϕ(1)
n : {1, ...,Mc} → X n

1 . (3)

The second encoder, observes the CSI non-causally, and is defined by a mapping

ϕ(2)
n : {1, ...,Mc} × {1, ...,M2} × Sn → X n

2 . (4)

The decoder is a mapping

ψn : Yn → {1, ...,Mc} × {1, ...,M2}. (5)
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Fig. 1. Asymmetric state-dependent MAC with a common message.

An (eRc , eR2, n)-code for the asymmetric causal state-dependent channel isdefined similarly
to that of the GGP channel, with the exception that the secondencoder is defined by a sequence
of mappings

ϕ
(2)
n,i : {1, ...,Mc} × {1, ...,M2} × Si → X2 i = 1, ..., n, (6)

and at time indexi, the channel input is given byX2(i) = ϕ
(2)
n,i(Wc,W2, S

i).

An (ǫ, n, Rc, R2)-code for the GGP channel is a code(ϕ
(1)
n , ϕ

(2)
n , ψn) having average prob-

ability of error not exceedingǫ, i.e.,

Pr((Wc,W2) 6= ψn(Y n
1 )) ≤ ǫ. (7)

A rate pair(Rc, R2) is said to be achievable if there exists a sequence of(ǫn, n, Rc, R2)-codes
with limn→∞ ǫn = 0. The capacity region of the GGP channel is defined as the closure of the
set of achievable(Rc, R2) rate pairs. The definitions of an(ǫ, n, Rc, R2)-code, an achievable
rate pair and the capacity region of the asymmetric causal state-dependent channel are similar.

III. CAPACITY REGION - FINITE INPUT ALPHABET GGP CHANNEL

The following theorem provides a single-letter expressionfor the capacity region of the
finite-input-alphabet GGP channel, that is, when the alphabetsS,X1,X2 are finite.

Theorem 1 The capacity region of the finite input alphabet GGP channel,C, is the closure
of all rate pairs,(Rc, R2), satisfying

R2 ≤ I(U ;Y |X1) − I(U ;S|X1)

Rc +R2 ≤ I(U,X1;Y ) − I(U,X1;S), (8)
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for some joint measurePS,X1,U,X2,Y on S × X1 × U ×X2 ×Y having the form

PS,X1,U,X2,Y = QSPX1PU |S,X1
PX2|S,X1,UWY |S,X1,X2

, (9)

where

|U| ≤ |S| · |X1| · |X2|. (10)

The proof of Theorem 1 appears in Appendix A, the direct part of the proof involves error
probability analysis of a coding scheme and is described in the sequel (after Corollary 2). The
proof is a quite straightforward extension of its GP counterpart [2] and an immediate extension
of the proof of Theorem 1 in [25].

It is noted that Theorem 1 remains intact if we allow for feedback to the informed encoder,
i.e., if, before producing thei-th channel input symbol, the informed encoder observes the
previous channel outputs,Y i−1, that is, while the uninformed encoder is a mapping of the
form (3), the informed encoder is actually sequences of mappingsϕ(2)

n = {ϕ(2,i)
n }n

i=1 with

ϕ(2,i)
n : {1, ...,Mc} × {1, ...,M2} × Sn ×Y i−1 → X2. (11)

It is easily verified that for the case of a channel which does not depend on the states, i.e.,
WY |S,X1,X2 = WY |X1,X2, the expression for the capacity region reduces to the collection of rate
pairs (Rc, R2) satisfying

R2 ≤ I(X2;Y |X1, Z),

Rc +R2 ≤ I(X1, X2;Y ), (12)

for somePZ,X1,X2,Y = PZPX1|ZPX2|ZWY |X1,X2
. This expression coincides with that of [33],

which studies a MAC with two private messagesW1,W2 and a common message [33],
degenerated to the case of no messageW1 (R1 = 0).

We now specialize Theorem 1 to the important case where only the common message is
transmitted.

Corollary 1 The common message capacity of the finite input alphabet GGP channel is given
by

C = max [I(U,X1;Y ) − I(U,X1;S)] , (13)

where the maximum is over all the joint measuresPS,X1,U,X2,Y onS×X1×U ×X2×Y having
the form

PS,X1,U,X2,Y = QSPX1PU,X2|S,X1
WY |S,X1,X2

, (14)

where|U| ≤ |S| · |X1| · |X2|.
Corollary 1 follows from Theorem 1 by relaxing the constraint onR2 in (8). Also, there exists

a maximizing measure withX2 that is a deterministic function of(S,X1, U). The following
corollary provides an alternative expression forC.
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Corollary 2 The common message capacity of the finite input alphabet GGP channel is given
by

C = max [I(Z;Y ) − I(Z;S)] , (15)

where the maximum is over all the joint measuresPS,X1,Z,X2,Y onS×X1×Z×X2×Y having
the form

PS,X1,Z,X2,Y = QSPX1PZ,X2|S,X1WY |S,X1,X2, (16)

andX1 is a deterministic function ofZ. The alphabet cardinality ofZ satisfies|Z| ≤ |S| ·
|X1| · |X2| + 1.

We note that the condition thatX1 is a deterministic function ofZ can be replaced byX1 ↔
Z ↔ S. The proof appears in Appendix B.

We now give a description of a random coding scheme that is used to prove the achievability
part of Theorem 1. It is based on the following principle: Fora measurePS,X1,U,X2 satisfying
(9), the uninformed user transmits at rateR1 = I(X1;Y ). Now the informed user can transmit
using a Gel’fand Pinsker-like scheme, at rateR′

2 = I(U ;Y,X1)−I(U ;S,X1) = I(U ;Y |X1)−
I(U ;S|X1), and that is by treatingX1 as part of the state, and accounting for the fact that
X1 is available at the decoder already as the information send by the uninformed encoder has
been decoded first. Now the information sent by the informed encoder at rateR′

2 can be shared
between the private messageW2 and the common messageWc .
Encoding:

Fix a measurePS,X1,U,X2,Y satisfying (9). The following scheme is used to show (see
Appendix A.2) that the rate pair

R∗
2 = I(U ;Y |X1) − I(U ;S|X1)

R∗
c = I(X1;Y ) − I(X1;S) = I(X1;Y ) (17)

is achievable.
Denote

M1 = en[I(X1;Y )−ǫ]

M2 = en[I(U ;Y |X1)−I(U ;S|X1)−ǫ]

J = en[I(U ;S|X1)+2ǫ]. (18)

The random encoders operate as follows: The uninformed encoder drawsM1 i.i.d. vectors,
{xℓ}M1

ℓ=1, each with i.i.d. components drawn subject toPX1 . The ordered collection of the drawn
vectors constitutes the codebook used by the uninformed encoder.

For each codeword,xℓ, the informed encoder drawsM2 × J auxiliary vectors, denoted
{uℓ,k,j}, k = 1, ...,M2, j = 1, ..., J , independently and with i.i.d. components givenxℓ. Hence,
each codeword in the uninformed user codebook is associatedwith a codebook of auxiliary
codewords.

To transmitℓ, the uninformed encoder transmits the vectorxℓ. Transmission ofk is done
by the informed encoder who searches for the lowestj0 ∈ {1, ..., J} such thatuℓ,k,j0 is jointly
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Fig. 2. A generalized binning coding scheme
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typical with (xℓ, s). Denote thisj by j(s, ℓ, k). If suchj0 is not found, or if the observed state
sequences is non-typical, an error is declared andj(s, ℓ, k) is set toj = 1.

Finally, the output of the second (informed) encoder is a vector x̃ that is drawn i.i.d. con-
ditionally given (s,uℓ,k,j(s,ℓ,k),xℓ) (using conditional measure that is the appropriate marginal
of QSPX1PU,X2|X1,S).
Decoding: Upon observingy, the decoder searches for a pair of indices,(ℓ̂, k̂), such that
xℓ̂,uℓ̂,k̂,j are jointly typical withy and outputs them. If there is no such pair, or it is not
unique, an error is declared.

The analysis of the probability of error of this scheme is performed in Section A.2 estab-
lishing the achievability of the rate pair(R∗

2, R
∗
c) (17). As mentioned earlier, the proof of the

converse part of Theorem 1 can be found in Appendix A.1.
The following claim completes the proof of the direct part ofTheorem 1.

Claim 1 If (R2, Rc) is achievable, then so is(0, Rc +R2).

Proof: Bits that are attributed toW2 can instead be attributed toWc.
This proves that also(0, R∗

2 + R∗
c) is achievable and thus the entire trapezoid (8) is an

achievable region.
It should be noted, that when the common message capacity is concerned, the above encoding

scheme can be applied by attributing the bits assigned toW2 in the above described scheme,
to the common messageWc. The output of decoder is the pair̂m = (ℓ̂, k̂).

We now state a theorem that provides an outer bound on the capacity region of the GGP
channel. It is a generalization of the trivial boundmaxPX|S I(X;Y |S) on the capacity of the
ordinary single-user GP channel. This theorem will be of great significance in the proof of the
converse part of the coding theorem for the Gaussian GGP channel, since this upper bound is
achievable in the Gaussian case.

Theorem 2 The closure of the set of rate pairs satisfying

R2 ≤ I(X2;Y |S,X1)

Rc +R2 ≤ I(X1, X2;Y |S) − I(S;X1|Y ) (19)

for some measurePS,X1,X2,Y = QSPX1PX2|S,X1WY |S,X1,X2 is an outer bound on the capacity
region of the GGP channel.

Proof: Recall that the capacity region of the finite input alphabet GGP channel is given
by (8). Now,

I(U,X1;Y ) − I(U,X1;S)

= I(U,X1;Y |S) − I(U,X1;S|Y )

≤ I(X1, X2;Y |S) − I(U,X1;S|Y ) (20)

= I(X1, X2;Y |S) − I(S;X1|Y ) − I(U ;S|X1, Y )

≤ I(X1, X2;Y |S) − I(S;X1|Y ), (21)

where the first inequality holds sinceU ↔ (X2, X1, S) ↔ Y is a Markov chain.
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Further,

I(U ;Y |X1) − I(U ;S|X1)

= I(U ;Y |X1, S) − I(U ;S|X1, Y )

≤ I(X2;Y |S,X1), (22)

which concludes the proof of Theorem 2.
In the following theorem, we find the capacity region of the degenerate parallel GGP channel,
for which we establish the fact that the CSI does not help.

Theorem 3 The capacity region of the degenerate parallel GGP channel is equal to the
capacity region obtained without transmitter CSI, i.e.,

R2 ≤ C2

Rc +R2 ≤ C1 + C2, (23)

whereC1 is the capacity of the channelWY1|X1,S obtained without transmitter CSI, andC2 is
the capacity of the channelWY2|X2

.

The proof of Theorem 3 appears in Appendix C.

IV. THE CAUSAL ASYMMETRIC STATE-DEPENDENT CHANNEL

In this section we consider the causal asymmetric state-dependent channel (see (6)).

Theorem 4 The capacity region of the finite input alphabet causal asymmetric state-dependent
channel is given by the closure of the set of rate pairs(R2, Rc) satisfying

R2 ≤ I(U ;Y |X1)

Rc +R2 ≤ I(U,X1;Y ), (24)

for some joint measurePS,X1,U,X2,Y on S × X1 × U ×X2 ×Y having the form

PS,X1,U,X2,Y = QSPX1,UPX2|S,X1,UWY |S,X1,X2, (25)

where|U| satisfies

|U| ≤ |S| · |X1| · |X2| + 1. (26)

The proof can be found in Appendix D.
The expression for the capacity region of Theorem 4 can be interpreted as a special case of

Theorem 1, whereU is independent ofS. This is similar to the relation between the expression
for the capacity of state dependent channel with causal CSI introduced by Shannon [1], and
its non-causal counterpart, the Gel’fand-Pinsker [2] channel [34].

Specializing Theorem 4 to the case where there is only a transmission of a common message,
we get the following.
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Corollary 3 The common message capacity of the finite input alphabet causal asymmetric
state-dependent channel is given by

Ccausal = max I(U ;Y ), (27)

where the maximum is over all the joint measuresPS,X1,U,X2,Y onS×X1×U ×X2×Y having
the form

PS,X1,U,X2,Y = QSPUPX1|UPX2|S,U,X1
WY |S,X1,X2

, (28)

whereX1 is a deterministic function ofU , and |U| ≤ |S| · |X1| · |X2| + 2.

We note that an alternative expression forCcausal with I(U,X1;Y ) replacingI(U ;Y ) in (27),
and whereX1 does not have to be deterministic givenU with |U| ≤ |S| · |X1| · |X2| + 1
also holds. The proof is similar to that of Theorem 4 and thus is omitted. As a side note, we
mention that if the CSI is available to both of the encoders, the single-letter expression for
the common message capacity is deduced as a direct application of the formula derived by
Shannon [1] for a channel with input alphabetX1 × X2.

V. THE GAUSSIAN GGP CHANNEL

In this section we analyze the additive Gaussian GGP channel. In Subsection V-A we present
the channel model, and the power constraints that we analyze(individual and sum power
constraints). Based on the results obtained in Section III,we derive a closed-form formula
for the capacity region under individual power constraintsin Subsection V-B, and discuss it.
The results are then specialized in Subsection V-C to the common message capacity under
individual power constraints, where we also provide several numerical results. We conclude
this section in Subsection V-D where sum power constraints are addressed.

A. Channel Model

The Gaussian GGP channel is given by

Yi = X1(i) +X2(i) + Si +N ′
i . (29)

As before, the messageWc is available to both encoders. Only the second encoder knowsthe
realization of the interferenceSn (non-causally), and the messageW2 to be transmitted. The
noise processes,Sn andN ′n, are assumed to be zero-mean Gaussian i.i.d. withE(S2

i ) = Q and

E(N ′2
i ) = N . The processN ′n is independent of

(

Xn
(1), X

n
(2), S

n
)

. Several power constraints
can be considered:
a) Individual power constraint:

1

n

n
∑

i=1

X2
1 (i) ≤ P1 ,

1

n

n
∑

i=1

X2
2 (i) ≤ P2. (30)

b) Sum power constraint:

1

n

n
∑

i=1

X2
1 (i) +

1

n

n
∑

i=1

X2
2 (i) ≤ P. (31)
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c) Total received power constraint:

1

n

n
∑

i=1

(X1(i) +X2(i))
2 ≤ P, (32)

where here it is evident that all the power should be assignedto the informed encoder, and the
problem degenerates to the ordinary “dirty paper” Costa setup [3], where the informed trans-
mitter can assign bits of the transmitted information to eitherWc or W2, that is, the capacity
region in this case is a triangle whose vertex(Rc, R2) points are(0, 0),

(

0, 1
2
log
(

1 + P
N

))

,
and

(

1
2
log
(

1 + P
N

)

, 0
)

.
We are interested in finding the capacity regions for the individual power constraint and

the sum power constraint. To this end, using standard techniques [35], an application of
the single-letter expression derived for the finite alphabet case to the Gaussian GGP channel
WY |S,X1,X2(y|s, x, x′) = 1√

2πN
e−(y−s−x−x′)2/2N with the individual power constraint gives the

capacity regionC(P1, P2, Q,N) as the closure of the union of rate pairs(Rc, R2) satisfying
(8) where the allowed joint distribution ofS,X1, U,X2, Y satisfies (9), and

E(X2
1 ) ≤ P1, E(X2

2 ) ≤ P2. (33)

When the sum power constraint is considered, the expressionfor the capacity region, denoted
C(P,Q,N), remains the same with the exception that (33) is replaced with E(X2

1 )+E(X2
2 ) ≤

P .

B. Capacity Region under Individual Power Constraints

Before establishing the capacity region of the GGP channel under individual power con-
straints, we provide an outer bound which takes on a very simple form. Then, we establish
the tightness of this bound for a certain range of rates. In order to present the outer bound we
need the following definition of a special case of a degenerate parallel channel (see (1)-(2)).

Definition 1 A Gaussian degenerate parallel channel with non-causal asymmetric CSI is a
GGP channel whosei-th output is given byYi = (Y1(i), Y2(i)) with

Y1(i) = X1(i) + Si

Y2(i) = X2(i) +N ′
i , (34)

whereSn andN ′n are i.i.d. Gaussian independent noise processes.

Theorem 5 The capacity region of the Gaussian degenerate parallel channel with non-causal
asymmetric CSI under individual power constraints is givenby the set of rate pairs(Rc, R2)
satisfying

R2 ≤ 1

2
log

(

1 +
P2

N

)

(35)

Rc +R2 ≤ 1

2
log

(

1 +
P1

Q

)

+
1

2
log

(

1 +
P2

N

)

. (36)
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Proof: This is an immediate consequence of Theorem 3 applied to the Gaussian case.
The capacity region of this degenerate parallel channel contains that of the GGP channel, as
the decoder has more information,(Y1(i), Y2(i)) rather thanY (i) = Y1(i) + Y2(i), and yields
the following outer bound toC(P1, P2, Q,N).

Corollary 4 C(P1, P2, Q,N) is contained in the set of rate pairs(Rc, R2) satisfying (35) and
(36).

The following theorem provides an explicit characterization for the capacity region of this
channel for the individual power constraints.

Theorem 6 The capacity regionC(P1, P2, Q,N) of the Gaussian GGP channel under indi-
vidual power constraints is given by the union of the rate pairs satisfying

R2 ≤
1

2
log

(

1 +
P2(1 − ρ2

12 − ρ2
2s)

N

)

Rc +R2 ≤
1

2
log

(

1 +

(√
P1 + ρ12

√
P2

)2

P2(1 − ρ2
12 − ρ2

2s) +
(√

Q+ ρ2s

√
P2

)2
+N

)

+
1

2
log

(

1 +
P2(1 − ρ2

12 − ρ2
2s)

N

)

(37)

for someρ12 ∈ [0, 1], ρ2s ∈ [−1, 0] such that

ρ2
12 + ρ2

2s ≤ 1. (38)

We note that the expression for the capacity region can be simplified for certain ranges of
rates, this will be done in the sequel (see Proposition 1), moreover, in Corollary 5 to follow,
we specify the(ρ12, ρ2s)-pairs that yield vertex points which lie on the border of thecapacity
region. The proof of Theorem 6 appears in Appendix E.

The following Corollary provides a more explicit characterization of the capacity region, it
follows from Theorem 6, by substituting∆ = 1 − ρ2

12 − ρ2
2s andρ = ρ2s.

Corollary 5 The capacity region of the Gaussian GGP channel under individual power con-
straints,C(P1, P2, Q,N), is given by the union of the rate pairs satisfying

R2 ≤
1

2
log

(

1 +
P2∆

N

)

Rc +R2 ≤ max
ρ∈[−

√
1−∆,0]

1

2
log






1 +

(√
P1 +

√

1 − ∆ − ρ2
√
P2

)2

P2∆ +
(√

Q+ ρ
√
P2

)2
+N






+

1

2
log

(

1 +
P2∆

N

)

(39)

for some∆ ∈ [∆min, 1], with ∆min = min
{

0, 1 − P1(P2+N)2

P2Q(P1+Q)

}

, where, if ∆min > 0, the

maximizingρ corresponding to∆min is ρ = − P1(P2+N)√
QP2(P1+Q)

and for∆ > ∆min, the maximization

13



over ρ can be limited to eitherρ = −
√

1 − ∆, ρ = 0 or any real root ofg∆(ρ) that satisfies
ρ ∈ [−

√
1 − ∆, 0], with

g∆(ρ) = −P2(P1 +Q)ρ4

−2
√

QP2(P2 +Q+N + P1)ρ
3

+
[

−2P2(1 − ∆)Q− (P2 +Q+N)2 + (1 − ∆)P1P2 − P1Q
]

ρ2

+2
√

P2Q(1 − ∆) [P1 − (P2 +Q+N)] ρ

+(1 − ∆)Q [P1 − P2(1 − ∆)] . (40)

The proof of Corollary 5 appears in Appendix F.
In Costa’s channel model [3], the GP capacity formula for theGaussian channel was

calculated explicitly. The proof relies on a capacity-achieving binning scheme which is shown
to achieve the same reliably transmitted rate as if the interferenceSn were not there. Hence,
Costa’s problem, as well as its multiuser counterpart [2], were special in that the trivial operative
upper bound is achievable. The upper bound of Theorem 2 playsthe role of the operative bound
and constitutes the core of the converse part. So, in fact, the generalization of interference
cancelation to the GGP channel asymmetric setup is that the upper bound of Theorem 2 is
achievable, a phenomenon that happens in the Gaussian GGP channel. Recalling (19), this
implies that the subtracted term,I(S;X1|Y ), can be interpreted as the inevitable rate loss
incurred due to the fact thatS is known only to the second transmitter (and not to both).
Indeed, any information thatX1 conveys toY aboutS is an inevitable waste of resources in
terms of rate.

The main goal of the proof is to show that for the Gaussian channel, in (8), one can restrict
attention to jointly Gaussian(S,X1, X2) without loss of generality, and an optimal choice for
U is

U = X2 + αoptS (41)

with

αopt =
P2P1Q− P1σ

2
2s − P1Nσ2s − σ2

12Q

P2P1Q+ P1NQ− P1σ2
2s − σ2

12Q
, (42)

where different values ofσ12 = E(X1X2) andσ2s = E(X2S) are chosen to achieve different
points that lie in (or, on the border of) the capacity region.The allowable values for the covari-
ances,σ12 andσ2s, are such that the resulting covariance matrixΛX1,X2,S,N ′ of (X1, X2, S,N

′),

ΛX1,X2,S,N ′ =









P1 σ12 0 0
σ12 P2 σ2s 0
0 σ2s Q 0
0 0 0 N









(43)

satisfies the nonnegative-definiteness condition

det (ΛX1,X2,S,N ′) = P1(P2QN − σ2
2sN) − σ2

12QN ≥ 0, (44)

14



i.e.,

P1σ
2
2s +Qσ2

12 ≤ P1P2Q, (45)

or, in terms of correlation coefficients,

ρ12 =
σ12√
P1P2

, ρ12 =
σ2s√
P2Q

, (46)

ρ2
12 + ρ2

2s ≤ 1. (47)

For reasons that will become clear in the sequel, we introduce the following terminology.

Definition 2 The set of parametersP1, P2, Q,N such that

P1(P2 +N)2

P1 +Q
≥ P2Q (48)

will be referred to as the silent regime and its complement will be referred to as the active
regime.

SinceQ,P1, P2, N take only non-negative values, the active regime is equivalent to

P1 ≤
P2Q

2

(P2 +N)2 − P2Q

⇔ Q ≥ −P1

2
+

√

P1(P1P2 + 4(N + P2)2)

2
√
P2

⇔ N ≤
√

P2Q(P1 +Q)

P1
− P2. (49)

so, in a sense, in the silent regime the interference predominates, and in the active regime the
noise predominates.

The following proposition simplifies the capacity region expression for certain ranges of
rates, by setting values of vertex points. It indicates a certain range of rates for which the
outer bound given in Theorem 5 is tight.

Proposition 1 1. For anyP1, P2, Q,N , the segment connecting the following points(a) and
(b) in theRc − R2 plane lies on the boundary ofC(P1, P2, Q,N)

(a) (Rc, R2) =
(

0, 1
2
log
(

1 + P2

N

))

(b) (Rc, R2) =
(

1
2
log
(

1 + P1

Q+P2+N

)

, 1
2
log
(

1 + P2

N

)

)

.

2. If P1, P2, Q,N lie in the active regime, the segment connecting the following points(c) and
(d) also lies on the boundary ofC(P1, P2, Q,N)

(c) (Rc, R2) =
(

1
2
log
(

(P1+Q)2

(Q(P1+Q)−P1(P2+N))

)

, 1
2
log
(

(P2+N)(Q(P1+Q)−P1(P2+N))
(P1+Q)NQ

))

,

(d) (Rc, R2) =
(

1
2
log
(

1 + P1

Q

)

+ 1
2
log
(

1 + P2

N

)

, 0
)

.
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TABLE I

EXTREME CASE ANALYSIS.

regime Behavior ofC(P1, P2, Q,N)

Q → ∞ R2 ≤ 1
2

log
`

1 + P2

N

´

, Rc + R2 ≤ 1
2

log
`

1 + P2

N

´

P1 = 0 R2 ≤ 1
2

log
`

1 + P2

N

´

, Rc + R2 ≤ 1
2

log
`

1 + P2

N

´

Q = 0 R2 ≤ 1
2

log
`

1 + P2∆
N

´

, Rc + R2 ≤ 1
2

log

„

1 +
(
√

P1+
√

(1−∆)P2)2

N

«

+ 1
2

log
`

1 + P2∆
N

´

P2 = 0 R2 = 0, Rc ≤ 1
2

log
“

1 + P1

N+Q

”

Proof: It is easily verified that the line segment connecting(a) and (b) (first segment)
and the one connecting(c) and (d) (second segment) both lie on the boundary of the outer
bound specified in Corollary 4. It therefore remains to show that the points(a), (b) stand for
achievable rate pairs, and the points(c), (d) are also achievable provided thatP1, P2, Q,N lie
in the active regime. To establish this claim, it suffices to substitute in (37), appropriate values
of ρ12, ρ2s that will yields the desired segments. This is done by takingρ12 = ρ2s = 0 to get
the first segment, and

ρ∗12 =
P1(P2 +N)√
P1P2(P1 +Q)

, ρ∗2s = − P1(P2 +N)√
QP2(P1 +Q)

(50)

(which is a legitimate choice only whenρ2
12 + ρ2

2s ≤ 1, as stated in (38) or in other words,
P1(P2+N)2

P1+Q
≤ P2Q) to get the second segment.

The capacity region for the parameters(P1, P2, Q,N) =
(

1
2
, 1, 3

2
, 1
)

which lies in the active
regime,C(1

2
, 1, 3

2
, 1), as well as the points(a), (b), (c), (d) discussed in Proposition 1, and the

outer bound of Corollary 4, are plotted in Figure 3. Each dotted trapezoids express achievable
regions attained by choosing a specific∆ value in (39). The segment connecting(c) and (d)
meets theRc axis at−45o, because it lies on the boundary of the outer bound of Theorem5.

The points(a) and(b) discussed in Proposition 1 as well as the capacity regionC(3
2
, 1, 1

2
, 1)

can be seen in Figure 4 forP1 = 3
2
, P2 = N = 1, Q = 1

2
which lie in the silent regime. The

figure also shows the corresponding outer bounds of Corollary 4.
Extreme Case Analysis

Table I summarizes the behavior of the capacity regionC(P1, P2, Q,N) that can be deduced
from Corollary 5 in several extreme cases. As expected, for infiniteQ, the common message
capacity degenerates to that of Costa’s channel, that is, when the uninformed user is not
present. The capacity region is triangular because the amount of information that can be reliably
transmitted by the uninformed user becomes negligible. A similar phenomenon happens when
P1 = 0.

ForQ = 0, the only noise present isN ′ and thus there is no side information. The informed
encoder therefore can decide which portion of its power,∆P1, to devote to transmission of
its own message, and the remaining power,(1 − ∆)P1, is allocated to coherent transmission
(with the uninformed encoder) of the common message.
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Fig. 3. Capacity region forP1 = 1
2
, P2 = N = 1, Q = 3

2
, C( 1

2
, 1, 3

2
, 1), and outer bound.

If the power of the informed encoder,P2, is zero, then it cannot transmit information, nor
help the uninformed user by partially canceling the interference and thus the common message
capacity is as though the effective noise isS +N ′ and the power used for transmission isP1.

C. The Common Message Capacity with Individual Power Constraints

This subsection is devoted to specializing the results pertaining to the Gaussian channel to
the case where it is only a common message that is transmitted. The application of the tight
upper bound of Theorem 2 (whose tightness in the Gaussian case was established in Theorem
6) to the common message capacity, yields that the common message capacityC(P1, P2, Q,N)
of the Gaussian GGP channel under individual power constraints is given by

max
ρ12,ρ2s

[I(X1, X2;Y |S) − I(X1;S|Y )] . (51)

where(X1, X2, S) are jointly Gaussian withE(X2
i ) = Pi, i = 1, 2.
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Theorem 7 The common message capacity of the Gaussian GGP channel under individual
power constraints is given by the following formula

C(P1, P2, Q,N) =














1
2
log
(

1 + P1

Q

)

+ 1
2
log
(

1 + P2

N

)

if P1(P2+N)2

(P1+Q)
≤ P2Q

maxρ∈[−1,0]
1
2
log

(

1 +

“√
P1+

√
P2

√
1−ρ2

”2

(
√

Q+
√

P2·ρ)
2
+N

)

o.w.
(52)

where, in fact, the maximization overρ can be limited to eitherρ = −1, ρ = 0 or any real
root ρ of the4th order polynomialg0(ρ) (see (40)) that satisfiesρ ∈ [−1, 0].

The proof of Theorem 7 appears in Appendix G.
The rest of this subsection is devoted to a discussion on the common message capacity

results, comments on the capacity achieving scheme and numerical results.
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1) Discussion:In the sequel, we separate the discussion on the common message capacity
formula to the two complementary regimes of parameters(P1, P2, Q,N), the silent regime and
the active regime (see Definition 2).
Silent Regime: It is shown that in the silent regime, the optimal values ofσ12 andσ2s as far
as the common message capacity is concerned, are such that the condition (45) is met with
equality, i.e.,

P1σ
2
2s +Qσ2

12 = P1P2Q (53)

or equivalently,

ρ2
12 + ρ2

2s = 1. (54)

This is also equivalent to

E
(

X2 − X̂ lin
2 (X1, S)

)2

= 0, (55)

whereX̂ lin
2 (X1, S) is the optimal linear estimator (in the MMSE sense) ofX2 givenX1 and

S

X̂ lin
2 (X1, S) =

σ12

P1
X1 +

σ2s

Q
S. (56)

Eq. (55) implies that in the silent regime

X2 = X̂ lin
2 (X1, S) =

σ12

P1
X1 +

σ2s

Q
S, (57)

and thus,

Y = X1

(

1 +
σ12

P1

)

+ S

(

1 +
σ2s

Q

)

+N ′, (58)

calculating the optimal value ofα (42) while accounting for (53), yields

αsilent
opt = −σ2s

Q

Usilent
opt = X2 −

σ2s

Q
S =

σ12

P1

X1 (59)

and hence, in the silent regime of parameters, the common message capacity (52) formula is
equal to

max
σ12,σ2s

I(U,X1;Y ) − I(U,X1;S)|U=
σ12
P1

X1

= max
σ12,σ2s

I

(

X1;X1

(

1 +
σ12

P1

)

+ S

(

1 +
σ2s

Q

)

+N ′
)

(60)

with σ12, σ2s satisfying (54). Inspecting (60), it is easy to verify that asimpler selection ofU ,

Usilent
opt = 0 (61)

yields the same achievable rate and hence is also optimal.
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The fact that in the silent regime the common message capacity is equal to (60), suggests
that in this regime, in order to achieve capacity, the informed encoder can devote all its power
to decreasing the interference and enhancing the signal of the uninformed encoder. No power
is devoted to transmission of additional information, and hence, we refer to this region as
silent.

A useful geometrical interpretation to the common message capacity formula in the silent
regime can be attained by substitutingcosφ = ρ in (52), this yields

max
φ

1

2
log

(

1 +

(√
P1 +

√
P2 · sinφ

)2

(√
Q+

√
P2 · cos φ

)2
+N

)

, (62)

where it is obvious that one should maximize overφ ∈ [π/2, π] to obtain a non-negative sine
and a non-positive cosine. The largerφ is in [π/2, π], a larger portion of user2’s power is
devoted to reducing the interference and less to enhancingX1, and achieving the capacity in
the silent regime amounts to optimizing overφ (or ρ in (52)).

The maximizingρ of the common message capacity formula in the silent regime (see (52))
is either0, −1 or any real root of the4th order polynomialg0(ρ) (40). For example, when
P1 = P2 = P > 0 andN = Q > 0, the parameters lie in the silent regime, and finding the
roots ofg0(ρ) (40) degenerates to finding the roots of a3rd order polynomial. It turns out that
the optimal value ofρ corresponding to the real root ofg0(ρ) is given by

ρ =

(

A1/3 +
4 − 5η

A1/3(η + 1)
− 4

)

1

3
√
η

(63)

with

A = 8 + 3
√

3

(

7η3 − 4η2 + 16η

(η + 1)3

)

, η =
P

Q
. (64)

Active Regime: In the active regime, the informed encoder balances the tradeoff among
three goals: decreasing the interference, enhancing the signal of the uninformed encoder,
and transmitting additional information (as opposed to thesilent regime where no additional
information is transmitted). Therefore, this regime of parameters is referred to as active.
Keeping the other parameters fixed, the higher the interferenceQ is, the portion of the power
that the informed user allocates to the additional information becomes larger at the expense
of interference reduction and enhancement of the uninformed user’s signal. In this regime too,
the maximizing(X1, X2, S) is Gaussian, but with

σactive
12 = −σactive

2s =
P1(P2 +N)

P1 +Q
, (65)

i.e.,

ρactive
12 =

P1(P2 +N)√
P1P2(P1 +Q)

, ρactive
2s = − P1(P2 +N)√

QP2(P1 +Q)
. (66)
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The resultingαopt (see (42)) when using the correlations (65) is given by

αactive
opt =

P2

P2 +N
, (67)

which is equal to the optimalα in Costa’s setup [3] when the uninformed user is not present.
As mentioned earlier, the choice of correlations (65), results in a surprising phenomenon
which happens only in the active regime. The highest achievable common message rate is
1
2
log
(

1 + P1

Q

)

+ 1
2
log
(

1 + P2

N

)

, the same as that of a decoder that observes bothY1 = X1 +S

andY2 = X2 +N ′ rather thanY = X1 +X2 +S+N ′. In other words, the upper bound of the
Gaussian degenerate parallel channel with asymmetric non-causal CSI (see Theorem 3) can
actually be achieved, even if the decoder is constrained to see only the sum of the channel
outputs.

2) Comments on the Capacity Achieving Scheme:Next, we elaborate on the common
message capacity achieving scheme for the Gaussian GGP channel resulting (using standard
techniques [35]) from that of the finite alphabet GGP channel.

Silent Regime: Due to (57) and (61), here, no binning is needed, or in other words, this
is a degenerate binning scheme with bin size1. The uninformed encoder generates a random
codebook consisting ofM = ⌊exp{n(C(P1, P2, Q,N) − ǫ)}⌋ codewords{xm}M

m=1 with i.i.d.
symbols, each distributed according toN (0, P1). Given a messagem to be transmitted, which
corresponds to the codewordxm = (xm(1), xm(2), ..., xm(n)), and a state-sequences, the
informed encoder simply transmits then-vector x̃ whosei-th symbol is given by

x̃i = xm(i)
σ12

P1

+ si
σ2s

Q
, (68)

whereσ2s =
√
P2Q · ρ, with ρ being the maximizer in (52) andρ12 =

√

1 − ρ2
2s. Either an

ordinary Maximum Likelihood (ML) decoder or a typicality decoder can be used to achieve
the common message capacity.

Active Regime: As stated earlier, in this regime the informed encoder spends energy to
interference reduction and enhancement of the uninformed user’s signal as well as transmission
of additional information. So as opposed to the silent regime, the binning scheme is not void.
The random scheme is as described in Section III, with GaussianPS,X1,X2 with the covariance
matrix





Q 0 σactive
2s

0 P1 σactive
12

σactive
2s σactive

12 P2





whereσactive
12 , σactive

2s are defined in (65), and

U = X2 + αactive
opt S (69)

(see (67)).
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3) Numerical Results:In Figure 5 the common message capacity is plotted as a function
of Q for fixed values ofP1, P2, N which, in turn, were chosen in two groups (the first group
consists of(P1 = 2, P2 = N = 1), (P1 = 4, P2 = N = 2), and(P1 = 6, P2 = N = 3) and the
second has(P1 = 5, P2 = 2, N = 1), (P1 = 10, P2 = 4, N = 2), and (P1 = 20, P2 = 8, N =
4)). The common message capacity values for bothQ = 0 and forQ → ∞ are equal for all
the members of each of these groups. The transition points between the silent regime and the

active regimeQ = −P1

2
+

√
P1(P1P2+4(N+P2)2)

2
√

P2
(see (49)) are indicated with diamonds.

In Figure 6, the common message capacity and the optimal values of ρ2s and ρ12 (the
correlation coefficients betweenX2 and S, andX2 andX1, respectively) are depicted as a
function ofQ. Again, the transition points of the capacity curves from the silent regime to the
active regime are indicated with diamonds. In the silent regime, ρ2s is, in fact, the maximizer
of (52) andρ12 =

√

1 − ρ2
2s. In the active regime, the optimalρ12, ρ2s are given in (66). While

ρ12 is a monotonically decreasing function ofQ, |ρ2s| is increasing in the silent regime and
decreasing in the active regime.

In Figure 7, the common message capacity is plotted as a function of P1 for fixed values
of P2, Q,N . The diamonds indicate the points at which there are transitions from the active
regime to silent regime, i.e.,P1 = P2Q2

(P2+N)2−P2Q
(see (49)). The upper thick solid line stands

for the plot ofQ = N = 1
2

andP2 = 1, for which the transition occurs atP1 = 16, a point
which does not appear within the range depicted in this figure. The curves that meet atP1 = 0
correspond to equalP2

N
ratios, because the common message capacity is1

2
log(1 + P2

N
) for

P1 = 0.
In Figure 8, the common message capacity is plotted as a function of P2 for fixed values

of P1, Q,N . The diamonds signify the points at which there are transitions from the active

regime to silent regime, i.e.,P2 =
Q(P1+Q)−2P1N+

√
(Q(P1+Q)−2P1N)2−4P 2

1 N2

2P1
. For the parameters

Q = 1, P1 = 6, N = 3, the entire curve is in the silent regime.

D. The Capacity Region and the Common Capacity under Sum Power Constraints

Next, we state a closed form characterization of the capacity region under a sum power
constraint (31). We denote byζ the portion of the power that is used by the informed user.

Theorem 8 The capacity region of the Gaussian GGP channel under sum power constraints,
C(P,Q,N), is given by the union of the rate pairs satisfying

(Rc, R2) ∈ C((1 − ζ)P, ζP,Q,N) (70)

for someζ ∈ [0, 1].

Proof: The theorem follows trivially by recalling the proof of Theorem 6 which implies
(among other things) that the users had better exploit all the allowable power levels. There-
fore the border ofC(P1, P2, Q,N) is, in fact, the set of rate-pairs achievable whenever the
uninformed user and the informed user transmit with powersP1 andP2 respectively.

The following theorem (whose proof appears in Appendix H), gives the common message
capacity under sum power constraints.
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Fig. 5. Common message capacity as a function of the interference powerQ.

Theorem 9 The common message capacity of the Gaussian GGP channel under a sum power
constraint,C(P,Q,N), is given by the following formula

C(P,Q,N) =






1
2
log
(

1 + P
N

)

if N + P ≤ Q
1
2
log (Q+P+N)2

4QN
if Q0 ≤ Q ≤ N + P

max0≤ζ≤1R(ζ, P,Q,N) otherwise
, (71)

whereQ0 = 1
3
(N − P ) + 2

3

√
N2 +NP + P 2 and

R(ζ, P,Q,N) = maxρ∈[−1,0]
1
2
log

(

1 +

“√
(1−ζ)P+

√
ζP
√

1−ρ2
”2

(
√

Q+
√

ζP ·ρ)
2
+N

)

.
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powerQ.

The power allocation that achieves the common message capacity is

ζopt(P,Q,N) =






1 if N + P ≤ Q
P+Q−N

2P
if Q0 ≤ Q ≤ N + P

argmax0≤ζ≤1R(ζ, P,Q,N) otherwise
. (72)

Since the line that meets theRc axis (in theRc − R2 plane) at−450 at the pointRc =
C(P,Q,N), is an outer bound on the capacity region (being a collectionof trapezoids),
Theorem 9 enables to simplify the expression forC(P,Q,N) as follows.

• WheneverQ ≥ N + P the optimalζ is 1, andC(P,Q,N) is the triangle whose vertices
are(Rc, R2) = (0, 0),

(

1
2
log
(

1 + P
N

)

, 0
)

, and
(

0, 1
2
log
(

1 + P
N

))

. This means that as long
asQ ≥ N + P , the capacity region is not affected byQ, since the best strategy is to let
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Fig. 7. Common message capacity as a function ofP1.

the informed user use all the power, and this degenerates to asingle user Costa channel,
where the transmitted information bits can be divided betweenW2 andWc.

• Whenever1
3
(N − P ) + 2

3

√
N2 +NP + P 2 ≤ Q ≤ N + P , the border ofC(P,Q,N)

contains the line segment between the points(Rc, R2) given by
(

1

2
log

(

P +Q+N

3Q− P −N

)

,
1

2
log

(

(3Q− P −N)(P +Q+N)

4QN

))

and
(

(P+Q+N)2

4QN
, 0
)

(this follows by substitutingP1 = (1−ζ)P , P2 = ζP , andζ = P+Q−N
2P

in the points(c) and (d) of Proposition 1).
In Figure 9, the borders of the sum power constraint capacityregions forP = 3, N = 1

and three values ofQ (0.5, 2.5, 5) are plotted. One can see the triangle shape forQ = 5. In
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Figure 10, the common message capacity under sum power constraints are plotted forN = 1
and five values ofQ (0.2, 0.5, 1, 2, 5).

VI. CONCLUSIONS

In this work we analyze a setup of cooperative communicationover the GP MAC, referred
to as the GGP channel, where the channel states are non-causally available to one user only.
We assume that the users transmit a common message, and that the user that is informed
of the CSI transmits a private message as well. We characterize the capacity region of this
channel for the general finite input-alphabet two-encoder case. Key to the characterization of
the capacity is a generalized binning coding scheme. The common message is split into two
partsA andB. The uninformed encoder encodes partA of the message, and the informed
encoder creates a codebook of auxiliary codewords for each codeword of the uninformed
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encoder using a binning scheme, and uses it to transmit partB of the message a well as its
private message. The results are then specialized to the case where it is only the common
message that is being transmitted, and in this case the capacity is referred to as a common
message capacity. Further, we establish two useful resultsfor the general finite-input alphabet
case. The first is a useful outer bound on the capacity region of the GGP channel, referred to as
an operative bound. This bound is the equivalent of a genie aided decoder observing the state
information in the ordinary single-user GP channel. The second result relates to the special
case of a GGP channel, a degenerate parallel GGP channel. We demonstrate that the knowledge
of the CSI at the informed transmitter does not help in the degenerate parallel case, and derive
the capacity region formula of this channel as a special caseof the general GGP channel
capacity region formula. We also characterize the capacityregion of an asymmetric causal
state-dependent channel which is the same channel as the GGPchannel, with the exception
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that the CSI is available causally. Additionally, we focus on the two-encoder Gaussian GGP
channel case, modeling the CSI as an additive Gaussian interference. We investigate two power
constraints, the first being a constraint on each of the powerlevels of the two encoders, and
the second being a constraint on the sum of powers used by the transmitters. By proving that
in the Gaussian case the operative bound is achievable, we establish a closed-form formula
for the capacity region of this channel for both power constraints. Technically speaking, this
outer bound enables proving that one can consider only Gaussian distributions for the single-
letter expression without loss of generality. Four parameters determine the capacity region: the
powers available to the two encoders, the interference power and the noise power. We partition
the four dimensional space of all possible values of these parameters into two regions, a
silent regime and an active regime. The common message capacity (which determines one
of the vertices of the capacity region) formula as a functionof these four parameters takes
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on two different forms depending on whether the parameters lie in the active regime or the
silent regime. To achieve the common message capacity, in the silent regime the informed
encoder allocates a portion of its power to interference cancelation and the remaining power to
coherently enhancing the uninformed user’s signal. In the active regime, the encoder has the
additional task of transmitting a part of the message that isnot transmitted by the uninformed
encoder. Surprisingly, we show that in the active regime, the common message capacity is
equal to that of a channel whose decoder observes two outputs(the first being the sum of the
uninformed user’s signal and the interference and the second being the sum of the informed
user’s signal and the noise). We also determine the optimal power allocation for the common
message capacity under sum power constraints. Finally, we note that the results are extendable
to a general multiuser setup under the common message regime[32].

APPENDIX

A. Proof of Theorem 1

1) Converse Part of Theorem 1:Let an(ǫn, n, Rc, R2)-code be given. Thus, we have using
Fano’s inequality

n(Rc,+R2) = H(Wc,W2)

≤ I(Wc,W2;Y
n
1 ) + 1 + n(Rc +R2)ǫn. (73)

Further,

I(Wc,W2;Y
n
1 )

≤
n
∑

i=1

[

I(Wc,W2, Y
i−1, Sn

i+1;Yi) − I(Wc,W2, Y
i−1, Sn

i+1;Si)
]

=

n
∑

i=1

[

I(Wc, X1(i),W2, Y
i−1, Sn

i+1;Yi) − I(Wc, X1(i),W2, Y
i−1, Sn

i+1;Si)
]

, (74)

where the inequality follows exactly as in the derivation ofthe converse part of the proof of
the capacity formula for the ordinary GP channel [2] by replacingW with (Wc,W2), and the
last equality holds sinceX1(i) is a function ofWc.

Similarly, sinceWc andW2 are independent

nR2 = H(W2|Wc)

≤ I(W2;Y
n
1 |Wc) + 1 + nR2ǫn

≤
n
∑

i=1

[

I(W2, Y
i−1, Sn

i+1;Yi|Wc) − I(W2, Y
i−1, Sn

i+1;Si|Wc)
]

+ 1 + nR2ǫn

=

n
∑

i=1

[

I(W2, Y
i−1, Sn

i+1;Yi|Wc, X1(i)) − I(W2, Y
i−1, Sn

i+1;Si|Wc, X1(i))
]

+ 1 + nR2ǫn

≤
n
∑

i=1

[

I(Wc,W2, Y
i−1, Sn

i+1;Yi|X1(i)) − I(Wc,W2, Y
i−1, Sn

i+1;Si|X1(i))
]

+ 1 + nR2ǫn,

(75)
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where the last inequality follows sinceSi and(Wc, X1(i)) are independent. Therefore, defining
Ūi =

(

Wc,W2, Y
i−1, Sn

i+1

)

one has

Rc +R2 ≤
1

n

n
∑

i=1

I(Ūi, X1(i);Yi) − I(Ūi, X1(i);Si) +
1

n
+ (Rc +R2)ǫn

R2 ≤
1

n

n
∑

i=1

I(Ūi;Yi|X1(i)) − I(Ūi;Si|X1(i)) +
1

n
+R2ǫn. (76)

Now, we introduce a time-sharing random variable,T , distributed uniformly over{1, ..., n},
and denote the collection of random variables

(S,X1, Ū , X2, Y ) = (ST , X1(T ), ŪT , X2(T ), YT ), (77)

to obtain

1

n

n
∑

i=1

I(X1(i), Ūi;Yi) − I(X1(i), Ūi;Si)

= I(X1(T ), Ū ;Y |T ) − I(X1(T ), Ū ;S|T )

= I(T,X1, Ū ;Y ) − I(T ;Y ) − I(T,X1, Ū ;S) + I(T ;S)

≤ I(T,X1, Ū ;Y ) − I(T,X1, Ū ;S), (78)

where the last step follows by the stationarity ofSi. SubstitutingU = (T, Ū) one gets

Rc +R2 ≤ I(X1, U ;Y ) − I(X1, U ;S) +
1

n
+ (Rc +R2)ǫn. (79)

Similarly,

1

n

n
∑

i=1

I(Ūi;Yi|X1(i)) − I(Ūi;Si|X1(i))

= I(Ū ;Y |X1, T ) − I(Ū ;S|X1(T ), T )

= I(Ū , T ;Y |X1) − I(Y ;T |X1) − I(Ū , T ;S|X1) + I(T ;S|X1)

≤ I(Ū , T ;Y |X1) − I(Ū , T ;S|X1), (80)

and one gets

R2 ≤ I(U ;Y |X1) − I(U ;S|X1) +
1

n
+R2ǫn. (81)

The above constitutes the proof that for every(ǫn, n, R)-code, there exists a measure of the form
(9) with essentiallyRc+R2 ≤ I(X1, U ;Y )−I(X1, U ;S), andRc ≤ I(U ;Y |X1)−I(U ;S|X1).

It remains to show that the alphabet of the random variablesU can be limited without loss
of generality as stated in (10). This is done by a standard application of the support Lemma.
First, fix a distributionµ of (S,X1, U,X2, Y ) on the Borelσ-algebra ofP(S×X1×U×X2×Y)
that has the form (9). Note that

Iµ(X1, U ;Y ) − Iµ(X1, U ;S) = Iµ(U ;Y |X1) − Iµ(U ;S|X1) + Iµ(X1;Y ), (82)
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and

Iµ(X1, U ;Y ) − Iµ(X1, U ;S)

= Iµ(U ;Y ) − Iµ(U ;S) + Iµ(X1;Y |U) − Iµ(X1;S|U)

= Hµ(Y ) −Hµ(S) −Hµ(Y |X1, U) +Hµ(S|X1, U)

= Hµ(Y ) −Hµ(S) −Hµ(X1, Y |U) +Hµ(X1, S|U), (83)

Hence, it suffices to show that the following functionals ofµ(S,X1, U,X2, Y )

fs,x,x̃(µ) = µ(s, x, x̃) ∀(s, x, x̃) ∈ S × X1 ×X2 (84)

f0(µ) =

∫

u

dµ(u) (Hµ(X1, S|u) −Hµ(X1, Y |u)) (85)

can be preserved with another measureµ′ that has the form (9). To satisfy this condition,
according to the support Lemma, since there areA = |S|·|X1|·|X2| functionals1, the cardinality
of the alphabet ofU can be taken to beA without loss of generality.

2) Direct Part of Theorem 1:Since the error probability analysis of the random coding
scheme presented in Section III is also a rather straightforward extension of the proof of the
GP direct, we shall state it in brevity.
Error probability analysis: For a measureP , let Tǫ(P ) stand for the set ofǫ-typical
sequences. Assume that the transmitted common message isℓ and the informed user message
is k, and thats is the state sequence. Lets andx = xℓ stand for the states sequence and the
codeword of the uninformed encoder, respectively. One has

Pr(error) =
∑

(s′,x′)∈T c
ǫ (QS×PX1

)

Pr(s′,x′)

+
∑

(s′,x′)∈Tǫ(QS×PX1
)

Pr(s′,x′)Pr(error|s′,x′). (86)

Due to the AEP, the probability that(s,x) are not jointly typical vanishes exponentially, thus,
it is sufficient to upper bound the second term on the r.h.s. of(86). The error event is contained
in the union of the following events

E1(s,x) = {∄j s.t. (s,x,uℓ,k,j) ∈ Tǫ(PS,X1,U)}
E2(x) = {(x,y) 6 ∈Tǫ(PX1,Y )}

E3 = {∃ℓ′ 6= ℓ s.t. (xℓ′,y) ∈ Tǫ(PX1,Y )}
E4(s) = {(x,uℓ,k,j(s,ℓ,k),y) 6 ∈Tǫ(PX1,U,Y )}
E5(x) = {∃k′ 6= k, j′, s.t. (x,uℓ,k′,j′,y) ∈ Tǫ(PX1,U,Y )}.

One can easily realize as an immediate extension of [2] that Pr (E1(s,x)) behaves essentially
like

[

1 − 2−n(I(S;U |X1)+ǫ)
]J ≤ exp(2−nǫ). Given thatE1(s,x) does not occur, we have that

1In (84), there are in fact only|S| · |X1| · |X2|-1 degrees of freedom.
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(s,x) are jointly typical with the outputs of the encodersx, x̃ and with uℓ,k,j(s,ℓ,k), that is,
(s,x,uℓ,k,j(s,ℓ,k), x̃) ∈ Tǫ(QS × PX1 × PU,X2|S,,X1).

For s,x,uℓ,k,j(s,ℓ,k), x̃ jointly typical, the probabilities of the eventsE2(x), E4(s) vanish also
due to the AEP.

Further, using the union bound, it is easily argued that for all δ > 0 there existsn sufficiently
large such that,

Pr(E3) ≤ M12
−n(I(X1;Y )+ǫ) + δ ≤ 2−2nǫ + δ

Pr(E5(u)) ≤ M2J2−n(I(U ;Y |X1)+ǫ) + δ ≤ 2−2nǫ + δ. (87)

Taking the limit ofδ → 0 yields the desired result.

B. Proof of Corollary 2

The Corollary follows from (13), by substitutingZ = (U,X1). The alphabet cardinality
bound is slightly larger (relatively to Corollary 1)|Z| ≤ |S| · |X1| · |X2|+ 1, because we have
an additional functionalH(X1|Z) whose zero value should be preserved. �

C. Proof of Theorem 3

Since the region described in (23) is trivially achievable by ignoring the CSI, we only need
to show that this is, in fact, an outer bound on the capacity region. Since the degenerate parallel
channel is a special case of a GGP channel with output(Y1, Y2), its capacity region can be
calculated using Theorem 1 by replacingY with (Y1, Y2). To establish an outer bound on the
capacity region we note that

I(U,X1;Y1, Y2) − I(X1, U ;S)
(a)
= I(U,X1;Y1, Y2) − I(U ;S|X1)

= I(X1;Y1, Y2) + I(U ;Y1, Y2|X1) − I(U ;S|X1)

= I(X1;Y1, Y2) + I(U ;Y1|X1)

+I(U ;Y2|X1, Y1) − I(U ;S|X1)
(b)

≤ I(X1;Y1, Y2) + I(U ;Y2|X1, Y1)

= I(X1;Y1) + I(X1;Y2|Y1) + I(U ;Y2|X1, Y1)

= I(X1;Y1) + I(X1, U ;Y2|Y1)

≤ I(X1;Y1) + I(X1, X2, S, U, Y1;Y2)
(c)
= I(X1;Y1) + I(X2;Y2). (88)
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where (a) follows from I(X1;S) = 0, (b) holds sinceI(U ;Y1|X1) ≤ I(U ;S,X1|X1) =
I(U ;S|X1), and(c) is because(X1, S, U, Y1) ↔ X2 ↔ Y2. Further,

I(U ;Y1, Y2|X1) − I(U ;S|X1)

= I(U ;Y1, Y2|X1) − I(U ;S|X1)

= I(U ;Y1, Y2|X1, S) − I(U ;S|X1, Y1, Y2)

≤ I(X2;Y1, Y2|X1, S)

≤ I(X2;Y2), (89)

where the first inequality is becauseU ↔ (X1, X2, S) ↔ (Y1, Y2) and the second inequality is
because(X1, S, Y1) ↔ X2 ↔ Y2.

This concludes the converse part, and the proof of the theorem.
�

D. Proof of Theorem 4

The proof of the converse part follows similarly to the proofof Theorem 1, with the exception
that in the causal case(Wc,W2, Y

i−1, Sn
i+1) is independent ofSi. Since the state sequence

is stationary andX1(i) is deterministic givenWc this means that the collection of random
variables defined in (77) in the causal case is such thatI(U,X1;S) = 0. As for the cardinality
of U , in addition to the functionals (85) one should also preserve the values ofIµ(U,X1;S) = 0.
This can be done by increasing|U| by 1 (relatively to the non-causal case) sinceI(U,X1;S) =
H(S) −H(X1, S|U) +H(X1|U).

As for the direct part, since(X1, U) and S are independent, the encoding scheme of the
non-causal case degenerates to one that does not include binning and hence, does not require
non-causal knowledge ofSn prior to transmission.

�

E. Proof of Theorem 6

1) Proof of the Converse Part of Theorem 6:In light of the comment preceding (33) and
Theorem 2, we can provide an outer bound for the capacity of the Gaussian GGP channel in
terms of the closure of the set of the rate pairs(Rc, R2) satisfying

R2 ≤ I(X2;Y |S,X1) (90)

Rc +R2 ≤ I(X2, X1;Y |S) − I(S;X1|Y ) (91)

for some measurePS,X1,X2,Y = QSPX1PX2|S,X1
WY |S,X1,X2

such thatE(X2
1 ) < P1, andE(X2

2 ) <
P2. In the sequel, we shall show that in the Gaussian channel case (29), the three inequalities
(20), (21) and (22) can be met with equality simultaneously.

Now,

I(X2, X1;Y |S) − I(S;X1|Y )

= h(Y |S) − h(N ′) − h(S|Y ) + h(S|X1, Y )

= h(Y ) + h(S|X1, Y ) − h(S) − h(N ′), (92)
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where h(Y |S) denotes the differential entropy ofY given S. Obviously for fixed second
moments,

E(X2
i ) = P̃i ≤ Pi i = 1, 2, σ12 , E(X2X1), σ2s , E(X2S), E(X1S) = 0,(93)

the differential entropy,h(Y ), is maximized ifY is Gaussian, i.e.,

h(Y ) =
1

2
log(2πe)(P̃2 + P̃1 + 2σ12 + 2σ2s +Q+N). (94)

Similarly, the conditional differential entropy,h(S|X1, Y ), is maximized if (S,X1, Y ) are
jointly Gaussian. Now, denote bŷSopt(X1, Y ) = E(S|X1, Y ) the MMSE estimator ofS given
(X1, Y ) observe that

h(S|X1, Y ) = h(S − Ŝopt(X1, Y )|X1, Y )

≤ h(S −E(S|X1, Y ))

= h(S −E(S|X1, X2 + S +N))

≤ 1

2
log
[

(2πe)E (S − E(S|X1, X2 + S +N))2]

≤ 1

2
log

[

(2πe) min
a,b

E (S − aX1 − b(X2 + S +N))2

]

=
1

2
log
[

(2πe)E (S − aoptX1 − bopt(X2 + S +N))2] , (95)

where in fact all the inequalities are attained with equality if (S,X1, X2, Y ) are jointly Gaus-
sian, and

aopt = − σ12(σ2s +Q)

P̃1(P̃2 + 2σ2s +Q+N) − σ2
12

bopt = −aoptP̃1

σ12

. (96)

Plugging (96) into (95) we get,

h(S|X1, Y ) =
1

2
log

(

(2πe)
QP̃2P̃1 + P̃1NQ− σ2

2sP̃1 −Qσ2
12

P̃2P̃1 + 2P̃1σ2s + P̃1Q+ P̃1N − σ2
12

)

. (97)

Recall the definition of the correlation coefficients (46). Eqs. (92)-(97) yield for(S,X1, X2)
jointly Gaussian

I(X2, X1;Y |S) − I(S;X1|Y )

=
1

2
log





(QP̃2P̃1 + P̃1NQ− σ2s
2P̃1 −Qσ12

2)(P̃2 + 2σ12 + 2σ2s + P̃1 +Q+N)

QN
(

P̃2P̃1 + 2P̃1σ2s + P̃1Q+ P̃1N − σ12
2
)



 (98)

=
1

2
log






1 +

(
√

P̃1 + ρ12

√

P̃2

)2

P̃2(1 − ρ2
2s − ρ2

12) +
(√

Q+ ρ2s

√

P̃2

)2

+N






+

1

2
log

(

1 +
P̃2(1 − ρ2

2s − ρ2
12)

N

)

,

, C(P̃2, P̃1, ρ12, ρ2s), (99)
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which also depends onQ andN , but for the sake of brevity this is omitted from the notation.
Combining (91)-(99), we get that for fixed second moments,

Rc +R2 ≤ C(P̃2, P̃1, ρ12, ρ2s). (100)

As for (90), for fixed second moments as in (93),I(X2;Y |S,X1) = h(X2+N
′|S,X1)−h(N ′)

is obviously upper bounded by(S,X1, X2) that are jointly Gaussian, yielding

R2 ≤ h(X2 +N ′|S,X1) − h(N ′)

=
1

2
logE

(

(

X2 +N ′ − σ2s

Q
S − σ12

P1
X1

)2
)

− 1

2
logN

=
1

2
log

(

1 +
P̃2(1 − ρ2

2s − ρ2
12)

N

)

, Θ(P̃2, ρ2s, ρ12). (101)

The capacity region is therefore outer bounded by the closure of the convex hull of the rate
pairs (Rc, R2) satisfying

R2 ≤ Θ(P̃2, ρ2s, ρ12)

Rc +R2 ≤ C(P̃2, P̃1, ρ12, ρ2s), (102)

for some covariance matrixΛX1,X2,S,N ′ of (X1, X2, S,N
′),

ΛX1,X2,S,N ′ =









P̃1 σ12 0 0

σ12 P̃2 σ2s 0
0 σ2s Q 0
0 0 0 N









(103)

satisfying

P̃1 ≤ P1 , P̃2 ≤ P2 (104)

and the nonnegative-definiteness condition

det (ΛX1,X2,S,N ′) = P̃1(P̃2QN − σ2
2sN) − σ2

12QN ≥ 0, (105)

i.e., for allQ > 0,

ρ2
2s + ρ2

12 ≤ 1. (106)

It remains to prove that one can replaceP̃1 and P̃2 in (102) byP1, P2, respectively. This is
equivalent to showing that the users should exploit all their allowable power.

To realize this, inspectingC(P̃2, P̃1, ρ12, ρ2s) andΘ(P̃2, ρ12, ρ2s), it is evident that it suffices
to considerρ12 ∈ [0, 1] andρ2s ∈ [−1, 0]. It is easy to verify that for fixed̃P2, ρ12 ∈ [0, 1], ρ2s ∈
[−1, 0], the functionC(P̃2, P̃1, ρ12, ρ2s) increases withP̃1. As Θ(P̃2, ρ2s, ρ12) is unaffected by
P̃1, this proves that one can replacẽP1 by P1.
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Now, a simple argument shows that also the informed encoder should use its entire power.
Let P1, P̃2 be the power used by the uninformed encoder. Assume in negation that the informed
encoder does not use all its power (i.e.,P̃2 < P2), and let an encoding scheme be given. Now,
consider an altered encoding scheme in which the informed encoder operates as before but
uses the extra power that is not exploited,P ′ , P2 − P̃2, adding to its original signal the
uninformed encoder’s signal multiplied by

√
P ′. This new scheme is equivalent to the original

scheme in which the uninformed encoder operate at power level P1 + P ′ rather thanP1. But,
we have previously proved that the uninformed encoder had better use all its power2, hence,
this scheme improves on the original one and contradicts theassumption that the informed
user does not use its entire power.

2) Proof of the Direct Part of Theorem 6:As for establishing an inner bound on the
capacity, choose in (8),S,X1, X2, Y that are jointly Gaussian with second momentsE(X2

1 ) =
P1, E(X2

2 ) = P2, note thatY in (29) can be expanded as follows:

Y = (X2 − X̂ lin
2 (X1, S)) + X̂ lin

2 (X1, S) +X1 + S +N ′, (107)

whereX̂ lin
2 (X1, S) is the optimal linear estimator (in the MMSE sense) ofX2 givenX1 and

S see (56). Denoting

X ′
2 = X2 − X̂ lin

2 (X1, S)

X ′
1 =

(

1 +
σ12

P1

)

X1

S ′ =

(

1 +
σ2s

Q

)

S, (108)

we get an alternative representation ofY

Y = X ′
1 +X ′

2 + S ′ +N ′. (109)

SinceS,X1, X2, Y are jointly Gaussian, andX ′
2 is the error in optimal estimation ofX2 given

(S,X1), we get thatS ′, X ′
2, X

′
1, N

′ are independent Gaussian random variables. Conditioning
on X ′

1, this brings us back to Costa’s model, i.e.,

Y ′ = Y − E(Y |X ′
1) = X ′

2 + S ′ +N ′ (110)

and implies that Costa’s choice of auxiliary random variable applied to our notation

U ′ = X ′
2 + αcostaS

′

αcosta =
E(X ′2

2 )

E(X ′2
2 ) +N

(111)

2In fact, this argument holds only after we show that (102) is not merely an outer bound on the capacity region but an
achievable one too, but for the sake of brevity we present this argument here rather than after establishing the direct part in
Section E.2

36



would be optimal in our original problem too. SubstitutingE(X ′2
2 ) = P2 − σ2

12

P1
− σ2

2s

Q
into U ′

we get

U ′ = X2 −
σ12

P1
·X1 −

σ2s

Q
· S +

P2 − σ2
12

P1
− σ2

2s

Q

P2 − σ2
12

P1
+

σ2
2s

Q
+N

·
(

1 +
σ2s

Q

)

S

= X2 −
σ12

P1

·X1 + αopt · S (112)

whereαopt is defined in (42). Define

U = X2 + αopt · S, (113)

for simplicity we will chooseU overU ′ although they are both optimal choices for the auxiliary
random variable.

Now,

I(X1, U ;Y ) − I(X1, U ;S)

=I(X1;Y ) + I(U ;Y |X1) − I(U ;S|X1) (114)

becauseX1 andS are independent. Further,

I(X1;Y ) =h(Y ) − h(Y ′|X1)

=h(Y ) − h(X ′
2 + S ′ +N ′)

=h(Y ′) − h(X ′
2 + S ′ +N ′)

=
1

2
log

(

E(X ′2
1 ) + E(X ′2

2 ) + E(S ′2) +N

E(X ′2
2 ) + E(S ′2) +N

)

=
1

2
log






1 +

P1

(

1 + σ12

P1

)2

P2 − σ2
12

P1
− σ2

2s

Q
+
(

1 + σ2s

Q

)2

Q+N






(115)

because the differential entropy of a Gaussian random variableA ∼ N (0, σ2) is 1
2
log(2πeσ2),

and by definition ofY ′, U ′, X ′
2. By direct application of Costa’s calculation [3],

I(U ;Y |X1) − I(U ;S|X1)

=
1

2
log

(

1 +
E(X ′2

2 )

N

)

=
1

2
log



1 +
P2 − σ2

12

P1
− σ2

2s

Q

N



 . (116)
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Substituting (46) into (115), (116), this proves that forU = X2 + αoptS we get

I(U ;Y |X1) + I(U ;S|X1) =

(

1 +
P2(1 − ρ2

2s − ρ2
12)

N

)

I(X1, U ;Y ) − I(X1, U ;S)

=
1

2
log

(

1 +

(√
P1 + ρ12

√
P2

)2

P2(1 − ρ2
2s − ρ2

12) +
(√

Q+ ρ2s

√
P2

)2
+N

)

+
1

2
log

(

1 +
P2(1 − ρ2

2s − ρ2
12)

N

)

(117)

which concludes the proof of the direct part of Theorem 6.

F. Proof of Corollary 5

Recall the expression for the capacity region (37), and substitute ∆ = 1 − ρ2
12 − ρ2

2s and
ρ = ρ2s.

It remains to show that
(i) one can consider∆ ∈ [∆min, 1] rather than∆ ∈ [0, 1] without loss of generality.
(ii) if ∆min > 0 the maximizingρ corresponding to∆min is − P1(P2+N)√

QP2(P1+Q)
.

(iii) for ∆ ∈ (∆min, 1] the maximization overρ can be limited to eitherρ = −
√

1 − ∆,
ρ = 0 or any real root ofg∆(ρ) that satisfiesρ ∈ [−

√
1 − ∆, 0]

Let T (∆, P1, P2, Q,N) be the trapezoid defined by the set of non-negative rate pairs(Rc, R2)
satisfying (39). To show (i)-(ii), assume∆min > 0 and note that for∆ ∈ [0,∆min], the
trapezoidT (∆, P1, P2, Q,N) is contained in the upper bound trapezoid (5), which in turn,can
be attained by takingρ = − P1(P2+N)√

QP2(P1+Q)
(which is a legitimate choice only when the condition

ρ2 + (1−∆− ρ)2 ≤ 1, as stated in (38)). This condition can be met whenever∆ ∈ [0,∆min].
To establish (iii), one needs to perform the maximization in(39). Deriving w.r.t.ρ yields the

equationg∆(ρ) = 0. Hence, the maximizingρ is either a root ofg∆(ρ) or lies on the border,
i.e, ρ = 0 or ρ = −

√
1 − ∆. �

G. Proof of Theorem 7

By specializing Theorem 6 to the case whereR2 = 0, we get

C(P1, P2, Q,N) = max
ρ12,ρ2s

C(P1, P2, ρ12, ρ2s) (118)

whereC(P1, P2, ρ12, ρ2s) is defined in (99), and the maximization is overρ2s ∈ [−1, 0], ρ12 ∈
[0, 1], such that,ρ2

12 + ρ2
2s ≤ 1. It remains to prove that (52) and (118) are equivalent.

Recall the definition ofρ∗12, ρ
∗
2s(see (50)).

Lemma 1 For fixedP1, P2, the functionC(P1, P2, ρ12, ρ2s) has no more than a single extremum
point at ρ∗12, ρ

∗
2s yielding

C(P1, P2, ρ
∗
12, ρ

∗
2s) =

1

2
log

(

1 +
P1

Q

)

+
1

2
log

(

1 +
P2

N

)

. (119)
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The proof of this lemma appears in Appendix I.
Now, the r.h.s. of (119) is obviously a global maximum of our target function due to Theorem

5.
Therefore,(ρ∗12, ρ

∗
2s) in (50) is the single maximal point ofC(P2, P1, ρ12, ρ2s), and the r.h.s.

of (119) expresses the capacitywhenever3 the nonnegative-definiteness constraint (106) is not
met with equality. Plugging(ρ∗12, ρ

∗
2s) into (106) we get that the range of parameters for which

(119) is the capacity of the GGP channel is

ρ∗12 + ρ∗2s ≤ 1 ⇒ P1(P2 +N)2

P1 +Q
≤ P2Q. (120)

For the complementary range of parameters, i.e.,P1(P2+N)2

P1+Q
> P2Q, for which the constraint

in the optimization (106) is attained with equality, i.e.,ρ2
12 + ρ2

2s = 1, we denoteρ = ρ2s and
substitute this relation intoC(P2, P1, ρ12, ρ2s) yielding the maximization

maxρ∈[−1,0]
1
2
log

(

1 +

“√
P1+

√
P2

√
1−ρ2

”2

(
√

Q+
√

P2·ρ)
2
+N

)

. A simple derivative of the above function w.r.t.ρ

shows that either the maximizingρ lies on the boundaryρ = 0 or ρ = −1, or the real roots
of the 4th order polynomialg0(ρ) in (40).

�

H. Proof of Theorem 9

Following the proof of Theorem 7, one realizes that, in fact,C(P1, P2, Q,N) (see (52))
expresses the highest achievable rate when the uninformed and informed users transmit using
power levelsP1 andP2, respectively. Therefore, to obtain the capacity formula for the sum
power constraint, (31), one can letζ ∈ [0, 1] stand for the portion of the powerP that is
devoted to the informed user, substituteP1 = (1− ζ)P andP2 = ζP in C(P1, P2, Q,N), and
perform the maximization overζ ∈ [0, 1], that is,

C(P,Q,N) = max
ζ∈[0,1]

C((1 − ζ)P, ζP,Q,N). (121)

For fixedQ,N denote

f1(P1, P2) =
1

2
log

(

1 +
P1

Q

)

+
1

2
log

(

1 +
P2

N

)

f2(P1, P2) = max
ρ∈[−1,0]

1

2
log






1 +

(√
P1 +

√
P2

√

1 − ρ2
)2

(√
Q+

√
P2 · ρ

)2
+N






. (122)

Thus, by (121) and by definition ofC(P1, P2, Q,N) (52) we have

C(P,Q,N) = max
ζ∈[0,1]

{

f1 ((1 − ζ)P, ζP ) if (1−ζ)(ζP+N)2

(1−ζ)P+Q
≤ ζQ

f2 ((1 − ζ)P, ζP ) otherwise
. (123)

3As it was shown in Lemma 1 there is a single extremum toC(P̃2, P̃1, σ12, σ2s).
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Lemma 1 and its proceeding comment yield that for allP1, P2,

f1(P1, P2) ≥ f2(P1, P2). (124)

Applying this toP1 = (1 − ζ)P andP2 = ζP , and maximizing overζ ∈ [0, 1], we get

max
ζ∈[0,1]

f1 ((1 − ζ)P, ζP ) ≥ max
ζ∈[0,1]

f2 ((1 − ζ)P, ζP ) . (125)

Now, for fixedP , the functionf1 ((1 − ζ)P, ζP ) is concave w.r.t.ζ with maximum atζ∗ =
P+Q−N

2P
. Hence, ifζ∗ ∈ [0, 1] and (1−ζ∗)(ζ∗P+N)2

(1−ζ∗)P+Q
≤ ζ∗Q, one has

C(P,Q,N) = C((1 − ζ)P, ζP,Q,N)|ζ=ζ∗ =
1

2
log

(Q+ P +N)2

4QN
. (126)

It is easy to verify that the condition thatζ∗ ∈ [0, 1] and (1−ζ∗)(ζ∗P+N)2

(1−ζ∗)P+Q
≤ ζ∗Q is equivalent

to 1
3
(N − P ) + 2

3

√
P 2 + PN +N2 ≤ Q ≤ P +N .

If ζ∗ > 1, and (1−ζ∗)(ζ∗P+N)2

(1−ζ∗)P+Q
≤ ζ∗Q, the concavity off1 ((1 − ζ)P, ζP ) w.r.t. ζ implies that

it is an increasing function ofζ for ζ ∈ [0, 1], and (125) yields

C(P,Q,N) = C((1 − ζ)P, ζP,Q,N)|ζ=1 =
1

2
log

(

1 +
P

N

)

. (127)

It is easy to verify that the condition thatζ∗ > 1, and (1−ζ∗)(ζ∗P+N)2

(1−ζ∗)P+Q
≤ ζ∗Q, is equivalent to

Q ≥ P +N .
For all other cases, that is, whetherζ∗ < 0 or (1−ζ∗)(ζ∗P+N)2

(1−ζ∗)P+Q
≥ ζ∗Q, one gets from (123),

C(P,Q,N) = max
ζ∈[0,1]

f2 ((1 − ζ)P, ζP ) , (128)

which concludes the proof of Theorem 9.

I. Proof of Lemma 1

A necessary condition for(ρ̃12, ρ̃2s) to be an extremum point ofC(P1, P̃2, ρ12, ρ2s) is that
the following equality holds

(

∂

∂σ12
C(P2, P1, ρ12, ρ2s) −

∂

∂ρ2s
C(P2, P1, ρ12, ρ2s)

)∣

∣

∣

∣

(ρ12,ρ2s)=(ρ̃12,ρ̃2s)

= 0 (129)

this yields

−2P1(ρ2s + Q)(P2 + Q + N + 2σ12 + P1 + 2σ2s)(−P1P2 + Qσ12 + σ2
12 − P1N + σ2sσ12 − P1σ2s)

QN(P2P1 + 2P1σ2s + P1Q + P1N − σ2
12)2

= 0, (130)

i.e., for (ρ̃12, ρ̃2s) to be an extremum point, at least one of the following should be met: either
σ̃2s = −Q or σ̃12 + σ̃2s = −1

2
(P̃1 + P̃2 +Q+N) or σ̃2s = (σ̃12)2+Qσ̃12−P̃1(P̃2+N)

P̃1−σ̃12
. We shall next

show that it is only the latter that is met at an extremum point.
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• σ̃2s = −Q : no extremum point satisfies this, as

∂2C(P̃1, P̃2, σ12, σ2s)

∂σ2
12

∣

∣

∣

∣

∣

σ2s=−Q

= 0. (131)

• σ̃12 + σ̃2s = −1
2
(P̃1 + P̃2 +Q+N): substituting this relation intoC(P̃1, P̃2, σ12, σ2s) and

deriving w.r.t.σ2s, yields the suspected extremum(σ̃12, σ̃2s) =
(

Q−P̃1−P̃2−N
2

,−Q
)

and
from (131) we have again that this cannot be a extremum.

As for the third conditioñσ2s = (σ̃12)2+Qσ̃12−P̃1(P̃2+N)

P̃1−σ̃12
: substituting this relation intoC(P̃1, P̃2, σ12, σ2s),

we get

C(P̃1, P̃2, σ̃12, σ̃2s) = −(Qσ̃2
12 − P̃ 2

1 P̃2 − P̃ 2
1N + P̃1σ̃

2
12)(−P̃2 + P̃1 +Q−N)

QN(P̃1 − σ̃12)2
(132)

deriving w.r.t.σ12 yields the suspected maximum

σ∗
12 = −σ∗

2s =
P̃1(P̃2 +N)

P̃1 +Q
(133)

substituting this point yields

C(P̃1, P̃2, σ
∗
12, σ

∗
2s) =

1

2
log

(

1 +
P̃1

Q

)

+
1

2
log

(

1 +
P̃2

N

)

. (134)

�
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[32] A. Somekh-Baruch, S. Shamai (Shitz), and S. Verdú, “Cooperative encoding with asymmetric state information at the

transmitters.” preprint.
[33] D. Slepian and J. K. Wolf, “A coding theorem for multipleaccess channels with correlated sources,”Bell Systems

Technical Journal, vol. 52, pp. 1037–1076, September 1973.
[34] S. Jafar, “Capacity with causal and noncausal side information: A unified view,”IEEE transactions Information Theory,

vol. 52, pp. 5468–5474, December 2006.
[35] R. G. Gallager,Information Theory and Reliable Communication. New York: Wiley, 1968.

43




