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Cooperative Multiple Access Encoding with States
Available at One Transmitter

Anelia Somekh-Baruch  Shlomo Shamai (Shitz) Sergio Werd

Abstract

We generalize the Gel'fand-Pinsker model to encompass eéhg of a memoryless multiple-
access channel. According to this setup, only one of thedmrsdknows the state of the channel (non-
causally), which is also unknown to the receiver. Two indef@nt messages are transmitted: a common
message and a message transmitted by the informed encoeléind\an explicit characterization of
the capacity region of this channel. An explicit charaa&tion of the capacity region is also provided
for the same channel with causal channel state informakarther, we apply the general formula
to the Gaussian case with non-causal channel state infamainder an individual power constraint
as well as a sum power constraint. In this case, the capasgfipn is achievable by a generalized
writing-on-dirty-paper scheme.

I. INTRODUCTION

Communication over state-dependent channels has beconmeéedy wnvestigated research
area. The framework of channel states available at therittes dates back to Shannon [1],
who characterized the capacity of a state-dependent méessrghannel whose states are i.i.d.
and available causally to the transmitter. In their celsatgpaper [2], Gel'fand and Pinsker
established a single-letter formula for the capacity ofgame channel under the conceptually
different setup where the transmitter observes the chastatds non-causally. The main tool
in proving achievability in this setup is the binning enaagliprinciple [2]. Costa [3] applied
Gel'fand Pinsker’s (GP) result to the Gaussian case, wihere tare two additive Gaussian noise
sources, one of which, the interference, takes the role efcttannel state. Costa originated
the term “writing on dirty paper” which stands for an apptioa of GP’s binning encoding
scheme that adapts the transmitted signal to the channe$ staquence rather than attempting
to cancel it. This results in a surprising phenomenon - trexaiyve upper bound, of a channel
having no interference, can be attained, even though thenehatates are not known to the
receiver. It was shown in [4],[5], that this principle canies to hold even if the interference
is not Gaussian. Extensions of these channel models to thie-oser case were performed by
Gel'fand and Pinsker in [6] who showed that interferencecetation is also possible in the
Gaussian broadcast channel, and the Gaussian MultiplesdaCbannel (MAC). Kim et al.
[7] showed that a similar thing happens for the physicallgrdded Gaussian relay channel.
Steinberg and Shamai [8] provided achievable rates for toadzast channel with states
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known non-causally at the transmitter. Another multi-usaension, where the channel state
information (CSI) is causally available at the transmgtgt], was made by Steinberg [9] for
the capacity region of the degraded broadcast channel Oy fie capacity of the physically
degraded relay channel with causal CSI was found. For odleted work see [11], [12], [13],
[14].

Much research interest has been devoted to applicationsesktchannel models, for ex-
ample, watermarking, [15], [16], [17], [18], [19], multiput-multi-output (MIMO) broadcast
channels, [20], where dirty-paper coding happens to be &atengredient in achieving the
capacity region, and cooperative networks, [21].

In [22] and [23], the problem of a two-user GP MAC with CSI knowon-causally to only
one of the encoders, and each encoder transmitting a sepaeasage, is addressed. While the
symmetric (interference known to all the encoders) Gansséup of [6] enables interference
cancelation and the capacity region is characterized,follye, only inner and outer bounds
on the capacity region of the additive white Gaussian MAC a&#l as the general discrete
channel are derived. In the asymmetric case, even in thesi@ausiodel the capacity region,
yet unknown, is degraded in general as compared to the ndergace case. The inner bound
on the capacity region is attained by a generalized dirtyepapding (DPC) scheme used by
the informed encoder, that allows arbitrary correlatiotwaen the codeword and the known
CSI. Another paper in which asymmetric CSI at the transmstie studied is [24], where full
CSI at the decoder is assumed.

In this paper, which generalizes a former conference verf2b], we consider the GP
memoryless two-user MAC, with CSI available non-causatlyohe of the encoders but not
to the other encoder nor to the receiver. The problem coresidbere is that of two users
transmitting a common message, and the informed encodesnitting a private message.
We refer to this channel as a Generalized GP (GGP) channekhakacterize the capacity
region for the general finite-alphabet case with a singtedexpression. This is enabled by a
generalized binning coding scheme. It is argued that thglesiletter characterization remains
the same even if one allows feedback at the informed encbdenot at the uninformed encoder
(similarly to the single-user GP channel setting [26]). WHeedback does not increase the
ultimate rate, it simplifies considerably the signallingtteique which is capable of approaching
capacity [26]. We specialize the expression of the capaetjon to the case where it is only a
common message that is being transmitted. Transmissiorsimigde common message source
can be regarded as a single-user channel, in the sensedhaidlone message source and one
destination. The capacity in this case is referred to @rmamon message capacitfe also
generalize [1] by providing a single-letter expressiontfag same setup considered in the GGP
channel with the exception that the CSl is availatdeisallyto one encoder only. The channel,
in this case, is referred to as an asymmetric causal stpendent channel. Further, we consider
the Gaussian channel with non-causal CSI under both anichdivpower constraint and a sum
power constraint. In contrast to Costa’s setup and to thensgtmc Gaussian MAC [7], where
the very trivial operative upper bound of a channel havingmerference is achievable, in our
setup one cannot hope for complete interference canceldflus renders the converse part of
the theorem a more ambitious task. We define therefore arvagot notion of interference
cancelation that is adequate to our setup. We present aatiygsouter bound on the achievable

2



rate pairs and point out the loss due to the asymmetric sidenwation. The resulting outer
bound is shown to be achievable in the Gaussian case, yge&ditlosed-form expression for
the capacity region. We further specialize the resultséoctmmon message capacity case, and
we characterize the optimal strategy of the informed encbdéncing the tradeoff between
enhancing the signal of the uninformed encoder, decredbimgnterference, and transmitting
an additional information about the message that is nostrétited by the uninformed encoder.
We point out the optimal power allocation between the twasisdien the sum power constraint
is concerned. Another interesting insight derived from pineof is the capacity region of a
class of finite alphabet and Gaussian parallel channelsmaithcausal side information at the
transmitter.

A Cognitive Radio (see, [27], [28], [29], [30]) is a devicelded to an existing system having
licensed users, that is capable of sensing its environmehtnaaking use of that knowledge
to increase the spectral efficiency of the system. A usefudehtor the cognitive radio is as
a transmitter with side information about the primary (lised) transmission. An assumption
made in the models considered in [27], [30] is that the cagmitadio has non-causal knowledge
of the codeword of the primary user. In our setup, the infatreecoder can be thought of as a
cognitive radio, which identifies the channel states (tlaat stand for other interfering signals)
helps the licensed user to transmit the message, exploisrgide information, and transmits
an additional message. The model applies also to coopernatimsmission in the realm of the
cognitive paradigm (that is one of the nodes is cognizanhefahannel state which stands for
information transmitted in the system). Another applicatof our results is to watermarking,
where two encoders are jointly embedding the watermark fifsigperforms the embedding in
a generic way, i.e., independently of the actual covertaxd, the second embeds information
in a covertext-dependent method. Our work accounts alsotfoer scenarios of cooperative
communication used to increase performance [21], [31], targdwill be detailed in [32].

The rest of this paper is organized as follows. In Section él state the problem more
explicitly and define some notation that will be used thraughthe paper. Section Il is
devoted to establishing a single-letter expression forG&P channel capacity region in the
discrete case, an outer bound on the capacity region, anchifeity region of a special class
of GGP channels, referred to as degenerate parallel ctanhleé causal case is treated in
Section IV where we provide the capacity region formula foe assymmetric causal state-
dependent channel. In Section V we apply the single-lettpression of the GGP channel to
the Gaussian channel with non-causal CSI, and establiskxg@itie closed-form expression.
Section VI concludes with a summary of the main contribwgion this paper.

[1. NOTATION AND PROBLEM SETUP

Throughout the paper, random variables will be denoted pitaldetters, while deterministic
realizations thereof will be denoted by lower-case lettéfs shall use the short-hand notation
r] to abbreviate(z;, z; 11, ...,x;), and 2" = (xy,...,x,). For convenience, the-vector 2"
will occasionally be denoted by the boldface notatoras well. The probability law of a
random variableX will be denoted byPy, and the conditional probability distribution of
given X will be denoted byFy|x. The alphabet of a scalar RX, will be designated by the



corresponding caligraphic letté¥’. The set of probability distributions defined on an alphabet
X, will be denoted byP(X'). The cardinality of a sed will be denoted by|.A|.

A stationary memoryless state-dependent multiple-acdemsnel is defined by a distribution
Qs on the setS and the channel conditional probability distributidfy s x, x, from S x X} x
Xy to Y. Let X7y = (Xi(1), ..., Xi(n)) and X{,) = (X2(1), ..., Xa(n)) designate the inputs of
transmittersl and2 to the channel, respectively. The output of the channel ot byY ™.
The stationarity and memorylessness assumptions impty tha

Pynjsnx xpy (075" 2", 3") = [ [ Wajs x o (wilsi, i, ).
=1

The symbolsS;, X (i), X2(i) andY; represent the channel state, the channel inputs produced
by two distinct encoders, and the channel output, at timexrdrespectively. We assume that
the channel stateS™ are i.i.d., each distributed according €. As can be seen is Figure 1,
the setup we consider is asymmetric in the sense that ontyden? is informed of the channel
states, while neither the other encoder nor the decoder khewchannel states. Unlike the
ordinary MAC, with partially known state information, wel@ah a common message source
fed to both encoders, and an independent message that isttansenitted by the informed
encoder. When encod@robserves the CSI non-causally, we shall refer to this cHaame
Generalized Gel'fand-Pinsker (GGP) channel, when encddéserves the states causally, the
channel will be referred to as an asymmetric causal stgterakent channel.

A sub-class of GGP channels that will be of special interesihé following. Amemoryless
parallel channel with non-causal asymmetric side inforimatis a GGP channel with =
(Y1,Y;) and

Wyivasxix. = Wwx,sWyxa,s- (1)

In words, this is a GGP channel with two outp¥{g1), ..., Yi(n) andY5(1), ..., Yo(n) that are
both observed by the receiver. If, in addition, one has

Wyoixas = Wyyx, 2)

we shall say that the parallel channel is degenerate.

The common messagg)., and the private messagd),, are independent random variables
uniformly distributed over the set§l, ..., M.} and {1, ..., M,}, respectively, where\l, =
lenfe] and My = [e™f2]. An (efe, ef2 n)-code for the GGP channel consists of two encoders

oV, o and a decoder,: the first encoder, unaware of the CSI is defined by a mapping

o {1, MY — A (3)
The second encoder, observes the CSI non-causally, andinediéy a mapping
©@ {1, MY x {1, ., My} x St — A (4)
The decoder is a mapping
Ut V= {1, M} x {1, ..., My}. (5)
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Fig. 1. Asymmetric state-dependent MAC with a common messag

An (e ef2 n)-code for the asymmetric causal state-dependent chandefireed similarly
to that of the GGP channel, with the exception that the seemedder is defined by a sequence
of mappings

e {1, MY x {1, My xS = Xy i=1,..n, (6)

n,i

and at time index, the channel input is given by(;(i) = @fl%z(Wc,Wg, SY).
An (e, n, R., Ry)-code for the GGP channel is a cod,efll), @,22),%) having average prob-
ability of error not exceeding, i.e.,

Pr((We, Wa) # ¥a(Y")) < e (7)

A rate pair(R,, R,) is said to be achievable if there exists a sequende,of, R., R,)-codes
with lim,, ., €, = 0. The capacity region of the GGP channel is defined as the relaxuthe
set of achievabléR., R,) rate pairs. The definitions of af, n, R., R2)-code, an achievable
rate pair and the capacity region of the asymmetric cauatd-skependent channel are similar.

IIl. CAPACITY REGION - FINITE INPUT ALPHABET GGP (HANNEL

The following theorem provides a single-letter expresdimnthe capacity region of the
finite-input-alphabet GGP channel, that is, when the alptea®, A, X, are finite.

Theorem 1 The capacity region of the finite input alphabet GGP chan@elis the closure
of all rate pairs, (R, R,), satisfying
Ry, < I(U;Y|Xy) - I(U; S|Xy)
Rc+R2 < I<U7X17Y)_I(U7X175)7 (8)



for some joint measur®s x, y.x,y ONS x X3 x U x X, x Y having the form

Ps x,.u.x.v = QsPx, Puis,x, Px,15.x,0 Wy|s,x1, X2 9)
where
Ul < [S]- X - | A (10)

The proof of Theorem 1 appears in Appendix A, the direct parthe proof involves error
probability analysis of a coding scheme and is describetiensequel (after Corollary 2). The
proof is a quite straightforward extension of its GP coupaetr [2] and an immediate extension
of the proof of Theorem 1 in [25].

It is noted that Theorem 1 remains intact if we allow for fegchto the informed encoder,
i.e., if, before producing theé-th channel input symbol, the informed encoder observes the
previous channel outputd;*!, that is, while the uninformed encoder is a mapping of the
form (3), the informed encoder is actually sequences of imgsp>” = {p” )7, with

O L1 UMY x {1, My} x ST x YT A (11)

It is easily verified that for the case of a channel which doatsdepend on the states, i.e.,
Wy s.x1,.x. = Wyx,,x., the expression for the capacity region reduces to theataile of rate
pairs (R., Ry) satisfying

R0+R2 I(XlaXZ;Y)a (12)

for some P, x, x,v = PzPx,|zPx.,zWy|x,,x,- This expression coincides with that of [33],
which studies a MAC with two private messageg;, )V, and a common message [33],
degenerated to the case of no message(R; = 0).

We now specialize Theorem 1 to the important case where dr@dycommon message is
transmitted.

Corollary 1 The common message capacity of the finite input alphabet G@mnel is given
by
C = max [I(U,Xl,Y) _I(U7X17S)]7 (13)
where the maximum is over all the joint measufgsy, 1 x, y ONS x &} xU x X5 x Y having
the form
PS,Xl,U,Xg,Y = QSPX1PU,X2|S,X1 WY|S,X1,X27 (14)
where |[U| < [S| - |X1] - | Xy
Corollary 1 follows from Theorem 1 by relaxing the consttan R in (8). Also, there exists

a maximizing measure witlX, that is a deterministic function dfS, X;,U). The following
corollary provides an alternative expression ¢ar



Corollary 2 The common message capacity of the finite input alphabet G@mnel is given
by
C=max[I(Z;Y)—-1(Z;9)], (15)

where the maximum is over all the joint measuRes, z x,y onS x X} x Z x X, x Y having
the form

Ps x, z.x.v = QsPx, Pz x,15,x,Wy|s,x1,X2 (16)

and X; is a deterministic function of. The alphabet cardinality of satisfies|Z| < |S| -
| X - || + 1.

We note that the condition thaf; is a deterministic function of can be replaced by; <
Z < S. The proof appears in Appendix B.

We now give a description of a random coding scheme that id tesprove the achievability
part of Theorem 1. It is based on the following principle: lBomeasurePs x, v x, satisfying
(9), the uninformed user transmits at rdte = /(X;;Y’). Now the informed user can transmit
using a Gel'fand Pinsker-like scheme, at ré&te= 1(U;Y, X,)—1(U; S, X,) = [(U; Y| X1) —
I(U; S|X;), and that is by treatind(; as part of the state, and accounting for the fact that
X is available at the decoder already as the information sgritido uninformed encoder has
been decoded first. Now the information sent by the infornrembder at ratg?;, can be shared
between the private messapg, and the common messaye. .

Encoding:

Fix a measurePs x, v x,y Satisfying (9). The following scheme is used to show (see

Appendix A.2) that the rate pair

R; = ](U§Y|X1) _I(U§S‘X1)

Ry = I(Xi;Y) - I(Xy;9) = I(Xy;Y) 17)
is achievable.
Denote
M, = HEnY)=d
M, = erlWYIX0)-IU;S|X1)~d
J = enllUssixi+2d (18)

The random encoders operate as follows: The uninformeddemnatraws)/, i.i.d. vectors,
{x,}2", each with i.i.d. components drawn subjecitg, . The ordered collection of the drawn
vectors constitutes the codebook used by the uninformeddenc

For each codewordx,, the informed encoder draw&/; x J auxiliary vectors, denoted
{w i}, k=1,..., My, j=1,..,J, independently and with i.i.d. components gien Hence,
each codeword in the uninformed user codebook is associdgtbda codebook of auxiliary
codewords.

To transmit/, the uninformed encoder transmits the vecter Transmission of is done
by the informed encoder who searches for the lowest {1, ..., J} such thatu j, is jointly
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typical with (x,, s). Denote thisj by j(s, ¢, k). If such j, is not found, or if the observed state
sequencss is non-typical, an error is declared arits, ¢, k) is set toj = 1.

Finally, the output of the second (informed) encoder is aarek that is drawn i.i.d. con-
ditionally given (s, uy j(s.e.k), X¢) (Using conditional measure that is the appropriate makgina
of QsPx, Py x,x,,5) o
Decoding: Upon observingy, the decoder searches for a pair of indicgsk), such that
X;, Uy j,; are jointly typical withy and outputs them. If there is no such pair, or it is not
unique, an error is declared.

The analysis of the probability of error of this scheme isfgrened in Section A.2 estab-
lishing the achievability of the rate pa(i?;, R:) (17). As mentioned earlier, the proof of the
converse part of Theorem 1 can be found in Appendix A.1.

The following claim completes the proof of the direct partTdfeorem 1.

Claim 1 If (R, R.) is achievable, then so i€, R. + R»).

Proof: Bits that are attributed t®), can instead be attributed .. [ |

This proves that als@0, R; + R}) is achievable and thus the entire trapezoid (8) is an
achievable region.

It should be noted, that when the common message capacincemed, the above encoding
scheme can be applied by attributing the bits assignéd’{an the above described scheme,
to the common messagé’.. The output of decoder is the pair = (¢, k).

We now state a theorem that provides an outer bound on theitapegion of the GGP
channel. It is a generalization of the trivial bounthxp, , I(X;Y]S) on the capacity of the
ordinary single-user GP channel. This theorem will be ohgesegnificance in the proof of the
converse part of the coding theorem for the Gaussian GGPnehasince this upper bound is
achievable in the Gaussian case.

Theorem 2 The closure of the set of rate pairs satisfying
Ry < I(XY|S X))
R.+ Ry < I(Xy,XyY|S)—1(S;X4]Y) (19)

for some measuré’s x, x, v = QsPx, Px,s,x,Wy|s x,,x, IS an outer bound on the capacity
region of the GGP channel.

Proof: Recall that the capacity region of the finite input alphab&PRGchannel is given
by (8). Now,

(U, Xy;Y) = I(U, X33 5)
(U, X17Y\S) I(U, Xy S\Y)
(X
(

(X0, X Y]S) — 1(S:X]Y)  I(U: 81X, Y)
< I(Xy, X Y[S) = I(S; XqY), (21)

where the first inequality holds sinéé <« (X5, X;,S5) < Y is a Markov chain.
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Further,
I(U;Y[Xy) = I(U; 5]X1)
< I(X;Y[S, Xq), (22)
which concludes the proof of Theorem 2. [ |

In the following theorem, we find the capacity region of thgeleerate parallel GGP channel,
for which we establish the fact that the CSI does not help.

Theorem 3 The capacity region of the degenerate parallel GGP chansekqual to the
capacity region obtained without transmitter CSI, i.e.,

Ry, <
R.+ Ry, < C1+Cy, (23)

where(C is the capacity of the channély,|x, ¢ obtained without transmitter CSI, an@, is
the capacity of the channél’y,x,.

The proof of Theorem 3 appears in Appendix C.

IV. THE CAUSAL ASYMMETRIC STATE-DEPENDENT CHANNEL
In this section we consider the causal asymmetric stateratemt channel (see (6)).

Theorem 4 The capacity region of the finite input alphabet causal asginmstate-dependent
channel is given by the closure of the set of rate péfs, R.) satisfying

R+ Ry < I(UX:Y), (24)
for some joint measur®s x, y.x,y ONS x X3 x U x X, x Y having the form
PS,Xl,U,Xg,Y = QSPX1,UPX2\S,X1,UWY\S,X1,X2, (25)
where |U{| satisfies
Ul < [S]- 1] |A] + 1. (26)

The proof can be found in Appendix D.

The expression for the capacity region of Theorem 4 can lepgréted as a special case of
Theorem 1, wheré is independent of. This is similar to the relation between the expression
for the capacity of state dependent channel with causal @8duced by Shannon [1], and
its non-causal counterpart, the Gel'fand-Pinsker [2] cledifi34].

Specializing Theorem 4 to the case where there is only artrissgon of a common message,
we get the following.
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Corollary 3 The common message capacity of the finite input alphabetatasymmetric
state-dependent channel is given by

Ccausal = max ](Ua Y)a (27)

where the maximum is over all the joint measukgsy, 1 x,y ONS x &} xU x X5 x Y having
the form

Ps x,,0.x5y = QsPuPx,juPxy5,0,x,Wy|s,x1, X0 (28)
where X is a deterministic function o/, and |U/| < |S| - |X)] - | Xs| + 2.

We note that an alternative expression Qy,,s.,; with 1(U, X1;Y) replacingl (U;Y') in (27),
and whereX; does not have to be deterministic givehwith |t/ < |S| - |X)| - |Xs] + 1
also holds. The proof is similar to that of Theorem 4 and tlsusmitted. As a side note, we
mention that if the CSI is available to both of the encoddns, $ingle-letter expression for
the common message capacity is deduced as a direct appiicaitithe formula derived by
Shannon [1] for a channel with input alphab®t x X;.

V. THE GAUSSIAN GGP (HANNEL

In this section we analyze the additive Gaussian GGP chaim8libsection V-A we present
the channel model, and the power constraints that we andlggdészidual and sum power
constraints). Based on the results obtained in Sectiondl,derive a closed-form formula
for the capacity region under individual power constraint$Subsection V-B, and discuss it.
The results are then specialized in Subsection V-C to thentmmmessage capacity under
individual power constraints, where we also provide sdveumerical results. We conclude
this section in Subsection V-D where sum power constrairesaddressed.

A. Channel Model
The Gaussian GGP channel is given by
Y; = Xi1(i) + Xa(i) + S; + N. (29)

As before, the messag#’. is available to both encoders. Only the second encoder ktiosvs
realization of the interferencé™ (non-causally), and the messagé to be transmitted. The
noise processes" and N, are assumed to be zero-mean Gaussian i.i.d. B{ty) = Q and

E(N’f) = N. The processV™ is independent o(X(“l),X(’g), S”). Several power constraints
can be considered:
a) Individual power constraint:

1 & , 1 .
EZX%(Z) <P, Eng(@) < P, (30)
b) Sum power constraint:

% Z X2(i) + % ng(z’) <P (31)



c) Total received power constraint:
—Z X1() + X5(i))* < P, (32)

where here it is evident that all the power should be assigmdéide informed encoder, and the
problem degenerates to the ordinary “dirty paper” Costas], where the informed trans-
mitter can assign bits of the transmitted information the&idV,. or W;, that is, the capacity
region in this case is a triangle whose vertgk., R») points are(0,0), (0,3 1log (1+ £)),
and (1log (1+ %) ,0).

We are interested in finding the capacity regions for theviddial power constraint and
the sum power constraint. To this end, using standard tqabsi [35], an application of
the single-letter expression derived for the finite alphalase to the Gaussian GGP channel
Wy s.x1.x, (Y] s, 7, 2') = ﬁe‘(y‘s‘w‘f'w?” with the individual power constraint gives the
capacity regiorC(Py, P»,Q, N) as the closure of the union of rate pai8., R,) satisfying
(8) where the allowed joint distribution &, X, U, X,, Y satisfies (9), and

E(X}) < P, E(X3) < Py, (33)

When the sum power constraint is considered, the exprefsidhe capacity region, denoted
C(P,Q, N), remains the same with the exception that (33) is replacéu MiX?) + E(X3) <
P.

B. Capacity Region under Individual Power Constraints

Before establishing the capacity region of the GGP channdkeuindividual power con-
straints, we provide an outer bound which takes on a very Isifggm. Then, we establish
the tightness of this bound for a certain range of rates. dieroto present the outer bound we
need the following definition of a special case of a degeegpatallel channel (see (1)-(2)).

Definition 1 A Gaussian degenerate parallel channel with non-causatmasgtric CSI is a
GGP channel whoséth output is given byy; = (Y;(7), Y2(¢)) with

Yi(i) = Xui(i)+5;

Ya(i) = Xo(i) + NV, (34)
where S™ and N are i.i.d. Gaussian independent noise processes.
Theorem 5 The capacity region of the Gaussian degenerate parallehoblwith non-causal

asymmetric CSI under individual power constraints is gibgnthe set of rate pair$R,., R,)
satisfying

1 Py
< -
Ry < 2log (1+ N) (35)
1 P 1 Py
< = _ — — .
R.+ Ry, < 2log(1+Q)+2log(1+N) (36)
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Proof: This is an immediate consequence of Theorem 3 applied to #ussian casel
The capacity region of this degenerate parallel channefagos that of the GGP channel, as
the decoder has more informatiofy;; (i), Y(¢)) rather thany (i) = Y (i) + Y2(¢), and yields
the following outer bound t@( Py, P, Q, N).

Corollary 4 C(Py, P,,Q, N) is contained in the set of rate pai(®2., R,) satisfying (35) and
(36).

The following theorem provides an explicit characteriaatfor the capacity region of this
channel for the individual power constraints.

Theorem 6 The capacity regiorC(Py, P>, @, N) of the Gaussian GGP channel under indi-
vidual power constraints is given by the union of the raterpaatisfying

1 Py(1— p2, — p?
R2<—log(1+ 5 ( P12 1025))

-2 N
2
1 VP, + p1ov/ P
RC+R2§—log<1+ ( 17T P12 2) ! )
2 Po(1 = ply = p3,) + (VQ + posV/P2)” + N
1 Pz(l_p%_P%)
—1 1 - 37
+ 5 og< + N (37)
for somepy, € [0, 1], p2s € [—1,0] such that

We note that the expression for the capacity region can beli§ied for certain ranges of
rates, this will be done in the sequel (see Proposition 1yemer, in Corollary 5 to follow,
we specify the(pya, pos)-pairs that yield vertex points which lie on the border of tdapacity
region. The proof of Theorem 6 appears in Appendix E.

The following Corollary provides a more explicit charactation of the capacity region, it
follows from Theorem 6, by substituting = 1 — p?, — p3, and p = pas.

Corollary 5 The capacity region of the Gaussian GGP channel under iddali power con-
straints,C(P;, P, @, N), is given by the union of the rate pairs satisfying

1 P,A
< 2] 1
R2_2og<+N)

2

. (VA+VI=A=pVE) | PA

R.+Ry< max —log |1+ 5 +_1g<1+_)
pel-VI-A0] 2 PA+ (V@ +pV/Po) +N | 2 N

(39)
for someA € [Apn, 1], With A, = min{o,l - %}, where, if A, > 0, the

By (Py ) ; and forA > A,,;,, the maximization

maximizingp corresponding ta\,,;, is p = — 705010
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over p can be limited to eithep = —v/1 — A, p = 0 or any real root ofga(p) that satisfies
p € [—v1—A,0], with

galp) = —B(P+Q)p*
—2/QPy,(P,+Q+ N + P)p*
+[2P(1-A)Q — (P +Q+ N)*+ (1 — AP P, — PQ| p°

2 PQ(1 = A) [P — (P +Q+ N)|p
+(1-A)Q [P, — P(1-A)]. (40)

The proof of Corollary 5 appears in Appendix F.

In Costa’s channel model [3], the GP capacity formula for thaussian channel was
calculated explicitly. The proof relies on a capacity-asimg binning scheme which is shown
to achieve the same reliably transmitted rate as if the fertenceS™ were not there. Hence,
Costa’s problem, as well as its multiuser counterpart [Zrenspecial in that the trivial operative
upper bound is achievable. The upper bound of Theorem 2 gtay®le of the operative bound
and constitutes the core of the converse part. So, in faetgtneralization of interference
cancelation to the GGP channel asymmetric setup is that gperuoound of Theorem 2 is
achievable, a phenomenon that happens in the Gaussian G&RethRecalling (19), this
implies that the subtracted terni(S; X;|Y’), can be interpreted as the inevitable rate loss
incurred due to the fact that is known only to the second transmitter (and not to both).
Indeed, any information thaX’; conveys toY” aboutsS is an inevitable waste of resources in
terms of rate.

The main goal of the proof is to show that for the Gaussian célamn (8), one can restrict
attention to jointly Gaussia(sS, X, X,) without loss of generality, and an optimal choice for
Uis

U= X2 + OéoptS (41)
with
PP Q — Plaés — PiNoog — U%QQ
Qopt = )
P PyPQ+ PLNQ — P02, — 0%,Q
where different values of», = E(X;X5) andos, = E(X,S) are chosen to achieve different

points that lie in (or, on the border of) the capacity regidhe allowable values for the covari-
ancesg, ando,,, are such that the resulting covariance mattix x, s v of (X1, Xo, S, N'),

(42)

P1 012 0 0

o P o9 O
Ax, xo.5N = 52 0223 5 0 (43)
0O 0 0 N
satisfies the nonnegative-definiteness condition
det (AXl,Xg,S,N’> = Pl(PQQN - O'SSN) - U%2QN Z 0, (44)

14



Ploi + QU%Q < P RQ, (45)
or, in terms of correlation coefficients,
012 02g
= —, = , 46
P12 m P12 m (46)

For reasons that will become clear in the sequel, we intredhe following terminology.

Definition 2 The set of parameterB;, P, (), N such that
P (P, + N)?
P +Q

will be referred to as the silent regime and its complemerit v referred to as the active
regime.

> PQ (48)

SinceQ, P, P, N take only non-negative values, the active regime is egemtao
PQ?
(Po+ N)? — PQ
Py N VPI(PiPy+ 4N + P)?)
2 2V P,
RQ(P + Q)

1

P <

& Q=>-

& N< — b (49)
S0, in a sense, in the silent regime the interference pretes, and in the active regime the
noise predominates.

The following proposition simplifies the capacity regionpeassion for certain ranges of
rates, by setting values of vertex points. It indicates dagerrange of rates for which the
outer bound given in Theorem 5 is tight.

Proposition 1 1. For any P, P», @, N, the segment connecting the following poifi$ and
(b) in the R, — R, plane lies on the boundary @f(P;, P», @, N)

(@) (Re,R2) = (0, 3log (1+ %))

(b) (R, Ry) = <% log <1 + Cﬁ;ﬁ) , %log (1 + %))
2.1f P, P, Q, N lie in the active regime, the segment connecting the foligvgioints(c) and
(d) also lies on the boundary @f(P;, P>, Q, N)

_ (1 (P1+Q)? 1 (P2 N)(Q(P+Q)—P1(P2+N))
() (Re Rp) = (5log (Q(P1+Q)1—P1(P2+N))> 5108 ( : PIONG ))
(d)  (Re Ry)

5 log 1+%)+%10g(1+%),0>.
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TABLE |
EXTREME CASE ANALYSIS.

|_regime || Behavior ofC(Pr, P2, Q, N) |
@— o0 Ry < jlog (14 %), Re + Ro < 5log (14 72)
P =0 Ry < log (14+22), Re+ Ry < 1log (1+ 22)

— 2
Q=0 Rzgélog(l—&-%),}?-ﬂ-}bﬁllog(l—&—M)—&—llog(l—&—P2A)

P =0 Ry =0, R < 31og (1+ 575

Proof: It is easily verified that the line segment connectilag and (b) (first segment)
and the one connectin@) and (d) (second segment) both lie on the boundary of the outer
bound specified in Corollary 4. It therefore remains to shbat the point§a), (b) stand for
achievable rate pairs, and the poi$, (d) are also achievable provided that, P, @, N lie
in the active regime. To establish this claim, it sufficesubgtitute in (37), appropriate values
of p12, p2s that will yields the desired segments. This is done by taking= p., = 0 to get
the first segment, and

. _ _P(P+N) . _ PP +N)
e PP+ Q) T VAP + Q)

(which is a legitimate choice only whegt, + p3, < 1, as stated in (38) or in other words,

% < P,Q) to get the second segment. m
The capacity region for the parameté¢r3d, P, Q, N) = (3,1,2,1) which lies in the active
regime,C(3,1,2,1), as well as the pomtéa) (b), (c), (d) discussed in Proposition 1, and the
outer bound of Corollary 4, are plotted in Figure 3. Eacheatbtrapezoids express achievable

regions attained by choosing a specificvalue in (39). The segment connectifrg and (d)
meets theR,. axis at—45°, because it lies on the boundary of the outer bound of The&rem
The points(a) and (b) discussed in Proposmon 1 as well as the capacity regi @ml, 1)
can be seen in Figure 4 fdr, = 2,P =N=1,0Q =z WhICh lie in the silent regime. The

figure also shows the corresponding outer bounds of Coyollar
Extreme Case Analysis

Table | summarizes the behavior of the capacity regioh, P, ), N) that can be deduced
from Corollary 5 in several extreme cases. As expected,rfiimiie (), the common message
capacity degenerates to that of Costa’s channel, that ignwhe uninformed user is not
present. The capacity region is triangular because the mhadinformation that can be reliably
transmitted by the uninformed user becomes negligible nilar phenomenon happens when
P, =0.

For @) = 0, the only noise present i¥’ and thus there is no side information. The informed
encoder therefore can decide which portion of its poweF;, to devote to transmission of
its own message, and the remaining power- A)P;, is allocated to coherent transmission

(with the uninformed encoder) of the common message.

(50)
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Fig. 3. Capacity region fory = 1, P, = N =1,Q = 2,C(%,1,2,1), and outer bound.

If the power of the informed encodeF,, is zero, then it cannot transmit information, nor
help the uninformed user by partially canceling the intexfiee and thus the common message
capacity is as though the effective noiseSis- N’ and the power used for transmissionAs

C. The Common Message Capacity with Individual Power Camgl

This subsection is devoted to specializing the resultsapeng to the Gaussian channel to
the case where it is only a common message that is transmittedapplication of the tight
upper bound of Theorem 2 (whose tightness in the Gaussianveas established in Theorem
6) to the common message capacity, yields that the commosagesapacity'(P;, P, Q, N)
of the Gaussian GGP channel under individual power comstras given by

max [[(Xy, Xo; Y|S) — I(Xy; S|Y)]. (51)

P12,02s

where (X, X5, S) are jointly Gaussian wittE(X?) = P, i = 1, 2.

17



T T T T T T
: : : : — P =15P,=N=1,Q=05
= outer bound

0.4

0.35

0.3

0.25

Ry

0.2

0.15

0.1

0.05

1 1.2 14

Fig. 4. Capacity region for; = 2, P, = N =1,Q = 1, C(%,1,2,1), and the outer bound.

Theorem 7 The common message capacity of the Gaussian GGP channel imddedual
power constraints is given by the following formula

C(P17P27Q7N) =
b P\ if Pi(P2+N)?
Sog (148 +Llog (1+ %) if BN < pg
2
1 <VP1+\/E\/ 1—p2> (52)
maxpe(—1,0 5 10g (1 + IV 0.W.

where, in fact, the maximization overcan be limited to eithep = —1, p = 0 or any real
root p of the 4th order polynomialg,(p) (see (40)) that satisfiese [—1, 0].

The proof of Theorem 7 appears in Appendix G.
The rest of this subsection is devoted to a discussion on dinenmn message capacity
results, comments on the capacity achieving scheme andrioaineesults.
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1) Discussion:In the sequel, we separate the discussion on the common geesapacity
formula to the two complementary regimes of parameté&s P, @), N), the silent regime and
the active regime (see Definition 2).

Silent Regime: It is shown that in the silent regime, the optimal valuesrgf and oy, as far
as the common message capacity is concerned, are such ehedritition (45) is met with
equality, i.e.,

Pyoj, + Qoty = PLPQ (53)
or equivalently,
This is also equivalent to
N 2
E <X2 ~ Xln(x,, S)) —0, (55)

WhereX'ém(Xl, S) is the optimal linear estimator (in the MMSE sense)of given X; and
S

Xlin X _ EX O2s .
2 ( 173) P, 1+ QS (56)
Eq. (55) implies that in the silent regime
A o O9g
Xo = X", 8) = poXa + 55, (57)
and thus,
012 025 /
Y=X;(1+—= 1 N 58
()5 (1ep) o o
calculating the optimal value af (42) while accounting for (53), yields
silent 02s
Qopt - Q
silen 025 012
Us™ = Xp— 0 S = Fle (59)

and hence, in the silent regime of parameters, the commosagesapacity (52) formula is
equal to

max [(U, X1;Y)— I(U, Xy; S)|U:%X1

012,025

= max ](Xl;Xl <1+@) +S<1+025) +N’) (60)

012,025 P1 Q
with 044, 094 satisfying (54). Inspecting (60), it is easy to verify thasimpler selection ot/,
U™ =0 (61)

yields the same achievable rate and hence is also optimal.
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The fact that in the silent regime the common message cgpacéqual to (60), suggests
that in this regime, in order to achieve capacity, the infednencoder can devote all its power
to decreasing the interference and enhancing the signaleofininformed encoder. No power
is devoted to transmission of additional information, arehde, we refer to this region as
silent.

A useful geometrical interpretation to the common messagadty formula in the silent
regime can be attained by substitutiag ¢ = p in (52), this yields

( (\/P1+\/P2~sin<b)2 )
max — log | 1+ o) )
6 2 (VQ+ Py cos¢)” + N

where it is obvious that one should maximize oveg [r/2, 7| to obtain a non-negative sine
and a non-positive cosine. The largeris in [r/2, 7|, a larger portion of use?’s power is
devoted to reducing the interference and less to enhan€ing@nd achieving the capacity in
the silent regime amounts to optimizing ovei(or p in (52)).

The maximizingp of the common message capacity formula in the silent regsae (52))
is either0, —1 or any real root of thelth order polynomialgy(p) (40). For example, when
Pp=P,=P>0andN = @ > 0, the parameters lie in the silent regime, and finding the
roots of go(p) (40) degenerates to finding the roots ofrd order polynomial. It turns out that
the optimal value ofp corresponding to the real root gf(p) is given by

(62)

4—5n 1
= (A3 —4 63
g ( T A+ 1) )Wﬁ (63)
with
7n3—4772+16n) P
A:8+3\/§< L= = 64
(n+1)3 o) (64)

Active Regime: In the active regime, the informed encoder balances theetfbcamong
three goals: decreasing the interference, enhancing tivalsof the uninformed encoder,
and transmitting additional information (as opposed to shent regime where no additional
information is transmitted). Therefore, this regime of graeters is referred to as active.
Keeping the other parameters fixed, the higher the interéer@ is, the portion of the power
that the informed user allocates to the additional inforamabecomes larger at the expense
of interference reduction and enhancement of the uninfdraser’s signal. In this regime too,
the maximizing(X;, X», S) is Gaussian, but with

, : Pi(P,+ N)
active _ __ _active __ 65
12 O2s 7]31 f0 (65)
i.e.,
. Pi(P,+ N . P (P+ N
pactwe _ 1( 2 + ) pactwe _ 1( 2+ ) (66)

2 VPIP(P +Q) "% VQP(P + Q)

20



The resultingo,,: (see (42)) when using the correlations (65) is given by

active  __ P2
t - 9
op b+ N

which is equal to the optimal in Costa’s setup [3] when the uninformed user is not present.
As mentioned earlier, the choice of correlations (65), ltesin a surprising phenomenon
which happens only in the active regime. The highest achievaommon message rate is

S log (1 + %) +1log (14 £2), the same as that of a decoder that observes oth X; + S

andY; = X, + N’ rather thant = X; + X5+ .5+ N'. In other words, the upper bound of the
Gaussian degenerate parallel channel with asymmetriccanosal CSI (see Theorem 3) can
actually be achieved, even if the decoder is constraineceeéoosly the sum of the channel
outputs.

2) Comments on the Capacity Achieving Schemext, we elaborate on the common
message capacity achieving scheme for the Gaussian GGRethasulting (using standard
techniques [35]) from that of the finite alphabet GGP channel

Silent Regime Due to (57) and (61), here, no binning is needed, or in othemds; this
is a degenerate binning scheme with bin siz& he uninformed encoder generates a random
codebook consisting af/ = |exp{n(C(Py, P, Q, N) — €)}] codewords{x,, }*_, with i.i.d.
symbols, each distributed accordingXd0, P;). Given a message: to be transmitted, which
corresponds to the codeword,, = (z,,(1),2,,(2),...,z,(n)), and a state-sequenee the
informed encoder simply transmits thevector x whosei-th symbol is given by

(67)

«

P Q'

where oy, = /PQ - p, with p being the maximizer in (52) ang, = /1 — p3,. Either an
ordinary Maximum Likelihood (ML) decoder or a typicality cieder can be used to achieve
the common message capacity.

Active Regime: As stated earlier, in this regime the informed encoder spetkergy to
interference reduction and enhancement of the uninforrsedausignal as well as transmission
of additional information. So as opposed to the silent regithe binning scheme is not void.
The random scheme is as described in Section Ill, with Gangsj x, x, with the covariance
matrix

(68)

active
Q 0 U2st4
active
q_ Pt 1 012
active active
Oas 012 Py

whereg{stve gsctive are defined in (65), and
U = X2 + aactives (69)

opt

(see (67)).
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3) Numerical Resultsin Figure 5 the common message capacity is plotted as a @mcti
of @) for fixed values ofP;, P, N which, in turn, were chosen in two groups (the first group
consists of P, =2, P, =N =1), (PL=4,P, =N =2),and(P, =6,P, = N = 3) and the
second hagsP, =5,P,=2,N =1), (P, =10,P, =4,N =2), and(P, =20,P, =8 N =
4)). The common message capacity values for @th 0 and forQ — oo are equal for all

the members of each of these groups. The transition poirtigelee the silent regime and the

active regimeQ = — £ + VA P”;Q\ji(N*Pz (see (49)) are indicated with diamonds.

In Figure 6, the common message capacity and the optimakesatt p,, and p;» (the
correlation coefficients betweel, and S, and X, and X, respectively) are depicted as a
function of Q. Again, the transition points of the capacity curves from $iient regime to the
active regime are indicated with diamonds. In the silentmeg p.; is, in fact, the maximizer
of (52) andp;» = /1 — p3,. In the active regime, the optimal,, p, are given in (66). While
P12 | i [ i | is increasing in the silent regime and
decreasing in the active regime.

In Figure 7, the common message capacity is plotted as aidmnot P, for fixed values
of P»,Q, N. The diamonds indicate the points at which there are triansitfrom the active

regime to silent regime, ieP1 = (Pj@iQpQ (see (49)). The upper thick solid line stands

for the plot of Q = N = = and P, = 1, for which the transition occurs &, = 16, a point
which does not appear Wlthln the range depicted in this figlihe curves that meet &, = 0
correspond to equa% ratios, because the common message capaciglldg(l + %) for
P =0.

In Figure 8, the common message capacity is plotted as aidunof P, for fixed values

of P,Q, N. The diamonds signify the points at which there are tramsétifrom the active
Q(P1+Q)— 2P1N+\/(Q P1+Q) 2P N)2—4P{ N2

regime to silent regime, i.ef» =
Q=1,P =6,N = 3, the entire curve is in the S|Ient regime.

. For the parameters

D. The Capacity Region and the Common Capacity under SumrRo@restraints

Next, we state a closed form characterization of the capaenjion under a sum power
constraint (31). We denote hythe portion of the power that is used by the informed user.

Theorem 8 The capacity region of the Gaussian GGP channel under sunepoanstraints,
C(P,Q, N), is given by the union of the rate pairs satisfying

(Rm R?) S C(<1 - C)P7 CP, Q7 N) (70)
for some( € [0, 1].

Proof: The theorem follows trivially by recalling the proof of Theon 6 which implies
(among other things) that the users had better exploit allalfowable power levels. There-
fore the border ofC(P;, P,,Q, N) is, in fact, the set of rate-pairs achievable whenever the
uninformed user and the informed user transmit with powgrand P, respectively. [ |

The following theorem (whose proof appears in Appendix HYygeg the common message
capacity under sum power constraints.
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Fig. 5. Common message capacity as a function of the inaréer powerq).

Theorem 9 The common message capacity of the Gaussian GGP channelaisden power
constraint,C'(P, @, N), is given by the following formula

C(P,Q,N) =
tog(1+%) f N+P<Q
Log PENS it Qu< Q<N+ P, (71)

maxo<c<1 R(¢, P, @, N) otherwise

(N —P)+2VN?+ NP + P? and

VIOPH/TP/1-2)’
(V@+VCPp) +N

where Qo = 1

R(C7 P7 Q7 N) = MaX,c[-1,0] %log 1+ (
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The power allocation that achieves the common message itapsc

COpt(P7 Q?N) =
1 if N+P<Q
LHO-N ifQ<Q<N+P . (72)

argmax.., R(¢, P, Q, N) otherwise

Since the line that meets thR. axis (in the R. — R, plane) at—45° at the pointR, =
C(P,Q,N), is an outer bound on the capacity region (being a collectibrirapezoids),
Theorem 9 enables to simplify the expression@oP, ), N) as follows.
« WheneverQ > N + P the optimal¢ is 1, andC(P, @, N) is the triangle whose vertices
are(R., Rz) = (0,0), (log (1 + £),0), and (0, 1 log (1 + £)). This means that as long
as@ > N + P, the capacity region is not affected 6}, since the best strategy is to let
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the informed user use all the power, and this degeneratesitiggie user Costa channel,
where the transmitted information bits can be divided betwg/), andW..

« Wheneveri(N — P) + 2y/N2+ NP+ P2 < Q < N + P, the border ofC(P,Q, N)
contains the line segment between the poiiits, R,) given by

(1 <P+Q+N)élog<(3Q—P—N)(P+Q+N)))

1
2 ®\30-P_-N A1ON

and (%7}]\”2, 0) (this follows by substituting”, = (1-¢)P, P, = (P, and¢ = ZH&N
in the points(c) and (d) of Proposition 1).

In Figure 9, the borders of the sum power constraint capaeiyons forP = 3, N =1

and three values of) (0.5,2.5,5) are plotted. One can see the triangle shape(fce 5. In
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Figure 10, the common message capacity under sum powerantstare plotted forvV = 1
and five values of) (0.2,0.5, 1, 2, 5).

VI. CONCLUSIONS

In this work we analyze a setup of cooperative communicadier the GP MAC, referred
to as the GGP channel, where the channel states are noriigawsalable to one user only.
We assume that the users transmit a common message, andhehasdr that is informed
of the CSI transmits a private message as well. We charaeténie capacity region of this
channel for the general finite input-alphabet two-encodesecKey to the characterization of
the capacity is a generalized binning coding scheme. Tharmmmessage is split into two
parts A and B. The uninformed encoder encodes p4drof the message, and the informed
encoder creates a codebook of auxiliary codewords for eadeveord of the uninformed
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Fig. 9. Sum power constraint capacity regions fore= 3, N = 1.

encoder using a binning scheme, and uses it to transmit/partt the message a well as its
private message. The results are then specialized to tleeveasre it is only the common
message that is being transmitted, and in this case the ibap@eeferred to as a common
message capacity. Further, we establish two useful refsulthe general finite-input alphabet
case. The first is a useful outer bound on the capacity reditmedsGP channel, referred to as
an operative bound. This bound is the equivalent of a geniedatlecoder observing the state
information in the ordinary single-user GP channel. Theosdcresult relates to the special
case of a GGP channel, a degenerate parallel GGP channeemdéndtrate that the knowledge
of the CSI at the informed transmitter does not help in theedegate parallel case, and derive
the capacity region formula of this channel as a special cdshe general GGP channel
capacity region formula. We also characterize the capaegyon of an asymmetric causal
state-dependent channel which is the same channel as thec@#&Rel, with the exception
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that the CSI is available causally. Additionally, we focus the two-encoder Gaussian GGP
channel case, modeling the CSI as an additive Gaussiaffeirgece. We investigate two power
constraints, the first being a constraint on each of the pdsvals of the two encoders, and
the second being a constraint on the sum of powers used byahenitters. By proving that
in the Gaussian case the operative bound is achievable, tablisk a closed-form formula
for the capacity region of this channel for both power caists. Technically speaking, this
outer bound enables proving that one can consider only Geaudsstributions for the single-
letter expression without loss of generality. Four pararsetietermine the capacity region: the
powers available to the two encoders, the interference pane the noise power. We patrtition
the four dimensional space of all possible values of thesanpeters into two regions, a
silent regime and an active regime. The common message itapabich determines one
of the vertices of the capacity region) formula as a functdrthese four parameters takes
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on two different forms depending on whether the parametermithe active regime or the
silent regime. To achieve the common message capacity,eirsitant regime the informed
encoder allocates a portion of its power to interferenceekation and the remaining power to
coherently enhancing the uninformed user’s signal. In tteve regime, the encoder has the
additional task of transmitting a part of the message thabtsransmitted by the uninformed
encoder. Surprisingly, we show that in the active regime, tbmmon message capacity is
equal to that of a channel whose decoder observes two oytpetsirst being the sum of the
uninformed user’s signal and the interference and the skbemg the sum of the informed
user’s signal and the noise). We also determine the optimakp allocation for the common
message capacity under sum power constraints. Finally,oreethat the results are extendable
to a general multiuser setup under the common message r¢ghe
APPENDIX
A. Proof of Theorem 1
1) Converse Part of Theorem Let an(¢,,n, R., Ry)-code be given. Thus, we have using
Fano’s inequality
n(Re, +Ry) = HW., Ws)
< IW  Wo, YT') + 1+ n(R. + Ry)ey. (73)
Further,

(W07 W27 }qn)

<Z WmWZaYZ 1757,n+1; Z) - [(WmWZin_lein-{-l;Si)]

— Z W07X1 WQuyi 17 ZTL+1; ) (WC7X1( ) W27Yi_17 ZL+17SZ)] ) (74)
where the mequallty follows exactly as in the derivationtioé converse part of the proof of
the capacity formula for the ordinary GP channel [2] by replg W with (W,, W), and the

last equality holds sinc&(; (¢) is a function of\W..
Similarly, sinceWW. and W, are independent

nRy = HOM,W,)
< I(WQ; YIIWe) + 1 4+ nRae,

<Z Wo, YL S YW — T(Wo, Y1 SP5 S IWL)] + L+ nRae,
= Z WQ,YZ I,SZTL+17Y|WC,X1( )) — I(WQ,Yi_l,S?+1;Si|WC,X1(7;>>:| + 1 +nR2€n

< Z W07W27YZ 17 Szn+1a Y|X1( )) - [(Wca WZayi_la Sin+1; SZ|X1(Z))} + 1 + nR2€n7
(75)
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where the last inequality follows sincg and (., X1 (7)) are independent. Therefore, defining
Ui = (W, W,, Y"1, 8% ,) one has

1
R.+ Ry < Z[ (03 Xa(i); i) = I(Us, X,(0); 83) + — + (Re + Ra)es

_ _ 1
Ry < - ; (U3 Yi| Xa (i) — I(Us; Sil X1 (4)) + o + Ra€y. (76)
Now, we introduce a time-sharing random variatile,distributed uniformly overf1,...,n},
and denote the collection of random variables
(8,X1,U,X5,Y) = (Sp, Xo(T), Up, Xo(T), Yr), (77)
to obtain

—ZIX1 JUY;) — I(X4(4), Ui S5)

S [(TaXlaUaY)_[(TleaUa 5)7 (78)
where the last step follows by the stationarity$f Substitutingl = (7', U) one gets

1
Ret Ry < I(X0,U3Y) = I(X0, U3 S) + — + (Re+ Ro)e. (79)

Similarly,

I~ - .
- > (U Y| X (i) — 1(Us; Sif Xa(0))
i=1
1(T;Y|X,,T) ~ I(T; S|X.(T), T)
(U, T5YXh) = LY T|X0) = (U, T S| X0) + (T8 X))

IA

and one gets
1
Ry, < I(U;Y|Xy) —](U;S|X1)+E+R2€n. (81)

The above constitutes the proof that for every, n, R)-code, there exists a measure of the form
(9) with essentially?.+ Ry < I(X,,U;Y)—1(X1,U;S), andR, < I(U;Y|X,)—1(U; S|Xy).

It remains to show that the alphabet of the random varialilesn be limited without loss
of generality as stated in (10). This is done by a standardicapbion of the support Lemma.
First, fix a distributionu of (S, X1, U, X5, Y") on the Borebr-algebra ofP(S x X xU x Xy x ))
that has the form (9). Note that

I;L<X17 U; Y) - I;L(Xh U; S) = Iu(U; Y|X1) - Iu(U; S|X1) + Iu(X1§ Y)7 (82)
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and
IM(XMU; Y) _IM(XlaU; S)
IN(U;Y) — IN(U; S) + IM(Xl;Y|U) — IM(X1;5|U)
H,(Y) ~ H(S) — H,(Y|X0.U) + H,(S|X1,U)

H,(Y) = Hu(S) — Hy (X2, Y|U) + H,(X3, S|U), (83)

Hence, it suffices to show that the following functionals@f, X, U, X5,Y)
fowz(p) = p(s,z,z) V(s,z,) € S x X x Xy (84)
folb) = ) (HL (0, Sla) = H,(X0, ) (85)

can be preserved with another measpfethat has the form (9). To satisfy this condition,
according to the support Lemma, since therere |S|-|X;|-|X»| functionals, the cardinality
of the alphabet ot/ can be taken to bel without loss of generality.

2) Direct Part of Theorem 1:Since the error probability analysis of the random coding
scheme presented in Section 1l is also a rather straigh#ia extension of the proof of the
GP direct, we shall state it in brevity.

Error probability analysis: For a measureP, let 7.(P) stand for the set ot-typical
sequences. Assume that the transmitted common messagmdsthe informed user message
is k, and thats is the state sequence. Letandx = x, stand for the states sequence and the
codeword of the uninformed encoder, respectively. One has

Pr(error) = > Pr(s’, x')
(S’,X/)GTEC(QS XPXl)
+ > Pr(s’, x')Pr(errofs’, x'). (86)

(Slvx/)ETe(QSXPXl)

Due to the AEP, the probability thas, x) are not jointly typical vanishes exponentially, thus,
it is sufficient to upper bound the second term on the r.h.€8®¥. The error event is contained
in the union of the following events
Ei(s,x) = {#j st (s,x, ;) € T(Psx,v)}
Ey(x) = {(xy) £T(Px,v)}
Ey = {30'#0st (xp,y) €T.(Px,v)}
Ey(s) = {(x, 0 jser)y) £T(Px,vy)}
Es(x) = {3k #k,j', st.(x,uppj,y) € T(Px,vy)}-
One can easily realize as an immediate extension of [2] tha@l'/s, x)) behaves essentially
like [1— 2—"(’(S?U‘X1>+E)}J < exp(27™). Given thatFE;(s,x) does not occur, we have that

In (84), there are in fact onlyS| - |X1| - | X2|-1 degrees of freedom.
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(s,x) are jointly typical with the outputs of the encodetsx and with u,, s k), that is,
(s, x, Wk i(s,0k), X x) € T(Qs x Px, x PU,XQ\S,,Xl)

Fors, x, u, . jse.k),