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Abstract

This paper finds the capacity of linear time-invariant additive Gaussian noise chan-
nels observed through a memoryless erasure channel. This problem requires obtaining the
asymptotic spectral distribution of a submatrix of a nonnegative definite Toeplitz matrix
obtained by retaining each column/row independently and with identical probability. We
show that the optimum normalized power spectral density is the waterfilling solution for
reduced signal-to-noise ratio.

Index Terms: Channel capacity, Gaussian channels, intersymbol interference, erasure channels, fading,
random matrices, Toeplitz matrices.

1 Introduction

The erasure channel plays an important role in information theory and coding theory. It is a
very useful idealization of situations where the symbols observed by the receiver have either
very high or very low reliability. Applications of erasure channels range from communication
subject to jamming to packet-switched store-and-forward networks, from magnetic recording to
wireless communications subject to fading, from powerline communications subject to impulsive
noise to frequency-hopped multiaccess channels.

The capacity of the memoryless binary erasure channel is equal to 1 − e bits, where e is
the erasure probability. In fact, regardless of the statistics of the erasures, the capacity of the
erasure channel is equal to the liminf of the proportion of non-erased symbols [22] times the
logarithm of the cardinality of the alphabet.

For many applications, discrete erasure channels where symbols are either received without
error or erased are rather coarse idealizations. Within the paradigm of discrete memoryless noisy
channels, it is straightforward to find the capacity of channels that incorporate errors as well as
erasures. Even in the presence of memory in the erasures it has been shown recently [23] that the
capacity of the concatenation of a discrete memoryless channel with capacity C and an erasure
channel (possibly with memory) with erasure rate e is equal to (1− e)C. Also straightforward
is to deal with power-constrained memoryless Gaussian channels observed through memoryless
erasure channels: the capacity is also equal to the capacity of the memoryless Gaussian channel
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times the proportion of non-erased symbols [9, 10]. In that case the receiver obtains either the
noisy output symbol or an erasure. Equivalently, we can view this channel as one with on-off
fading where the receiver (but not the transmitter) knows the {0, 1}-valued fading coefficients.
If the Gaussian channel has memory we are led to the setup depicted in Figure 1.
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Figure 1: Linear Gaussian Erasure Channel.

This model is relevant for example in the case of a Gaussian channel with impulsive noise,
typical of powerline communications [13]. The receiver automatic gain control applies a renor-
malization of the incoming signal, such that in the presence of a noise impulse (perfectly detected
by the receiver) the corresponding symbol is completely erased. In this way, the on-off fading
is a simplified but realistic model for impulse noise where the power of the impulses is much
larger than the average received power. The Gaussian erasure model can also be used to assess
the throughput in uplink cellular systems subject to topological randomness where intercell
interference follows the classical Wyner model [25] and cell sites are either “on” or “off” in
an independent and identically distributed manner. Another related problem is the fountain
capacity setup introduced in [15], where reliability has to be maintained for any individual
sequence of erasures not just memoryless erasures. In that case, not much is known when the
channel has memory.

The rest of the article has the following structure. Section 2 sets up the channel and
the key random matrix problem associated with the analysis of capacity. Section 3 provides,
in addition to the necessary background on random matrix theory, a new general random
matrix result which is central in our development and is of independent interest. Section 4
solves the central problem of finding the asymptotic eigenvalue distribution of a submatrix of
a nonnegative definite Toeplitz (or circulant) matrix obtained by retaining each column/row
independently and with identical probability. The mutual information achieved in the Gaussian-
erasure channel is obtained as the integral on [0, 1−e] of a certain function that does not depend
on e, thus providing a pleasing interpretation of the effect of erasures along with a generalization
of the elementary memoryless capacity (1−e)C. Section 5 finds an explicit form for the optimal
(capacity achieving) input spectrum as a function of the transfer function of the channel and the
erasure probability. Section 6 presents some upper and lower bounds on the Gaussian-erasure
input/output mutual information that are considerably easier to compute. Section 7 deals with
various asymptotic regimes for low/high signal-to-noise ratio and low/high erasure rate.

In order to maintain the presentation flow, some particularly technical proofs and auxiliary
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results have been relegated to the appendices. Those proofs that yield particular insight into
the main results have been included in the body of the paper.

2 Problem Setup

In this paper we analyze the discrete-time channel with memory where the input codeword
x = (x1, . . . xn) ∈ Rn is subject to an average power constraint and goes through a linear
time-invariant discrete-time linear system with transfer function

H(f),−1
2
≤ f ≤ 1

2
;

the output of the linear system (u1, . . . un) ∈ Rn is contaminated by independent identically
distributed Gaussian noise (n1, . . . nn) ∈ Rn; finally, a process of erasures e = (e1, . . . en) ∈
{0, 1}n, known to the receiver, controls which noisy outputs are available to the receiver. An
equivalent version of the channel, depicted in Figure 1, is

yi =
√

γ eiui + ni, i = 1, . . . , n (1)

ui =
i−1∑
`=0

h[`]xi−` (2)

h[i] =
∫ 1/2

−1/2
H(f)ej2πfi df (3)

where {ni} are independent Gaussian with unit variance; {ei} are independent binary with

P [ei = 0] = e (4)

where e is the erasure rate, and the codewords are restricted to satisfy

1
n

n∑
i=1

x2
i ≤ 1 (5)

Because the noise is memoryless, (1) is equivalent to

yi = ei [
√

γ ui + ni] , i = 1, . . . , n (6)

Since the receiver knows the location of the erasures, the capacity is equal to

Ce(γ) = lim
n→∞

1
n

max
x

I(x;y|e) (7)

= lim
n→∞

1
2n

max
Σ

E [log det (I + γEΣE)] (8)

where we have denoted the random matrix

E = diag{e1, . . . en} (9)

and (8) follows from the optimality of Gaussian inputs since conditioned on e, the channel is
Gaussian; the maximum in (8) is over all matrices that can be written as

Σ = HΣxH† (10)
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with H denoting the Toeplitz channel matrix whose (i, j) entry is h[i− j] and

tr{Σx} = n. (11)

Since there is no loss of optimality in restricting the input to be stationary (with power spectral
density Sx(f)), we can restrict attention to circulant matrices Σx (Appendix B). The power
spectral density of the signal at the output of the linear system is denoted by

S(f) = Sx(f)|H(f)|2. (12)

For brevity we denote the mutual information achieved with input power spectral density Sx(f)
by 1

Ie(γ) = lim
n→∞

1
2n

E [log det (I + γEΣE)] (13)

In the absence of erasures (e = 0), we obtain the familiar

I0(γ) =
1
2

∫ 1/2

−1/2
log(1 + γS(f)) df (14)

which when maximized with respect to the input power spectral density yields (e.g. [3])

C0(γ) =
1
2

∫ 1/2

−1/2
log
(
1 + γS∗x(f)|H(f)|2

)
df (15)

where S∗x(f) is the waterfilling input power spectral density:

S∗x(f) =
[
ζ − 1

γ|H(f)|2

]+

(16)

and the water level 1 < ζ < ∞ is chosen so that∫ 1/2

−1/2
S∗x(f) df =

∫ 1/2

−1/2

[
ζ − 1

γ|H(f)|2

]+

df (17)

= 1 (18)

The solution (15), known since 1949 [17] can be rigorously justified by means of the Grenander-
Szëgo theorem on the distribution of the eigenvalues of large deterministic Toeplitz matrices
[5].

In view of (8), obtaining the capacity of the linear Gaussian erasure channel involves
analyzing the asymptotic distribution of the eigenvalues of the random matrix EΣE where
Σ = HΣxH† is asymptotically circulant, and E is a random 0-1 diagonal matrix. We will not
be able to invoke an existing result to find the required asymptotic distribution. Such a result,
at the intersection of the asymptotic eigenvalue distribution of Toeplitz matrices (e.g. [5]) and
of random matrices (e.g. [19]), is the main contribution of this paper.

When the additive Gaussian noise is colored with power spectral density N(f), (1) and (6)
are no longer equivalent channel models. It easy to show that the analysis of (6) generalizes
(10) to

Σ = Ξ−1/2HΣxH†Ξ−1/2 (19)
1Because of the stationarity and ergodicity of the iid erasures, the expectation in (13) is unnecessary.
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where Ξ is the covariance matrix of n consecutive noise samples. Then, all the results that
follow generalize by substituting |H(f)|2 by |H(f)|2/N(f).

However, the original channel model (1) yields the mutual information expression (assuming
that the noise covariance is not singular)

Ie(γ) = lim
n→∞

1
2n

E
[
log det

(
I + γΞ−1EHΣxH†E

)]
(20)

The explicit characterization of (20) does not follow as a simple corollary of the case of inde-
pendent noise, treated in the rest of this paper.

3 Random Matrix Theory

In addition to a new result (Theorem 1), in this section we collect a number of definitions and
results on random matrix theory from [19] that will be useful in the sequel.

3.1 Eigenvalue Distributions

Given an n × n Hermitian matrix A, the empirical cdf of the eigenvalues (also referred to as
the empirical spectral distribution) of A is defined as

Fn
A(x) =

1
n

n∑
i=1

1{λi(A) ≤ x} (21)

where λ1(A), . . . , λn(A) are the eigenvalues of A and 1{·} is the indicator function. If Fn
A(·)

converges almost surely as n →∞, then the corresponding limit (asymptotic empirical spectral
distribution) is denoted by FA(·).2

Example 1 Let E be an n×n diagonal matrix whose diagonal entries e1, . . . en are independent
and

P [ei = 0] = e (22)
P [ei = 1] = 1− e (23)

The asymptotic empirical spectral distribution of E is equal to:

FE(x) =
{

e 0 ≤ x < 1
1 x ≥ 1

(24)

Example 2 Let Σ be the n× n nonnegative definite Toeplitz matrix

Σi,j = σ|i−j| (25)

for an absolutely summable sequence σ0, σ1, . . .. Using the Grenander-Szëgo theorem, it can be
shown [5] that the limiting eigenvalue distribution of Σ is given by

FΣ(x) =
∫ 1/2

−1/2
1{S(f) ≤ x}df (26)

where

S(f) =
∞∑

k=0

σke
−j2πfk (27)

2A slight abuse of notation, customary in asymptotic random matrix theory, is to avoid a dimension subscript
in A, which depending on the context stands for a matrix of a given dimension or for a sequence of matrices.
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3.2 Transforms

For our purposes, it is advantageous to make use of the η-transform and the Shannon trans-
form, whose introduction was motivated by the application of random matrix theory to various
problems in the information theory of noisy communication channels [19]. These transforms, in-
timately related to each other and to the Stieltjes transform traditionally used in random matrix
theory [19], characterize the spectrum of a random matrix while carrying certain engineering
intuition, as explained in [19].

Definition 1 Given a nonnegative definite random matrix A, its η-transform is

ηA(γ) = E
[

1
1 + γX

]
(28)

where X is a nonnegative random variable whose distribution is the asymptotic empirical spectral
distribution of A while γ is a nonnegative real number.

Note that
P [X = 0] < ηX(γ) ≤ 1 (29)

The lower bound is asymptotically approached as γ → ∞ and is equal to the fraction of zero
eigenvalues of A.

Then, E[Xk] is the kth asymptotic moment of A, i.e., limn→∞
1
ntr{Ak}. Expressing the

rational function in (24) in a series expansion, ηA(γ) can be regarded as a generating function
for the asymptotic moments of A.

Example 3 Let E be the sequence of random matrices defined as in Example 1. The η-
transform of E is given by:

ηE(γ) =
1 + eγ

1 + γ
(30)

Example 4 Let Σ be the sequence of deterministic matrices defined as in Example 2. The
η-transform of Σ is:

ηΣ(γ) =
∫ 1/2

−1/2

1
1 + γS(f)

df (31)

Note that

lim
γ→∞

ηΣ(γ) = µ ({f : S(f) = 0}) (32)

where µ stands for Lebesgue measure on [−1/2, 1/2]. Analogously,

ηHΣxH(γ) =
∫ 1/2

−1/2

1
1 + γSx(f)|H(f)|2

df (33)

For future reference, it is easy to check that for the (maximal mutual information) water-
filling power spectral density in (16) the η-transform is directly related to the water level:

1− ηHΣ∗
xH(γ) =

1
ζ

(34)
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Definition 2 Given a nonnegative definite random matrix A, its Shannon transform is defined
as

VA(γ) = E[log(1 + γX)] (35)

where X is a nonnegative random variable whose distribution is the asymptotic empirical spectral
distribution of A while γ is a nonnegative real number.

Note that according to (13),

Ie(γ) =
1
2
VEΣE(γ) (36)

Assuming that the logarithm in (35) is natural, the η and Shannon transforms are related
through

d

dγ
VA(γ) =

1− ηA(γ)
γ

(37)

We proceed to give a new connection between the η-transform and the Shannon transform
which will be useful in our derivation of the capacity of the Gaussian-erasure channel.

Theorem 1 Let A be a nonnegative definite random matrix. Let ρ = limn→∞ rank(A)/n.
The Shannon transform and η transforms are related through

VA(γ) = ρ

∫ 1

0
log (1 + ,y)ג γ)) dy (38)

where ג is defined by the fixed-point equation

ρy
,y)ג γ)

1 + ,y)ג γ)
= 1− ηA

(
γy

1 + (1− y)ג(y, γ)

)
(39)

Proof: First, we show the special case where ρ = 1. For an n × n matrix A, choose a
decomposition A = CC†, and an arbitrary unitary n× n matrix U. Denoting the ith column
of CU by bi, we can write

log det (I + γA) = log det
(
I + γCC†

)
= log det

(
I + γCUU†C†

)
=

n∑
i=1

log

1 + γb†i

I + γ

i−1∑
j=1

bjb
†
j

−1

bi

 (40)

where (40) follows from the definition of the determinant

det(L)
n∏

i=1

((L(i))−1)ii = 1 (41)

with L(i) denoting the ith principal minor of L, in the case L = I + γCUU†C†.
Assume now U is uniformly distributed on the set of n × n unitary matrices (i.e. it is a

Haar matrix). Lemma 2 (Appendix C), implies that as n →∞ and i = dnye for some y ∈ [0, 1],
the quadratic form in (40) converges almost surely to a constant which we denote by:

lim
n→∞

γb†i

I + γ
i−1∑
j=1

bjb
†
j

−1

bi = ,y)ג γ) (42)
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In fact, Lemma 2 does not directly deal with the quadratic form in the left side of (42) since
in that quadratic form bib

†
i is excluded from the sum. But the matrix inversion lemma gives

γb†i

I + γ
i∑

j=1

bjb
†
j

−1

bi =
γb†i

(
I + γ

∑i−1
j=1 bjb

†
j

)−1
bi

1 + γb†i
(
I + γ

∑i−1
j=1 bjb

†
j

)−1
bi

(43)

which, according to Lemma 2 and (42), allows us to conclude that

1− yג(y, γ)
1 + ,y)ג γ)

= η (44)

= ηA

(
γ

y − 1 + η

η

)
(45)

= ηA

(
γy

1 + (1− y)ג(y, γ)

)
(46)

where (46) follows from (44).
Applying (42) to (40), we obtain that

VA(γ) = lim
n→∞

1
n

log det (I + γA) (47)

=
∫ 1

0
log(1 + ,y)ג γ)) dy (48)

(49)

Together with (44-46), this establishes the desired result for ρ = 1. To deal with the general
case in which ρ need not be equal to 1, we can express

VA(γ) = ρVÂ(γ) (50)
ηA(γ) = ρηÂ(γ) + 1− ρ (51)

where VÂ and ηÂ are the Shannon and η transforms of the asymptotic distribution of the
positive eigenvalues of A. Applying the special case of (38) and (39) with ρ = 1 to VÂ and ηÂ,
we obtain the desired general relationship between VA(γ) and ηA(γ) upon substitution of (50)
and (51).

An operational and intuitive characterization of ,y)ג γ) is obtained by using the chain rule
of mutual information and the related successive decoding interpretation. In particular, (40)
follows by noticing that log det(I + γ

∑
i bib

†
i ) is the mutual information I(x;y) corresponding

to the Gaussian linear channel y =
√

γBx + n, with fixed B and x ∼ N (0, I). Applying the
mutual information chain rule [3]

I(x;y) =
n∑

i=1

I(xi;y|xi+1, . . . , xn)

=
n∑

i=1

I

xi;
√

γbixi +
√

γ
i−1∑
j=1

bjxj + n


=

n∑
i=1

log

1 + γb†i

I + γ

i−1∑
j=1

bjb
†
j

−1

bi

 (52)
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For Haar distributed U, independent of C, we have that B = CU and BΠ are identically
distributed for any arbitrary permutation matrix Π. Then,

γb†i

I +
i−1∑
j=1

bjb
†
j

−1

bi

is the Signal-to-Interference plus Noise Ratio (SINR) at the i-th output of a MMSE decision-
feedback receiver that successively detects the symbols xn, xn−1, . . . , x1 and perfectly subtracts
them from y. In the limit of large n, noticing that the detection order is irrelevant because of
the invariance by right-multiplication by permutations, it follows that ,y)ג γ) is the asymptotic
SINR of the MMSE decision-feedback receiver when a fraction y of symbols is yet to be removed.

Some properties of the solution to (39) are:

1. ,y)ג γ) is monotonically increasing with γ.

2.
,y)ג 0) = 0 (53)

3.
lim

γ→∞

,y)ג γ)
γ

= z(y) (54)

which is the solution to the equation

ηA

(
y

(1− y)z

)
= 1− ρy (55)

4. ,y)ג γ) is monotonically decreasing with y (Appendix D).

4 Asymptotic Eigenvalue Distribution of EΣE

In this section we find the η-transform and the Shannon transform of a submatrix of a large
nonnegative definite Toeplitz or circulant matrix obtained by retaining each column/row in-
dependently and with identical probability. Throughout this section, E stands for a diagonal
matrix of 0-1 coefficients chosen independently with probability of 0 equal to e.

The first step is to show that, as in the conventional case without erasures, the asymptotic
eigenvalue distribution is the same as if Σ in (10) were replaced by a circulant matrix. The
sufficient condition in the following lemma is satisfied because of the conventional asymptotic
equivalence of products of Toeplitz matrices to circulant matrices (see [5, Thm. 5.3] and
Appendix A).

Lemma 1 Denote the diagonal matrix of the eigenvalues of Σ given in (10) by

Λ = diag{λ1, . . . λn}. (56)

Further, denote the unitary discrete Fourier transform (DFT) matrix

F =
1√
n

[
e−j 2π

n
(i−1)(p−1)

∣∣∣ i = 1, . . . , n
p = 1, . . . , n

]
(57)
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and the circulant matrix
Ψ = FΛF† (58)

For all γ > 0,

ηEΣE(γ) = ηEΨE(γ) (59)
VEΣE(γ) = VEΨE(γ). (60)

Proof: Appendix A

The next theorem yields the desired characterization of the asymptotic eigenvalue distribu-
tion of EΣE:

Theorem 2 The η-transform of EΣE is

ηEΣE(γ) = η (61)

where η is the solution of the fixed-point equation:

η = ηΣ

(
γ − γ

e

η

)
(62)

Proof: According to Lemma 1, it is equivalent to show that the η-transform of EΨE is equal
to

ηEΨE(γ) = η (63)

where η is the solution of the fixed-point equation:

η = ηΨ

(
γ − γ

e

η

)
(64)

Let
Q = EF (65)

and denote by qi the ith column of Q, and let

Ai = I + γ
∑
j 6=i

λjqjq
†
j (66)

= I + γQΛQ† − γλiqiq
†
i (67)

The matrix inversion lemma [11] states that:(
I + γQΛQ†

)−1
= A−1

i − γλi

1 + γλiq
†
iA

−1
i qi

A−1
i qiq

†
iA

−1
i (68)

Multiplying both sides of (68) by γλiqiq
†
i we obtain

γλiqiq
†
i (I + γQΛQ†)−1 = γλiqiq

†
iA

−1
i − γ2λ2

i

1 + γλiq
†
iA

−1
i qi

qiq
†
iA

−1
i qiq

†
iA

−1
i (69)

= γλiqiq
†
iA

−1
i

(
1−

γλiq
†
iA

−1
i qi

1 + γλiq
†
iA

−1
i qi

)
(70)

=
γλi

1 + γλiq
†
iA

−1
i qi

qiq
†
iA

−1
i (71)
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Summing over i we have

n∑
i=1

γλiqiq
†
i (I + γQΛQ†)−1 = γQΛQ†(I + γQΛQ†)−1 (72)

=
n∑

i=1

γλi

1 + γλiq
†
iA

−1
i qi

qiq
†
iA

−1
i (73)

Taking the trace on both sides of (73) and dividing by n we get

1− 1
n

tr{(I + γQΛQ†)−1} =
1
n

tr{γQΛQ†(I + γQΛQ†)−1} (74)

=
1
n

n∑
i=1

γλiq
†
iA

−1
i qi

1 + γλiq
†
iA

−1
i qi

(75)

= 1− 1
n

n∑
i=1

1

1 + γλiq
†
iA

−1
i qi

(76)

Therefore,

ηEΨE(γ) = lim
n→∞

1
n

tr(I + γEΨE)−1 = lim
n→∞

1
n

tr(I + γEUΛU†E)−1 (77)

= lim
n→∞

1
n

tr(I + γQΛQ†)−1 (78)

= lim
n→∞

1
n

n∑
i=1

1

1 + γλiq
†
iA

−1
i qi

(79)

= ηΨ (αγ) (80)

where (80) follows from Lemma 13 (Appendix H) (which is the most technically challenging
result in this paper):

q†iA
−1
i qi

a.s→ α. (81)

Thus, the result will follow if we can show that

α = 1− e

ηEΨE(γ)
(82)

To that end, note the following identities

α ηEΨE(γ) = lim
n→∞

1
n

n∑
i=1

q†iA
−1
i qi

1 + λi γq†iA
−1
i qi

(83)

= lim
n→∞

1
n

n∑
i=1

q†i (γQΛQ† + I)−1qi (84)

= lim
n→∞

1
n

tr
(
Q†(γQΛQ† + I)−1Q

)
(85)

= ηEΨE(γ)− e (86)

11



where (83) follows from Lemma 13 and (79); (84) follows by taking the quadratic form of the
matrix in (68) with the vector qi. Finally, (86) follows by writing

tr
(
Q†(I + γQΛQ†)−1Q

)
= tr

(
F†E(I + γEFΛF†E)−1EF

)
= tr

(
E(I + γEFΛF†E)−1E

)
= tr

(
I + γEFΛF†E

)−1
−

n∑
i=1

1{ei = 0}
[
(I + γEFΛF†E)−1

]
i,i

= tr
(
I + γEFΛF†E

)−1
−

n∑
i=1

1{ei = 0} (87)

and by taking limn→∞
1
n of both sides.

Using Lemma 1, Theorem 2 and (31), we can write (62) as

ηEΣE(γ) =
∫ 1/2

−1/2

1
1 + γS(f)(1− e/ηEΣE(γ))

df (88)

Since the horizontal asymptote of the η-transform is equal to the asymptotic fraction of zero
eigenvalues, we have:

Corollary 1 The fraction of zero eigenvalues of the product EΣE satisfies

lim
γ→∞

ηEΣE(γ) = max {e, µ ({f : S(f) = 0})} (89)

Proof: First note that (88) requires that its fixed-point solution satisfy e ≤ ηEΣE(γ) ≤ 1.
Denote I = {f : S(f) > 0}, and let µ(I) = B ∈ [0, 1) be the fraction of nonzero eigenvalues of
Σ. We can express (88) as

ηEΣE(γ) = 1−B +
∫
I

1
1 + γS(f)(1− e/ηEΣE(γ))

df (90)

If e < 1 − B, then we see that ηEΣE(∞) = 1 − B solves (90) as γ → ∞. On the other hand,
suppose e ≥ 1 − B. As γ → ∞, if ηEΣE(γ) is bounded away from e, then the integral in (90)
vanishes as γ →∞, and thus limγ→∞ ηEΣE(γ) = 1−B, which contradicts e ≤ ηEΣE(γ) unless
e = 1−B or limγ→∞ ηEΣE(γ) = e. Consequently, the asymptotic fixed point is max{e, 1−B}.

It is intriguing to speculate on a possible shortcut to (88) by application of the framework
of free probability. For a.s. asymptotically free matrices A,B, we have that [19, eq. 2.209]

ηAB(γ) = ηA

(
γ

ΣB (ηAB(γ)− 1)

)
(91)

where ΣA(z) denotes the S-transform of A (see [19, Section 2.2.6] and references therein), that
yields the asymptotic eigenvalue distribution of the product of two a.s. asymptotically free
matrices. Identifying B with E and A with Σ, using Example 3 and [19, eq. 2.86], we have

ΣE(z) = −z + 1
z

η−1
E (1 + z) =

1 + z

1− e + z
(92)
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Then, applying (31) and (92) in (91) we obtain that ηEΣ(γ) satisfies the fixed-point equation
(88). Noticing that ηEΣ(γ) = ηEΣE(γ), the result of Theorem 2 would follow by direct appli-
cation of known formulas. Unfortunately, E and Σ are not a.s. asymptotically free in general,
and therefore the direct application of (91) is not possible. It is however interesting to notice
that the final rigorous result is as if E and Σ were a.s. asymptotically free.

Using (37) with A = EΣE the mutual information rate as a function of the signal-to-noise
ratio γ can be characterized in terms of the η-transform of EΣE:

Ie(γ) =
1
2

∫ γ

0

1− ηEΣE(x)
x

dx (93)

An alternative characterization of the capacity is given by the following theorem obtained
by using Theorem 1.

Theorem 3 The mutual information rate achieved with output power spectral density S(f) and
erasure rate e is equal to

Ie(γ) =
1
2

∫ 1−e

0
log (1 + ,y)0ג γ)) dy (94)

where 0ג is the solution to

,y)0ג γ)
1 + ,y)0ג γ)

=
∫ 1/2

−1/2

γS(f)
1 + y γS(f) + (1− y)0ג(y, γ)

df (95)

Proof: Instead of showing (94) directly we will show that

Ie(γ) =
1− e

2

∫ 1

0
log (1 + ,e(yג γ)) dy (96)

with eג the solution of the fixed-point equation

,e(yג γ)
1 + ,e(yג γ)

=
∫ 1/2

−1/2

γS(f)
(1− e) y γS(f) + 1 + (1− (1− e) y)גe(y, γ)

df (97)

Once this alternative form of the result is established, note that the special case of (97) when
e = 0 yields (95), which is equivalent to (39) in the special case of Toeplitz A. The desired
result (94) will then follow from (96) since the solutions to (97) and (95) are related through

,e(yג γ) = y)0ג − ey, γ). (98)

To show (96)-(97), we first assume that S(f) > 0 for −1/2 < f < 1/2, in which case the
asymptotic normalized rank of EΣE is 1− e. From Theorem 1 applied to A = EΣE we obtain
that the Shannon transform is

VEΣE(γ) = (1− e)
∫ 1

0
log (1 + ,e(yג γ)) dy (99)

with eג satisfying

(1− e)y
,e(yג γ)

1 + ,e(yג γ)
= 1− ηEΣE

(
γy

1 + (1− y)גe(y, γ)

)
(100)
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and ηEΣE given as the solution in Theorem 2:

ηEΣE(t) = ηΣ

(
t− t

e

ηEΣE(t)

)
. (101)

Letting
t =

γy

1 + (1− y)גe(y, γ)
(102)

the argument in the right side of (101) becomes

γy

1 + (1− y)גe(y, γ)

(
1− e

ηEΣE(t)

)
=

γy

1 + (1− y)גe(y, γ)

1− e

1− (1− e)y e(y,γ)ג
e(y,γ)ג+1


=

γy(1− e)
1 + (1− y)גe(y, γ)

 1− y e(y,γ)ג
e(y,γ)ג+1

1− (1− e)y e(y,γ)ג
e(y,γ)ג+1


=

(1− e)yγ

1 + (1− (1− e) y)גe(y, γ)
(103)

Thus we obtain the fixed-point equation

(1− e)y
,e(yג γ)

1 + ,e(yג γ)
= 1− ηΣ

(
(1− e)yγ

1 + (1− (1− e) y)גe(y, γ)

)
(104)

which straightforward algebra reveals to be identical to (97).
To remove the restriction that S(f) has no zeros, it is enough to realize that the solution to

(97) is continuous in S(f). Thus, an infinitesimal perturbation of a nonnegative power spectral
density leads to a strictly positive S(f) which achieves essentially the same mutual information.

Despite the fact that both the evaluation of (93) and of (96) require numerical integration
of a function obtained as the solution of a fixed point equation, the expression of Theorem 3 is
in general much easier to compute since the integral with respect to y is on the fixed interval
[0, 1], independent on the SNR γ.

An immediate consequence of Theorem 3 is:

Corollary 2 The mutual information Ie(γ) is a concave decreasing function of e.

Proof: Using (94), the first and second derivatives of Ie(γ) with respect to e are

∂Ie(γ)
∂e

= −1
2

log(1 + −1)0ג e, γ)) (105)

∂2Ie(γ)
∂e2

=
1
2

(y,γ)0ג∂
∂y

∣∣∣
y=1−e

1 + −1)0ג e, γ)
(106)

Both first and second derivative are negative, since ,y)0ג γ) is non-negative and decreasing with
y (see Appendix D).
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Example 5 Figures 2 and 3 show the limiting mutual information together with the realizations
of 1

2n log det (I + γEΣE) for n = 100 and n = 1000, respectively, for the case e = 0.3 and Σ
defined by

σ|i−j| = e−0.2(i−j)2

As expected, as n increases the mutual information for n-dimensional blocks for given erasure
realization concentrates around the deterministic value given by Theorem 2.
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Figure 2: Mutual information Ie(γ) and its (random) finite length realizations for n = 100,
e = 0.3 and σ|i−j| = e−0.2(i−j)2 .

Example 6 Let
S(f) = 1 − 1/2 ≤ f ≤ 1/2 (107)

Then it is easy to check that

,y)0ג γ) = γ − 1/2 ≤ f ≤ 1/2 (108)

and
Ie(γ) = Ce(γ) = (1− e)C0(γ) (109)

as is to be expected since the effect of erasures on the capacity of the memoryless channel is a
factor of (1− e).

Example 7 Suppose the Gaussian stationary random process {ui} in (1) has an ideal low-pass
power spectral density

Su(f) =
{

1
B |f | ≤ B/2
0 B/2 < |f | ≤ 1/2

(110)

for some B ∈ (0, 1]. Plugging (110) in (95) we find the quadratic equation

uג
0(y, γ)

1 + uג
0(y, γ)

=
γ

1 + y γ/B + (1− y)גu
0(y, γ)

(111)
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Figure 3: Mutual information Ie(γ) and its (random) finite length realizations for n = 1000,
e = 0.3 and σ|i−j| = e−0.2(i−j)2 .

that yields

uג
0(y, γ) =

1
2(1− y)

[
γ − 1− γy/B +

√
(γ − 1− γy/B)2 + 4γ(1− y)

]
(112)

Using (94) and (112), it can be checked that

Iu
e (γ, 1) =

1− e

2
log(1 + γ) (113)

Iu
0 (γ, B) =

B

2
log
(
1 +

γ

B

)
(114)

Iu
e (γ,

1
2
) =

1− e

2
log

(
2e(1 + γ)− 1− γ +

√
1 + 2γ + (1− 2e)2γ2

2e

)

+
1
4

log

(
1 + 2γ + γ2(1− 2e) + (1 + γ)

√
1 + 2γ + (1− 2e)2γ2

2(1 + 2γ)

)
(115)

Iu
e (γ, B) =

1− e

2
γ log e− 1− e

4B
(1− e + Be)γ2 log e + o(γ2) (116)

Iu
e (γ, B) =

1− 2B

4
log

2(1−B)B
B − 2B2 −Bγ + (1− e)γ + ∆

+
1− e

2
log

B(2e + γ − 1)− (1− e)γ + ∆
2Be

+
1
4

log
2(1−B)Bγ2e2

−B2(1− 2(1− e)γ + γ2) + B(γ − 1)γ(2− e)− (1− e)γ2 + (B + γ −Bγ)∆
(117)

where
∆ =

√
B2((1 + γ)2 − 4(1− e)γ) + 2B(1− e)(1− γ)γ + (1− e)2γ2 (118)

Example 8 Consider a wireless LAN where the access points (cell sites or hot-spots) are con-
nected to a centralized processor via some Internet infrastructure, subject to congestion and iid
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packet losses. This system is described by the classical Wyner [25] model, where each received
signal is affected by independent erasures. Notice that in this case erasures are not independent
“in time”, but are independent in space, i.e., the links between the access points and the central
processors are either on or off, with probability 1− e and e, respectively, and it is assumed that
their state changes in time at a very slow rate with respect to the duration of a codeword.

In particular, consider the linear Wyner model with interference coefficient α ∈ [0, 1]: A
system with N cells, K users per cell, and a central processor where the signal vector received
at the central processor from the i-th cell is given by

yi = ei

(
K∑

k=1

xi,k + α

(
K∑

k=1

xi−1,k +
K∑

k=1

xi+1,k

))
+ zi (119)

where ei ∈ {0, 1} is the link erasure random variable. It is easy to see that an intra-cell orthogo-
nal access (TDMA/FDMA) strategy is optimal, as in the original Wyner model [25]. Restricting
(119) to this case, the centralized processor at any given time receives the signal vector

Y = EH(α)X + Z (120)

where E = diag(e1, . . . , eN ), X = (x1, . . . , xN )T is the vector of transmitted signals from all
terminals scheduled in the same time slot, one for each cell, and

H(α) =


1 α 0 · · · 0

α 1 α 0
...

0 α 1 α
...

. . . . . . α
0 · · · α 1

 (121)

Conditioned on E, the average per-cell capacity is

C(N)(γ) =
1
N

log det
(
I + γEH(α)H†(α)E

)
(122)

where γ = KP/N0 denotes the total cell SNR [25] (aggregate transmit power of all users in
the cell over the Gaussian noise power spectral density). For finite N , (122) is a function of
the random erasure matrix E. For N → ∞, the per-cell capacity converges to a deterministic
quantity, that can be computed via the results for the Gaussian-erasure channel developed in this
paper. In particular, the spectrum S(f) corresponding to the asymptotic eigenvalue distribution
of Σ = H(α)H†(α) is given by [25]

S(f) = (1 + 2α cos(2πf))2 (123)

and in this setup no correlation between the users is allowed so the input power spectral density
(spatial frequency) is flat. Figures 4 and 5 show the per-cell capacity for γ = 10 dB versus the
interference parameter α, for e = 0.1 and e = 0.9, respectively. We notice that when the erasure
probability is large, the per-cell capacity is increasing with α: the “macro-diversity” effect due
to the inter-cell cross-talk is very helpful for large e. Intuitively, when a cell-site link is down,
the terminal in that cell has still a chance to be successfully decoded from the signal received at
the neighboring cells. On the contrary, for small e, the cell capacity is non-monotone with α as
in the conventional non-erasure Wyner model [25].
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Figure 4: Cell capacity versus interference parameter α for the Wyner model with erasures,
e = 0.1 and cell SNR γ = 10 dB.

5 Input Optimization

The goal of this section is to find the optimum power spectral density as a function of the
signal-to-noise ratio γ and the erasure rate e. For that purpose, we will use the following
general finite-dimensional result which is of independent interest.

Theorem 4 Let Φ be an m×n complex valued random matrix whose ith column is denoted by
φi. Consider the optimization problem

max
D

E
[
log det

(
I + γΦDΦ†

)]
(124)

where the maximum is over all diagonal matrices whose trace is equal to a constant ξ. Then, for
i = 1, . . . , n, d∗i , the ith diagonal element of the diagonal matrix D∗ that achieves the maximum
in (124) is the positive solution to

E
[

Zi

1 + γd∗i Zi

]
=

1
νγ

(125)

Zi = φ†
i

I + γ
∑
j 6=i

d∗jφjφ
†
j

−1

φi (126)

if it exists (i.e. if νγE [Zi] > 1); otherwise, d∗i = 0. The parameter ν is chosen so that∑n
i=1 d∗i = ξ.

Proof: Fix γ > 0 and define the strictly concave function

I(D) = E
[
loge det

(
I + γΦDΦ†

)]
(127)
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Figure 5: Cell capacity versus interference parameter α for the Wyner model with erasures,
e = 0.9 and cell SNR γ = 10 dB.

Denote
Dµ = D∗ + µT (128)

for 0 ≤ µ ≤ 1, with D∗ the unique maximizer of (127) and T a diagonal matrix with zero trace
and with ith diagonal coefficient τi ≥ 0 if d∗i = 0. Then, for all sufficiently small µ, Dµ belongs
to the feasible set of matrices over which we are optimizing. Denote

A` =

I + γ
∑
j 6=`

d∗jφjφ
†
j

−1

(129)

It is easy to check that

d

dµ
I(Dµ)|µ=0+ = E

[
tr
{(

γΦTΦ†
)(

I + γΦD∗Φ†
)−1

}]
. (130)

= γ

n∑
`=1

τ` E
[
φ†

`

(
I + γΦD∗Φ†

)−1
φ`

]
(131)

= γ
n∑

`=1

τ` E
[
φ†

`

(
A` + γd∗`φ`φ

†
`

)−1
φ`

]
(132)

= γ

n∑
`=1

τ` E

[
φ†

`A
−1
` φ` −

γd∗`

1 + γd∗`φ
†
`A

−1
` φ`

(φ†
`A

−1
` φ`)

2

]
(133)

= γ

n∑
`=1

τ` E
[
Z`

(
1−

γd∗`Z`

1 + γd∗`Z`

)]
(134)

= γ
n∑

`=1

τ` E
[

Z`

1 + γd∗`Z`

]
(135)
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where (133) follows from the matrix inversion lemma, and (134) follows from (126).
To conclude the proof we argue by contradiction. Suppose that for some (i, j), d∗i > 0,

d∗j > 0 and

E
[

Zi

1 + γd∗i Zi

]
> E

[
Zj

1 + γd∗jZj

]
(136)

Then let T be zero everywhere except τi = 1 = −τj . Then (135) is strictly positive contradicting
the optimality of D∗. Thus, there must exist a ν such that (125) holds for all those i such that
d∗i > 0. This implies that if νγE [Zj ] ≤ 1, then d∗j = 0. Now, let us suppose that for some j,
d∗j = 0 and νγE [Zj ] > 1. Then let T be zero everywhere except τj = ν = −τi where i is such
that d∗i > 0. The resulting value of (135) is νγE [Zj ] − 1 > 0, contradicting the optimality of
D∗.

A result related to Theorem 4 is obtained in [20] by using an MMSE representation. Note
that in the special case where Φ is a deterministic diagonal matrix, we recover the conventional
waterfilling solution with

Zi = |φii|2. (137)

The waterfilling solution is relevant when the channel matrix is known at transmitter and
receiver in which case parallel orthogonal channels can be created. But, in general, the solution
given by Theorem 4 does not correspond to waterfilling on any statistical measure of the channel.
However, as in the special case of waterfilling, the high-SNR solution is

lim
γ→∞

D∗ =
ξ

n
I. (138)

We now return to the Gaussian erasure channel and show, using Theorem 4, an appealing
solution for the capacity-achieving power spectral density.

Theorem 5 The capacity-achieving input power spectral density is

S∗x(f, γ, e) =
1

θ(e, ζ)

[
ζ − 1

γ|H(f)|2

]+

(139)

where
θ(e, ζ) =

1
2

[
ζ + 1−

√
(ζ − 1)2 + 4ζe

]
(140)

and ζ is chosen so that the integral of (139) is equal to 1.

Proof: Using Theorem 12 in Appendix B and the asymptotic equivalence of the product
of Toeplitz matrices to the product of the corresponding circulant matrices we can write the
objective function as

Ce(γ) = lim
n→∞

1
2n

max
Λx

E
[
log det

(
I + γQΛHΛxΛHQ†

)]
(141)

where recall from (65) that Q = EF, ΛH = diag{H1, . . . ,Hn} is the diagonal matrix of the
singular values of H and the maximization is over the set of nonnegative diagonal matrices with
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trace equal to n. To solve (141) we make use of Theorem 4 with Φ = QΛH and D = Λx. In
this case, (126) takes the form

Zi = H2
i q

†
i

I + γ
∑
j 6=i

H2
j d∗jqjq

†
j

−1

qi (142)

Taking the limit of (142) as n → ∞, Lemma 1, Lemma 13, and (82) imply that almost
surely

lim
n→∞

q†i

I + γ
∑
j 6=i

H2
j d∗jqjq

†
j

−1

qi = α (143)

= 1− e

ηEΣE(γ)
(144)

Thus,

E
[

Zi

1 + γd∗i Zi

]
→ H2

i α

1 + γd∗i H
2
i α

(145)

Using (145) in Theorem 4, the sought-after power spectral density satisfies

|H(f)|2ανγ

1 + γαS∗x(f)|H(f)|2
= 1 (146)

if ανγ|H(f)|2 > 1, and S∗x(f) = 0 otherwise. Thus, using (144), we get

S∗x(f) =

[
ν − 1

γ|H(f)|2(1− e
ηEΣE(γ))

]+

(147)

Choosing the water level so that the integral of (147) is equal to 1, leads, according to (34), to

ν =
1

1− ηΣ(αγ)
(148)

=
1

1− ηEΣE(γ)
(149)

where we have used Theorem 2.
To obtain the final result (139), we change variables and let ζ = να, thereby expressing

(147) as

S∗x(f) =
1
α

[
ζ − 1

γ|H(f)|2

]+

(150)

where in view of (144) and (149), α satisfies the quadratic equation

α =
(

1− e

1− α

)
ζ (151)

whose solution in the interval [0, 1− e] is denoted by θ(e, ζ) and given in (140).
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The function θ(e, ζ) is monotonically decreasing with e, and increasing with ζ. It satisfies

θ(0, ζ) = 1
θ(1, ζ) = 0
θ(e, 0) = 0

lim
ζ→∞

θ(e, ζ) = 1− e

As the following corollary to Theorem 5 shows, the effect of erasures on the capacity-
achieving input power spectral density is tantamount to a reduction in the signal to noise
ratio.

Corollary 3 For all 0 ≤ e ≤ 1, γ > 0,

S∗x (f, γ/κ, e) = S∗x (f, γ, 0) (152)

where
κ = 1− e ζγ

ζγ − 1
(153)

and ζγ is the erasure-free water level for γ, i.e. the solution to (18).

Proof: Let

ζ̄ = κ ζγ (154)

=
κ

1− e
1−κ

(155)

where (155) follows by solving for ζγ in (153). Comparing (155) to (151) we conclude that
κ = θ(e, ζ̄), and consequently:

ζ̄

θ(e, ζ̄)
= ζγ (156)

γθ(e, ζ̄)
κ

= γ. (157)

Thus, (152) follows in view of (139) and its particularization to e = 0:

S∗x(f, γ, 0) =
[
ζγ −

1
γ|H(f)|2

]+

(158)

To illustrate the application of Corollary 3, we find an explicit expression for the optimum
power spectral density for arbitrary erasure rate e, as a function of the optimum solution for
e = 0 under the assumption that the signal-to-noise ratio is high enough that the support of
S∗x(f, γ, 0) is the whole interval [−1/2, 1/2]. This implies that |H(f)| is bounded away from
zero and we can define

Z(f) = h− 1
|H(f)|2

(159)

h =
∫ 1/2

−1/2

1
|H(f)|2

df (160)

22



and therefore ∫ 1/2

−1/2
Z(f) df = 0 (161)

Because of the assumption on γ, the capacity-achieving power spectral density in the absence
of erasures is equal to (cf. (158))

S∗x(f, γ, 0) = ζγ −
1

γ|H(f)|2
(162)

= 1 +
Z(f)

γ
(163)

where in (163) we have used the fact that the area of S∗x(f, γ, 0) is normalized to 1, and thus

ζγ = 1 +
h

γ
(164)

According to Corollary 3

S∗x(f, γ, e) = S∗x(f, γκ, 0) (165)

with

κ = 1− e ζγκ

ζγκ − 1
(166)

= 1− e
(γκ

h
+ 1
)

(167)

=
1− e

1 + γe
h

(168)

where (168) follows from solving the first-order equation (167).
Thus,

S∗x(f, γ, e) = 1 +
Z(f)

γ

1 + γe
h

1− e
(169)

= S∗x(f, γ, 0) + e
γ
h + 1
1− e

Z(f) (170)

6 Bounds on the Mutual Information

The purpose of this section is to develop bounds on the mutual information Ie(γ) for given
output spectrum S(f) that are significantly easier to compute. While none of the bounds
developed in this section captures the behavior of mutual information for both high and low
SNR and any arbitrary S(f), it turns out that by taking the minimum of the upper bounds
and the maximum of the lower bounds we obtain a generally accurate and asymptotically tight
approximation.

The proposed lower bounds are given in the next result.

Theorem 6 Let yi =
√

γ eiui + ni, where {ui} is stationary Gaussian with power spectral
density S(f), and {ni} is stationary Gaussian with unit power spectral density. Furthermore,
denote

G =
∫ 1/2

−1/2
S(f) df. (171)
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and let B the Lebesgue measure of I ∈ [−1/2, 1/2], the support of S(f) (or “generalized band-
width” of {ui}). Then, the mutual information rate is lower bounded by

Ie(γ) ≥ Iu
e (Gγ, B) +

1
2

∫
I

log
(

1 + γS(f)
1 + γG/B

)
df (172)

Ie(γ) ≥ (1− e)I0(γ) (173)

Ie(γ) ≥ I0(γ)− e

2
log(1 + −1)0ג e, γ)) (174)

where an explicit expression for Iu
e (γ, B) is given in (117).

Proof:

(172) For the purposes of proving this bound, we will only show the special case G = 1, as
then, the general formula follows because the mutual information achieved with (γ, S(f))
is the same as that achieved by (aγ, S(f)/a). For a given arbitrary unit-power S(f), we
define the associated unit-power on-off spectrum

Su(f) =
1
B

1{S(f) > 0} (175)

Let ,y)0ג γ) and uג
0(y, γ) be the solutions of (95) for S(f) and Su(f) respectively. Applying

Jensen’s inequality to (95) we have

,y)0ג γ)
1 + ,y)0ג γ)

= E
[

γB S(F )
1 + yγS(F ) + (1− y)0ג(y, γ)

]
≤ γ

1 + yγ/B + (1− y)0ג(y, γ)
(176)

where the expectation is with respect to the random variable F uniformly distributed on
I = {f : S(f) > 0}, and E[S(F )] = 1/B since we are assuming G = 1.

Since it is apparent that the solution of (95) is invariant to swapping frequency bands,
uג
0(y, γ) is given by (112) that was obtained assuming a brickwall low-pass spectrum.

Thus, we see from (111) that uג
0(y, γ) = x with

x(1 + yγ/B + (1− y)x)
1 + x

= γ (177)

Moreover, since the left side of (177) is monotonically increasing in x, and in view of (176)

,y)0ג γ) ≤ uג
0(y, γ) for any y ∈ [0, 1], γ ≥ 0, (178)

Using (178), the mutual informations in (172) satisfy (G = 1)

Ie(γ)− Iu
e (γ, B) =

1
2

∫ 1−e

0
log

1 + ,y)0ג γ)
1 + uג

0(y, γ)
dy (179)

=
1
2

∫ 1

0
log

1 + ,y)0ג γ)
1 + uג

0(y, γ)
dy − 1

2

∫ 1

1−e
log

1 + ,y)0ג γ)
1 + uג

0(y, γ)
dy (180)

≥ 1
2

∫ 1

0
log

1 + ,y)0ג γ)
1 + uג

0(y, γ)
dy (181)

= I0(γ)− Iu
0 (γ, B) (182)

=
1
2

∫
I

log
(

1 + γS(f)
1 + γ/B

)
df (183)
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(173) follows from the concavity of Ie(γ) in e (Corollary 2) and I1(γ) = 0.

(174) is obtained using the monotonicity of ,y)0ג γ) with respect to y (see Appendix D), which
yields

Ie(γ) =
1
2

∫ 1−e

0
log (1 + ,y)0ג γ)) dy

= I0(γ)− 1
2

∫ 1

1−e
log (1 + ,y)0ג γ)) dy

≥ I0(γ)− e

2
log(1 + −1)0ג e, γ)) (184)

Interestingly, the lower bound (172) implies that

I0(γ)− Ie(γ) ≤ Iu
0 (γ, B)− Iu

e (γ, B) (185)

This shows that the largest mutual information penalty caused by the presence of erasures
for spectra with fixed generalized bandwidth B occurs when S(f) is on/off. This conforms to
the intuition that correlation in the process {ui} helps estimating the erased components, and
therefore if {ui} is as “white” as possible given its bandwidth B, then erasures are maximally
harmful in terms of mutual information.

The lower bound (173) demonstrates that contiguous erasures, giving rise to the mutual
information at the RHS of (173) are in fact worst case, and in that sense are associated with
the fountain capacity [15] of a filtered Gaussian channel.

The proposed upper bounds are given in the next result.

Theorem 7 With the same notation as in Theorem 6, the mutual information is upper bounded
by

Ie(γ) ≤ Iu
e (Gγ,B) (186)

Ie(γ) ≤ I0((1− e)γ) (187)

Ie(γ) ≤ 1− e

2
log(1 + Gγ) (188)

Ie(γ) ≤ I0(γ) +
e

2
log

(∫ 1/2

−1/2

1
1 + γS(f)

df

)
(189)

Proof:

(186) follows from (178).

(187) follows from the concavity of log det and Jensen’s inequality:

E [log det(I + γEΣE)] = E [log det(I + γEΣ)] ≤ log det(I + γ(1− e)Σ) (190)

(188) follows from the Hadamard inequality:

E [log det(I + γEΣE)] ≤ (1− e)n
2

log(1 + Gγ) (191)
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(189) follows from the monotonicity of ,y)0ג γ) with respect to y (Appendix D):

Ie(γ) = I0(γ)− 1
2

∫ 1

1−e
log(1 + ,y)0ג γ)) dy

≤ I0(γ)− e

2
log(1 + ,1)0ג γ))

= I0(γ) +
e

2
log

(∫ 1/2

−1/2

1
1 + γS(f)

df

)
(192)

where (192) follows from (95) particularized for y = 1.

It is interesting to notice that (188) can also be derived as an application for the MMSE-I
relation of [6]. Starting from

d

dγ

1
n

log det(I + γEΣE) =
1
n

∑
i:ei=1

E[|ui − ûi|2|E] (193)

for any i such that ei = 1, we can upper bound the corresponding MMSE E
[
|ui − ûi|2|E

]
by

the MMSE obtained by estimating ui from the observation yi alone. We obtain

d

dγ
Ie(γ) ≤ 1− e

2
G

1 + Gγ
(194)

Integrating both sides of (194) we obtain (188). Furthermore, the lower bound (173) can also
be shown as an application of the MMSE-I relation of [6].

Figures 6 and 7 compare the bounds for the case of an ideal low-pass transfer function
with bandwidth B = 0.5, and erasure probability e = 0.1 and e = 0.7, respectively. In those
figures, LB1, LB2 and LB3 refer to (172), (173) and (174), respectively, and UB1, UB2, UB3
and UB4 refer to (186), (187), (188) and (189), respectively. Obviously, for an ideal low-pass
transfer function we have that (172) and (186) coincide with the exact mutual information and
are therefore tight. Figure 8 shows the mutual information and the bounds for a Gauss-Markov
process defined as

ui = ρ ui−1 +
√

1− ρ2 vi (195)

with {vi} i.i.d. standard Gaussian, with ρ = 0.9, and for e = 0.5. Here, all bounds with the
exception of UB2 yield the correct high-SNR slope, given by 1 − e = 0.5 (see Theorem 10).
However, LB1 and UB1 that were tight in the ideal low-pass spectrum case are now quite loose,
while LB2, LB3 and UB4 are quite accurate.

No bound uniformly outperforms the others over all power spectral densities S(f). Often, a
simple and accurate estimate of the mutual information for a given S(f) is obtained by taking
the minimum of UB1, UB2, UB3, UB4 and the maximum of LB1, LB2, LB3.

7 Asymptotics

In this section we focus on the asymptotic behavior of Ie(γ) for given S(f), and of the capacity
Ce(γ) with the optimal input spectrum S∗x(f, γ, e) given in Theorem 5, in four limiting cases:
e → 0, e → 1, γ → 0, and γ →∞. Often, the limiting behaviors capture interesting qualitative
properties and offer easily computable and asymptotically tight approximations.
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Figure 6: Mutual information and the bounds for an ideal low-pass transfer function with
B = 0.5 and e = 0.1.

7.1 Sporadic Erasures

The regime of sporadic erasures e → 0 is of particular interest. The following result shows that
the upper bound (189) is asymptotically tight.

Theorem 8 For any output power spectral density S(f) and e → 0,

Ie(γ) = I0(γ)− e

2
log

1
ηΣ(γ)

+ o(e) (196)

Proof: Since Ie(γ) is a concave decreasing function of e ∈ [0, 1] (Corollary 2), for sufficiently
small e it satisfies

Ie(γ) = I0(γ) +
∂Ie(γ)

∂e

∣∣∣∣
e=0

e + o(e) (197)

Using Theorem 3, we have

∂Ie(γ)
∂e

∣∣∣∣
e=0

= −1
2

log (1 + ,1)0ג γ)) (198)

Particularizing (95) we have

,1)0ג γ)
1 + ,1)0ג γ)

=
∫ 1/2

−1/2

γS(f)
1 + γS(f)

df (199)

Solving for ,1)0ג γ) we obtain

1 + ,1)0ג γ) =

[∫ 1/2

−1/2

1
1 + γS(f)

df

]−1

=
1

ηΣ(γ)
(200)

which, with (197), yields (196).
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Figure 7: Mutual information and the bounds for an ideal low-pass transfer function with
B = 0.5 and e = 0.7.

The next result deals specifically with the capacity of the Gaussian erasure channel for
sporadic erasures:

Theorem 9 In the regime of sporadic erasures the capacity of the Gaussian erasure channel
satisfies:

Ce(γ) = C0(γ)− e

2
log

ζ

ζ − 1
+ o(e) (201)

where ζ is the water level of the power spectral density that achieves C0(γ).

Proof: In the proof, we specifically denote the dependence on γ of the water level of the power
spectral density that achieves C0(γ), i.e. ζγ .

Let S∗x(f, γ, e) denote the capacity-achieving input power spectral density for erasure rate
e, and denote the η-transform of the corresponding output spectrum by

ηΣe(γ) =
∫ 1/2

−1/2

1
1 + γS∗x(f, γ, e)|H(f)|2

df (202)

Using (196) we get,

Ie(S∗x(·, γ, e))− I0(S∗x(·, γ, 0)) ≥ Ie(S∗x(·, γ, 0))− I0(S∗x(·, γ, 0)) (203)

= − e

2
log

1
ηΣ0(γ)

+ o(e) (204)

= − e

2
log

1
1− 1

ζγ

+ o(e) (205)

where (205) follows from (34).

28



!10 !5 0 5 10 15 20 25 30
!0.5

0

0.5

1

1.5

2

2.5

3

3.5
Gauss!Markov, ! = 0.9, erasure prob. = 0.5

" (dB)

I("
) (

bi
t/c

ha
nn

el
 u

se
)

UB2

UB1=UB3

UB4

LB1
LB2

LB3

Figure 8: Mutual information and the bounds for a Gauss-Markov spectrum with ρ = 0.9 and
e = 0.5.

To show the reverse inequality we use the upper bound (189), that yields

Ie(S∗x(·, γ, e))− I0(S∗x(·, γ, 0)) ≤ I0(S∗x(·, γ, e))− I0(S∗x(·, γ, 0))

+
e

2
log

(∫ 1/2

−1/2

1
1 + γS∗x(f, γ, e)|H(f)|2

df

)
(206)

= I0(S∗x(·, γ, e))− I0(S∗x(·, γ, 0))

− e

2
log

1
ηΣe(γ)

+ o(e) (207)

= I0(S∗x(·, γ, e))− I0(S∗x(·, γ, 0))

− e

2
log

1
1− 1

ζγκ

+ o(e) (208)

where κ is defined such that (recall Corollary 3)

S∗x(f, γ, e) = S∗x(f, γκ, 0) (209)

Now let us consider the following expansion of S∗x(f, γ, e)

S∗x(f, γ, e) = S∗x(f, γ, 0) + e a1(f) + o(e) (210)

(For sufficiently large γ, an explicit expression is given in (170).) Since κ < 1, the support of
S∗x(f, γ, e) is a subset of that of S∗x(f, γ, 0). Thus, a1(f) = 0 for those frequencies such that
S∗x(f, γ, 0) = 0. Moreover, since the integrals of the spectral densities in (210) are equal to 1,∫

a1(f) df = 0. Using (210), the difference of mutual informations in the right side of (208)
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becomes

I0(S∗x(·, γ, e))− I0(S∗x(·, γ, 0)) =
1
2

∫ 1/2

−1/2
log
(

1 + γS∗x(f, γ, e)|H(f)|2

1 + γS∗x(f, γ, 0)|H(f)|2

)
df (211)

=
1
2

∫ 1/2

−1/2
log
(

1 + γ
e a1(f)|H(f)|2

1 + γS∗x(f, γ, 0)|H(f)|2

)
df + o(e)(212)

≤ e log e

2

∫ 1/2

−1/2

γa1(f)|H(f)|2

1 + γS∗x(f, γ, 0)|H(f)|2
df + o(e) (213)

=
e log e

2ζ

∫ 1/2

−1/2
a1(f) df + o(e) (214)

= o(e) (215)

where (214) follows from the fact that a1(f) = 0 if S∗x(f, γ, 0) = 0, and according to (16), if
S∗x(f, γ, 0) > 0 it satisfies

1 + γS∗x(f, γ, 0)|H(f)|2 = ζγ|H(f)|2 (216)

Since κ → 1 as e → 0, the result follows in view of (205), (208) and (215).

The first-order decrease of the capacity of finite-alphabet channels with memory observed
through an erasure channel is shown in [23] to be equal to the so-called erasure mutual informa-
tion rate evaluated at the capacity-achieving distribution. Although the channel in this paper
falls outside the scope of that finite-alphabet result in [23], (201) is consistent with it.

7.2 Sporadic non-erasures

As e → 1, the solution in Theorem 3 takes the limiting expression:

lim
e→1

Ie(γ)
1− e

=
1
2

log

(
1 + γ

∫ 1/2

−1/2
S(f) df

)
(217)

Optimizing (217) over unit input power spectrum Sx(f) with S(f) = |H(f)|2Sx(f) results
in Sx(f) that places all its power at the most favorable frequency (or frequencies), yielding

lim
e→1

Ce(γ)
1− e

=
1
2

log (1 + γGmax) (218)

where the maximum channel gain is denoted by

Gmax = max
f

|H(f)|2. (219)

The solution (218) obtained with an input that has very long range memory (if Gmax is
achieved at only one frequency) may be surprising until realizing that in the sporadic non-
erasure regime, the channel effectively breaks any long-term memory in the input process and
achieving maximum efficiency in power transfer becomes paramount.
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Example 9 Figure 9 shows the capacity Ce(γ) for fixed γ = 10 dB, as a function of the erasure
probability e, for a channel with transfer function |H(f)|2 defined by its η-transform3

η|H|2(z) = 0.2 +
0.2

1 + z
+

0.2
1 + 2z

+
0.2

1 + 5z
+

0.1
1 + 7z

+
0.1

1 + 10z

Figure 9 shows also the affine approximations of capacity for sporadic erasures (e ↓ 0) and
sporadic non-erasures (e → 1) obtained before.
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Figure 9: Capacity versus erasure rate at γ = 10dB (Example 9), with its affine asymptotic
approximations for small and large erasure probability.

7.3 Low SNR Asymptotics

We characterize the behavior of capacity for fixed e and vanishing γ. In order to be consistent
with the notation and definitions introduced in [21] to characterize the low-SNR (or wideband)
regime, we shall consider the complex circularly symmetric version of our channel model, where
γ = Es/N0 is the transmitter SNR, and N0 denotes the complex noise variance per component.
The system spectral efficiency C (measured in bit/s/Hz) as a function of Eb/N0, where Eb

denotes the transmitted energy per information bit, is given implicitly by

C = Ce(γ)
Eb

N0
=

γ

Ce(γ)
(220)

where Ce(γ) is the channel capacity expressed in bits per (complex) channel use.
At low SNR or, equivalently, for small C, Eb/N0 in dB as a function of C takes on the

convenient form
Eb

N0

∣∣∣∣
dB

=
(

Eb

N0

)
min

∣∣∣∣
dB

+
C

S0
10 log10 2 + o(C) (221)

3Since capacity depends on |H(f)|2 only via its η-transform, defined by η|H|2(z) =
R 1/2

−1/2
1

1+z|H(f)|2 df , it is

convenient to give examples in terms of the η-transform itself.
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We have the following result which states that the presence of erasures requires boosting the
energy per bit by a factor of 1

1−e at the transmitter.

Theorem 10 The minimum energy per bit and wideband slope S0 of the spectral efficiency of
the Gaussian erasure channel are equal to(

Eb

N0

)
min

=
1

(1− e)Gmax log2 e
(222)

S0 =
2(1− e)Bmax

eBmax + 1− e
(223)

where Bmax = µ({f : |H(f)|2 = Gmax}).

Proof: Let Imax denote the set of frequencies f ∈ [−1/2, 1/2] such that |H(f)|2 = Gmax. For
the time being, we assume that Bmax = µ(Imax) > 0. For sufficiently small γ, the capacity-
achieving input spectrum is given by

S∗x(f, γ, e) =
{ 1

Bmax
f ∈ Imax

0 f 6= Imax
(224)

It follows that for sufficiently low γ, we can use the Taylor series expansion in (116) to obtain(
Eb

N0

)
min

=
1

∂Ce(γ)
∂γ

∣∣∣
γ=0

=
1

(1− e)Gmax log2 e
(225)

and

S0 = −2

[
∂Ce(γ)

∂γ

∣∣∣
γ=0

]2

∂2Ce(γ)
∂γ2

∣∣∣
γ=0

=
2(1− e)2G2

max

(1− e)G2
max + 1−Bmax

Bmax
(1− e)2G2

max

=
2(1− e)Bmax

eBmax + 1− e
(226)

where we used the formulas in [21, eq. (35)] and [21, Theorem 9]. The case Bmax = 0, as for
example when |H(f)|2 has a unique maximum Gmax on f ∈ [−1/2, 1/2], can be approximated
by a sequence of channel transfer functions that are equal to Gmax on intervals of positive but
vanishing measure. Since (Eb/N0)min does not depends on Bmax, each of these approximations
yields the same minimum Eb/N0, which is therefore equal to the limit. The slope S0 can be
obtained as the limit for Bmax → 0 of these approximations, yielding S0 = 0. It follows that
(222) is valid also for the case Bmax = 0.

Example 10 Figure 10 shows the spectral efficiency C vs Eb/N0 in dB for two Gaussian erasure
channels with the same erasure probability e = 0.5. The first, denoted as “Channel 1”, is given
in Example 9, and the second, denoted as “Channel 2”, has η transform given by

η|H|2(z) = 0.9 +
0.1

1 + 10z
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Both channels have Bmax = 0.1 and Gmax = 10, hence they have the same (Eb/N0)min and S0,
although for non-vanishing γ their capacity is very different. Also shown in Figure 10 is the
affine approximation (221) of C, that becomes exact as (Eb/N0) ↓ (Eb/N0)min.
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Figure 10: Spectral efficiency vs Eb/N0 in dB, for two channels with the same minimum Eb/N0

and slope S0. The dash-dotted straight line shows the wideband affine approximation.

7.4 High-SNR Asymptotics

For large SNR, the spectral efficiency C introduced in the previous section behaves like [16]

Eb

N0

∣∣∣∣
dB

=
C

S∞
10 log10 2− 10 log10(C) + L∞10 log10 2 + o(1) (227)

where S∞ and L∞ are known as the high-SNR slope and the high-SNR dB offset respectively
[16]. Using (220), it follows that for large γ,

Ce(γ) = S∞ (log2 γ − L∞) + o(1) (228)

(expressed in bits per complex dimension). The high-SNR slope S∞ captures the channel
degrees of freedom, also referred to as “multiplexing gain”, i.e.,

S∞ = lim
γ→∞

Ce(γ)
log γ

(229)

Theorem 11 Consider a Gaussian erasure channel with given channel transfer function H(f)
and erasure probability e. Let I = {f : |H(f)|2 > 0} and B = µ(I) denote its generalized
bandwidth. The high-SNR slope is given by

S∞ = min{1− e, B} (230)
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and the high-SNR dB offset is

L∞ = −
∫ 1

0
log2 z(y) dy (231)

where z(y) is the solution of the fixed point equation

B − yS∞ =
∫
I

1

1 + y(1−e−yS∞)
(1−y)(1−yS∞)z

|H(f)|2
B

df (232)

Proof: It is well-known that a white input (Σx = I) achieves the same S∞ as the optimal
input covariance Σ∗

x. This can be shown by the following upper and lower bounds that hold
for any finite n. Clearly, we have

E[log det(I + γEHH†E)] ≤ max
Σx:tr(Σx)≤n

E[log det(I + γEHΣxH†E)] (233)

Moreover, since log det(·) is increasing on the cone of positive definite matrices and for any input
covariance that satisfies the trace constraint tr(Σx) ≤ n we have that nI−Σx is non-negative
definite, it follows that

max
Σx:tr(Σx)≤n

E[log det(I + γEHΣxH†E)] ≤ E[log det(I + nγEHH†E)] (234)

Hence, using a sandwich argument, it is immediate to see that for any finite n,

lim
γ→∞

Ce(γ)
log γ

= lim
γ→∞

E[log det(I + γEHH†E)]
log γ

= lim
γ→∞

E

[∑n
i=1

[
log γλi(EHH†E)

]+
log γ

]

= E

[
n∑

i=1

1{λi(EHH†E) > 0}

]
= E[rank(EHH†E)] (235)

Corollary 1 yields
rank(EHH†E)

n
→ min{1− e, B}, a.s.

and (230) is proved.
We turn our attention now to the high-SNR offset L∞. From Theorem 1 we have that

Ce(γ) = S∞
∫ 1

0
log(1 + ,y)ג γ)) dy (236)

where ,y)ג γ) is the solution of the fixed-point equation (39), with A = EΣ∗E and ρ = S∞.
Furthermore, in the high-SNR regime ,y)ג γ) = z(y)γ + O(1) as per (54) where z(y) is the
solution to (55).

From (228) and (236), we have

L∞ = lim
γ→∞

(
log γ − 1

S∞
Ce(γ)

)
= lim

γ→∞

(
log γ −

∫ 1

0
log2 (1 + γz(y)) dy

)
= −

∫ 1

0
log2 z(y) dy (237)
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Hence, it remains only to be shown that z(y) is given by the solution of the fixed-point equation
(232). The fixed-point equation (55) takes the form

S∞y = 1− ηEΣ∗
∞E

(
y

(1− y)z

)
(238)

where Σ∗
∞ denotes the linear-system output covariance matrix driven by the capacity achieving

input in the limit of large γ. Notice that in contrast to the case of γ-independent A in (55),
here Σ∗ depends on γ via the capacity-achieving input spectrum.

Using Theorem 2, we have that

ηEΣ∗
∞E(t) = ηΣ∗

∞

(
t− t

e

ηEΣ∗
∞E(t)

)
(239)

Letting t = y
(1−y)z and using (238), we obtain

yS∞ = 1− ηΣ∗
∞

(
y(1− e− yS∞)

(1− y)(1− yS∞)z

)
(240)

Now, we notice that as γ →∞ the optimal input spectrum satisfies:

S∗x(f, γ, e) =
{

1
B −O(1/γ) f ∈ I
0 f /∈ I (241)

It follows that

ηΣ∗
∞(t) = lim

γ→∞

∫ 1/2

−1/2

1
1 + tS∗x(f, γ, e)|H(f)|2

df

= 1−B +
∫
I

1

1 + t |H(f)|2
B

df (242)

Using (242) into (240) we arrive at

B − yS∞ =
∫
I

1

1 + y(1−e−yS∞)
(1−y)(1−yS∞)z

|H(f)|2
B

df (243)

and the theorem is proved.

As an example of the application of Theorem 11, we obtain L∞ in closed form for a channel
with ideal low-pass transfer function, by explicitly solving the fixed point equation for z(y).
We also provide upper and lower bounds on L∞ for a general channel transfer function that
require no fixed-point equation solution and numerical integration.

Considering the case where H(f) is an ideal low-pass transfer function with bandwidth B
and power gain G. In this case, the fixed-point equation (232) becomes

B − yS∞ =
B

1 + y(1−e−yS∞
(1−y)(1−yS∞)z

G
B

(244)

We consider the case S∞ = B and S∞ = 1 − e separately. If S∞ = B ≤ 1 − e, then (244)
becomes

1− y =
1

1 + y(1−e−yB
(1−y)(1−yB)z

G
B

(245)
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Solving for z we find

z(y) = G
1−e
B − y

1−By
(246)

which yields

Lu
∞ = −

∫ 1

0
log2

(
G

1−e
B − y

1−By

)
dy

= − log2 G +
(

1− e

B
− 1
)

log2

(
1− B

1− e

)
− 1−B

B
log2(1−B) + log2

B

1− e
(247)

If S∞ = 1− e ≤ B, then (244) becomes

1− y
1− e

B
=

1

1 + y(1−e)
(1−(1−e)y)z

G
B

(248)

Solving for z we find

z(y) = G
1− y 1−e

B

1− (1− e)y
(249)

which yields

Lu
∞ = −

∫ 1

0
log2

(
G

1− y 1−e
B

1− (1− e)y

)
dy

= − log2 G +
(

B

1− e
− 1
)

log2

(
1− 1− e

B

)
− e

1− e
log2 e (250)

Next, consider the case of a general channel transfer function with generalized bandwidth B
and average gain G. Using Jensen’s inequality in the fixed-point equation (232) we have∫

I

1

1 + y(1−e−yS∞)
(1−y)(1−yS∞)z

|H(f)|2
B

df ≥ B

1 + y(1−e−yS∞)
(1−y)(1−yS∞)z

G
B

(251)

Let z(y) denote the solution of (232) for the given H(f) and zu(y) denote the solution of the
new fixed-point equation

B − yS∞ =
B

1 + y(1−e−yS∞)
(1−y)(1−yS∞)z

G
B

(252)

Since the right-hand side of (232) is an increasing function of z, it follows that zu(y) ≥ z(y)
for all y ∈ [0, 1]. This yields the lower bound

L∞ = −
∫ 1

0
log2 z(y) dy

≥ −
∫ 1

0
log2 zu(y) dy

= Lu
∞ (253)

where Lu
∞ is given by (247) or by (250), depending on B and e, replacing G by G.

Finally, by operating similarly to what done for the mutual information lower bound (172)
we can show the upper bound

L∞ ≤ Lu
∞ + β (254)
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where β ≥ 0 is the channel Jensen’s penalty factor, defined by

β =
B

S∞

[
log2(G)− 1

B

∫
I

log2(|H(f)|2) df

]
(255)

In fact, we can write

Ce(γ) ≥
∫
I

log(1 + γ|H(f)|2S∗x(f, γ, e)) df −
∫ 1

1−e
log
(
1 + uג

0(y, Gγ)
)

dy

=
∫
I

log(1 + γ|H(f)|2S∗x(f, γ, e)) df −
(∫ 1

0
log
(
1 + uג

0(y, Gγ)
)

dy −
∫ 1−e

0
log
(
1 + uג

0(y, Gγ)
)

dy

)
=

∫ 1−e

0
log
(
1 + uג

0(y, Gγ)
)

dy −
(

B log(1 + Gγ/B)−
∫
I

log(1 + γ|H(f)|2S∗x(f, γ, e)) df

)
=

∫ 1−e

0
log
(
1 + uג

0(y, Gγ)
)

dy −
∫
I

log
(

1 + Gγ/B

1 + γ|H(f)|2S∗x(f, γ, e)

)
df

(256)

where first term in (256) coincides with the capacity of a Gaussian erasure channel with ideal
low-pass transfer function, bandwidth B and gain G, while the second term in (256), in the
limit of large γ is easily recognized to yield

∫
I log G

|H(f)|2 df . The upper bound (254) follows
by noticing that a lower bound on capacity yields an upper bound to the high-SNR dB offset.

Example 11 Figure 11 shows the spectral efficiency C vs Eb/N0 in dB for large SNR for two
Gaussian erasure channels with the same erasure probability e = 0.1 and the following transfer
function η-transform,
Channel 3:

η|H3|2(z) = 0.3 +
0.7

1 + 10z
(257)

Channel 4:

η|H4|2(z) = 0.3 +
0.2

1 + z
+

0.2
1 + 5z

+
0.1

1 + 8z
+

0.1
1 + 20z

+
0.1

1 + 30z
(258)

Channel 3 is a low-pass with gain 10 and B = 0.7. Channel 4 has five different nonzero gains,
the same bandwidth and average gain G = 10. Also shown in Figure 11 is the approximation
(227) of C, that becomes exact as (Eb/N0) → ∞. In this case, since 1 − e > B, we have
S∞ = B = 0.7.

8 Conclusion

We have found the capacity of the discrete-time linear filter additive Gaussian channel whose
observations are randomly erased by a memoryless process known to the receiver only. This
model has a variety of applications, in wireline and wireless communications scenarios ranging
from classical impulse jammed Gaussian channels to macro-diversity cellular systems with a
backbone network infrastructure affected by packet losses.

Stationary Gaussian inputs maximize the mutual information subject to an input power
constraint. Because of the presence of erasures the classical Toeplitz asymptotic spectral theory
for deterministic matrices is insufficient in order to characterize the mutual information. Our
solution is based on a novel result in random matrix theory, which is of independent interest:

37



0 10 20 30 40 50 60 70
4

6

8

10

12

14

16

18

20

Eb,N0 /d12

C
 /b

it.
s.

H
z2

Channel 3

Channel 4

High!SNA approximation

Figure 11: Spectral efficiency vs Eb/N0 in dB, for two channels with the same generalized
bandwidth B = 0.7 and average channel gain G = 10 and e = 0.1. The dash-dotted line shows
the high-SNR approximations.

the asymptotic spectral distribution of random sub-matrices of a nonnegative definite Toeplitz
matrix, obtained by retaining columns/rows independently and with equal probability.

The input-output mutual information takes the form of a fixed-point equation given by
Theorem 3, and which demonstrates explicitly the role played by erasures in reducing the
number of effective degrees of freedom. This representation generalizes the well-known fact
that for memoryless channels observed through erasure channels the capacity is reduced by a
multiplicative factor equal to the non-erasure rate. Furthermore, we have been able to find
a remarkable closed-form solution of the fixed-point equation of Theorem 3 in the case of a
rectangular input spectrum (ideal low-pass filter).

We have given a general result for optimum power allocation for linear vector channels
unknown at the transmitter. The application of this result to the optimization of the input
power spectral density leads to the pleasing conclusion that the classical waterfilling solution
remains optimal in the presence of erasures: their only effect is to introduce a penalty in the
signal-to-noise ratio that should be assumed for the waterfilling solution.

We have provided closed form expressions for asymptotic low and high signal-to-noise ratio
and for sporadic erasures and sporadic nonerasures. In addition, we have derived a number of
simple bounds, which are useful in the asymptotic analysis and shed further insight into the
impact of erasures on Gaussian channels with memory.

The technical development of this work advances the application of random matrix theory
to information theoretic problems. We are currently applying these technical developments to
problems related to estimation and prediction subject to missing random observations. Fur-
thermore, we are working on the nontrivial extension of the setup to the basic problem of
frequency-flat fading dispersive channels with receiver side information.
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APPENDIX

A Proof of Lemma 1

Recall the standard definition of asymptotic equivalence of matrices [5, Thm. 5.3]

Definition 3 The n× n matrices An and Bn are asymptotically equivalent if

i) ‖An‖ ≤ M < ∞ and ‖Bn‖ ≤ M ′ < ∞

ii) limn→∞ |An −Bn| = 0

where the strong norm and the weak norm of an n× n matrix A are defined as

‖A‖2 = max
i

λi(AA†) (259)

|A|2 =
1
n

tr{AA†} (260)

respectively.

We first show that the matrices EΣE and EΨE are asymptotically equivalent for any
realization of E. To see this note first that both matrices are uniformly bounded in strong
norm: From the assumption that the sequence in (25) is absolutely summable we get

‖EΣE‖2 ≤ ‖E‖4‖Σ‖2 (261)
≤ max

i
λ2

i (Σ) (262)

< M (263)

and analogously for EΨE. Furthermore,

|EΣE−EΨE|2 = |E (Σ−Ψ)E|2 (264)
≤ |E|4| |Σ−Ψ|2 (265)
→ 0 (266)

where (266) follows from the fact that Σ and the circulant matrix Ψ are asymptotically equiv-
alent (Σ is the product of Toeplitz matrices) and |E| ≤ 1 for every realization of E.

Because EΣE and EΨE are asymptotically equivalent, the averages of any continuous func-
tion f(·) evaluated at their respective eigenvalues converge to the same quantity. In particular
taking

f(x) =
1

1 + γx
(267)

we obtain that for each realization of E

lim
n→∞

1
n

n∑
i=1

1
1 + γλi(EΣE)

= lim
n→∞

1
n

n∑
i=1

1
1 + γλi(EΨE)

(268)

Averaging both sides of (268) with respect to E we obtain the desired equality (59). To show
(60) we simply use f(x) = log(1 + γx).
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B Optimality of Stationary Inputs

Theorem 12 The capacity

C(γ) = lim
n→∞

1
2n

max
Σx

E
[
log det

(
I + γEHΣxH†E

)]
(269)

is achieved by circulant input covariance Σx.

Proof: Denote the diagonal matrix of the eigenvalues of H by ΛH . Further, recall that
F denotes the unitary discrete Fourier transform (DFT) matrix defined in (57). Define the
circulant matrix

H̃ = FΛHF†. (270)

For any feasible choice of E and Σx, the matrices EHΣxH†E and EH̃ΣxH̃†E are asymp-
totically equivalent. Similarly to the proof of Lemma 1:

|EHΣxH†E−EH̃ΣxH̃†E|2

= |EHΣxH†E−EH̃ΣxH†E + EH̃ΣxH†E−EH̃ΣxH̃†E|2

≤ |EHΣxH†E−EH̃ΣxH†E|2 + |EH̃ΣxH†E−EH̃ΣxH̃†E|2

≤ 2|E|4|Σx|2|H|2|H̃−H|2

→ 0 (271)

Thus, the result will follow if we can show the statement of the Lemma replacing H by H̃ in
(269).

Let X the elementary circulant permutation matrix, defined as

X =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . . . . .
0 · · · 0 1
1 · · · 0 0

 (272)

and let
Π` = X` (273)

Σ(`)
x = Π`ΣxΠ

†
` (274)

Invoking the Jensen’s inequality,

E

[
log det

(
I + γEH

(
1
n

n∑
`=0

Σ(`)
x

)
H†E

)]
≥ 1

n

n−1∑
`=0

E
[
log det

(
I + γEHΣ(`)

x H†E
)]

(275)

=
1
n

n−1∑
`=0

E
[
log det

(
I + γEH̃Π`ΣxΠ

†
`H̃

†E
)]

=
1
n

n−1∑
`=0

E
[
log det

(
I + γEΠ†

`H̃Π`ΣxΠ
†
`H̃

†Π`E
)]

(276)

= E
[
log det

(
I + γEH̃ΣxH̃†E

)]
(277)
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where in (276) we have used the fact E is a diagonal matrix whose diagonal elements are i.i.d.,
while in (277) we have used the fact that H̃ is circulant thus Π†

`H̃Π` = H̃. Finally, since
1
n

∑n
`=0 Σ(`)

x is a circulant matrix with the same trace as Σx that achieves at least as good
objective function the desired result is obtained.

C Auxiliary Lemma

Lemma 2 [19, Eq. 3.112], [4] Let C be a n×n random matrix uniformly bounded in operator
norm and having a limiting empirical spectral distribution. Let V be an n × p (with n ≥ p)
random matrix uniformly distributed over the Stiefel manifold of complex n × p matrices such
that V†V = I. Denote the ith column of CV by bi, and let p

n → y. Then for all i = 1, . . . , p

lim
n→∞

γb†i
(
I + γCVV†C

)−1
bi =

1
y

(1− ηCVV†C(γ)) (278)

almost surely, where ηCVV†C(γ) = η is the solution to:

η = ηCC†

(
γ

y − 1 + η

η

)
(279)

D Proof of the monotonicity of ,·)ג γ).

Let denote by y and y + δ the following ratios:

y = lim
n→∞

i

n
, y + δ = lim

n→∞

i + d

n
.

where d > 0.
Denoting the j-th column of CU by bj with C and U defined as in the proof of Theorem

1, let

BiB
†
i =

i∑
j=1

bjb
†
j (280)

and

Bi+dB
†
i+d =

i+d∑
j=1

bjb
†
j

= BiB
†
i +

i+d∑
j=i+1

bjb
†
j (281)

= BiB
†
i + BdB

†
d (282)

Using Lemma 2 and the inversion lemma [11], we have that

lim
n→∞

γb†i+d

(
I + γBi+dB

†
i+d

)−1
bi+d = lim

n→∞
γb†i

(
I + γBi+dB

†
i+d

)−1
bi (283)

= lim
n→∞

γb†i
(
I + γBiB

†
i + γBdBd

)−1
bi (284)

= lim
n→∞

γb†i
(
I + γBiB

†
i

)−1
bi − lim

n→∞
γb†iRbi

(285)
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where (283) follows from Lemma 2, (285) follows from the inversion lemma, and finally R is a
definite positive matrix given by:

R =
(
I + γBiB

†
i

)−1
Bd

(
I + γB†

d

(
I + γBiB

†
i

)−1
Bd

)−1

B†
d

(
I + γBiB

†
i

)−1

From (285), it follows that

y)ג + δ, γ)
1 + y)ג + δ, γ)

= lim
n→∞

γb†i+d

(
I + γBi+dB

†
i+d

)−1
bi+d (286)

≤ lim
n→∞

γb†i
(
I + γBiB

†
i

)−1
bi (287)

=
,y)ג γ)

1 + ,y)ג γ)
(288)

from which it follows that

y)ג + δ, γ) ≤ ,y)ג γ) (289)

for any δ ≥ 0.

E Combinatorial Definitions and Facts

Definition 4 [18, 14] Let X be a set. An `-partition of X is a set ρ[`] = {V1, . . . ,V`} of subsets
of X such that

Vi 6= ∅ ∀ i = 1, . . . , `

Vi ∩ Vj = ∅ ∀ i 6= j⋃`
i=1 Vi = X (290)

The elements Vi of ρ[`] are called the blocks of the partition.

Definition 5 Denote by |X | the cardinality of the set X . Let m = [m1, . . . ,m`] be an `-
dimensional vector whose entries are positive integers such that

m1 + m2 + . . . + m` = |X |

with 0 < m1 ≤ m2 ≤ . . .m` ≤ |X |.
An (m, `)-partition of X , denoted by ρ[m, `], is an `-partition where the blocks have cardi-

nalities m = [m1,m2, . . . m`]. The i-th block of ρ[m, `] shall be denoted by V(mi).

In this paper, the set X with respect to which partitions are defined will always be the
natural index set {1, 2, . . . , |X |}. Furthermore, we define a partition of a vector x in the following
way. Let x be a vector of |X | not necessarily distinct elements over some finite alphabet (to
be defined later). For V ⊆ X , we denote by x(V) the multi-set (i.e., set with possibly repeated
elements) given by

x(V) = {xj : j ∈ V}

Let ρ[`] be an `-partition of X . The corresponding partition of x is briefly denoted by ρ[`,x].
This is indeed the partition of the multiset {x1, . . . , x|X |} with blocks x(Vi) for i = 1, . . . , `}.
Similarly, we shall use the notation ρ[m, `,x] when we want to point out the cardinality of
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the blocks. We also adopt the convention that the vector m defining a (m, `)-partition has
non-decreasing non-zero entries, as in Definition 5.

We denote the set of all `-partitions of X by P`(|X |). Notice that P`(|X |) is uniquely
identified by the integers ` and |X |. The set of all partitions of X will be denoted by P(|X |).

Lemma 3 The number of (m, `)-partitions of X is given by the Faá di Bruno coefficient,
P(m, `), [2]:

P(m, `) =
|X |!

m1! . . .m`!f(m1, . . . ,m`)

where we define
f(m1, . . . ,m`) = f1! . . . f|X |!

with fi equal to the number of entries of the vector m = [m1, . . . ,m`] equal to i.

Lemma 4 The number of `-partitions of X is the Stirling number of the second kind, S(|X |, `),
[18] while the number of partitions of X is the |X |-th Bell number,

B|X | =
|X |∑
`=1

S(|X |, `)

.

E.1 Lattice of partitions and the degree of inclusion

The natural partial order relation for partitions is the refinement order ρ ≤ σ defined as follows:

Definition 6 Given two partitions ρ[`] = {V1, . . . ,V`} and σ[w] = {U1, . . . ,Uw} of X , we say
that ρ[`] is finer than σ[w], or, equivalently, that σ[w] is coarser than ρ[`], if for every i = 1, . . . , `
there exists j = 1, . . . , w such that Vi ⊂ Uj. In other words, every element of ρ[`] is a subset of
some element of σ[w]. In this case, we write ρ[`] ≤ σ[w].

When ρ[`] ≤ σ[w], but ρ[`] 6= σ[w] (this condition is equivalent to ` > w), then we write
ρ[`] < σ[w]. If ρ[`] < σ[w], but there does not exist any partition π ∈ P(|X |) such that
ρ[`] < π < σ[w], then we say that ρ[`] covers σ[w], and write ρ[`] ≺ σ[w]. In this case, σ[w] is
an immediate successor to ρ[`] in the hierarchy imposed by the ordering relation.

The coarsest element of P(|X |) corresponds to the unique 1-partition {{1, . . . , |X |}} while
the finest element of P(|X |) is the unique |X |-partition {{1}, . . . , {|X |}}.

The set of partitions P(|X |) is a partially ordered set under the refinement ordering defined
above. Furthermore, we can define two operations ∨ and ∧ such that ρ∨σ is the finest partition
π such that π ≥ ρ and π ≥ σ (least upper bound), and ρ ∧ σ is the coarsest partition π such
that π ≤ ρ and π ≤ σ (largest lower bound). P(|X |) is clearly closed under ∨ and ∧. The
refinement ordering relation ≤ is reflexive (ρ ≤ ρ), antisymmetric (if ρ ≤ σ and σ ≤ ρ, then
ρ = σ) and transitive (if ρ ≤ σ and σ ≤ τ then ρ ≤ τ). It can also be checked that for any
ρ, σ ∈ P(|X |), ρ ∨ σ and ρ ∧ σ are uniquely determined (that is, ∨ and ∧ are properly defined
operators P(|X |)×P(|X |) → P(|X |)). Under these conditions, P(|X |) is a lattice (or algebra)
with respect to the operations ∨ and ∧.

The lattice of P(|X |) admits a graphical representation given by a graph called Hasse
diagram, obtained as follows: for ` = 1, 2, . . . , |X |, draw layers of nodes such that each layer `
has S(|X |, `) nodes. Each node in layer ` represents a distinct partition with ` blocks. Then,
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an edge (ρ, σ) in the graph exists if and only if ρ ≺ σ. Figure 12 shows an example of Hasse
diagram for the set of partitions of X = {1, 2, 3, 4}, which we use as a running example to
illustrate various definitions and facts in the sequel.

Figure 12: Hasse diagram of the partially ordered set P(4) of partitions of X = {1, 2, 3, 4}.

Example 12 Referring to the set {1, 2, 3, 4} of Figure 12, the number of ([1, 3], 2)-partitions is

4!
1!3!f(1, 3)

= 4

Example 13 The number of 2-partitions of X = {1, 2, 3, 4} is S(4, 2) = 7, while the number
of partitions of X is B4 =

∑4
`=1 S(4, `) = 15

Next, we introduce a function ζ : P(|X |)×P(|X |) → Z that turns out to play a fundamental
role in the proofs of the main results of the following appendices. This function, referred to as
degree of inclusion, it is useful to carry out counting operations on the set of partitions.

Definition 7 Consider two partitions ρ[`] < σ[w] in (|X |). For any integer w ≤ q ≤ `, let

[ρ, σ]q = {π ∈ Pq(|X |) : ρ ≤ π ≤ σ} (291)

denote the set of q-partitions between ρ[`] and σ[`] (with respect to the refinement ordering).
The degree of inclusion ζ maps pairs of partitions into the integers, and it is defined as:

ζ (ρ→σ) =


0 ρ � σ
1 ρ = σ
−1 w = `− 1, and ρ < σ

(292)

and for w < `− 1 with ρ < σ

ζ(ρ→σ) =
`−1∑

a=w+1

|[ρ, σ]a|+
a−1∑

b=w+1

(−1)a−b
∑

π∈[ρ,σ]b+1

|[π, σ]b|

− 1 (293)
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The degree of inclusion can be easily computed from the Hasse diagram. In fact, interpreting
the diagram as a directed graph where edges point upward, we notice that

∑`−1
a=w+1 |[ρ, σ]a| is

equal to the total number of nodes in the sub-graph formed by all (directed) paths joining ρ with
σ. Furthermore, for any a ∈ {w + 2, . . . , `− 1}, and b ∈ {w + 1, . . . , a− 1},

∑
π∈[ρ,σ]b+1

|[π, σ]b|
is given by the total number of edges pointing upward of the (b + 1)-th layer in the sub-graph
of the paths joining ρ with σ.

The degree of inclusion ζ satisfies the following additive decomposition:

ζ(ρ→σ) = −
`−1∑
a=w

∑
π∈[ρ,σ]a

ζ(π→σ) (294)

Example 14 Referring to the diagram of Figure 12, we have that:

ζ({{1}; {2}; {3}; {4}}︸ ︷︷ ︸
ρ

→{{1, 2, 3, 4}}︸ ︷︷ ︸
σ

) =
3∑

a=2

|[ρ, σ]a|+
a−1∑
b=2

(−1)a−b
∑

π∈[ρ,σ]b+1

|[π, σ]b|

− 1

=
3∑

a=2

|[ρ, σ]a| −
∑

π∈[ρ,σ]3

|[π, σ]2| − 1

= 6 + 7− 6 · 3− 1 = −6 (295)

Next, we wish to check the validity of (294). We have one partition at layer 1, namely
{{1, 2, 3, 4}}. At layer 2 we have 7 partitions π[2], with degree of inclusion ζ(π[2] → {{1, 2, 3, 4}}) =
−1. Then, we have 6 partitions π[3] at layer 3. Their degree of inclusion is ζ(π[3] →
{{1, 2, 3, 4}}) = 2. In order to see this, notice that the sub-graph of partitions π[3] ≤ π ≤
{{1, 2, 3, 4}} consists has three intermediate nodes π[2] and one top node . Hence, ζ(π[3] →
{{1, 2, 3, 4}}) = −(1− 3) = 2. Eventually, using (294) we have

ζ({{1}, {2}, {3}, {4}} → {{1, 2, 3, 4}}) = − (1 + 7 · (−1) + 6 · 2) = −6 (296)

which coincides with the previous direct calculation.

At this point it should be clear that if the refinement of σ to ρ ≤ σ involves the partition of
a single block of σ into d blocks of ρ, then ζ(ρ → σ) is uniquely determined by d. For example,
any 2-way partition (d = 2) has ζ = ζ(2) = −1 (this corresponds to a single block of σ split
into two blocks of ρ). Any 3-way partition has ζ = ζ(3) = 2 (this corresponds to a single block
of σ split into three blocks of ρ). Any 4-way partition has ζ = ζ(4) = −6 (this corresponds to a
single block of σ split into four blocks of ρ). It should be remarked that the graph corresponding
to a d-way partition of a single block depends only on d (e.g., a 4-way partition has always the
graph given in Figure 12), no matter how many other blocks (that do not split) ρ and σ have,
and what the cardinality of the blocks is.

Clearly, there are refinements that involve the splitting of more than one block of the top par-
tition. For example, consider the sub-graph of Figure 12 of all paths joining {{1}, {2}, {3}, {4}}
(bottom) with {{1, 2}, {3, 4}} (top). In this case, the two blocks {1, 2} and {3, 4} of the top
partition are split into two subblocks. The corresponding graph is obtained as the Cartesian
product graph of two 2-way partitions, as shown in Figure 13.
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In general, consider two nested partitions ρ[m, `] ≤ σ[v, w] such that each block V(vi), i =
1, . . . , w, of σ[v, w], is partitioned into di blocks U(mj) of ρ[m, `], with j ∈

{∑i−1
h=1 dh + 1, . . . ,

∑i
h=1 dh

}
,

with the consistency conditions:

` =
w∑

i=1

di,

and, for all i = 1, . . . , w,

vi =

Pi
h=1 dh∑

j=
Pi−1

h=1 dh+1

mj

It can be shown that ζ satisfies the following multiplicative decomposition:

ζ(ρ[m, `]→σ[v, w]) =
w∏

i=1

ζ(di) (297)

where ζ(di) is the degree of inclusion for a di-way partition.
The sum and product rules (294) and (297) allow very simple recursive computation of the

inclusion index.

Example 15 Referring to the diagram of Figure 13, direct calculation shows that

ζ({{1}, {2}, {3}, {4}} → {{1, 2}, {3, 4}}) = 2− 1 = 1

Using the product rule we have

ζ({{1}, {2}, {3}, {4}} → {{1, 2}, {3, 4}}) = ζ({{1}, {2}} → {{1, 2}})ζ({{3}, {4}} → {{3, 4}})
= (−1)(−1) = 1

A more involved example is given in Figure 14: consider partitions

{{1}, {2}, {3}, {4}, {5}} < {{1, 2, 3}, {4, 5}}.

The first is obtained by a 3-way partition of the block {1, 2, 3} and a 2-way partition of the block
{1, 2} of the second. Hence, the inclusion index is readily given by ζ(3)ζ(2) = 2(−1) = −2.
The corresponding Hasse diagram of Figure 14 is obtained as the Cartesian product of a 3-way
and a 2-way partition. One can check by direct calculation that, indeed,

ζ({{1}, {2}, {3}, {4}, {5}} → {{1, 2, 3}, {4, 5}}) = −2

E.2 Good partitions

From now on we will consider vectors x ∈ Z|X |n , where Zn denotes the ring of integer residues
modulo n. This implies that all operations on the elements of x are defined in the Zn arithmetic.

Next, we introduce a special type of partitions that we refer to as good `-partition.

Definition 8 Fix x ∈ Z|X |n . We say that a (m, `)-partition ρ[m, `] = {V(m1), . . . ,V(m`)} of X
is a good partition of x if

sum[x(V(mr))]
M=

∑
j∈V(mr)

xj = 0 ∀r = 1, . . . , ` (298)
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1/2

12 34

3/4

12/34

1/2/34

1/2/3/4

12/3/4

Figure 13: Hasse diagram of the 2 × 2-way partition refinement from {{1, 2}, {3, 4}} to
{{1}, {2}, {3}, {4}}.

4/5

1/23/45 123/4/5

1/2/3/45 1/23/4/5 12/3/4/5 2/13/4/5

1/2/3/4/5

123/45

2/13/4512/3/45

45

12/3

123

1/2/3

2/131/23

Figure 14: Hasse diagram of the 3 × 2-way partition refinement from {{1, 2, 3}, {4, 5}} to
{{1}, {2}, {3}, {4}, {5}}.

Example 16 The vector x = (1, n−1, 0, n−2, 2) with elements in Zn has four good partitions:

• one good ([5], 1)-partition: {1, 2, 3, 4, 5};

• one ([1, 2, 2], 3)-partition: {{3}, {1, 2}, {4, 5}};

• two ([2, 3], 2)-partitions:

{{1, 2, 3}, {4, 5}}; {{1, 2}, {3, 4, 5}}.

Example 17 The vector x = (1, 1, 0, 2, 4) with elements in Z7 has no good partitions.

The condition that ρ[m, `] is a good partition of x ∈ Z|X |n is equivalent to say that x lies in
the solution space of a linear equation over Zn. In particular, the partition ρ[m, `] is associated
to the incidence matrix Aρ with |X | rows and ` columns, such that the i-th column of Aρ

contains 1s for all positions j ∈ V(mi) and 0s elsewhere. ρ[m, `] is a good partition of x if
and only if x is a solution of the linear equation xAρ = 0. In other words, x is an element of
the kernel of Aρ. The kernel of a linear transformation over the ring Zn is a Zn-module. For
later use, we wish to find its cardinality. The coefficients in each linear equation of the type
(298) are either 0 or 1. Hence, the greatest common divisor of each equation is 1, which is
obviously relatively prime with n. Hence, the solution space of each r-th equation in (298) is
isomorphic4 to Zmr−1

n . Furthermore, by definition of partition it follows that the columns of Aρ

4Notice that while this is a completely trivial conclusion if Zn was a field, the condition that the coefficients
of the equation are relatively prime with n is important in a ring that has zero divisors, as in the case where n
is not a prime. For example, if n = 8 the equation x + y = 0 has 8 solutions, but the equation 4x + 2y = 0 16
solutions.
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are mutually orthogonal (in fact, they have disjoint support corresponding to the disjoint blocks
{Vr : r = 1, . . . , `} of the partition ρ[m, `]). This implies that the kernel of Aρ is isomorphic to
the Cartesian product

Zm1−1
n × Zm2−1

n × · · · × Zm`−1
n (299)

It follows that |Ker(Aρ)| = n|X |−` depends on the partition only through the number of blocks
`. We have the following result:

Lemma 5 For two partitions, ρ[m, `] and σ[v, w] of X , we have that Ker(Aρ) ⊆ Ker(Aσ) if
an only if ρ[m, `] ≤ σ[v, w].

Proof: Suppose that ρ[m, `] ≤ σ[v, w]. Hence, each block σ is partitioned into blocks of ρ.
Consider a block Uj of σ and, without loss of generality, let Vi1 , . . . ,Virj

denote the blocks of ρ

that partition Uj . For any x ∈ Ker(Aρ) it follows that

sum[x(Uj)] =
rj∑

h=1

sum[x(Vih)] = 0

Hence, x ∈ Ker(Aσ). This shows sufficiency. In order to show necessity, without loss of
generality suppose that ` ≥ w, ρ[m, `] � σ[v, w]. There must exist a block V of ρ with non
empty intersection with at least two blocks of σ (otherwise, ρ would be a refinement of σ).
Denote these blocks as U and U ′. We choose a vector x ∈ Ker(Aρ) such that all components
are equal to zero but two non-zero components, xi = 1 for i ∈ V∩U and xi′ = −1 for i′ ∈ V∩U ′.
Clearly, x /∈ Ker(Aσ). This shows that Ker(Aρ) 6⊆ Ker(Aσ).

In the proofs of the main results of the following appendices, we shall deal with vectors
x ∈ Z|X |n such that sum[x] = 0. The partition ρ[1] = {{1, . . . , |X |}} is a good partition of such
vectors. Since any partition ρ[m, `] is a refinement of ρ[1], Lemma 5 yields that Ker(Aρ[m,`]) ⊆
Ker(Aρ[1]). It follows that∣∣Ker(Aρ[m,`]) ∩Ker(Aρ[1])

∣∣ = ∣∣Ker(Aρ[m,`])
∣∣ = n|X |−` (300)

E.3 Partitions of concatenated vectors

Given s vectors x1, . . . ,xs of possibly different dimension |X1|, . . . , |Xs|, respectively, we define
the concatenation (x1| . . . |xs). The vectors x1, . . . ,xs are referred to as the components of
the concatenation. The corresponding index set of x shall be denoted by X s

1 and has car-
dinality |X s

1 | =
∑s

i=1 |Xi|. For a partition $[ν, ι] of the index set {1, . . . , s} with blocks
$(ν1), . . . , $(νι), we define the induced ι-partition of the concatenation (x1| . . . |xs) as the
partition ρ[m, ι, (x1| . . . |xs)] with blocks

x$(νj) ∆= {xi : i ∈ V(νj)}. (301)

With some abuse of notation, the induced partition shall be denoted by ρ[$[ν, ι], (x1| . . . |xs)].
The blocks (301) of the induced partition ρ[$[ν, ι], (x1| . . . |xs)] are called “groups”. Notice
that these blocks are unions (in the sense of multi-sets, as there might be repeated elements)
of components of (x1| . . . |xs). The index set of the components of the group x$(νj), a subset
of X s

1 , is also referred to as a “group”, and it is briefly indicated by X$(νj).
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Example 18 Let x1 = (x1), x2 = (x2) and x3 = (x3, x4) and their concatenation (x1|x2|x3) =
(x1|x2|(x3, x4)). Consider the partition

$[[1, 2], 2] = {{2}, {1, 3}},

of {1, 2, 3}. The induced 2-partition of (x1|x2|(x3, x4)) is:

ρ[{{2}, {1, 3}}, 2, (x1|x2|(x3, x4))] = {{x2}, {x1, x3, x4}}

Definition 9 Let x = (x1| . . . |xs) be a concatenation of s vectors as defined above. For a given
(m, `)-partition σ[m, `, (x1| . . . |xs)], let

ι∗ = argmax
ι
{1 ≤ ι ≤ s : ρ[$[ν, ι], (x1| . . . |xs)] ≥ σ[m, `, (x1| . . . |xs)]} (302)

Then, there is a unique partition $[ν∗, ι∗] of {1, . . . , s} such that ρ[$[ν∗, ι∗], (x1| . . . |xs)] in-
cludes σ[m, `, (x1| . . . |xs)]. We refer to this unique partition $[ν∗, ι∗] and to ι∗ as the canonical
decomposition and the order of the canonical decomposition of σ[m, `, (x1| . . . |xs)].

Example 19 Consider the same concatenation of Example 18, and consider the ([1, 1, 2], 3)-
partition:

σ[[1, 1, 2], 3, (x1|x2|(x3, x4))] = {{x2}, {x4}, {x1, x3}}

The partitions $[ν, ι], of {1, 2, 3} such that ρ[$[ν, ι], (x1|x2|(x3, x4))] ≥ σ[[1, 1, 2], 3, (x1|x2|(x3, x4))]
are:

{1, 2, 3} : for which ρ[{1, 2, 3}, (x1|x2|(x3, x4))] = {{x1, x2, x3, x4}} (303)
{{2}, {1, 3}} : for which ρ[{{2}, {1, 3}}, (x1|x2|(x3, x4))] = {{x2}, {x1, x3, x4}}.(304)

Thus, the canonical decomposition of {{x2}, {x4}, {x1, x3}} is:

$[ν∗, ι∗] = {{2}, {1, 3}},

and its order is ι∗ = 2.

Definition 10 Consider the concatenation (x1| . . . |xs). Let $[ν∗, ι∗] be the canonical de-
composition of a partition σ[m, `, (x1| . . . |xs)], and let ρ[$[ν∗, ι∗], (x1| . . . |xs)] denote the in-
duced partition of (x1| . . . |xs), with groups x$(ν∗1 ), . . . ,x$(ν∗

ι∗ ). The canonical representation of
σ[m, `, (x1| . . . |xs)] is:

σ[m, `, (x1| . . . |xs)] = {σ[m1, `1,x$(ν∗1 )], . . . , σ[mι∗ , `ι∗ ,x$(ν∗
ι∗ )]} (305)

where
∑ι∗

i=1 `i = ` and the vectors mi, for i = 1, . . . , ι∗, have dimensions `i and components
that sum to the i-th group cardinality |x$(ν∗i )|, respectively.

This implies that, for a given concatenation x = (x1| . . . |xs) of s vectors, σ[m, `, (x1| . . . |xs)]
is isomorphic to some Cartesian-product partition in

P(|X$(ν∗1 )|)× . . .×P(|X$(ν∗
ι∗ )|) (306)

It should be clear that both concepts of canonical decomposition and canonical representation
are relative to a given concatenation of vectors. In other words, a given partition τ of the index
set of size k may admit different canonical decompositions and representations with respect to
two different concatenations (x1| . . . |xs) and (x′1| . . . |x′r) of the same total length k.

49



Example 20 Referring to Example 19, we have that the canonical decomposition of {{x2}, {x4}, {x1, x3}}
w.r.t. the concatenation (x1|x2|(x3, x4)) is:

$[ν∗, ι∗] = {{2}, {1, 3}}.

It follows that the corresponding canonical representation of {{x2}, {x4}, {x1, x3}} is given by:

{{x2}, {x4}, {x1, x3}} = {σ[[1], 1, (x2)], σ[[1, 2], 2, (x1, x3, x4)]}

with σ[[1], 1, (x2)],= {x2} and σ[[1, 2], 2, (x1, x3, x4)] = {{x4}, {x1, x3}}.

Definition 11 Let the disjoint sets D(i)(|X s
1 |) denote the set of partitions σ[m, `] of X s

1 whose
order of the canonical decomposition relative to the concatenation x = (x1| . . . |xs) is ι∗ = i.

Since the canonical decomposition index is uniquely defined, it is clear that D(i)(|X s
1 |) ∩

D(j)(|X s
1 |) = ∅ for i 6= j, and that ∪s

i=1D
(i)(|X s

1 |) = P(|X s
1 |). In words, the collection of sets

of partitions D(i)(|X s
1 |) for i = 1, . . . , s forms a partition of the set of all partitions of the

concatenated index set X s
1 .

Canonical decomposition and canonical representation allow us to establish a generalization
of (300) for concatenated vectors such that each component has zero sum. We have the following:

Lemma 6 Consider concatenated vectors (x1| . . . |xs) with equal-length components xi ∈ Z|X |n ,
for some integer |X |. Consider a partition ρ[m, `, (x1| . . . |xs)] and let $(ν∗, ι∗) denote its
canonical decomposition with respect to (x1| . . . |xs). Denote by G(ρ[m, `, (x1| . . . |xs)]) the set
of such concatenated vectors satisfying the conditions sum[xi] = 0 for all i = 1, . . . , s and for
which ρ[m, `, (x1| . . . |xs)] is a good partition. Then,

|G(ρ[m, `, (x1| . . . |xs)])| = ns|X |−`−s+ι∗ (307)

Proof: Consider the partition ρ[$[ν∗, ι∗], (x1| . . . |xs)] induced by $(ν∗, ι∗). By definition of
canonical decomposition, ρ[m, `, (x1| . . . |xs)] is a refinement of ρ[$[ν∗, ι∗], (x1| . . . |xs)]. Hence,
the blocks of ρ[m, `, (x1| . . . |xs)] are sub-blocks of the groups xV(ν∗i ), for i = 1, . . . , ι∗. Let
Aρ denote the incidence matrix (as previously defined) of ρ. The canonical representation of
ρ[m, `, (x1| . . . |xs)] implies that we can partition the columns of Aρ into mutually orthogonal
sets of `i columns, for i = 1, . . . , ι∗, where each set corresponds to the `i subblocks of xV(ν∗i ).

Next, consider the partition

σ[[|X |, . . . , |X |], s, (x1| . . . |xs)] = {{x1}, . . . , {xs}}

with blocks that coincide with the components of the concatenation. It is clear that the zero-
sum condition sum[xi] = 0 for all i = 1, . . . , s defines the kernel of Aσ. Therefore, we have
that

G(ρ[m, `, (x1| . . . |xs)]) = Ker(Aρ) ∩Ker(Aσ) (308)

Notice also that Aσ admits a corresponding partition into ι∗ mutually orthogonal set of columns
of size ν∗i . Let A`i

ρ and Aν∗i
σ denote the submatrices obtained from these mutually orthogonal

sets of columns, respectively. Because of the mutual orthogonality, it follows that

|Ker(Aρ) ∩Ker(Aσ)| =
ι∗∏

i=1

∣∣∣Ker(A`i
ρ ) ∩Ker(Aν∗i

σ )
∣∣∣ (309)
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Next, we evaluate each term in the above product. Consider the i-th term. By definition
of canonical decomposition, it follows that any sum of h < ν∗i columns of Aν∗i

σ is linearly
independent of the columns of A`i

ρ . In fact, since the columns of A`i
ρ are mutually orthogonal

(recall that the blocks of a partition are disjoint sets), we can write a column of Aν∗i
σ as a linear

combination of columns of A`i
ρ if and only if there exists a set of blocks of ρ[m, `, (x1| . . . |xs)]

that forms a partition of the union of h < ν∗i components of the concatenation (x1| . . . |xs).
But if this was true, then the canonical decomposition of ρ[m, `, (x1| . . . |xs)] would contain
an additional group and the degree would be larger than ι∗, contradicting the definition of ι∗.
Hence, we conclude that the rank of the concatenated matrix [A`i

ρ |A
ν∗i
σ ] is at least `i + ν∗i − 1.

We can show that the rank is indeed exactly equal to `i + ν∗i − 1 by noticing that the sum of
all columns of A`i

ρ is equal to the sum of all columns of Aν∗i
σ and it coincides with the all-one

vector, by construction. Hence, the columns of [A`i
ρ |A

ν∗i
σ ] are linearly dependent over Zn. It

follows that ∣∣∣Ker(A`i
ρ ) ∩Ker(Aν∗i

σ )
∣∣∣ = nν∗i |X |−`i−ν∗i +1 (310)

Using (310) into (309) and recalling that
∑ι∗

i=1 `i = ` and
∑ι∗

i=1 ν∗i = s, we obtain (307).

As said before, notice that for s = 1 we have G(ρ[m, `,x]) = Ker(Aρ[m,`]) ∩Ker(Aρ[1]) and
we obtain (300) as a special case of Lemma 6, since in this case ι∗ = 1.

F Partitions and equivalence relations

A partition ρ[`] of the index set X induces an equivalence relation on the elements of X . In
particular, we say that two indices i, j ∈ X are equivalent (and write i ∼ j) if they belongs to
the same block of π[`]. Similarly, for a vector x ∈ Z|X |n we have the equivalence relation xi ∼ xj

if elements xi and xj belongs to the same block of ρ[`,x].

Definition 12 We define S(ρ[`]) to be the subset of Z|X |n of all vectors that are constant over
the blocks of ρ[`], i.e.,

S(ρ[`]) =
{
x ∈ Z|X |n : xi = xj if i ∼ j

}
(311)

Lemma 7 Consider two partitions ρ[`] and σ[w] of X with w ≤ `. Then, S(σ[w]) ⊆ S(ρ[`]) if
an only if σ[w] ≥ ρ[`].

Consequently, we can define a partial order on the set:

S(|X |) = {S(ρ[`]) : ρ[`] ∈ P(|X |)},

with respect to the inclusion relation.
The (unique) smallest and biggest elements of S(|X |) correspond to the biggest and smallest

elements of P(|X |), i.e., the 1-partition, {{1, . . . , |X |}} and the |X |-partition, {{1}, . . . , {|X |}}.
For these sets we adopt the short-hand notation S1 and S|X |, respectively. Notice that S1 is the
set of constant vectors, and has cardinality n, and S|X | is the set of all vectors (i.e., it coincides

with Z|X |n , and has cardinality n|X |.
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Definition 13 We define S−(ρ[`]) to be the subset of Z|X |n of all vectors that are constant over
the blocks of ρ[`] but take on distinct values in different blocks, i.e.,

S−(ρ[`]) =
{
x ∈ Z|X |n : xi = xj if i ∼ j, otherwise xi 6= xj

}
(312)

It is easy to see that

S−(ρ[`]) = S(ρ[`])−
⋃

σ[`−1]>ρ[`]

S(σ[`− 1]) (313)

= S(ρ[`])−
`−1⋃
w=1

⋃
σ[w]>ρ[`]

S−(σ[w]) (314)

The sets S−(ρ[`]) are disjoint, in fact, for all `, w ∈ {1, . . . , |X |} and corresponding distinct
partitions ρ[`] 6= σ[w] we have

S−(ρ[`]) ∩ S−(σ[w]) = ∅ (315)

Furthermore, we have that their union exhausts the whole Z|X |n , i.e.,

S|X | =
⋃

ρ∈P(|X |)

S−(ρ) (316)

Therefore, the set {S−(ρ) : ρ ∈ P(|X |)} is a partition of the set of all vectors Z|X |n .

Lemma 8 Consider a function f : Z|X |n → C, and a fixed partition ρ[`] of X . Then,

∑
x∈S−(ρ[`])

f(x) =
∑̀
w=1

∑
σ[w]≥ρ[`]

ζ(ρ[`] → σ[w])
∑

x∈S(σ[w])

f(x) (317)

where ζ(ρ[`]→σ[w]) is the degree of inclusion, defined in (7).

Proof: The proof is by induction. For ` = 1, (317) follows immediately from the facts that
S−1 (ρ[1]) = S1, ζ(ρ → ρ) = 1, and the sum over σ contains only the term σ[1] = ρ[1].

Now let us assume that (317) holds for all 1 ≤ h ≤ ` − 1. We wish to show that it holds
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also for `. Using (314) and (315) we have:

∑
x∈S−(ρ[`])

f(x) =
∑

x∈S(ρ[`])

f(x)−
`−1∑
h=1

∑
σ[h]≥ρ[`]

∑
x∈S−(σ[h])

f(x)

=
∑

x∈S(ρ[`])

f(x)−
`−1∑
h=1

∑
σ[h]≥ρ[`]

h∑
w=1

∑
τ [w]≥σ[h]

ζ(σ[h] → τ [w])
∑

x∈S(τ [w])

f(x)

=
∑

x∈S(ρ[`])

f(x)−
`−1∑
h=1

`−1∑
w=1

∑
σ[h]≥ρ[`]

∑
τ [w]≥σ[h]

ζ(σ[h] → τ [w])
∑

x∈S(τ [w])

f(x)

=
∑

x∈S(ρ[`])

f(x)−
`−1∑
h=1

`−1∑
w=1

∑
τ [w]≥ρ[`]

∑
σ∈[ρ[`],τ [w]]h

ζ(σ → τ [w])
∑

x∈S(τ [w])

f(x) (318)

=
∑

x∈S(ρ[`])

f(x)−
`−1∑
w=1

∑
τ [w]≥ρ[`]

`−1∑
h=1

∑
σ∈[ρ[`],τ [w]]h

ζ(σ → τ [w])

 ∑
x∈S(τ [w])

f(x)

=
∑

x∈S(ρ[`])

f(x) +
`−1∑
w=1

∑
τ [w]≥ρ[`]

ζ(ρ[`] → τ [w])
∑

x∈S(τ [w])

f(x) (319)

=
∑̀
w=1

∑
τ [w]≥ρ[`]

ζ(ρ[`] → τ [w])
∑

x∈S(τ [w])

f(x) (320)

where (318) follows by changing the summation order, (319) follows from (294) and (320) follows
from the definition of ζ.

G Fourier coefficients of stationary processes

We summarize some of the statistical properties of the Fourier coefficients c` of a stationary
process. Let {Xp; p ∈ Z} be a stationary random real process with E[Xp] = µ and E[X2

p] =
σ2 + µ2.

Denote the Fourier coefficients of {Xp; p = 0, . . . , n− 1} by

c` =
1
n

n−1∑
p=0

Xpe
−j 2π

n
p` (321)

Of course c∗` = c−` = cn−`. For this reason, it is convenient to view the index set ` = 0, 1, . . . , n−
1 as the ring Zn.

The expectations of the Fourier coefficients of a stationary process depend on whether ` = 0
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or ` 6= 0:

E[c0] =
1
n

n−1∑
p=0

E[Xp] (322)

= µ (323)

E[c`] =
1
n

n−1∑
p=0

E[Xp]e−j 2π
n

p` (324)

= µ
1
n

n−1∑
p=0

e−j 2π
n

p` (325)

= 0 (326)

Lemma 9 The Fourier coefficients {c`; ` ∈ Zn : ` 6= 0} of a stationary process, are (marginally)
identically distributed.

Lemma 10 [12] Let L denote a fixed set of indices (that does not depend on n). As n → ∞,
the joint distribution of the coefficients

√
n{c` − E[c`]}, ` ∈ L

converges to an independent complex Gaussian product distribution with zero mean and vari-
ances σ2.

The mixed moments play an important role in our analysis. The following result easily
follows from the definition of the Fourier coefficients.

Lemma 11 Consider an index vector j = [j1, j2, . . . , jκ] ∈ Zκ
n, such that sum[j] 6= 0. Then 5

E[cj1cj2 · · · ciκ ] = 0. (327)

For the case where the sum of the indices in j is zero, we have the following result

Lemma 12 Let j = [j1, j2 . . . , jκ] ∈ Zκ
n be such that sum[j] = 0. Let {Xp; p ∈ Zn} be indepen-

dent identically distributed with P [X1 = 0] = 1− P [X1 = 1] = e. Then

E[cj1cj2 · · · cjκ ] =
1
nκ

κ∑
`=1

∑
τ [`]

B(κ, e, τ [`])
∑

p∈S(τ [`])

e−j 2π
n

j·p (328)

where j · p =
∑κ

r=1 jrpr and where

B(κ, e, τ [`]) = (1− e)` +
κ∑

w=`+1

(1− e)w
∑

σ[w]≤τ [`]

ζ(σ[w] → τ [`]) (329)

with τ [`] and σ[w] denoting the partitions of the index set X = {1, . . . , κ} and S(τ [`]) given in
Definition 12 (see Appendix F).

5The squares (as opposed to the magnitude squares) of the complex coefficients satisfy E[c2
` ] = 0 ∀` 6= 0
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Proof: We can write

E[cj1cj2 · · · cjκ ] =
1
nκ

∑
p∈Zκ

n

E [Xp1 · · ·Xpκ ] e−j 2π
n

j·p (330)

Recalling that Zκ
n = Sκ and using the decomposition (316), we have

E[cj1cj2 · · · cjκ ] =
1
nκ

κ∑
w=1

∑
σ[v,w]

∑
p∈S−(σ[v,w])

E [Xp1 · · ·Xpκ ] e−j 2π
n

j·p

=
1
nκ

κ∑
w=1

∑
σ[v,w]

(
w∏

i=1

E [Xvi
1 ]

) ∑
p∈S−(σ[v,w])

e−j 2π
n

j·p (331)

=
1
nκ

κ∑
w=1

∑
σ[w]

(1− e)w
∑

p∈S−(σ[w])

e−j 2π
n

j·p (332)

=
1
nκ

κ∑
w=1

∑
σ[w]

(1− e)w
w∑

`=1

∑
τ [`]≥σ[w]

ζ(σ[w] → τ [`])
∑

p∈S(τ [`])

e−j 2π
n

j·p (333)

=
1
nκ

κ∑
`=1

κ∑
w=1

∑
σ[w]

∑
τ [`]≥σ[w]

(1− e)wζ(σ[w] → τ [`])
∑

p∈S(τ [`])

e−j 2π
n

j·p (334)

=
1
nκ

κ∑
`=1

∑
τ [`]

κ∑
w=`

∑
σ[w]≤τ [`]

(1− e)wζ(σ[w] → τ [`])
∑

p∈S(τ [`])

e−j 2π
n

j·p (335)

=
1
nκ

κ∑
`=1

∑
τ [`]

(1− e)` +
κ∑

w=`+1

(1− e)w
∑

σ[w]≤τ [`]

ζ(σ[w] → τ [`])

 ∑
p∈S(τ [`])

e−j 2π
n

j·p

(336)

where (336) coincides with the desired result, (331) follows from the definition of the set
S−(σ[v, w]), and from the fact that the process is stationary, (332) follows by noticing that
for any non-zero integer v, E[Xv

1] = E[X1] = 1 − e, (333) is an application of Lemma 8, and
(334), (335) follow by rearranging the terms in the summations.

H Lemma 13

Lemma 13 Let E be the erasure matrix defined in Example 1. Let Ψ be the circulant matrix
and F denote the n× n unitary DFT matrix defined in Lemma 1, and let Λ = diag(λ1, . . . , λn)
denote the eigenvalues of Ψ. Let

Q = EF (337)

and denote by qi the ith column of Q. Then as the dimension of the matrices grows,

q†i

I + γ
∑
j 6=i

λjqjq
†
j

−1

qi
a.s.→ α (338)

where α depends on e and on the asymptotic empirical distribution of Λ but it does not depend
on i.
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Proof: Denote6

Λi = diag{λ0, λ1, . . . , λi−1, 1, λi+1, . . . , λn−1} (339)

αi = q†i

I + γ
∑
j 6=i

λjqjq
†
j

−1

qi (340)

The lemma is equivalent to proving that βi
a.s.→ β, where

βi =
αi

1 + γαi

= q†i

I + γqiq
†
i + γ

∑
j 6=i

λjqjq
†
j

−1

qi (341)

=
(
Q†(I + γQΛiQ†)−1Q

)
i,i

(342)

where (341) follows from the matrix inversion lemma. Using the series expansion of the matrix
inverse, we can write the matrix in the right side of (342) as

Q†(I + γQΛiQ†)−1Q = Q†
∞∑

k=0

(−γ)k(QΛiQ†)kQ (343)

=
∞∑

k=0

(−γ)kQ†(QΛiQ†)kQ (344)

=
∞∑

k=0

(−γ)k(CΛi)kC (345)

where we have denoted the n× n circulant matrix

C = Q†Q (346)
= F†E2F (347)
= F†EF (348)

Thus,

Ci,j =
1
n

n−1∑
p=0

epe
j 2π

n
p(i−j) = ci−j (349)

Notice that the coefficients of the first row of C are obtained as the DFT of the sequence
{ep : p = 0, . . . , n− 1}.

According to (342) and (345), it will be sufficient for our purposes to show that the random
variables

θk,i =
(
(CΛi)

k C
)

i,i
, (350)

converge almost surely

lim
n→∞

θk,i
a.s.→ %k (351)

6For the sake of notation simplicity, it is convenient to use indices in Zn. Therefore, the matrix and vector
components shall be numbered from 0 to n − 1 rather than from 1 to n.
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where %k does not depend on i. At this point, the proof proceeds through a sequence of lemmas,
proved in the following sections.

Lemma 14 The limit %k = limn→∞ E [θk,i] exists and does not depend on the index i but only
on the erasure probability e and on the asymptotic empirical distribution of Λ.

Proof: Appendix I

Lemma 15 The central moments of θk,i of order 2,3 and 4 satisfy

Var{θk,i} = O

(
1
n

)
(352)

E
[
|θk,i − E[θk,i]|4

]
= O

(
1
n2

)
(353)

Proof: Appendix J

The last step of the proof of Lemma 13 follows as an application of Markov’s inequality and
of the Borel-Cantelli lemma. For ε > 0 we have

P (|θk,i − E[θk,i]| > ε) ≤
E[|θk,i − E[θk,i]|4]

ε4
(354)

= O

(
1
n2

)
(355)

where (355) follows from (353). This, combined with Lemma 14, shows that θk,i → %k in
probability. Furthermore, since the sequence of probabilities {P (|θk,i − E[θk,i]| > ε) : n =
1, 2, . . .} is summable for all ε > 0, we have that θk,i → %k almost surely.

I Appendix: Proof of Lemma 14

We wish to compute E[θk,i] where θk,i is defined in (350). For notation simplicity, we shall prove
the expression for finite n and k for a general diagonal non-negative matrix B = diag(b0, . . . , bn−1)
and substitute B = Λi at the end. We organize the proof in steps, for the sake of readability.

Step 1.

θk,i =
(
(CB)k C

)
i,i

=
∑
j∈Zk

n

(
k∏

r=1

bjr

)
cj1−ici−jk

(
k−1∏
s=1

cjs+1−js

)
(356)

To prove (356), we notice that since C is circulant, we can write

C =
n−1∑
`=0

c`X` (357)

where X is the elementary cyclic permutation matrix defined in (272). For any j ∈ Zn, denote
by 1j the n-dimensional vector of all zeros except a “1” in position j. Then the following rules
hold:
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1. X`1j = 1j−`.

2. 1T
j X` = 1T

`+j .

3. 1T
j 1` = 0 unless ` = j.

Notice that the above indices relations holds modulo n, i.e., index operations are in the ring
Zn.

Furthermore, since B is diagonal, we can write

B =
n−1∑
j=0

bj1j1T
j (358)

As far as notation is concerned, we shall use extensively the notation
∑

v∈Zk
n

to indicate a

sum with respect to k indices v1, . . . , vk that range over Zn = {0, . . . , n− 1}. Using the above
definitions, we can write

(CB)k C =

n−1∑
`=0

c`X`
n−1∑
j=0

bj1j1T
j

k
n−1∑
`=0

c`X`

=
∑
j∈Zk

n

(
k∏

r=1

bjr

)
n−1∑
`=0

∑
`∈Zk

n

c`

(
k∏

s=1

c`s

)
X`11j11

T
j1X

`21j21
T
j2X

`3 · · ·1jk
1T

jk
X`

=
∑
j∈Zk

n

(
k∏

r=1

bjr

)
n−1∑
`=0

∑
`∈Zk

n

c`

(
k∏

s=1

c`s

)
X`11j1

k−1∏
g=1

1T
jg
X`g+11jg+1

1T
jk

X`

=
∑
j∈Zk

n

(
k∏

r=1

bjr

)
n−1∑
`=0

∑
`∈Zk

n

c`

(
k∏

s=1

c`s

)
1j1−`1

k−1∏
g=1

1T
jg+`g+1

1jg+1

1T
jk+`

=
∑
j∈Zk

n

(
k∏

r=1

bjr

)
n−1∑

`,`1=0

c`c`1

(
k−1∏
s=1

cjs+1−js

)
1j1−`11

T
jk+` (359)

where (359) holds because only the terms for jg + `g+1 = jg+1 modulo n are not identically
zero. Now, we take the (i, i)-th element of the matrix in (359) and get (356).

Step 2. We have

E [θk,i] =
k+1∑
`=1

∑
τ [`]

B(k + 1, e, τ [`])
1

nk+1−`

∑
j∈G(i,τ [`])

(
k∏

r=1

bjr

)
(360)

where G(i, τ [`]) is a subset of Zk
n defined in (368), and where B(κ, e, τ [`]) is the coefficient

defined in (329) of Lemma 12.
In order to show (360), we use (356) and write

E[θk,i] =
∑
j∈Zk

n

(
k∏

r=1

bjr

)
E

[
cj1−ici−jk

(
k−1∏
s=1

cjs+1−js

)]
(361)
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We notice that the above expectation reduces to computing the joint moment of order k + 1 of
the Fourier coefficients

{c` : ` = j1 − i, j2 − j1, j3 − j2, . . . , jk − jk−1, i− jk}

where i is fixed, and j = (j1, . . . , jk) ranges over Zk
n.

Define the indices v ∈ Zk+1
n such that

v1 = j1 − i

vs = js − js−1, s = 2, . . . , k

vk+1 = i− jk (362)

Notice that, by construction, the index vector v satisfies sum[v] = 0. Hence, the expectation
in (361) is obtained by applying Lemma 12. We have

E
[
cv1cv2 · · · cvk+1

]
=

1
nk+1

k+1∑
`=1

∑
τ [`]

B(k + 1, e, τ [`])
∑

p∈S(τ [`])

e−j 2π
n

v·p (363)

Next, we wish to evaluate the sum of complex exponentials in (363). Recall that S(τ [`]) ⊂ Zk+1
n

is the set of vectors with constant values over the blocks of the partition τ [`]. Denoting these
blocks by V(m1), . . . ,V(m`), for any p ∈ S(τ [`]) we have

p(V(mr)) = (hr, hr, . . . , hr︸ ︷︷ ︸
mr times

)

for some value hr ∈ Zn, for all r = 1, . . . , `. Then, we have

∑
p∈S(τ [`])

e−j 2π
n

v·p =
n−1∑

h1,...,h`=0

e−j 2π
n

P`
r=1 hrsum[v(V(mr))]

=
∏̀
r=1

(
n−1∑
h=0

e−j 2π
n

h sum[v(V(mr))]

)

=
{

n` if sum[v(V(mr))] = 0 ∀ r = 1, . . . , `
0 otherwise

(364)

Expressed in words, the condition on τ [`] for which the term in (364) is non-zero is that τ [`] is
a good partition for the vector of indices v (see Definition 8).

Now, we examine the set of index vectors j ∈ Zk
n such that a given partition τ [`] of size k+1

is a good partition for v, where v and j are related by (362) and i is given and fixed. We write
(362) in matrix form as

v = jΦ + (−i, 0, . . . , 0, i) (365)

where Φ is the double-diagonal matrix of dimension k × (k + 1) given by

Φ =


1 −1 0 · · · 0

0 1 −1 0
...

...
. . . . . .

0 · · · 0 1 −1

 (366)
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Letting Aτ denote the incidence matrix of τ [`], of dimension (k +1)× `, we have that all j such
that τ [`] is a good partition of v satisfy the linear equation

jΦAτ = (i, 0, 0, . . . ,−i)Aτ (367)

The solution of the above (undertermined) system of linear equations over Zn is a translate of
the Kernel (null-space)of the linear transformation Zk

n → Z`
n defined by the matrix ΦAτ . In

particular, notice that
(i, i, i, . . . , i)Φ = (i, 0, 0, . . . ,−i)

Hence, the set of solutions of (367) is given by

G(i, τ [`]) = Ker(ΦAτ ) + (i, i, i, . . . , i) (368)

For later use, notice that Φ maps Zk
n into the subset of Zk+1

n of vectors with zero sum of their
components. Hence, using (307) in Lemma 6 we have that, irrespectively of i and τ [`],

|G(i, τ [`])| = nk+1−` (369)

By using (364) into (363), and the result thereof into (361) we finally arrive at (360).
Step 3. Substituting bj = λj for j 6= i and bi = 1 in (360), we notice that E [θk,i] depends

on i only through the term

T̃ (n)
k,i (Λ, τ [`]) =

1
nk+1−`

∑
j∈G(i,τ [`])

(
k∏

r=1

bjr

)
(370)

Lemma 14 is proved if we can show that, as n → ∞, T̃ (n)
i (Λ, τ [`]) → Tk(Λ, τ [`]), where the

latter is some limit independent of i.
Since |G(i, τ [`])| = nk+1−` and the eigenvalues in Λ are bounded7, it follows that limn→∞ T̃ (n)

k,i (Λ, τ [`])
exists (finite).

In order to see that the limit of T̃ (n)
k,i (Λ, τ [`]) is indeed independent of i, we need some

observations on the structure of the set G(i, τ [`]) defined in (368).
To illustrate the structure of the summation set G(i, τ [`]), let’s consider a simple example

with k = 3 and ` = 2, and τ [2] = {{1, 2}, {3, 4}}. We have

ΦAτ =

 1 −1 0 0
0 1 −1 0
0 0 1 −1




1 0
1 0
0 1
0 1

 =

 0 0
1 −1
0 0


The kernel of ΦAτ is given by the set of vectors j = (j1, 0, j3), with j1, j3 freely varying in Zn.
Its cardinality is given by n2, consistently with (369). Furthermore, we notice that the kernel
is isomorphic to Z2

n. In general, it is easy to see that the kernel is isomorphic to Zk+1−`
n . It

follows that G(i, τ [`]) is formed by all vectors of the type

(j1 + i, j2 + i, . . . , jk+1−` + i︸ ︷︷ ︸
k+1−`

, i, i, . . . , i︸ ︷︷ ︸
`−1

)

7Recall that Λ contains the eigenvalues of Σ defined as a Toeplitz matrix of an absolutely summable sequence,
that has bounded strong norm.
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Since j1, . . . , jk+1−` take all possible values in Zn, this set is identical (up to component per-
mutations that are irrelevant since the argument of the summation in (370) is a product) to
the set of vectors of length k given by

(z1, . . . , zk+1−`, i, i, . . . , i)

where z1, . . . , zk+1−` take on all possible values in Zn.
Recalling that bi = 1, while bj = λj for all j 6= i, we have

∑
j∈G(i,τ [`])

(
k∏

r=1

bjr

)
=

∑
z∈Zk+1−`

n

(
k+1−`∏
r=1

bzr

)
(371)

Next, consider

T (n)
k (Λ, τ [`]) =

1
nk+1−`

∑
z∈Zk+1−`

n

(
k+1−`∏
r=1

λzr

)
(372)

Using (371) in (370) and comparing the resulting expression with (372) we notice that the two
expressions differ by the fact that in some terms of the sum or products in (370) we have a
factor 1 instead of λi. These are precisely the factors with index zr = i. We can decompose the
sum w.r.t. z ∈ Zk+1−`

n into “shells” of vectors with exactly s components fixed to i. Using the
binomial identity

nk+1−` =
k+1−`∑

s=0

(
k + 1− `

s

)
(n− 1)k+1−`−s

we have that there are exactly
(
k+1−`

s

)
(n−1)k+1−`−s vectors z ∈ Zk+1−`

n such that s components
are equal to i and the others are different from i. Then, let Sκ

n(i) denote the set of vectors
z ∈ Zκ

n with all components different from i. Clearly, the set Sk+1−`−s
n (i) is in one-to-one

correspondence with the sth shell defined above. We have

∣∣∣T̃ (n)
k,i (Λ, τ [`])− T (n)

k (Λ, τ [`])
∣∣∣ =

∣∣∣∣∣∣ 1
nk+1−`

k+1−`∑
s=0

∑
z∈Sk+1−`−s

n (i)

(
k+1−`−s∏

r=1

λzr

)
(1− λs

i )

∣∣∣∣∣∣
≤

k+1−`∑
s=0

|1− λs
i |

1
nk+1−`

∑
z∈Sk+1−`−s

n (i)

(
k+1−`−s∏

r=1

λzr

)

≤ K
k+1−`∑

s=1

1
nk+1−`

∑
z∈Sk+1−`−s

n (i)

(
k+1−`−s∏

r=1

λzr

)
(373)

for some constant K that does not depend on n and i that uniformly bounds from above the
term |1− λs

i |. The existence of such constant follows from the fact that Λ (i.e., Σ) is bounded
in strong norm.

The final result is obtained by observing that for all s = 1, 2, . . . , k + 1− `, we have

∑
z∈Sk+1−`−s

n (i)

(
k+1−`−s∏

r=1

λzr

)
≤ (n− 1)k+1−`−sK′
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for some finite constant K′ independent of n and i. Hence,

lim
n→∞

1
nk+1−`

∑
z∈Sk+1−`−s

n (i)

(
k+1−`−s∏

r=1

λzr

)
≤ lim

n→∞

(n− 1)k+1−`−sK′

nk+1−`
= 0 (374)

It follows that limn→∞ T̃ (n)
k,i (Λ, τ [`]) = limn→∞ T (n)

k (Λ, τ [`]), where the latter limit does not
depend on i, by construction (see (372)).

J Proof of Lemma 15

Again, for the sake of readability, we proceed by steps.
Step 1. We start by proving the following general expression for the s-th moment of θk,i

defined in (350). 8 For any integer s ≥ 1, we have

E[θs
k,i] =

s(k+1)∑
`=1

∑
τ [`]

B(s(k + 1), e, τ [`])
1

nsk−`+s

∑
(j1|...|js)∈Gs

(i,τ [`])

s∏
t=1

k∏
r=1

bjt,r (375)

where, as in Appendix I, we consider a general diagonal matrix B with elements b0, . . . , bn−1

and the replace B = Λi at the end, where τ [`] in the above summation are partitions of the
set of indices X s

1 of a concatenated vector of the type x = (x1| . . . |xs) with s blocks of length
k + 1, and where the set Gs(i, τ [`]) is the generalization of the set G(i, τ [`]) defined in (368)
to the case of concatenated vectors with s components, and shall be explicitly defined in (381)
given below (it can be noticed that for s = 1 the definitions (368) and (381) coincide).

In order to show (375), consider the explicit expression of θk,i given in (356). Then, we can
write

E[θs
k,i] = E

 ∑
j1∈Zk

n

· · ·
∑

js∈Zk
n

(
s∏

t=1

k∏
r=1

bjt,r

)
s∏

t=1

cjt,1−ici−jt,k

(
k−1∏
r=1

cjt,r+1−jt,r

)
=

∑
(j1|...|js)∈Zsk

n

(
s∏

t=1

k∏
r=1

bjt,r

)
E

[
s∏

t=1

cjt,1−ici−jt,k

(
k−1∏
r=1

cjt,r+1−jt,r

)]
(376)

Consider the concatenated index vector v = (v1| . . . |vs) with components of length k + 1, that
depends on the summation indices (j1| . . . |js) of (376) as follows

vt,1 = jt,1 − i

vt,r = jt,r − jt,r−1, r = 2, . . . , k

vt,k+1 = i− jt,k (377)

for t = 1, . . . , s. Notice that for any i ∈ Zn we have that sum[vt] = 0 for all t = 1, . . . , s. This
implies that sum[v] = 0. Then, we can apply Lemma 12 and obtain

E

[
s∏

t=1

cjt,1−ici−jt,k

(
k−1∏
r=1

cjt,r+1−jt,r

)]
=

1
ns(k+1)

s(n+1)∑
`=1

∑
τ [`]∈P`(s(k+1))

B(s(k+1), η, τ [`])
∑

p∈S(τ [`])

e−j 2π
n

v·p

(378)
8Notice that θk,i is real and non-negative. Hence, E[θs

k,i] = E[|θk,i|s] for all s = 1, 2, . . ..
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Similarly to what done in (364), we have∑
p∈S(τ [`])

e−j 2π
n

v·p =
{

n` if sum[v(V(mr))] = 0 ∀ r = 1, . . . , `
0 otherwise

(379)

where V(mr) denotes the r-th block of τ [`]. This shows that the sum in (379) is non-zero if and
only if τ [`] is a good partition for the concatenated index vector v = (v1| . . . |vs).

By replacing (379) in (378) and using the result in (376) we obtain (375), where the summa-
tion index set Gs(i, τ [`]) contains all index vectors (j1| . . . |js) such that τ [`] is a good partition
for the associated index vector (v1| . . . |vs) defined in (377).

Step 2. We wish to obtain a more explicit expression of the sth moment in (375). In order
to do so, we have to take a closer look at the structure of Gs(i, τ [`]). Consider the k × (k + 1)
matrix Φ defined in (366), and the incidence matrix Aτ associated to the partition τ [`], of
dimension s(k + 1)× `. Furthermore, it is clear from (377) that, for each t = 1, . . . , s,

vt = jtΦ− (i, i, . . . , i)Φ (380)

It follows that the Gs(i, τ [`]) coincides with the solution set of the system of linear equations
over Zn given by (v1| . . . |vs)Aτ = 0. Explicitly, this is given by

Gs(i, τ [`]) = Ker ([Is ⊗Φ]Aτ ) + (i, i, . . . , i︸ ︷︷ ︸
sk

) (381)

where Is is the s× s identity matrix and ⊗ denotes Kronecker product.
Let $[ν∗, ι∗] denote the canonical decomposition of τ [`] with respect to the concatenated

vector (v1| . . . |vs) and let {τ1[`1], . . . , τι∗ [`ι∗ ]} denote its canonical representation, as in Def-
inition 10. As argued in the proof of Lemma 6, the matrix Aτ can be partitioned into ι∗

blocks of mutually orthogonal columns, Aτ = [A`1
τ | . . . |A

`ι∗
τ ] where the block A`r

τ has dimen-
sion s(k + 1)× `r and corresponds to the partition τr[`r] in the canonical decomposition.9 By
definition of canonical decomposition and canonical representation, we can partition Is⊗Φ into
ι∗ blocks with dimension ν∗r k × s(k + 1), such that each such r-th block has rows orthogonal
to the columns of A

ν∗p
τ for all p 6= r. It follows that Gs(i, τ [`]) has a ι∗-fold Cartesian product

structure.
Let’s focus on the r-th block of the Cartesian product. It is apparent that this is the solution

space of the system of linear equations

(z1| . . . |zν∗r )
[
Iν∗r ⊗Φ

]
Aτr = (i, i, . . . , i)

[
Iν∗r ⊗Φ

]
Aτr (382)

where Aτr is the incidence matrix of the r-th component partition of the canonical decompo-
sition of τ [`], and z1, . . . , zν∗r are k-vectors of variables over Zn. Hence, the solutions of (382)
are given by the set

Ker
([

Iν∗r ⊗Φ
]
Aτr

)
+ (i, i, . . . , i︸ ︷︷ ︸

ν∗r k

)

that is, by a translate of the Kernel (null-space) of
[
Iν∗r ⊗Φ

]
Aτr . Notice that the set of vectors{

x = (z1| . . . |zν∗r )
[
Iν∗r ⊗Φ

]
: zt ∈ Zk

n, t = 1, . . . , ν∗r

}
9The adverted reader will notice the close relationship between the set G(τ [m, `, (x1| . . . |xs)]) examined in

Lemma 6 and the set Gs
(i, τ [`]) considered here.
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contains all vectors of dimension ν∗r (k+1) composed by ν∗r blocks of length (k+1) such that the
sum of elements over each component is zero. Hence, Ker

([
Iν∗r ⊗Φ

]
Aτr

)
is isomorphic to the

set G(τr[`r, (x1| . . . |xν∗r )]) considered in Lemma 6. It follows that its cardinality is nν∗r k−`r+1.
Eventually, the solution space of (382) is given by vectors of the form

(z1, z2, . . . , zν∗r k−`r+1, i, i, . . . , i︸ ︷︷ ︸
`r−1

)

From the Cartesian product structure of Gs(i, τ [`]) discussed before, after reordering of the
components, the vectors in Gs(i, τ [`]) have form

(z1, z2, . . . , zsk−`+ι∗ , i, i, . . . , i︸ ︷︷ ︸
`−ι∗

)

where z1, . . . , zsk−`+ι∗ are arbitrary variables in Zn.
The sought more explicit expression for (375) is finally obtained by recalling that, by con-

struction, bi = 1 and bj = λj for all j 6= i. Hence, all terms in the product of b’s in (375) with
index jt,r = i disappear (they are equal to 1) and using the structure of Gs(i, τ [`]) discussed
above we arrive at

E[θs
k,i] =

s(k+1)∑
`=1

∑
τ [`]

B(s(k + 1), e, τ [`])
1

nsk−`+s

∑
z∈Zsk−`+ι∗

n

sk−`+ι∗∏
r=1

bzr (383)

where we notice that the only dependence of the inner sum (w.r.t. the indices z) on the partition
τ [`] is through the number of its blocks ` and the index of its canonical decomposition ι∗ with
respect to the vector concatenation with s equal-length components.

Step 3. In order to progress towards the proof of Lemma 15 we need the following factoriza-
tion property of the coefficients B(κ, e, τ [`]), where τ [`] denotes a partition with ` blocks of the
index set X = {1, . . . , κ}. Let the block sizes of τ [`] be m = (m1, . . . ,m`). Let ` = `1 + `2, and
define m1 = (m1, . . . ,m`1) and m2 = (m`1+1, . . . ,m`). Then, τ [`] = τ [m, `] can be written as
the Cartesian product of two partitions τ1[m1, `1] and τ2[m2, `2], where τ1[m1, `1] is a partition
of the index set X1 = {1, . . . , κ1} with κ1 =

∑`1
r=1 mr and where τ2[m2, `2] is a partition of the

index set X2 = {1, . . . , κ2} with κ2 =
∑`2

r=1 m`1+r.
Notice that any σ[v, w] ≤ τ [m, `], by definition, must be formed by the Cartesian product

of some σ1[v1, w1] and σ2[v2, w2] such that σ1[v1, w1] ≤ τ1[m1, `1] and σ2[v2, w2] ≤ τ2[m2, `2].
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Then, recalling the product rule for ζ (see (297)), we can write

B(κ, e, τ [`]) = (1− e)` +
κ∑

w=`+1

(1− e)w
∑

σ[w]≤τ [`]

ζ(σ[w] → τ [`])

=
κ∑

w=`

(1− e)w
∑

σ[w]≤τ [`]

ζ(σ[w] → τ [`])

=
κ1∑

w1=`1

κ2∑
w2=`2

(1− e)w1+w2

∑
σ1[w1]≤τ1[`1]

∑
σ2[w2]≤τ2[`2]

ζ(σ1[w1] → τ1[`1])ζ(σ2[w2] → τ2[`2]) (384)

=

 κ1∑
w1=`1

(1− e)w1
∑

σ1[w1]≤τ1[`1]

ζ(σ1[w1] → τ1[`1])

 ·

 κ2∑
w2=`2

(1− e)w2
∑

σ2[w2]≤τ2[`2]

ζ(σ2[w2] → τ2[`2])


= B(κ1, e, τ1[`1])B(κ2, e, τ2[`2]) (385)

The above factorization can be trivially generalized to a d-fold Cartesian product. In particular,
consider κ = s(k + 1) and a concatenated vector (x1| . . . |xs) with equal-length components xr

of length k + 1. Consider τ [`, (x1| . . . |xs)] and its canonical decomposition $(ν∗, ι∗). The
canonical representation of τ [`, (x1| . . . |xs)] with respect to the concatenation (x1| . . . |xs) is
given by (see Definition 10)

τ [`, (x1| . . . |xs)] =
{

τ1[`1,xV(ν∗1 )], . . . , τι∗ [`ι∗ ,xV(ν∗
ι∗ )]
}

For what said above, it follows that

B(s(k + 1), e, τ [`]) =
ι∗∏

r=1

B(ν∗r (k + 1), e, τr[`r]) (386)

This is the factorization we need in order to conclude the proof of Lemma 15.
Step 4. We consider in details the statement (352) relative to the variance, and leave to the

reader the statement (353) relative to the 4-th central moment that follows from an analogous
development and it is just much more cumbersome.

The trick consists of summing the expression for the s-th order moment (383) by dividing
the partitions τ [`] into “shells” with the same canonical decomposition order ι∗ = 1, 2, . . . , s.
Notice that these “shells” were introduced in general in Definition 11 and, by specializing the
notation introduced in Definition 11 to the case at hands, they are denoted by D(ι∗)(s(k + 1)).
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Using (383) for s = 2 we have

E[θ2
k,i] =

2(k+1)∑
`=1

∑
τ [`]

B(2(k + 1), e, τ [`])
1

n2k−`+2

∑
z∈Z2k−`+ι∗

n

2k−`+ι∗∏
r=1

bzr

=
2(k+1)∑

`=1

∑
τ [`]∈D(1)(2(k+1))

B(2(k + 1), e, τ [`])
1

n2k−`+2

∑
z∈Z2k−`+1

n

2k−`+1∏
r=1

bzr +

+
2(k+1)∑

`=1

∑
τ [`]∈D(2)(2(k+1))

B(2(k + 1), e, τ [`])
1

n2k−`+2

∑
z∈Z2k−`+2

n

2k−`+2∏
r=1

bzr (387)

Consider the second term of (387), that involves only partitions with ι∗ = 2. Using the facts in
Step 3 above, we can write∑2(k+1)

`=1

∑
τ [`]∈D(2)(2(k+1)) B(2(k + 1), e, τ [`]) 1

n2k−`+2

∑
z∈Z2k−`+2

n

∏2k−`+2
r=1 bzr =∑k+1

`1=1

∑k+1
`2=1

∑
τ1[`1]∈P`1

(k+1)

∑
τ2[`2]∈P`2

(k+1) B(k + 1, e, τ1[`1])B(k + 1, e, τ2[`2])·

· 1
nk−`1+1nk−`1+1

∑
z1∈Zk−`1+1

n

∑
z2∈Zk−`2+1

n

∏2
t=1

∏k−`t+1
r=1 bzt,r =(∑k+1

`=1

∑
τ [`]∈P`(k+1) B(k + 1, e, τ [`]) 1

nk−`+1

∑
z∈Zk−`+1

n

∏k−`+1
r=1 bzr

)2
= (E[θk,i])

2 (388)

where the last line follows from (360) and from (368).
Using (388) in (387) we obtain

Var{θk,i} = E[θ2
k,i]− (E[θk,i])

2

=
2(k+1)∑

`=1

∑
τ [`]∈D(1)(2(k+1))

B(2(k + 1), e, τ [`])
1

n2k−`+2

∑
z∈Z2k−`+1

n

2k−`+1∏
r=1

bzr

≤ K
2(k+1)∑

`=1

∑
τ [`]∈D(1)(2(k+1))

B(2(k + 1), e, τ [`])
n2k−`+1

n2k−`+2

≤ K′

n
(389)

for some constants K and K′ that do not depend on n and on i, where the upperbound follows
from the fact that the eigenvalues of Λ, and hence the elements b0, . . . , bn−1, are bounded (recall
that Λ is the eigenvalue diagonal matrix of the Toeplitz matrix Σ, that is bounded in strong
norm). We conclude that Var{θk,i} = O(1/n), and (352) is proved.

As said before, the proof of (353) follows from an analogous development, that is significantly
more cumbersome even though it does not contain any new fact, and therefore is omitted for
the sake of conciseness.
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