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Abstract

A single-server queue concatenated with a multi-level nkhencoder is considered. The main
focus of this work is on minimization of the average delay gbacket from entering the queue until
completion of successful service. Tight bounds are deffigethe average delay for different numbers of
coded layers. Numerical optimization is applied to find tiptiroal resource allocation minimizing the
average delay. Delay bounds are also derived for continlayesing (single user broadcast approach).
The optimizing power distribution of the minimal delay ispapximated, and numerically evaluated. It
is demonstrated that code layering may give pronouncedpeaince gains in terms of delay, which
are more impressive than those associated with throughpig. makes layering more attractive when

communicating under stringent delay constraints.

. INTRODUCTION

In classical information theory, a maximal transmissiote ia sought for, under a power con-
straint, assuming an infinite backlog of information wagtiior transmission (Shannon capacity).
In network theory the input data is some random process wdoalrols writing to a queue, and
the output transmission (service) is another random psodesghis setting the design goal of the
transmission process concentrates on minimizing the qdelay for the input data, under some
power constraint. In presence of stringent delay congain input data transmission the design
of the data queue and transmission algorithm cannot be atepaas maximal throughput is no
longer the issue. This conceptual gap between informateoryy and network theory can be
overcome by jointly solving a common problem of minimizirgetdelay for some input random
process and a power/rate control constraint. This is alswhras cross-layer optimization, since
it involves joint optimization of two layers of the seven &yOSI model. Further inherent gaps

between information theory and network theory are disaugsaletail in [1], [2], [3].
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The tradeoff between delay and throughput has been coesiderseveral contributions [4],
[5], [6], [7] and more. Single server queue throughput asialymay be found in [5], for an
additive white Gaussian noise (AWGN) channel with differsatvice time distributions. In [6]
the channel model is a fading channel with channel staternmdton (CSI) known at both
transmitter and receiver ends. Power allocation for a singler for minimizing average delay
is also considered in [8], where the fading channel has agihgrsignal to interference ratio
(SIR), depending on the number of users transmitting simatiasly. A communication scheme
that is suitable for mixed delay-constrained and non-defaystrained services simultaneously
is suggested in [9]. This is obtained by a transmission sehbased on sub-channel grouping
together with different power control policies.

Single-user queueing and channel coding for a block fadhegnoel when CSI is available
only at the receiver end is discussed in [10], [11]. In [1(timal rate and power allocation are
derived for a single level encoder at the transmitter, whieeemaximal throughput achievable
is also known as the outage capacity. Power and rate ardyjaiptimized to minimize overall
delay, which is the delay between a packet arriving at theigand being successfully decoded
(including retransmission on outage events).

When a separate control can be applied for every transmibsit, the overall average perfor-
mance may be improved by dynamically controlling the rateyer, transmission algorithm, etc..
A common dynamic optimization framework is dynamic prognaimg [12]. In [13], transmission
over a time varying channel, with delay and peak-power caimgs, is optimized via dynamic
programming. Power allocation policies, as a function & tjueue size and channel state are
investigated [13]. In [7], the authors use dynamic programgro compute the optimal power
allocation for a single user (single server) fading chanwih CSI at transmitter and receiver.
Two transmission models are considered there, the firsegponds to fixed length variable
rate codewords, and the second corresponds to variabléhlengewords. The authors of [14]
derive optimal power allocation for a wireless fading chelnhat is an optimal policy for
every channel state and queue state is presented, nunioglutations via dynamic program-
ming demonstrate results. Maximization of data throughputin energy and time constrained
transmitter sending data over a fading channel is considier¢1l5]. A dynamic programming
formulation that leads to an optimal closed-form transimisscheduling is obtained. The result

is extended to the problem of minimizing the energy requieedend a fixed amount of data
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over a fading channel given deadline constraints [15]. @altipower allocation and admission
control via dynamic programming in context of satellite ¢oomications is also presented in
[16]. A dynamic programming formulation for computing aptill power control, source coding,
and channel coding policies when the source traffic has tighdy constraints is presented in
[17].

A general dynamic programming framework for optimal crtsger adaptation of single-user
wireless channels and a stochastic approximation formoulédr distributed power and admission
control in ad-hoc networks for time-varying channels iscdssed in [18]. Random channel
environments are discussed in [19]. Generally stating prameters for dynamic optimization
depend on the system flexibility and dynamic computatiorabdipies.

Numerous works consider cross-layer optimization for ipldtusers (multi-server queue),
each holding a queue of data, and encountering collisionstlogr time varying conditions,
[20], [21], [22], [23], [24], [25], [26], [27], [28] and moreFor such systems there are many
retransmission protocols and coordination algorithmsthia context a multiple-access (MAC)
Gaussian channel is analyzed in [21], where an informateoretic view of some basic proto-
cols based on the hybrid-ARQ (Automatic Repeat reQuest) arsidered. In [25] an ALOHA
system is studied, where multiple users transmit synchuslgoover a time-slotted multiple-
access channels. When a collision occurs the users needraosmit their data. Capacity of
time-slotted ALOHA was studied in [22]. Different schedwgischemes are considered in [23] for
reduced delay on the expense of throughput and vise-vensa,dingle antenna broadcast-fading
channel. The transmission there is assumed to be packet, lzasbaverage delay and its variance
are derived. In [24], throughput-delay trade-off in enecgystrained multi-user random wireless
network with uniformly distributed nodes is considered] éme optimal tradeoff between average
energy-per-bit and delay scaling is presented there. Thense in [25] considers a broadcast
coding scheme, which allows decoding of partial informatin case of a collision, and full-
decoding in absence of collision. This approach of broadcading for the multiple-access
channel was first considered in [29].

In this work, we consider a single server queue followed byhanael encoder, which can
perform multi-level coding. The channel model is a blockifigdchannel, where CSl is available
at the receiver end only. In this case throughput gains mapltained by performing finite

level coding or continuous layering (single-user broatiegproach) [30], [31], [32] and [33].
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Stringent delay constraints are common in many applicatguch as voice/video transmission.
In this channel model the transmission block though stiljéa(as to give rise to the notion
of reliable communication [34]) is much shorter than the aiywics of the fading process. This
scenario is approximated by assuming that the channel dgachefficients are fixed for every
block. The notion of capacity versus outage was introducetidiscussed in [34] and [35, see
references therein).

The focus of this paper is on the overall delay assuming tietriput data is kept in a queue
and has a fixed finite rate. Optimal rate and power allocatierdarived for a multi-level channel
encoder, and delay gains of layering are compared to layé¢nroughput gains.

The single-user broadcasting approach hinges on the lastdbannel, which was first
explored by Cover [36], [37]. In a broadcast channel a simglesmission is directed to a number
of receivers, each enjoying possibly different channebions, reflected in their received signal-
to-noise ratio (SNR). The Gaussian broadcast channel withghestransmit antenna coincides
with the classical physically degraded Gaussian broadtestnel, whose capacity region is well
known [37],[38], [39]. Single-user broadcasting may beeipteted as hierarchical coding via
multi-level coding (MLC) [40], [41], [42], [43].

In general, layered coding includes different data for dagkr. This might suggest that when
combining the transmitter with the queueing system thatdéwa for each layer is to be stored
in a different queue. This is also the case in the generaldoesting problem without common
information, where a queue is allocated to every user. Hewdar single-user communications,
a single common queue for all layers is preferable, sincévésgthe flexibility of dynamically
allocating data to layers before every transmission block.

A joint optimization of queueing and multi-user communioas is considered in [28] and
[44]. The authors derive optimal adaptive joint power cohéind rate allocation policies which
maximize system delay and throughput for multi-access anddzast fading channels. In both
settings every user has his own queue. In the channel modkis @Ssumed to be known for all
users at the transmitter. Moreover, for delay optimizatiamassumed that every user captures the
channel ergodicity, and that all users have the same fadimdpm process (Symmetry assumption
[44, Section 4.A]). In this setting every user experiendépa@ssible fading realizations. These
results are incompatible with the single-user broadcagrageh [30], where every user is

associated with a channel fading power. That is, every laysar) is related to a channel fading
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amplitude, or range of amplitudes. Hence the channel bigtan associated with a layer is only
a random phase, which means that the distribution of CSI ameegs is different.

In the concatenation of a queue and multi-level encoderyevieck transmission consists of
multi layer data, which is decoded partially or completelgpending on the fading conditions.
The better the channel conditions, the more layers are @elcdsince the transmitter has no
access to CSl, a feedback acknowledge (ACK) channel is refuarespecify which of the
layers were decoded. For each ACK the corresponding data eateleted from the queue.
Layers which were not ACKed remain in the queue and are rehiiesl. This is equivalent
to batch processing, where a layer is interpreted as a babghapd each service may include
processing of several jobs [45].

The structure of this paper is as follows. In section Il tharaiel model is presented. Then
the queue model used for the analysis is peresented in sdttion section IV, simple upper
and lower bounds on the average delay are presented. lorsactight upper and lower delay
bounds are derived for queueing and two level code layefiig. results are extended #©-
level code layering in section VI, where tight upper and Io@elay bounds are derived, closely
approximating the exact average delay value. Section \fth&r extends the delay bounds to
general continuum layering, namely the broadcast apprddah numerical results of finite-level
code layering and broadcasting are presented in sectidn KHally, section 1X includes the

summary and conclusion.

. CHANNEL MODEL

Higher Layer Highgr Lgyer
Application Application
Buffer
Encoder & : ;
Transmitter Fading Channel Receiver

Feedback channel - decoding ACK

Fig. 1. A block diagram of a communication system including a queue ibh&#ore the transmitter.

September 22, 2004 DRAFT



Consider the following single-input single-output (SIS@gaonel,
y=hx+n, 1)

wherey is a received vector, of lengthy, which is also the transmission block lengthis the
transmitted vectom is the additive noise vector, with elements that are com@axssian i.i.d
with zero mean and unit variance denoted/(0,1), and % is the (scalar) fading coefficient.
The fadingh is assumed to be perfectly known at the receiver end only.timesmitter has no
channel state information (CSI). The power constraint i®igity P = E|z|*>. E stands for the
expectation operator.

Figure 1 illustrates a system including a buffer (queue)stmurce data, followed by a channel
encoder and transmitter. The input data comes from a highar lapplication. It enters the
gueue in a fixed rat, and taken out of the queue according to channel encodedsleneThe
queue represents here the networking layer, and the traasmepresents the physical layer.
In a single-level coding (outage) approach every transomsklock as of the same length and
rate. An ACK is returned every successful decoding, and a NAC&onveyed back every time
the channel conditions do not allow decoding (outage evémtjnulti-level coding there is a
separate ACK/NACK feedback for every layer. Layers which wef&€Ked remain in the queue

and are scheduled for retransmission.

[Il. QUEUE MODEL - THE ZERO-PADDING QUEUE

We focus here on a queue model, which allows transmission even the queue is almost
empty and a transmission frame can be created by zero patiténgurrent data in the queue
to construct a valid frame for the channel encoder. We inicedthe queueing time and waiting
time, which is defined as the time spent in a queue from theahmintil taken out of the queue.
Queueing time is also the overall delay, defined as the tiram farrival to the queue until
completion of service (successful transmission).

The waiting time in the queue may be analyzed in the embedaligs, at the beginning of
every slot. We assume that the input data rate [bits/channel use]. The input arrival epochs
is assumed to be deterministic, in-between the embeddimgspo

The waiting time in a queue may be obtained from the queue Biz@ormalizing the queue

size by the inverse of the input rate as stated by Little’s theorem [46]. The queue size is
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defined by the following equation

Wno+ NX\py1 — NR, W, +NXy1 — NR, >0
Wi = 2)

0 Wo+ N\py1— NR, <0
where N is the block length (number of channel uses between slyfs), is a random variable
(RV) of the input rate, which is either a Poisson process &t Xeor a deterministic fixed rate
A, R, is the transmission rate random variable. Notice that in@age approacl®,, is a fixed
R with probability p, and 0 with probabilityl — p. This waiting time equation is also analyzed
in [11, ch. 5] for a deterministic arrival process and an gatapproach, where bounds on the
average waiting time are derived. For convenience, theesee equation is normalized by the

block length N, and we get the queue equation, known also as the Lindleytieqyd 7],

wn+)\n+1_Rn wn+>\n+1_RnZO
Wp41 = (3)
0 wn+)\n+1—Rn<O
where )\, .1 is a random variable of the normalized input rateand R,, is the normalized
transmission rate random variable. Amg is now the queue size in units of blocks of data

corresponding taV arrivals to the queue. In an outage approach,

R — R wp. p . @
0 wp 1-—p
From here on, the queue equations will be normalized foligw{3). For completeness of
definition, we state the queueing time equation, which isaverall system delay (overall time
spent in the system), for the zero-padding queue. When stegten the overall delay, one has
to consider the additional delay of service time, beyondwiading time in the queue. This is

formalized in the next normalized queueing time equation,

An Ry Ry
Qn+ )\+1_T Qn_TEO

(5)

dn+1 =
An41 R
DN qn — Tn <0

whereg, is the momentary queueing time at slgtand \,,;, R, are defined below (3).

In the outage approach it might be desirable to analyze tlieuwelay by adopting the
standard M/G/1 queue model. In this model the input procesa Poisson process, and the
service distribution is some general random process. lglesilevel coding the time between

services is a Geometrically distributed random variabteotder to use the M/G/1 model a
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crucial assumption on the system model must be made: the arpumes in blocks that have
the same size as the transmission blocks. That is, the queusi@n is normalized to blocks
of transmission, where the block size is equal to an inputkldhe input process has a rate
Anorm, @nd at every embedding point the number of arrivals is nredsin block units. This
model is strongly limited by the constraint that arrival dke are equal in size to transmitted
blocks, since change of transmission rate means changein biock size. Therefore we do

not adopt the M/G/1 queue model in this work.

A. A simple example

To gain some intuition on the zero-padding queue we use thewiog example. Assume
that in equations (3) the input rate/ R < 1 is fixed and deterministic, and the transmission
rate is also fixed and deterministic, equals to 1. Denote thiéing time and queueing time in
a zero-padding queue hy?? and¢?” respectively. Let the queue be emptyrat 0, and for
simplicity take R/\ and integer.

1) Waiting time (normalized by \): {wZ” w#f, ..., w?" ..} ={0,0,...,0,...}.

2) Queueing time (normalized by \): {¢Z*, ¢7%,...,¢?",..} ={0,1/R,...,1/R, ...}, as the

only delay in the system is the transmission delay.
Henceaver age values of waiting time and queueing time are given by
1) Average waiting time (normalized by )\): w?? = 0.
2) Average queueing time (normalized by )\): ¢?” = 1/R is the overall average delay in

steady state.

B. Steady-state conditions

It is well known [46, Ch. 9] that the zero-padding queue is Ietathen the average input rate
is strictly smaller than the service rate, and that the wgitime random process converges in

distribution. Recall the Lindley equation in (3), given in éfefent form
Wpy1 = max(w, + z,,0) (6)

wherez, £ \,.; — R, is a random variable of the difference process of the inpudt @utput

random processes. With initial conditions (6) can also be expressed as,
Wpy1 = max(wy + T, + ... + Tp, To + . + Tpy oy Ty, 0). (7)
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For each fixedn (7) shows thatw,,; depends on the partial sums of, ..., z,,, summed in
reverse order (aside from the initial conditian). Using standard tools from fluctuation theory
(also known as theory of random walks), it is shown in [46, CA.h@orem 8] that,

Theorem 3.1:(stability) For every initial value ofw,, {w,} for an associated queue con-
verges in distribution tav. For E(x) < 0 (EXA < ER), w is proper (i.e. it has zero mass at
+oo: P(Jw| <o0)=1). ForE(z) >0 w = oc.

It may be concluded from theorem 3.1, that as long as the geergput rate) is strictly
smaller than the average transmission rate, the systenaldestThat is, the queue size will
not grow unbounded (tec). Moreover, a steady state exists, as the queue size c@sverg
distribution to a random variable, for which the mean valuel &s higher moments can be

computed.

IV. AVERAGE DELAY - IMMEDIATE BOUNDS

In this section average delay bounds are derived for the-zadding queue. The upper and
lower bounds based on known results for the G/G/1 queue. liates shown that the delay
upper bound is a rather tight one for multi-level coding, ve@es the lower bound is quite loose.

Therefore tighter lower bounds are derived for multi-legeding.

A. Upper bound
The queue in (3) may be expressed in a slightly different form
W1 — Yn = Wy + Ty, (8)

wherey, is the idle time process, which represents the amount of tti@tiacould have been

served. Whem — oo it can be noticed that
Ey,=—FEx=FER— FE\ (9)

We now use the moment inequality. For an arbitrary non-megaandom variables
E(G%)
(EG)~

E[(G-v)}] > (E[(G —v)4])*, for v>0and a> 1. (10)
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10

An analytic derivation of the moment inequality (10) is meted by Daley [48]. The moment
inequality forae = 2 andy., = (w + A — R)_ = (R — S), reduces after some algebra [46, Ch.
11-2] into

EX

Bly2] > (1— 22 E(RY). (12)
By using (8), (9) and (11),
Fu < (B(?) ~ (1~ £ B(R)/(2E(~1) (12)
which simplifies by equality to
0%+ 03 EX 0% A

Fw <

~2(ER—FE\) U= Zr)spr ~ Wosw: (13)

wherec? ando? are the variances ok and \ respectively, i.ec% £ ER? — (ER).

B. Lower bound

The lower bound derived here is based on tail properties efdgilleue output distribution.
From equation (8) the average waiting time is given by [47, ZB]
_ _OR+0} E(I?)
~ 2(ER - E\) (ET1)?’

wherel ~ (y-|ys > 0). The above can be lower bounded whras the following properties.

Fw

+(ER - EN)/2 - (14)

It is said that a random variabl® has bounded mean residual life by(BMRL-~) when

J Fi(r)dr
E(R-t|R>t)=*——— <~y forall t>0, (15)
Fg(t)
where F,(7) is the complementary CDF ak. If R has BMRL+, then [47, Ch. 2.3 eq (2.47)]
E(I?)
< 16
Hence the following is a lower bound for BMRi.4ransmission rate random variahie
0% + o2
Fw>—2L_2 __(ER+EN/2&2W : 17

wherey = ER.
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V. QUEUEING AND MULTI-LAYER CODING

In this section the transmitter uses superposition codimgsiingle transmit antenna, and one
or more receive antennas. Upper and lower delay bounds aved¢or two level code layering.
The derivation relies on the relationship of the Laplacagfarm and the waiting time cumulative
distribution function (CDF). Similar type of bounds were iged for the outage approach in [10].

We hereby derive tight bounds for finite level coding and cardus layering (broadcasting).

A. Maximal Throughput in Two-level layering

A two-level code layering for the SISO channel was presebtetliu et. al. [49]. Extensions
for multiple-input single-output (MISO) setting and siaghput multiple-output (SIMO) setting
are presented in [32]. In a two level coding, as in the brostiltg, the receiver views a degraded
broadcast channel. Consider a two layer code of r&esnd R,, such that the transmission
rate R = R; + R,. Two channel fading power parametersand s, are defined respectively.
We restrict0 < s; < s, without loss of generality. When fading paramete< s no layer can
be decoded. Whenr, < s < s, the first layeronly can be decoded while treating the other as
interference. When, < s both layers can be decoded by initially decodiRg, cancelling it
from the received signal and then decoding/tf, in better signal to interference ratio (SIR)

conditions. The fixed rate of the first layer is

R, = log (1 + %) : (18)

where the power allocated to layef and R, is (1 — 3)P and P respectively. The second
layer can be decoded for a fading parameter s,. Obviously, in this case the first layer can
be decoded prior td?,. Therefore, the ratél, has no inter-layer interference and its fixed rate

is given by
Ry =log (14 (GPs3). (29)
The expression of the maximal achievable average rate endiy

R2L = Inax Psucc(SI)Rl + Psucc<52)R27 (20)

B,s1,82

where Py,..(s;) is the same probability of successful decoding of laye®ptimal 3 for which

Ry;, achieves maximum is specified by [49]

B _ (I) ( S2Psucc(32) - Slpsucc(sl) )
ot P3152(Psucc(31> - Psucc(SQ))

(21)
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12

where

0 <0
D)2 z 0<z<1
1 z>1
The maximal achievable rate can be further optimized eyers; numerically. Note that the
difference between the MISO and SIMO settings lies in (1B)) (vhere the power is normalized

by the number of transmit antennas. ThatAsn (18) and (19) is replaced b)’% in a MISO
setting [33].

B. Delay bounds in Two-level layering

In this section bounds that exploit the multi-level codingege equation are derived. The
number of layers is restricted here to two level layerings Ilater relaxed and extended to the
derivation of multiple-level coding and continuous codimgunds. The queue size equation (3)
is also well known as the Lindley equation [46]. It descriltles queue size at the beginning of

every time slot (embedding point). A two level coding queire £quation is specified hereby,

w,+X, W,+X,>0
Wn+1 = (22)
0 W, + X, <0

where
Xn 2N\ - Vl,an - V2,nR2 (23)

and we have assumed that the input rate is determimistihich means that at every embedding
point a new input block\ arrives. Layering rateg?; and R, are specified by (18) and (19)
respectively. The outage region for layering is describgadib,, v»,. The random variables can
be defined by the channel realization thresholds as follows

1 S1 S Sn,

Vl,n = (24)
0 otherwise
1 52 S Sn

Von = (25)
0 otherwise
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wheres,, is the fading power realization at thé" time-slot. Calculating the CDF of the queue
size at these embedding points will enable the calculatioine CDF at every time instant. A

recursive notion of the CDFyy, (w) of the queue size [50, Ch. 8]

0 w <0
wiw) [ Fy(w—r)dFx(r) w>0 (26)
In our setting the probability densiyF'x(7) of X (23) is
dFx(x) = pio(z — (A = R1 — R»)) + p26(x — (A — Ry)) + pé(z — A), (27)

wherep, = Prob{s, > sa}, po = Prob{s; < s, > s} andp =1 — p; — ps.
Theorem 5.1:Queue average size and average delay for two level codeirgyare upper

and lower bounded by

(B1 + Ro)A(1 —p1) — palu (A + Ry)

EW, > 28

T 2(p1(Ry + Ry) +palty — N) (28)

EW, < 1R+ 2p1 Ro(Ry — A) + (p2 + 1) RY — 2AR1(p1 + p2) + A 29

2(p1 (R + Ra) +paly — )
and the average delay normalized by the input pate bounded by
(R + R)A(1 — p1) — paRi(A + Ry)

EWyy > 30

T 2 (By + Ra) + paRy — A) (30)

EW;\ < PR3+ 2p1 Ro(By — M) + (p2 + p1) R — 2MRi(p1 + o) + A (32)

2A(p1(Ry + Ra) + pa Ry — A)

Proof: SeeAppendix A
Similarly the upper bound in (13) can be explicitly speciffed the two-level code layering

approach. To obtain? the following is required,
0%, 2 DRI+ pi(Ri+ Ro)? - Ry, (32)
where
Ropaw = pr(Ri + Ra) + poRy (33)

Thus we have the following result,
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Corollary 5.1: Queue average size and average delay for a two-level codarigyare upper
bounded (13) by

2 2
OR A (o
FWor < —— 2L (1 — 2L 34
2= 2(R2L,av - )\) ( R2L,av 2R2L,av’ ( )
and the average delay normalized by the input pate upper bounded by
2 2
EWyar < Tl (A ) i (35)

2)\(R2L7(w - /\) a R2L7av 2f€2L,av)‘7

Whereafm and Ry, ., are given by (32) and (33) respectively.

VI. DELAY BOUNDS FORFINITE LEVEL CODE LAYERING

In this section the Lindley equation [46] for finite-leveldmlayering is introduced, for some
number of code layer#’. The Lindley equation describes the queue size at the biegirof
every time slot (embedding point). For finite level codingtta# queue output we have, like in
(22),

W,+ X, W,+X,>0
Wit = (36)
0 wW,+ X, <0
where the queue update random varialile depends on the number of layers in the code. Its
realization specifies the difference between the numbeaydrs successfully decoded and the

queue inputh,
K
=1

and we have assumed that the input rate is deterministicd so are the layering rat¢®;} = .
The outage region for layering is determined{by,, } X ,. The associated fading power thresholds
are denoted sy, ; }X,. The random variables (R, } X, are related to the fading thresholds

as follows

1 s < s < Sinjit1
Vin = . (38)
0 otherwise

wheres,, is the fading power realization at thé”" time-slot, ands, 1 = co. Every RV,
K
has a probability denoteg; ,; for being 1. Note that outage probability=1— > p;, wherep
=1
stands for the probability that no layer is decoded. Calmgathe CDF of the queue size at these

embedding points will enable the calculation of the CDF atgvtene instant. In equivalence
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to two level layering a recursive notion of the CO¥, (w) of the queue size (26) can be used.
In this setting the probability densiyF'y(7) of X (37) is

K—i+1

dFy(z) = Z pis(r— (A= > R))+po(z—\) (39)

j=1
Wherepi = PT’Ob{Sth’i <s, < Sth,iJrl} for i = 1,..., K and Sth,K+1 = OQ.

Theorem 6.1:Queue average size and average delayifdevel code layering are upper and
lower bounded by

K K
(R = N piRr—ir1 = A) = (R = N>+ 2 pi(Ri — Rg—i11)? + PRE
EWK 2 =1 =1

_ (40)
20> piRk—iv1 — A)
-1

7

K K
2Rk — /\)(Z PiRK_iv1 —A) — (R — A+ sz'<§RK — R _iv1)? + DR
EWy < =1 =1 (41)

K
20> piRk—iv1 — A)
=1

where R, £ Z;le R;, and the average delay normalized by the input Pate bounded by

K K
R = N piRr—iv1 — A) — R — N+ D pi(Ri — R —iv1)? + PR%
t i=1

EWy, > l _ (42)
2)\(2 Piflr_iy1 — )\)
i=1
K K
2Rk — A)(Z PiRE_iv1 —A) — (R — N\ + Zpi(%K — Ri—it1)* + DR%
EWges < = = (43)

K
2M> - piRk—it1 — A)
=1

(2

Proof: SeeAppendix B

The upper bound in (13) can be explicitly specified for thetdhievel code layering approach.
To obtaino? the following is required,

K
O—%{KL < ,_1pi§)%%(7i+l - (RKL,M;)2 (44)
where
K
RKL,au £ ZPﬁEKﬂ‘H- (45)
i=1
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Corollary 6.1: Queue average size and average delay féf-kevel code layering are upper
bounded (13) by

EWi, < — TR _ p— Ot (46)
KL= 2(RKL,av - )\) RKL,Uw 2RKL,G,'U7
and the average delay normalized by the input Pate upper bounded by
2 2
Or A ORr
EW. < pL —(1- pL 47
ML= 2>\(RKL,(1U - >\) ( RKL,av 2RKL,av)\’ ( )

Whereaﬁ{m and Rk, ., are given by (44) and (45) respectively.

VIlI. DELAY BOUNDS FORCONTINUUM BROADCASTING

We adhere to the broadcasting approach for a SISO channgl If81his approach the
transmitter also sends multi-layer coded data. The receleeodes the maximal number of
layers given a channel realization (per-block). Howevempposed to finite-level code layering,
here the layering may be a continuous function of the chafadkhg parameter. That is, the
number of layers is not limited in advance, and an increnigate with a differential power

allocation is associated with every layer. The differdntze per layer is given by

sp(s)ds sp(s)ds
AR(s) = log (1 T 51(5)) T 11 sI(s) (48)

wherep(s)ds is the transmit power of a layer parameterizedsbintended for receives, which

also designates the transmit power distribution. The rigihtd-side equality is justified in [51].
Information streams intended for receivers indexeduby s are undetectable and play a role

of additional interfering noise, denoted liys). The interference for a fading poweris

I(s) = / plu)du, (49)

which is also a monotonically decreasing functionsof he total transmitted power is the overall

collected power assigned to all layers,

P / p(u)du = 1(0). (50)

As mentioned earlier, the total achievable rate for a fadesdizations is an integration of the

fractional rates over all receivers with successful layeratling capability,

7 up(u)du
R(s) = /0 eIl (51)
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Average rate is achieved with sufficiently many transmis$ilocks, each viewing an independent

fading realization. Therefore, the total average rdtg over all fading realizations is

o

Ro= [ du gt = [ a1 - Fo) S (52)

where f(u) is the probability distribution function (PDF) of the fadirpower, andF(u) =
]Ldaf(a) is the corresponding cumulative distribution function (QDF
’ It is possible extend the finite-level code layering boundsivéd above to this broadcast
setting. The bounds in Eq. (40) and (41) could be used fordwasting after performing the
following modifications:

1) The number of layers is unlimited, that i§ — oc.

2) Every layeri is associated with a fading parametgrhence the layering is continuous.

Every RateR; is associated now with a differential radé(s) (48).

3) The cumulative raté&tx should be replaced by

o

Ry = /dR(s)ds. (53)

0

K
4) The sum)_ p;Rk_;41 is actually the average rate and it turns to Bg (52) in the
=1
continuum case.

5) Finally, in finite level coding the expressmﬁ pi(Rix — Ri_i11)? + pR2 turns out to be

R?l,bs = fduf |: dR :|
= Jausw {ﬁm ] (54)

= 2fduF u)dR(u de

O%:

in the continuous case, wheti&(u) and R(u) are specified in (48) and (51) respectively.

Corollary 7.1: Queue average size and average delay for a continuous gatetpare upper

and lower bounded by

Rr — X N R}, — (Rr — \)?

EW,, >
bs=""9 2(Rps — A)

(55)

thi,bs - (RT - )‘)2

EW,y, < (Rp — X
Wos < (Br = 2) + 2(Rps — \)

(56)

September 22, 2004 DRAFT



18

and the average delay normalized by the input pate bounded by

Ry — A R?Z,bs - (RT - )‘>2

EWy s >
M= 0N 2MRys — )

(57)

Ry — A N R}, — (Rr — \)?
A 2M(Rys — )
where Ry, Ry and R, are specified in (52), (53) and (54) respectively.

EWyps < (58)

Similarly the upper bound in (13) can be explicitly speciffedthe continuous code layering

approach. To obtain? the following is required,
oh, 2 [ duf() (B - B
= Jausw | fare)] - R
¥ 0 u (59)
= 2{du(1 - F(u))dR(u)Ode(s) i
— 2 du(l — F(u))dR(u)R(u) — R,
0

Corollary 7.2: Queue average size and average delay for a continuous gatetpare upper
bounded (13) by

2 2
ogn A OR
EWye < —=— — (1 — —bs 60
" = 2(Rys — N) ( Rb5)2RbS (60)
and the average delay normalized by the input pate upper bounded by
2 2
on AL OR
EWype < ——2— — (1 — — be_ 61
M5 = 9N (Rys — \) ( Rbs)2Rbs)\ (61)

where R, and ‘712%;;3 are given by (52) and (59) respectively.

Minimizing the average delay in the continuous case requineding the optimal power
distribution p(s) (49). As in the case of finite level coding the optimizatiomlgem of finding
the optimal power allocation does not lend itself to an atalyolution. Numerical optimization
is impossible here, as opposed to the finite level case, whemeumber of optimization variables
is small. Here the function subject to optimization is contus. The target functional in the
optimization problem underhand for continuous layeringsloot have a localization property
[52]. A functional with localization property can be writteas an integral(s) of some target
function. Our functional contains a ratio of integrals andgtlier multiplication of integrals,

which cannot be converted to an integral(s) over a singlgetdunction. This type of functional
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is also denoted as a nonlocal functional in Gelfand et. &J. [l such cases it is preferable to
look for an approximate representation, of the nonlocatfimmal, which has the localization
property. Alternatively, approximate target functionsghwreduced degrees of freedom may be
optimized.

In order to reduce degrees of freedom, and introduce a biactptimization problem, a
power distributionp(s) is selected in advance, while inserting two unconstrainadrpeters,
and evaluating the delay numerically. This provides an @apration of the optimal continuous
layering delay, while keeping in mind that the delay perfante could be further minimized,
if an optimal power distribution was known.

The selected subject power distributipiis) is based on the maximal throughput realizing
function p(s). As already known [30], for the Rayleigh fading channel, witifading power
distribution f(u) = e™*, the throughput optimal interference power distributisrgiven by [30]

1 1
I(s)= 5 —= s0<s<s; (62)
CE

wherel(sg) = P andi(s;) =0, andp(s) = —%‘*). When using (62) for computation of average
delay, the delay is much higher than that of optimal (minjnaiglay in finite level coding for a
large range of input rates. Thus the approximate interference distribution choseasifollows

I(s)zc—o—ﬁ s <5< s (63)

s2 s
wherecy, and ¢; are fixed scalar coefficientgy(> 0 andc¢; > 0), chosen as to minimize the
delay for every input rate\.. The relations/(so) = P and(s;) = 0 can be specified by using
(63)

5 =2 (64)

&1

and

S —

—co+ /G +4a P
¥ . (65)

Having defined this, average delay upper and lower boundsheapmputed for various power
distributions given in (63). The upper bound in (61) is mirsed numerically over, and ¢y,
for every input rate\. In general, the resulting minimal average delay is stillugyper bound
on the global minimal delay, since the power distributiondiion is only an approximation of

the optimal function, based on the corresponding maxintalugghput achieving one.
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VIIl. M INIMAL AVERAGE DELAY - NUMERICAL RESULTS

A. Outage approach delay bounds comparison

Outage approach, upper and lower bounds, SNR=0 [dB]
20 l T T T T T

UB,W
UB.L
LBK
+ LB,L

&
£E===

16

12 n

Delay [Packets]
=
o
T

[ee]
T

0 . 0.1 0.15
Input rate (M) [Nats per channel use]

Fig. 2. Average delay - outage approach. Delay is demonstrated famelidelay power assignment (SNR=0dB) Bounds of

[10] are compared witiWy g,w (13) andWis k (17).

Figure 2, 3 demonstrate the average delay bounds for thg®agaproach. The rate and power
allocation of the transmitter are optimized for everguch that the upper bouridy z w (13) is
minimized. All other bounds are computed for the same fageaag@meter threshold as optimized
for Wypw. It may be seen that/;z 1 and the lower boundiV, g ;, from [10] closely predict
the average delay, as these two bounds are tightest, evéowf@NR. Furthermore, the lower
bound W, s  (17) is not tight, and therefore will not be used in followingmerical results

presentation.
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Outage approach, upper and lower bounds, SNR=40 [dB]
2 T T T T T

18

1.6

14

Delay [Packets]
-
= N

o
©

0.6

0.4

0.2

Input rate (A) [Nats per channel use]

Fig. 3. Average delay - outage approach. Delay is demonstrated famaiidelay power assignment (SNR=40dB) Bounds of
[10] are compared witWy g w (13) andWi s k (17).

B. Multi-level coding approach delay bounds comparison

Figures 4-5 demonstrate the average delay upper boundsifagey two, three-level coding
and continuous layering (broadcasting). The rate and p@Mecation for each approach are
jointly optimized for every\. The upper boundV,,;, 5w (13) is minimized for every coding
approach over all power and rate allocation free paramdtetbe continuous layering case the
delay is optimized over the two variables in (63) to producmiaimal delay. In three level
coding there arehree fading power thresholds, artvo power allocation fractions specifying
together the rate allocation for each lay®r,, 5w is optimized over all these parameters,
which are then used to compute the upper bounéls 5, (43) for each coding strategy. As
may be noticed théV,,;, ;5w (13) upper bounds are tighter théi,;, ;5 ;, bounds, particularly
in low input rates, and high SNRs. For this reason we use 8nly 5w (13) upper bounds

for computation of average delays and comparisofiig, .z ;. lower bounds in the following.
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1L, 2L, 3L and continuous approaches — upper bounds compparison, SNR=10 [dB]

18 T T T T
16|+ -
14 .
8 124 -
¥4
@ 10 |
= 8
3
8 ° ]
4 -
2 -]
o 02 o4 0.6 0.8 1
Input rate (A) [Nats per channel use]
1L, 2L, 3L and continuous approaches — upper bounds compparison, SNR=10 [dB]
0
@ 10
% WiLusw
IS WZL,UB,W
e, W,
> 3L,UB,W
5 WBS,UB,W
e 1072 WiLusL
WZL,UB,L
| ‘ ‘ ‘ ‘ wSL,UB,L
0 0.2 0.4 0.6 0.8 © esusL

Input rate (A) [Nats per channel use]

Fig. 4. Average delay for outage approach, 2-level and 3-leveingodnd continuous layering (BS), for SNR=10dB. The
boundsW.,,.u s, denote the n-level coding upper bounds specified in (43). The bddhdsy ,w denote the n-level coding

upper bounds specified in its general form in (13).

1) Fixed SNR, variable input rate A\: Figures 6 - 10 demonstrate the average delay bounds
(upper and lower) for outage, two, three-level coding andtiooous layering. The rate and
power allocation for each approach is optimized for everfhe upper boundV,,;, 5w (13) is
minimized for every coding approach over all free paranset€he lower bound$V,,;, ;.5 1, (42)
are then computed with the same power and rate parametetdarssomputingW,,, ys.w. AS
may be noticed in low SNR multi-level coding does not show mimprovement over single
level coding (outage). However, in high SNRs and moderatatingtes the three level coding
has a pronounced delay improvement over the outage apprbagpires 9 - 10 also show, as
expected, that delay gains in two level coding over outagegaeater than those of three-level
coding compared to two level coding. This suggests thatnmt lof continuous layering there

will be no significant delay improvement over the three-lesading delays.
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1L, 2L, 3L and continuous approaches - upper bounds compparison, SNR=30 [dB]
2.5 T T T * W T T ) T

N

=
3

=

Delay [Packets]

o
Ul

FHPH "bﬁj POk MH(_M% v = — — - -
0 0.5 1 15 2 25 3 35 4 45
Input rate (A) [Nats per channel use]

1L, 2L, 3L and continuous approaches - upper bounds compparison, SNR=30 [dB]
&

T T T T T T T I
) WlL,UB,W
Q
] WL usw
IS W,
Q 3LUBW
) Weas usw
ol W
a 1L,UBL
W
2L,UBL
Wa usL
-3 / ! | | ! ! % WBS,UB,L

N !
0 0.5 1 15 2 25 3 35 4 45
Input rate (A) [Nats per channel use]

Fig. 5. Average delay for outage approach, 2-level and 3-leveingodnd continuous layering (BS), for SNR=30dB. The
boundsW.,,.u s, denote the n-level coding upper bounds specified in (43). The bddhdsy ,w denote the n-level coding

upper bounds specified in its general form in (13).

2) Fixed input rate A, variable SNR: Figures 12 - 15 demonstrate the average delay bounds
(upper and lower) for outage, two, three-level coding andticoous layering. The bounds are
computed for some given input rates, and presented as duncti the SNR. The rate and
power allocation for each approach are jointly optimizeddeery SNR value. The upper bound
Wir.osw (13) is minimized for every coding approach over all freegpaeters. In the continuous
layering case the delay is optimized over the two varialie@8) to produce a minimal delay.
Interestingly, as the SNR increases the delay ratio betwedlifferent methods is maintained.

From these figures the SNR gain for some input rate and expgxeket delay may be
computed. For example, in Figure 16 the input rate is 5 Nats/channel use. For an expected
packet delay of 0.2, an SNR 6139.5dB is required for single-level coding36.5dB is required
for two-level coding,~35.5dB is required for three-level coding and5dB is required for
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1L, 2L, 3L and continuous (BS) approaches — upper and lower bounds, SNR=0 [dB]

35 T T T T
0l * Wousw |
x WZL,UB,W
7 25 + Wa usw .
% 20l v Wasusw 1
g A WlL,LB,L
Z 151 WL L .
< W,
3 10l 3L,LB,L |
O WasisL
5 - -]
P S P S R =" o
0 0.05 0.1 0.15
Input rate (A) [Nats per channel use]
1L, 2L, 3L and continuous (BS) approaches — upper and lower bounds, SNR=0 [dB]
T T T T T
2 w .
% * Wy usw
g < WoL usw
= W,
> T YaLusw
g v WBS,UB,W
S A WyeL |
10 W
2L,LB,L
‘ ‘ ‘ ‘ W3L,LB,L
W a
0 0.05 0.1 0.15 02 O "esiaL

Input rate (A) [Nats per channel use]

Fig. 6. Average delay for outage approach, 2-level and 3-leveéhgaahd continuous layering (BS), for SNR=0dB. The bounds
W, LB, denote the n-level codinpwer bounds specified in (42). The bounds, . v s,w denote the n-level codingpper

bounds specified in its general form in (13).

continuous layering. This suggests a gain of 3dB of two |leegling over outage, another 1dB
for three level coding, and an additional 0.5dB for contunsidayering. In total, continuous
layering gains~4.5dB over outage approach in terms of average delay.

When comparing to Figure 11, throughput gain of two level ngdover outage is-1.5dB
at SNR=40dB, as opposed to a 3dB gain in delay performance. Wbmparing outage to
continuous layering, the throughput gain~8.3dB, whereas the delay gain is more thah.5
dB. We have used an approximation of the power distributia®) (& continuous layering,
therefore the maximal delay gain is expected to be even hidtnes clearly shows that when
considering delay as a performance measure, code layeaggyive pronounced gains in delay,

which were not predicted when analyzing only the maximabulyhput performance.
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1L, 2L, 3L and continuous (BS) approaches — upper and lower bounds, SNR=10 [dB]

18 T T T T
16 * WlL,UB,W |
1k < Wy usw |
) + Wil usw
o 12 v W 7
< v BS,UBW
s 10r A Wy e ]
> 8- WZL,LB,L —
3 w
3 6 3LLB,L 1
W
4l ¢ YesiBL |
2 - -]
" —L e 2 T " Sy > = —
0 0.2 0.4 0.6 0.8 1
Input rate (A) [Nats per channel use]
1L, 2L, 3L and continuous (BS) approaches — upper and lower bounds, SNR=10 [dB]
7 10° ]
Q
é WlL,UB,W
e, W2L,UB,W
g W3L,UB,W
8 = WBS,UB,W
10 WlL,LB,L
W2L,LB,L
i | | | | * W3L,LB,L —
0 0.2 0.4 0.6 0.8 O WBS,LB.L

Input rate (A) [Nats per channel use]

Fig. 7. Average delay for outage approach, 2-level and 3-leveingodnd continuous layering (BS), for SNR=10dB. The
boundsW.,, ... 5,1, denote the n-level codingwer bounds specified in (42). The bouns, ;. v s,w denote the n-level coding

upper bounds specified in its general form in (13).

IX. CONCLUSION

We have studied a single-server queue concatenated withtalewel channel encoder. The
main focus of this work is on minimization of the average giadd a packet from entering the
gueue until completion of successful service. Tight bouwsrgsderived for the average delay for
different numbers of coded layers. The bounds are optimmederically for a Rayleigh block
fading channel.

Delay bounds are also derived for continuous layering (singer broadcast approach). The
optimizing power distribution of the minimal delay is appimated, and numerically evaluated.

An interesting observation from the numerical results igt ttwhen considering delay as a
performance measure, code layering may give pronouncddrpgmce gains in terms of delay,

which are more impressive than those associated with thiutg This makes layering more
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1L, 2L, 3L and continuous (BS) approaches — upper and lower bounds, SNR=20 [dB]

4 T T T | T
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1r O WasimL 7
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2 — i " et = va
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Input rate (A) [Nats per channel use]

1L, 2L, 3L and continuous (BS) approaches — upper and lower bounds, SNR=20 [dB]

T T T
10° & .
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E‘ [ W3L,UB,W
2 102k WBS,UB,W
g WlL,LB,L
[ WZL,LB,L
102l ! ! WSL,LB,L
0 0.5 1 15 2 O WasipL

Input rate (A) [Nats per channel use]

Fig. 8. Average delay for outage approach, 2-level and 3-leveingodnd continuous layering (BS), for SNR=20dB. The
boundsW.,, ... 5,1, denote the n-level codingwer bounds specified in (42). The bouns, ;. v s,w denote the n-level coding

upper bounds specified in its general form in (13).

attractive when communicating under stringent delay cangs.
The results can be extended to SIMO, and MISO systems in &tdimanner, and the
derived bounds may be used just by replacing the fading pateandistribution with the one

corresponding to the multiple antenna case.

APPENDIXA

PROOF OFTHEOREMS5.1

Proof: The proof consists of two parts. In the first part we assume Ma< A\ and in the
second part the inverse is assumid > \. It is shown that the same bounds (28)-(29) are

reached in both cases.
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1L, 2L, 3L and continuous (BS) approaches - upper and lower bounds, SNR=30 [dB]
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1L, 2L, 3L and continuous (BS) approaches - upper and lower bounds, SNR=30 [dB]
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Average delay for outage approach, 2-level and 3-leveingodnd continuous layering (BS), for SNR=30dB. The

boundsW.,, ... 5,1, denote the n-level codingwer bounds specified in (42). The bouns, ;. v s,w denote the n-level coding

upper bounds specified in its general form in (13).

A) R; < A: The queue size CDF follows from (26) and (27),

(

0

pFw(w— (A= Ry — Ry))
mFw(w— (A= Ry — Ry)) + poFw(w — (A — Ry))

w <0
(A1)
A—R <w< A

ple(’w — ()\ — Rl - RQ)) —i—ngW(w — ()\ — Rl)) +]_?Fw(w - )\) A S w
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1L, 2L, 3L and continuous (BS) approaches — upper and lower bounds, SNR=40 [dB]
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1L, 2L, 3L and continuous (BS) approaches — upper and lower bounds, SNR=40 [dB]
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Fig. 10. Average delay for outage approach, 2-level and 3-lewdihgoand continuous layering (BS), for SNR=40dB. The
boundsW.,, 1.1, 5,1, denote the n-level codingwer bounds specified in (42). The bouns, ;. v 5,w denote the n-level coding

upper bounds specified in its general form in (13).

Taking the laplace transform of the PDF of (A.1) is requiradaa initial step of deriving the

bounds,
Lw(s) =

O Fy(0) +p1f€ WdFy(w — A+ Ry + Ra) + p2 f e *dFy(w— X+ Ry)
A—Rq

e dFy (w)

45 [ e dFy (w — \)
A
(:2) ( )+p1 f 6—5(w+>\—R1—R2)dFW( +p2f6 s(w+A— Rl)dF ( )
Ri+R2—)\

+p [ e *NdFy (w) (A.2)
0

(:3) FW<O) + [ple_s(’\_Rl—R2) —|—p2@—5(>\—31) _'_pe—s)\]

Ri+Ra—X\
—p1 f 6_8(w+/\_R1_R2)dFW (w)
0
@ Fiy(0) 4 [pre— A=) 4 pyemsO=f) 4 pe=A] Ly, (s)
September 22, 2004 Ri+Ra—\ DRAFT
—p1 f 678(w+/\7R17R2)dFW (w)
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Maximal throughput rates for 1L, 2L and continuous layering (BS)

Rate [Nats/channel use]

0 5 10 15 20 25 30 35 40
SNR [dB]

Fig. 11. Maximal throughput vs. SNR, for outage approach, 2-legding and continuous layering (BS).

where the PDF ofiFy, (w) is denotedLyy, (s). (1) substituting the right-hand side of (A.1) into
the Laplace transform definition. (2) change of integralialdes. (3) Taking the integral as a
common factor. (4) Substituting back the integral defimtwith the Laplace transform. The last
step suggests a new expression for the Laplace transfori#pfw). That is Ly (s) can now
be expressed by

B FW(O)—p1 0R1+R2*)‘e—s(w+)\—R1—R2)dFW(w)

LW(S) —R Rl_)[ple—s()\—Rl—R2)+p26—s(A—R1)+ﬁ€—s)\]
() Pyt Qe s B R gy (w)
— 1_[ple—s(A—Rl—RQ)+p2e—s(>\—R1)+Z—)e—s/\] (A3)

_(2) i 0R1+R2*)\(678(R1+R27)\)_efsw)dFW(w)
efs(R1+R2*)\)_[p1_|_p2€75R2+]—9673(R1+R2)]
A Ly(s)
— Lx(s)’
where the first equation is a direct substitution/gf (s) from (A.2). (1) involves replacement
of Fy(0) with its equivalent from eq. (A.1), that 8y (0) = p1 Fiw(w — (A — Ry — Ra)). (2)
multiplication of numerator and denominator by a commoridac

Generally, the first moment di/ is given by

E[W] = lim - 2w ()

5—0 ds

(A.4)

)
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1L, 2L, 3L and continuous (BS) approaches — upper and lower bounds, A=1 [Nats per channel use]
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Fig. 12. Average delay vs. SNR, for outage approach, 2-level, @-levding and continuous layering (BS), far= 1
[Nats/channel use]. The bound®, .5, denote the n-level codinpwer bounds specified in (42). The bounds, ., v s,w

denote the n-level codingpper bounds specified in its general form in (13).

however in (A.3) we can see that fer= 0 both Ly (s)|s—o = 0 and Lx(s)|s=o = 0. Therefore,
L'Hospital rule for a fraction, for which numerator and demoator tend to zero, should be

used. This requires assuming thiat(s) and Lx(s) have second order derivatives. Applying
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1L, 2L, 3L and continuous (BS) approaches — upper and lower bounds, A=2 [Nats per channel use]
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1L, 2L, 3L and continuous (BS) approaches — upper and lower bounds, A=2 [Nats per channel use]
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Fig. 13. Average delay vs. SNR, for outage approach, 2-level, @-levding and continuous layering (BS), far = 2

[Nats/channel use]. The bound®, .5, denote the n-level codinpwer bounds specified in (42). The bounds, ., v s,w

denote the n-level codingpper bounds specified in its general form in (13).

L'Hospital rule on (A.3),

E[W] = lim — %)

s—0

W) i ) Lls)- Ly (9) Ly ()
= i 7Z0)

L (5) L () + K ()L ()= L (5) i) Ly (9) Ly )
2 lim 2L (ST Th (5 "
) Jiny L (L )L () )L (5) L () 4) |
= lm N )+ Ex (I L)
W i D ()= Ly (L)
e V7% )
(5) T Lx($)=Ly(s)
= 1m0

where L's (s) represents the first order derivative bf (s) w.r.t. s. (1) a derivative of a fraction,
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1L, 2L, 3L and continuous (BS) approaches — upper and lower bounds, A=3 [Nats per channel use]
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Fig. 14. Average delay vs. SNR, for outage approach, 2-level, é-lewding and continuous layering (BS), for = 3
[Nats/channel use]. The bound®, .5, denote the n-level codinpwer bounds specified in (42). The bounds, ., v s,w

denote the n-level codingpper bounds specified in its general form in (13).

by definition. (2) applying L'Hospital rule, derivation oumerator and denominator separately.
(3) usesLy(s)|s=0 = 0 and Lx(s)|s=0 = 0, and performing another L'Hospital derivation. (4)
uses againLy (s)|s—o = 0 and Lx(s)|s—o = 0. (5) comes from the fact thdtH(l) Ly (s) = 0,
which suggests
Ly (s)
520 Ly (s)

In this stage the first order derivatives bf (s) and Lx(s) are computed.

—1 (A.6)

lim Ly (s) = lim py [ R A e — (Ry + Ry — N)e Rt RN d Ry, (w)
= D1 0R1+R2 ( - R1 - RQ + /\)de( ) (A7)

O —py [ By (w)dw
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1L, 2L, 3L and continuous (BS) approaches — upper and lower bounds, A=4 [Nats per channel use]

45 T T T T T T T T
4t * Wy usw H
35K x Wy usw |
g 3k + Wy usw ||
Jg a5k A aBS,UB,W il
o * WaisL
> 2 WZL,LB,L
g 15F W3L,LB,L
1t O Wesis H
05F
26 27 28 29 30 31 32 33 34 35

SNR [dB]

1L, 2L, 3L and continuous (BS) approaches - upper and lower bounds, A=4 [Nats per channel use]
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Fig. 15. Average delay vs. SNR, for outage approach, 2-level, @-levding and continuous layering (BS), far = 4
[Nats/channel use]. The bound®, .5, denote the n-level codinpwer bounds specified in (42). The bounds, ., v s,w

denote the n-level codingpper bounds specified in its general form in (13).

where (1) is a result of solving the integral in parts.
lirré L'y (s) = lirré —(Ri + Ry — N)e sB1tR2=) 4 py RoeF2 1 B(R; + Ry)es(Fithz)

=A=pi1(Ry + Ry) — p2Ry.
Taking the recent two equations (A.7) and (A.8), substiytihe derivatives in (A.6) results in

(A.8)

a useful equality

| RN B ) dw = py(Ry + Ra) + paRy — (A.9)

Now the second order derivatives 6f (s) and Lx(s) are required. From (A.8)L% (s)|s=o IS

directly derived

L5 (5)|s=0 = (R1 4+ Ry — X\)* — p2R3 — Pp(Ry + Ry)?, (A.10)
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1L, 2L, 3L and continuous (BS) approaches - upper and lower bounds, A=5 [Nats per channel use]
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Fig. 16. Average delay vs. SNR, for outage approach, 2-level, é-lewding and continuous layering (BS), far = 5
[Nats/channel use]. The bound®, .5, denote the n-level codinpwer bounds specified in (42). The bounds, ., v s,w

denote the n-level codingpper bounds specified in its general form in (13).

calculating Ly (s)|s—o will allow also to compute the bounds.
Lg//<3)|s:0 _ 0R1+R27>\[_w2673w + (Rl + Ry — )\)2675(R1+R27)\)]dFW(w)|S:0
= p1 [T —w? 4 (Ry + Ry — N)2]dFy (w) (A.11)
=1 [N R 4 Ry — A — w)(Ry 4 Ry — A+ w)dFy (w).
The last equation in (A.11) can be upper bounded by repladiigr B2 — A + w) with 2(R; +
Ry — \), that is
LSI/(S)|5:0 S 2(R1 + R2 — )\)pl fOR1+R27)\(R1 + R2 — A= w)dFW(w)
(:1) 2(R1 + RQ — )\)(pl(Rl + RQ) + pgRl — )\)
where we have used (A.9) in step (1) to obtain an explicit esgion for the upper bound on
LY (s)]s=0. Substituting this bound together with (A.8) and (A.10)ifA.5) we reach
2(Ry + Ry — A)(p1(Ry + Ry) + paRy — A) = (R + Ry — A\)? + pa RS + p(R1 + Ry)? 13)
2(p1 (R + Ra) + palty — A v

(A.12)

EW <
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which after some algebra reduces to (29).
Similarly a lower bound ofLY.(s)|;—o is obtained by replacingR; + Ry — A + w) with
Ri + Ry — X in (A.11),

L4 (8)|s=0 = pr(Ry + Ry — A) [ 7Ry + Ry — A — w)dFy (w)
(R1+ Ry — N)(p1(Ry + Ry) + paRy — N).
where we have used (A.9) in step (1) again to obtain an exgigression for the lower bound
on L (s)|s=o. Substituting this bound together with (A.8) and (A.10)irfA.5) we reach

Ry + Ry — N)(p1(R1 4 Ry) +paRy — A) — (R1 + Ry — \)? + pa RS + p(Ry + Ry)? 15)
2(p1(Ry + Ry) + paR1 — ) v

which after some algebra reduces to (28). It takes only nlizateon by A to reach (30) and (31)
from (28) and (29) respectively. This concludeat A of the proof, for the case that; < \.
B) R, > \: The queue size CDF follows from (26) and (27), differs from1(A.

(A.14)

EW2<

0 w <0

Fw(w) =4 piFy(w— =Ry — Ry)) + poFy(w — (A — Ry)) 0 < w < MA.16)
piFw(w— (A= Ry — Ry)) + poFw(w— (A= Ry)) +DFyw(w—X) A<w

Taking the laplace transform of the PDF in both of (A.16) iguieed as an initial step of deriving

the bounds,
Lw(s) = [ e *“dFy(w)
0
(:1) Fw(O) + D1 f €_swde(w — A+ R+ Rg) + P2 f e‘S“’dFW(w — A+ Rl)
0 0

4+ [ e dFw(w — \)
A

) + 1 f e—s(w+/\—R1—R2)dFW (’LU) + Do f 6—8(w+/\—R1)dFW(wXA_17)
Ri1+Ra—A\ Ri—X\

—s(w— AdFW( )

s(A—R1— s(A—R1)

Fin (0
+p e
0
Fw(0) + [p1€ ) + poe” +pe A Ly (s)
Ri+R2— Ri—\

—p; f e—s(w+/\—R1—R2)dFW(w)_p2 f 6_$(w+’\_Rl)dFW(w)
0 0

where (1) is substituting the right-hand side of (A.16) inbe Laplace transform definition.

(2) change of integral variables. (3) substituting back ititegral definition with the Laplace
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transform and taking a common factor. The last step sug@esesw expression for the Laplace

transform ofd Fyy, (w), similarly to (A.3),

Lw(S) _ D 0R1+R2_A(6—5(31+32;_/\i(;i:‘2’)_6£fiv[(w)—i-pQ_s(ﬁl_i(e;s(fl::z)—A)_e—S(w+R2))dFW(w)
p1+pae 2 pe st )] (A.18)
A Ly(s)
— Lx(s)’
where we have used the equalty; (0) = pi Fiy (w— (A — Ry — Ry)) +pa Fy(w— (A — Ry)) from
(A.16). As may be noticed here the denominator is exactlystrmeel x (s) of () in part A of the
proof, which means that the denominator fof; (s) is independent on the value &f; relative
to A\. We use here (A.18) to bound[IW]. Here again, bothl;(s)|s—o = 0 and Lx(s)|s—o = 0.
Therefore we will use L'Hospital rule and the result of (A.&xpressions of/y (s) and L’ (s)
are already stated in (A.8) and (A.10) respectively.
Ly(s)lemo = Apr TP we — (Ry + Ry — Ne Pt Nd iy (w)
+p2 foRr/\((w + Ry)e *wth2) — (R) + Ry — e s(FitRa=N)dFy, (w)} |S:€A.19)
= o ST N w = Ry — Ry + N)dFyw (w) + pa [} Nw — Ry + A\)dFy (w)
S ORHRQ_A Fy (w)dw — py fORl_’\ Fy (w)dw
Substituting (A.8) and (A.19) into (A.6) we reach an equa$itmilar to (A.9),
D1 0R1+R27A Fy (w)dw + pa foRrA Fw(w)dw = pi1(Ry + Rg) + p2 Ry — A (A.20)
Now the second order derivative @f;(s) is required.
Ly(s)lemo = {p1 f" TN —w?e 4+ (By + Ry — A)?e st RN Ry (w)
+p2 foRr)\(_(w + Ry)2e s(wHR2) 4 (Ry 4 Ry — \)2e sEitRa= ) g [y, (w)} ‘SZ()A.Z].)
= o [N R + Ry — A — w)(Ry + Ry — A+ w)dFyy (w)
4o [T N w 4 Ry 4 2Ry — A)(Ry — A — w)dFy (w).

The last expression of.”(s)|s—o in (A.21) can be upper bounded by replacingwith its
maximal values in both integrals. That is substittfg + R, — A + w) by 2(R; + R, — ) and
also(R; + 2Ry — A + w) is substituted by (R; + Ry — \), thus

Ly(8)emo < 2p1(Ri+ Ry — A) [N (R + Ry — A — w)d By (w)

+2ps(Ri + Ry — N) [N (Ry — A — w)dFyy (w). (A.22)
W 2(Ry + Ry — A)(p1(R1 + Ro) + p2Ri — A)
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where we have used (A.20) in step (1) to obtain an expliciresgion for the upper bound on
L7 (s)|s=0. Substituting this bound together with (A.8) and (A.10)ifA.3) we reach the same
upper bound as in (A.13),

2(R1 + Ry = ) (01(Bi + R) + paRi — A) — (B + Ry = A)? + po RS + B(R1 + Ry)?
2(p1(R1 + Re) + p2 Ry — A) '

which after some algebra reduces to (29). Similarly a lowarmid of .7, (s)|,—o is obtained by

EW <

23)

substituting(R; + Ry — A + w) by (R; + R, — \) and by replacing R; + 2R, — A + w) also
by (R; + Ry — \) in the second integral of (A.21),

Ri+Ro—A\

L(s)ls=0 > pi(Ri+Ra—A) [, (Ry + Ry — A — w)dFy (w)
+po(Ry 4+ Ro = N) [N Ry — A — w)dFy (w). (A.24)
W (Ry 4 Ry — A)(p1(Ry + Ra) + p2Ry — )
where we have used (A.20) in step (1) again to obtain an ekphkpression for the lower bound
on L (s)|s=o. Substituting this bound together with (A.8) and (A.10)oir{A.3) we reach the
same lower bound as in (A.15),

(B1 + Ry — A)(p1(By + Rp) + poRy — A) — (Ri + Ry — A)* + po Ry + (R + Ro)?
2(p1(B1 + Ra) + p2 Ry — A) '

which after some algebra reduces to (28). It takes only nlizateon by A\ to reach (30) and
(31) from (28) and (29) respectively.

This shows that in both parts for eithét; > A and R; < A\ the same upper and lower

EW > 25)

bounds on the expected waiting time are valid, although th& Gl (w) is different in these

two casesll

APPENDIXB

PROOF OFTHEOREM®G6.1

Proof: The main steps of the proof resemble the two level layeringy ®ere we assume
that there is somé, 1 < k < K for which

S R <A< R (B.1)
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The queue size CDF follows from (26) and (39),

(0 w <0
Kkale( — (A=Y Ry) 0<w<A-YF R
Kflﬂszw(w— A =X5Ry) SE R<w<A-Y"'R,
Fy(w) = : = : (B.2)
szquu — (A=Y Ry) SE R <w< A
szFw(w — A= R)) +PFw(w =) A< w

\
For compactness of presentati@j.:1 R; will be denoted®, £ Z;/:l R;. Taking the laplace

transform of the PDF in both of (B.2) is required as an initigpsof deriving the bounds,

Lu(s) = :fo e~ dFyy (w)

o} K-k 00
(:1) Fw(O) + f e v Z pZdFW(w — A+ éRK—i—i—l) + PK—k+1 f 675wde(U) — A+ %k) +
0 =1 >\—§Rk
pr [ e dFw(w— A+ Ry)+p [ e *dEFw(w— ) (B.3)
A—R1 A

K
@ Fw(0) 4 [Y piet P17  pe= N Lyy (s)
i=1
K—k Rr_ir1—A

_ Z pl LO[ e—s(’w-‘r)\—%}(,prl)dFW(w)

where the PDF ofiFy (w) is denotedLy, (s). (1) substituting the right-hand side of (B.2) into
the Laplace transform definition. (2) change of integralialsles and takes the integral as a
common factor. The last step suggests a new expressionddraplace transform of Fyy (w).
That is Ly (s) can now be expressed by
K-k BRK—it17A
Fw(0)= Y pi [ e RK-it)d By (w)
LW(S) — i=1 - 0
—[Y pie* P —i+1 N =]

=1
K-k Rr—it1-A
o [ (e Rr N s RE R D) IRy (w) (B.4)
=1

0

K

6*3(%[(*)‘)_[2 pies(éRK_%K—i+1)+pe*3%K]
i=1

A Ly(s)

— Lx(s)
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where the first equation is a direct substitutionigf (s) from (B.3). (1) involves replacement
of Fy/(0) with its equivalent from eq. (B.2), that 8}, (0) = %kpiFW(—A + R _ir1) (2)
multiplication of numerator and denominator by a commor'(cﬁét:c1

In general the first moment 81 is specified in (A.4), however in (B.4) it can be noticed that
for s = 0 both Ly (s)|s=o = 0 and Lx(s)|s—o = 0, like in the two level coding case. Therefore
L'Hospital rule is used here as well. This requires assuntiiag Ly (s) and Lx (s) have second
order derivatives. The result @[] specified by the first and second order derivatives in (A.5),
shall be used in the following.

In this stage the first order derivatives bf (s) and Lx(s) are given by

K-k Rr—iy1—A

Ly(s)smo = pi [ [(w4Rx — Reoipr)e e Tu—iv) — (R — X)e*Px=N|dFy (w)],—
=1 0
K—k Rr—it1—A

= Y J (w—=Rg_ip1+N)dFw(w) (B.E
i=1 0
K-k Rrx_it1—A

= - ; Di of Fy (w)dw

K
L (s)]|s=0o = —(Rk — >\)€7S(%K7>‘) + ;pz(%l( - SCEK—i+1)efs(ﬁ)%’ﬁﬂ%l’“"'“) + %K]_?efsﬁﬂszo

K

= —Re+XI+ ZPiGRK — Rg_iv1) + Rxp (B.6)
% =1

= A= ZpigRKfz#l
=

Taking the recent two equations (B.5) and (B.6), substitutirgderivatives in (A.6) results in

a useful equality

K—k Rr-it1—A

K
i [ Fw(w)dw =3 pRex_iy1 — . (B.7)
=1 =

0

Now the second order derivatives 6f (s) and Lx(s) are required. From (B.6)L/(s)|s=o IS

directly derived

K

Ll)’((s)‘szo = (Rg — )\>2 - Zm(ﬁRK — %K—i-&-l)z - ﬁg}@( (B.8)

=1
calculating Ly (s)|s—o will allow also to compute the bounds.

K-k Rr—it1—A
Ly(8)s=0 = Xopmi [ [~(w+Rg = Re—ip1)” + R — A)’|dFw (w)
= 0 (B.9)

K-k Rrx_it1—A

= Z Di f (w + 2§RK — §RK—1‘+1 — )\)(%K—i—i-l _—— w)dFW(w)
=1

0
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The last equation in (B.9) can be upper bounded by replaging (w + 2Ry, + Rk i1 — )
by Rx_iv1 — A,

K—k Rrg_it1—A
Ly(s)ls—o < 2Rk —A) 2w | (Rr-is1 — A —w)dFw(w)
= (B.10)

= 2Nk — )\)(i PiRK_iv1 — A)

=1
where we have used (B.7) in the final step to obtain an expbgtession for the upper bound

of L (s)|s=0. Substituting this bound together with (B.6) and (B.8) intaXAwe reach

K K
2Rk — )\)(Z PiRE_iv1 —A) — (R — N\ + Z pi(Rx — Ri—iv1)? + DR
EW S =1 =1

IR (B.11)
Q(Z PilK—it1 — )\)

=1

which is exactly the desired upper bound in (41). Similarlyoaer bound of LY (s)|s=o IS
obtained from (B.9) by replacing of (w + 2Rx + Rx_ir1 — A) with Rx_; 11 — R,

K-k Rr—iy1—A
Ly(s)ls=o = Mx—A) X pi [ Re—irr —A—w)dFw(w)
i=1 0 (B.12)

K
= (éRK - )\)( pi%K—i—&-l - )\)
=1

1=

where we have used (B.7) in the last step again to obtain ancéxgpression for the lower
bound onLj (s)|s=o. Substituting this bound together with (B.6) and (B.8) inta5Awe reach
K K
(Rr — A)(Z PiRk—iv1 —A) — Rk — A)* + Zpi(%K — Rg—iv1)® + PR
EW > = — = (B.13)
203 piRi—iv1 — A)
=1
which is exactly the desired lower bound (40). It takes ordynmalization by\ to reach (42)
and (43) from (40) and (41) respectivel.
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