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Avi Steiner, Shlomo Shamai (Shitz)

D R A F T

Abstract

A single-server queue concatenated with a multi-level channel encoder is considered. The main

focus of this work is on minimization of the average delay of apacket from entering the queue until

completion of successful service. Tight bounds are derivedfor the average delay for different numbers of

coded layers. Numerical optimization is applied to find the optimal resource allocation minimizing the

average delay. Delay bounds are also derived for continuouslayering (single user broadcast approach).

The optimizing power distribution of the minimal delay is approximated, and numerically evaluated. It

is demonstrated that code layering may give pronounced performance gains in terms of delay, which

are more impressive than those associated with throughput.This makes layering more attractive when

communicating under stringent delay constraints.

I. I NTRODUCTION

In classical information theory, a maximal transmission rate is sought for, under a power con-

straint, assuming an infinite backlog of information waiting for transmission (Shannon capacity).

In network theory the input data is some random process whichcontrols writing to a queue, and

the output transmission (service) is another random process. In this setting the design goal of the

transmission process concentrates on minimizing the queuedelay for the input data, under some

power constraint. In presence of stringent delay constraints on input data transmission the design

of the data queue and transmission algorithm cannot be separated, as maximal throughput is no

longer the issue. This conceptual gap between information theory and network theory can be

overcome by jointly solving a common problem of minimizing the delay for some input random

process and a power/rate control constraint. This is also known as cross-layer optimization, since

it involves joint optimization of two layers of the seven layer OSI model. Further inherent gaps

between information theory and network theory are discussed in detail in [1], [2], [3].
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The tradeoff between delay and throughput has been considered in several contributions [4],

[5], [6], [7] and more. Single server queue throughput analysis may be found in [5], for an

additive white Gaussian noise (AWGN) channel with differentservice time distributions. In [6]

the channel model is a fading channel with channel state information (CSI) known at both

transmitter and receiver ends. Power allocation for a single user for minimizing average delay

is also considered in [8], where the fading channel has a changing signal to interference ratio

(SIR), depending on the number of users transmitting simultaneously. A communication scheme

that is suitable for mixed delay-constrained and non-delayconstrained services simultaneously

is suggested in [9]. This is obtained by a transmission scheme based on sub-channel grouping

together with different power control policies.

Single-user queueing and channel coding for a block fading channel when CSI is available

only at the receiver end is discussed in [10], [11]. In [10], optimal rate and power allocation are

derived for a single level encoder at the transmitter, wherethe maximal throughput achievable

is also known as the outage capacity. Power and rate are jointly optimized to minimize overall

delay, which is the delay between a packet arriving at the queue and being successfully decoded

(including retransmission on outage events).

When a separate control can be applied for every transmissionburst, the overall average perfor-

mance may be improved by dynamically controlling the rate, power, transmission algorithm, etc..

A common dynamic optimization framework is dynamic programming [12]. In [13], transmission

over a time varying channel, with delay and peak-power constraints, is optimized via dynamic

programming. Power allocation policies, as a function of the queue size and channel state are

investigated [13]. In [7], the authors use dynamic programming to compute the optimal power

allocation for a single user (single server) fading channel, with CSI at transmitter and receiver.

Two transmission models are considered there, the first corresponds to fixed length variable

rate codewords, and the second corresponds to variable length codewords. The authors of [14]

derive optimal power allocation for a wireless fading channel. That is an optimal policy for

every channel state and queue state is presented, numericalcomputations via dynamic program-

ming demonstrate results. Maximization of data throughputfor an energy and time constrained

transmitter sending data over a fading channel is considered in [15]. A dynamic programming

formulation that leads to an optimal closed-form transmission scheduling is obtained. The result

is extended to the problem of minimizing the energy requiredto send a fixed amount of data
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over a fading channel given deadline constraints [15]. Optimal power allocation and admission

control via dynamic programming in context of satellite communications is also presented in

[16]. A dynamic programming formulation for computing optimal power control, source coding,

and channel coding policies when the source traffic has tightdelay constraints is presented in

[17].

A general dynamic programming framework for optimal cross-layer adaptation of single-user

wireless channels and a stochastic approximation formulation for distributed power and admission

control in ad-hoc networks for time-varying channels is discussed in [18]. Random channel

environments are discussed in [19]. Generally stating, theparameters for dynamic optimization

depend on the system flexibility and dynamic computation capabilities.

Numerous works consider cross-layer optimization for multiple users (multi-server queue),

each holding a queue of data, and encountering collisions orother time varying conditions,

[20], [21], [22], [23], [24], [25], [26], [27], [28] and more. For such systems there are many

retransmission protocols and coordination algorithms. Inthis context a multiple-access (MAC)

Gaussian channel is analyzed in [21], where an information theoretic view of some basic proto-

cols based on the hybrid-ARQ (Automatic Repeat reQuest) are considered. In [25] an ALOHA

system is studied, where multiple users transmit synchronously over a time-slotted multiple-

access channels. When a collision occurs the users need to retransmit their data. Capacity of

time-slotted ALOHA was studied in [22]. Different scheduling schemes are considered in [23] for

reduced delay on the expense of throughput and vise-versa, for a single antenna broadcast-fading

channel. The transmission there is assumed to be packet based, and average delay and its variance

are derived. In [24], throughput-delay trade-off in energyconstrained multi-user random wireless

network with uniformly distributed nodes is considered, and the optimal tradeoff between average

energy-per-bit and delay scaling is presented there. The scheme in [25] considers a broadcast

coding scheme, which allows decoding of partial information in case of a collision, and full-

decoding in absence of collision. This approach of broadcast coding for the multiple-access

channel was first considered in [29].

In this work, we consider a single server queue followed by a channel encoder, which can

perform multi-level coding. The channel model is a block fading channel, where CSI is available

at the receiver end only. In this case throughput gains may beobtained by performing finite

level coding or continuous layering (single-user broadcast approach) [30], [31], [32] and [33].

September 22, 2004 DRAFT



4

Stringent delay constraints are common in many applications such as voice/video transmission.

In this channel model the transmission block though still large (as to give rise to the notion

of reliable communication [34]) is much shorter than the dynamics of the fading process. This

scenario is approximated by assuming that the channel fading coefficients are fixed for every

block. The notion of capacity versus outage was introduced and discussed in [34] and [35, see

references therein].

The focus of this paper is on the overall delay assuming that the input data is kept in a queue

and has a fixed finite rate. Optimal rate and power allocation are derived for a multi-level channel

encoder, and delay gains of layering are compared to layering throughput gains.

The single-user broadcasting approach hinges on the broadcast channel, which was first

explored by Cover [36], [37]. In a broadcast channel a single transmission is directed to a number

of receivers, each enjoying possibly different channel conditions, reflected in their received signal-

to-noise ratio (SNR). The Gaussian broadcast channel with a single transmit antenna coincides

with the classical physically degraded Gaussian broadcastchannel, whose capacity region is well

known [37],[38], [39]. Single-user broadcasting may be interpreted as hierarchical coding via

multi-level coding (MLC) [40], [41], [42], [43].

In general, layered coding includes different data for eachlayer. This might suggest that when

combining the transmitter with the queueing system that thedata for each layer is to be stored

in a different queue. This is also the case in the general broadcasting problem without common

information, where a queue is allocated to every user. However, for single-user communications,

a single common queue for all layers is preferable, since it gives the flexibility of dynamically

allocating data to layers before every transmission block.

A joint optimization of queueing and multi-user communications is considered in [28] and

[44]. The authors derive optimal adaptive joint power control and rate allocation policies which

maximize system delay and throughput for multi-access and broadcast fading channels. In both

settings every user has his own queue. In the channel model, CSI is assumed to be known for all

users at the transmitter. Moreover, for delay optimizationit is assumed that every user captures the

channel ergodicity, and that all users have the same fading random process (symmetry assumption

[44, Section 4.A]). In this setting every user experiences all possible fading realizations. These

results are incompatible with the single-user broadcast approach [30], where every user is

associated with a channel fading power. That is, every layer(user) is related to a channel fading
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amplitude, or range of amplitudes. Hence the channel distribution associated with a layer is only

a random phase, which means that the distribution of CSI amongusers is different.

In the concatenation of a queue and multi-level encoder every block transmission consists of

multi layer data, which is decoded partially or completely,depending on the fading conditions.

The better the channel conditions, the more layers are decoded. Since the transmitter has no

access to CSI, a feedback acknowledge (ACK) channel is required to specify which of the

layers were decoded. For each ACK the corresponding data can be deleted from the queue.

Layers which were not ACKed remain in the queue and are retransmitted. This is equivalent

to batch processing, where a layer is interpreted as a batch job, and each service may include

processing of several jobs [45].

The structure of this paper is as follows. In section II the channel model is presented. Then

the queue model used for the analysis is peresented in section III. In section IV, simple upper

and lower bounds on the average delay are presented. In section V tight upper and lower delay

bounds are derived for queueing and two level code layering.The results are extended toK-

level code layering in section VI, where tight upper and lower delay bounds are derived, closely

approximating the exact average delay value. Section VII further extends the delay bounds to

general continuum layering, namely the broadcast approach. The numerical results of finite-level

code layering and broadcasting are presented in section VIII. Finally, section IX includes the

summary and conclusion.

II. CHANNEL MODEL

Encoder &


Transmitter

Fading Channel
 Receiver


Feedback channel - decoding ACK


Higher Layer


Application


Higher Layer


Application


Buffer


Fig. 1. A block diagram of a communication system including a queue buffer before the transmitter.
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Consider the following single-input single-output (SISO) channel,

y = hx + n , (1)

wherey is a received vector, of lengthN , which is also the transmission block length,x is the

transmitted vector.n is the additive noise vector, with elements that are complexGaussian i.i.d

with zero mean and unit variance denotedCN (0, 1), and h is the (scalar) fading coefficient.

The fadingh is assumed to be perfectly known at the receiver end only. Thetransmitter has no

channel state information (CSI). The power constraint is given byP = E|x|2. E stands for the

expectation operator.

Figure 1 illustrates a system including a buffer (queue) forsource data, followed by a channel

encoder and transmitter. The input data comes from a higher layer application. It enters the

queue in a fixed rateλ, and taken out of the queue according to channel encoder scheduler. The

queue represents here the networking layer, and the transmitter represents the physical layer.

In a single-level coding (outage) approach every transmission block as of the same length and

rate. An ACK is returned every successful decoding, and a NACK is conveyed back every time

the channel conditions do not allow decoding (outage event). In multi-level coding there is a

separate ACK/NACK feedback for every layer. Layers which wereNACKed remain in the queue

and are scheduled for retransmission.

III. QUEUE MODEL - THE ZERO-PADDING QUEUE

We focus here on a queue model, which allows transmission even when the queue is almost

empty and a transmission frame can be created by zero paddingthe current data in the queue

to construct a valid frame for the channel encoder. We introduce the queueing time and waiting

time, which is defined as the time spent in a queue from the arrival until taken out of the queue.

Queueing time is also the overall delay, defined as the time from arrival to the queue until

completion of service (successful transmission).

The waiting time in the queue may be analyzed in the embeddingpoints, at the beginning of

every slot. We assume that the input data rate isλ [bits/channel use]. The input arrival epochs

is assumed to be deterministic, in-between the embedding points.

The waiting time in a queue may be obtained from the queue size, by normalizing the queue

size by the inverse of the input rateλ, as stated by Little’s theorem [46]. The queue size is
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defined by the following equation

Wn+1 =







Wn + Nλn+1 − NRn Wn + Nλn+1 − NRn ≥ 0

0 Wn + Nλn+1 − NRn < 0
(2)

whereN is the block length (number of channel uses between slots),λn+1 is a random variable

(RV) of the input rate, which is either a Poisson process at rate λ or a deterministic fixed rate

λ, Rn is the transmission rate random variable. Notice that in an outage approachRn is a fixed

R with probability p, and 0 with probability1 − p. This waiting time equation is also analyzed

in [11, ch. 5] for a deterministic arrival process and an outage approach, where bounds on the

average waiting time are derived. For convenience, the queue size equation is normalized by the

block lengthN , and we get the queue equation, known also as the Lindley equation [47],

wn+1 =







wn + λn+1 − Rn wn + λn+1 − Rn ≥ 0

0 wn + λn+1 − Rn < 0
(3)

where λn+1 is a random variable of the normalized input rateλ, and Rn is the normalized

transmission rate random variable. Andwn is now the queue size in units of blocks of data

corresponding toN arrivals to the queue. In an outage approach,

Rn =







R w.p. p

0 w.p. 1 − p
. (4)

From here on, the queue equations will be normalized following (3). For completeness of

definition, we state the queueing time equation, which is theoverall system delay (overall time

spent in the system), for the zero-padding queue. When interested in the overall delay, one has

to consider the additional delay of service time, beyond thewaiting time in the queue. This is

formalized in the next normalized queueing time equation,

qn+1 =







qn + λn+1

λ
− Rn

λ
qn − Rn

λ
≥ 0

λn+1

λ
qn − Rn

λ
< 0

(5)

whereqn is the momentary queueing time at slotn, andλn+1, Rn are defined below (3).

In the outage approach it might be desirable to analyze the queue delay by adopting the

standard M/G/1 queue model. In this model the input process is a Poisson process, and the

service distribution is some general random process. In single level coding the time between

services is a Geometrically distributed random variable. In order to use the M/G/1 model a
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crucial assumption on the system model must be made: the input arrives in blocks that have

the same size as the transmission blocks. That is, the queue equation is normalized to blocks

of transmission, where the block size is equal to an input block. The input process has a rate

λnorm, and at every embedding point the number of arrivals is measured in block units. This

model is strongly limited by the constraint that arrival blocks are equal in size to transmitted

blocks, since change of transmission rate means change in input block size. Therefore we do

not adopt the M/G/1 queue model in this work.

A. A simple example

To gain some intuition on the zero-padding queue we use the following example. Assume

that in equations (3) the input rateλ/R < 1 is fixed and deterministic, and the transmission

rate is also fixed and deterministic, equals to 1. Denote the waiting time and queueing time in

a zero-padding queue bywZP
n and qZP

n respectively. Let the queue be empty atn = 0, and for

simplicity takeR/λ and integer.

1) Waiting time (normalized by λ): {wZP
0 , wZP

1 , ..., wZP
n , ...} = {0, 0, ..., 0, ...}.

2) Queueing time (normalized by λ): {qZP
0 , qZP

1 , ..., qZP
n , ...} = {0, 1/R, ..., 1/R, ...}, as the

only delay in the system is the transmission delay.

Henceaverage values of waiting time and queueing time are given by

1) Average waiting time (normalized by λ): wZP = 0.

2) Average queueing time (normalized by λ): qZP = 1/R is the overall average delay in

steady state.

B. Steady-state conditions

It is well known [46, Ch. 9] that the zero-padding queue is stable when the average input rate

is strictly smaller than the service rate, and that the waiting time random process converges in

distribution. Recall the Lindley equation in (3), given in a different form

wn+1 = max(wn + xn, 0) (6)

wherexn , λn+1 − Rn is a random variable of the difference process of the input and output

random processes. With initial conditionsw1 (6) can also be expressed as,

wn+1 = max(w1 + x1 + ... + xn, x2 + ... + xn, ..., xn, 0). (7)
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For each fixedn (7) shows thatwn+1 depends on the partial sums ofx1, ..., xn, summed in

reverse order (aside from the initial conditionw1). Using standard tools from fluctuation theory

(also known as theory of random walks), it is shown in [46, Ch. 9Theorem 8] that,

Theorem 3.1:(stability) For every initial value ofw1, {wn} for an associated queue con-

verges in distribution tow. For E(x) < 0 (Eλ < ER), w is proper (i.e. it has zero mass at

±∞ : P (|w| < ∞) = 1). For E(x) ≥ 0 w = ∞.

It may be concluded from theorem 3.1, that as long as the average input rateλ is strictly

smaller than the average transmission rate, the system is stable. That is, the queue size will

not grow unbounded (to∞). Moreover, a steady state exists, as the queue size converges in

distribution to a random variable, for which the mean value and its higher moments can be

computed.

IV. AVERAGE DELAY - IMMEDIATE BOUNDS

In this section average delay bounds are derived for the zero-padding queue. The upper and

lower bounds based on known results for the G/G/1 queue. It islater shown that the delay

upper bound is a rather tight one for multi-level coding, whereas the lower bound is quite loose.

Therefore tighter lower bounds are derived for multi-levelcoding.

A. Upper bound

The queue in (3) may be expressed in a slightly different form,

wn+1 − yn = wn + xn, (8)

whereyn is the idle time process, which represents the amount of datathat could have been

served. Whenn → ∞ it can be noticed that

Ey∞ = −Ex = ER − Eλ. (9)

We now use the moment inequality. For an arbitrary non-negative random variableG

E[(G − v)α
+] ≥

E(Gα)

(EG)α
(E[(G − v)+])α, for v ≥ 0 and α ≥ 1. (10)
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An analytic derivation of the moment inequality (10) is presented by Daley [48]. The moment

inequality forα = 2 andy∞ = (w + λ − R)− = (R − S)+ reduces after some algebra [46, Ch.

11-2] into

E[y2
∞

] ≥ (1 −
Eλ

ER
)2E(R2). (11)

By using (8), (9) and (11),

Ew ≤ (E(x2) − (1 −
Eλ

ER
)2E(R2))/(2E(−x)) (12)

which simplifies by equality to

Ew ≤
σ2

R + σ2
λ

2(ER − Eλ)
− (1 −

Eλ

ER
)

σ2
R

2ER
, WUB,W , (13)

whereσ2
R andσ2

λ are the variances ofR andλ respectively, i.e.σ2
R , ER2 − (ER)2.

B. Lower bound

The lower bound derived here is based on tail properties of the queue output distribution.

From equation (8) the average waiting time is given by [47, Ch.2.3]

Ew =
σ2

R + σ2
λ

2(ER − Eλ)
+ (ER − Eλ)/2 −

E(I2)

(EI)2
, (14)

whereI ∼ (y∞|y∞ ≥ 0). The above can be lower bounded whenR has the following properties.

It is said that a random variableR has bounded mean residual life byγ (BMRL-γ) when

E(R − t|R > t) =

∞
∫

t

F c
R(τ)dτ

F c
R(t)

≤ γ for all t > 0, (15)

whereF c
R(τ) is the complementary CDF ofR. If R has BMRL-γ, then [47, Ch. 2.3 eq (2.47)]

E(I2)

(EI)2
≤ γ. (16)

Hence the following is a lower bound for BMRL-γ transmission rate random variableR

Ew ≥
σ2

R + σ2
λ

2(ER − Eλ)
− (ER + Eλ)/2 , WLB,K . (17)

whereγ = ER.
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V. QUEUEING AND MULTI -LAYER CODING

In this section the transmitter uses superposition coding for single transmit antenna, and one

or more receive antennas. Upper and lower delay bounds are derived for two level code layering.

The derivation relies on the relationship of the Laplace transform and the waiting time cumulative

distribution function (CDF). Similar type of bounds were derived for the outage approach in [10].

We hereby derive tight bounds for finite level coding and continuous layering (broadcasting).

A. Maximal Throughput in Two-level layering

A two-level code layering for the SISO channel was presentedby Liu et. al. [49]. Extensions

for multiple-input single-output (MISO) setting and single-input multiple-output (SIMO) setting

are presented in [32]. In a two level coding, as in the broadcasting, the receiver views a degraded

broadcast channel. Consider a two layer code of ratesR1 and R2, such that the transmission

rate R = R1 + R2. Two channel fading power parameterss1 and s2 are defined respectively.

We restrict0 ≤ s1 ≤ s2 without loss of generality. When fading parameter0 ≤ s no layer can

be decoded. Whens1 ≤ s ≤ s2 the first layeronly can be decoded while treating the other as

interference. Whens2 ≤ s both layers can be decoded by initially decodingR1, cancelling it

from the received signal and then decoding ofR2, in better signal to interference ratio (SIR)

conditions. The fixed rate of the first layer is

R1 = log

(

1 +
(1 − β)Ps1

1 + βPs1

)

, (18)

where the power allocated to layersR1 and R2 is (1 − β)P and βP respectively. The second

layer can be decoded for a fading parameters ≥ s2. Obviously, in this case the first layer can

be decoded prior toR2. Therefore, the rateR2 has no inter-layer interference and its fixed rate

is given by

R2 = log (1 + βPs2) . (19)

The expression of the maximal achievable average rate is given by

R2L = max
β,s1,s2

Psucc(s1)R1 + Psucc(s2)R2, (20)

wherePsucc(si) is the same probability of successful decoding of layeri. Optimal β for which

R2L achieves maximum is specified by [49]

βopt = Φ

(

s2Psucc(s2) − s1Psucc(s1)

Ps1s2(Psucc(s1) − Psucc(s2))

)

(21)
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where

Φ(x) ,



















0 x < 0

x 0 ≤ x ≤ 1

1 x > 1

The maximal achievable rate can be further optimized overs1, s2 numerically. Note that the

difference between the MISO and SIMO settings lies in (18), (19) where the power is normalized

by the number of transmit antennas. That isP in (18) and (19) is replaced byP
M

in a MISO

setting [33].

B. Delay bounds in Two-level layering

In this section bounds that exploit the multi-level coding queue equation are derived. The

number of layers is restricted here to two level layering. Itis later relaxed and extended to the

derivation of multiple-level coding and continuous codingbounds. The queue size equation (3)

is also well known as the Lindley equation [46]. It describesthe queue size at the beginning of

every time slot (embedding point). A two level coding queue size equation is specified hereby,

Wn+1 =







Wn + Xn Wn + Xn ≥ 0

0 Wn + Xn < 0
(22)

where

Xn , λ − ν1,nR1 − ν2,nR2 (23)

and we have assumed that the input rate is deterministicλ, which means that at every embedding

point a new input blockλ arrives. Layering ratesR1 and R2 are specified by (18) and (19)

respectively. The outage region for layering is described by ν1,n, ν2,n. The random variables can

be defined by the channel realization thresholds as follows

ν1,n =







1 s1 ≤ sn

0 otherwise
(24)

ν2,n =







1 s2 ≤ sn

0 otherwise
(25)
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wheresn is the fading power realization at thenth time-slot. Calculating the CDF of the queue

size at these embedding points will enable the calculation of the CDF at every time instant. A

recursive notion of the CDFFW (w) of the queue size [50, Ch. 8]

FW (w) =











0 w < 0
w
∫

−∞

FW (w − τ)dFX(τ) w ≥ 0
. (26)

In our setting the probability densitydFX(τ) of X (23) is

dFX(x) = p1δ(x − (λ − R1 − R2)) + p2δ(x − (λ − R1)) + pδ(x − λ), (27)

wherep1 = Prob{sn ≥ s2}, p2 = Prob{s1 ≤ sn ≥ s2} andp = 1 − p1 − p2.

Theorem 5.1:Queue average size and average delay for two level code layering are upper

and lower bounded by

EW2 ≥
(R1 + R2)λ(1 − p1) − p2R1(λ + R2)

2(p1(R1 + R2) + p2R1 − λ)
(28)

EW2 ≤
p1R

2
2 + 2p1R2(R1 − λ) + (p2 + p1)R

2
1 − 2λR1(p1 + p2) + λ2

2(p1(R1 + R2) + p2R1 − λ)
(29)

and the average delay normalized by the input rateλ is bounded by

EW2,λ ≥
(R1 + R2)λ(1 − p1) − p2R1(λ + R2)

2λ(p1(R1 + R2) + p2R1 − λ)
(30)

EW2,λ ≤
p1R

2
2 + 2p1R2(R1 − λ) + (p2 + p1)R

2
1 − 2λR1(p1 + p2) + λ2

2λ(p1(R1 + R2) + p2R1 − λ)
(31)

Proof: SeeAppendix A.

Similarly the upper bound in (13) can be explicitly specifiedfor the two-level code layering

approach. To obtainσ2
R the following is required,

σ2
R2L

, p2R
2
1 + p1(R1 + R2)

2 − R2
2L,av

(32)

where

R2L,av , p1(R1 + R2) + p2R1 (33)

Thus we have the following result,
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Corollary 5.1: Queue average size and average delay for a two-level code layering are upper

bounded (13) by

EW2L ≤
σ2

R2L

2(R2L,av − λ)
− (1 −

λ

R2L,av

)
σ2

R2L

2R2L,av

, (34)

and the average delay normalized by the input rateλ is upper bounded by

EWλ,2L ≤
σ2

R2L

2λ(R2L,av − λ)
− (1 −

λ

R2L,av

)
σ2

R2L

2R2L,avλ
, (35)

whereσ2
R2L

andR2L,av are given by (32) and (33) respectively.

VI. D ELAY BOUNDS FORFINITE LEVEL CODE LAYERING

In this section the Lindley equation [46] for finite-level code layering is introduced, for some

number of code layersK. The Lindley equation describes the queue size at the beginning of

every time slot (embedding point). For finite level coding atthe queue output we have, like in

(22),

Wn+1 =







Wn + Xn Wn + Xn ≥ 0

0 Wn + Xn < 0
(36)

where the queue update random variableXn depends on the number of layers in the code. Its

realization specifies the difference between the number of layers successfully decoded and the

queue inputλ,

Xn , λ −
K

∑

i=1

νi,nRi (37)

and we have assumed that the input rate is deterministicλ and so are the layering rates{Ri}
K
i=1.

The outage region for layering is determined by{νi,n}
K
i=1. The associated fading power thresholds

are denoted{sth,i}
K
i=1. The random variables (RV){νi,n}

K
i=1 are related to the fading thresholds

as follows

νi,n =







1 sth,i ≤ sn ≤ sth,i+1

0 otherwise
(38)

wheresn is the fading power realization at thenth time-slot, andsth,K+1 = ∞. Every RV νi,n

has a probability denotedpK−i+1 for being 1. Note that outage probabilityp = 1−
K
∑

i=1

pi, wherep

stands for the probability that no layer is decoded. Calculating the CDF of the queue size at these

embedding points will enable the calculation of the CDF at every time instant. In equivalence
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to two level layering a recursive notion of the CDFFW (w) of the queue size (26) can be used.

In this setting the probability densitydFX(τ) of X (37) is

dFX(x) =
K

∑

i=1

piδ(x − (λ −
K−i+1
∑

j=1

Rj)) + pδ(x − λ) (39)

wherepi = Prob{sth,i ≤ sn ≤ sth,i+1} for i = 1, ..., K andsth,K+1 = ∞.

Theorem 6.1:Queue average size and average delay forK-level code layering are upper and

lower bounded by

EWK ≥

(ℜK − λ)(
K
∑

i=1

piℜK−i+1 − λ) − (ℜK − λ)2 +
K
∑

i=1

pi(ℜK −ℜK−i+1)
2 + pℜ2

K

2(
K
∑

i=1

piℜK−i+1 − λ)

(40)

EWK ≤

2(ℜK − λ)(
K
∑

i=1

piℜK−i+1 − λ) − (ℜK − λ)2 +
K
∑

i=1

pi(ℜK −ℜK−i+1)
2 + pℜ2

K

2(
K
∑

i=1

piℜK−i+1 − λ)

(41)

whereℜV ,
∑V

j=1 Rj, and the average delay normalized by the input rateλ is bounded by

EWK,λ ≥

(ℜK − λ)(
K
∑

i=1

piℜK−i+1 − λ) − (ℜK − λ)2 +
K
∑

i=1

pi(ℜK −ℜK−i+1)
2 + pℜ2

K

2λ(
K
∑

i=1

piℜK−i+1 − λ)

(42)

EWK,λ ≤

2(ℜK − λ)(
K
∑

i=1

piℜK−i+1 − λ) − (ℜK − λ)2 +
K
∑

i=1

pi(ℜK −ℜK−i+1)
2 + pℜ2

K

2λ(
K
∑

i=1

piℜK−i+1 − λ)

(43)

Proof: SeeAppendix B.

The upper bound in (13) can be explicitly specified for the finite-level code layering approach.

To obtainσ2
R the following is required,

σ2
RKL

,
K
∑

i=1

piℜ
2
K−i+1 − (RKL,av)

2 (44)

where

RKL,av ,

K
∑

i=1

piℜK−i+1. (45)
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Corollary 6.1: Queue average size and average delay for aK-level code layering are upper

bounded (13) by

EWKL ≤
σ2

RKL

2(RKL,av − λ)
− (1 −

λ

RKL,av

)
σ2

RKL

2RKL,av

, (46)

and the average delay normalized by the input rateλ is upper bounded by

EWλ,KL ≤
σ2

RKL

2λ(RKL,av − λ)
− (1 −

λ

RKL,av

)
σ2

RKL

2RKL,avλ
, (47)

whereσ2
RKL

andRKL,av are given by (44) and (45) respectively.

VII. D ELAY BOUNDS FORCONTINUUM BROADCASTING

We adhere to the broadcasting approach for a SISO channel [31]. In this approach the

transmitter also sends multi-layer coded data. The receiver decodes the maximal number of

layers given a channel realization (per-block). However, as opposed to finite-level code layering,

here the layering may be a continuous function of the channelfading parameter. That is, the

number of layers is not limited in advance, and an incremental rate with a differential power

allocation is associated with every layer. The differential rate per layer is given by

dR(s) = log

(

1 +
sρ(s)ds

1 + sI(s)

)

=
sρ(s)ds

1 + sI(s)
(48)

whereρ(s)ds is the transmit power of a layer parameterized bys, intended for receivers, which

also designates the transmit power distribution. The righthand-side equality is justified in [51].

Information streams intended for receivers indexed byu > s are undetectable and play a role

of additional interfering noise, denoted byI(s). The interference for a fading powers is

I(s) =

∞
∫

s

ρ(u)du, (49)

which is also a monotonically decreasing function ofs. The total transmitted power is the overall

collected power assigned to all layers,

P =

∞
∫

0

ρ(u)du = I(0). (50)

As mentioned earlier, the total achievable rate for a fadingrealizations is an integration of the

fractional rates over all receivers with successful layer decoding capability,

R(s) =

∫ s

0

uρ(u)du

1 + uI(u)
. (51)
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Average rate is achieved with sufficiently many transmission blocks, each viewing an independent

fading realization. Therefore, the total average rateRbs over all fading realizations is

Rbs =

∞
∫

0

du f(u)R(u) =

∫

∞

0

du(1 − F (u))
uρ(u)

1 + uI(u)
(52)

where f(u) is the probability distribution function (PDF) of the fading power, andF (u) =
u
∫

0

daf(a) is the corresponding cumulative distribution function (CDF).

It is possible extend the finite-level code layering bounds derived above to this broadcast

setting. The bounds in Eq. (40) and (41) could be used for broadcasting after performing the

following modifications:

1) The number of layers is unlimited, that isK → ∞.

2) Every layeri is associated with a fading parameters, hence the layering is continuous.

Every RateRi is associated now with a differential ratedR(s) (48).

3) The cumulative rateℜK should be replaced by

RT =

∞
∫

0

dR(s)ds. (53)

4) The sum
K
∑

i=1

piℜK−i+1 is actually the average rate and it turns to beRbs (52) in the

continuum case.

5) Finally, in finite level coding the expression
K
∑

i=1

pi(ℜK −ℜK−i+1)
2 + pℜ2

K turns out to be

R2
d,bs ,

∞
∫

0

duf(u)

[

RT −
u
∫

0

dR(s)

]2

=
∞
∫

0

duf(u)

[

∞
∫

u

dR(s)

]2

= 2
∞
∫

0

duF (u)dR(u)
∞
∫

u

dR(s)

(54)

in the continuous case, wheredR(u) andR(u) are specified in (48) and (51) respectively.

Corollary 7.1: Queue average size and average delay for a continuous code layering are upper

and lower bounded by

EWbs ≥
RT − λ

2
+

R2
d,bs − (RT − λ)2

2(Rbs − λ)
(55)

EWbs ≤ (RT − λ) +
R2

d,bs − (RT − λ)2

2(Rbs − λ)
(56)
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and the average delay normalized by the input rateλ is bounded by

EWλ,bs ≥
RT − λ

2λ
+

R2
d,bs − (RT − λ)2

2λ(Rbs − λ)
(57)

EWλ,bs ≤
RT − λ

λ
+

R2
d,bs − (RT − λ)2

2λ(Rbs − λ)
(58)

whereRbs, RT andR2
d,bs are specified in (52), (53) and (54) respectively.

Similarly the upper bound in (13) can be explicitly specifiedfor the continuous code layering

approach. To obtainσ2
R the following is required,

σ2
Rbs

,
∞
∫

0

duf(u) [R(u)]2 − R2
bs

=
∞
∫

0

duf(u)

[

u
∫

0

dR(s)

]2

− R2
bs

= 2
∞
∫

0

du(1 − F (u))dR(u)
u
∫

0

dR(s) − R2
bs

= 2
∞
∫

0

du(1 − F (u))dR(u)R(u) − R2
bs.

(59)

Corollary 7.2: Queue average size and average delay for a continuous code layering are upper

bounded (13) by

EWbs ≤
σ2

Rbs

2(Rbs − λ)
− (1 −

λ

Rbs

)
σ2

Rbs

2Rbs

, (60)

and the average delay normalized by the input rateλ is upper bounded by

EWλ,bs ≤
σ2

Rbs

2λ(Rbs − λ)
− (1 −

λ

Rbs

)
σ2

Rbs

2Rbsλ
, (61)

whereRbs andσ2
Rbs

are given by (52) and (59) respectively.

Minimizing the average delay in the continuous case requires finding the optimal power

distributionρ(s) (49). As in the case of finite level coding the optimization problem of finding

the optimal power allocation does not lend itself to an analytic solution. Numerical optimization

is impossible here, as opposed to the finite level case, wherethe number of optimization variables

is small. Here the function subject to optimization is continuous. The target functional in the

optimization problem underhand for continuous layering does not have a localization property

[52]. A functional with localization property can be written as an integral(s) of some target

function. Our functional contains a ratio of integrals and further multiplication of integrals,

which cannot be converted to an integral(s) over a single target function. This type of functional
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is also denoted as a nonlocal functional in Gelfand et. al. [52]. In such cases it is preferable to

look for an approximate representation, of the nonlocal functional, which has the localization

property. Alternatively, approximate target functions with reduced degrees of freedom may be

optimized.

In order to reduce degrees of freedom, and introduce a tractable optimization problem, a

power distributionρ(s) is selected in advance, while inserting two unconstrained parameters,

and evaluating the delay numerically. This provides an approximation of the optimal continuous

layering delay, while keeping in mind that the delay performance could be further minimized,

if an optimal power distribution was known.

The selected subject power distributionρ(s) is based on the maximal throughput realizing

function ρ(s). As already known [30], for the Rayleigh fading channel, witha fading power

distributionfs(u) = e−u, the throughput optimal interference power distribution is given by [30]

I(s) =
1

s2
−

1

s
s0 ≤ s ≤ s1 (62)

whereI(s0) = P andI(s1) = 0, andρ(s) = −dI(s)
ds

. When using (62) for computation of average

delay, the delay is much higher than that of optimal (minimal) delay in finite level coding for a

large range of input ratesλ. Thus the approximate interference distribution chosen isas follows

I(s) =
c0

s2
−

c1

s
s0 ≤ s ≤ s1 (63)

wherec0 and c1 are fixed scalar coefficients (c0 ≥ 0 and c1 > 0), chosen as to minimize the

delay for every input rateλ. The relationsI(s0) = P and I(s1) = 0 can be specified by using

(63)

s1 =
c0

c1

(64)

and

s0 =
−c0 +

√

c2
0 + 4c1P

2P
. (65)

Having defined this, average delay upper and lower bounds maybe computed for various power

distributions given in (63). The upper bound in (61) is minimized numerically overc0 and c1,

for every input rateλ. In general, the resulting minimal average delay is still anupper bound

on the global minimal delay, since the power distribution function is only an approximation of

the optimal function, based on the corresponding maximal throughput achieving one.
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VIII. M INIMAL AVERAGE DELAY - NUMERICAL RESULTS

A. Outage approach delay bounds comparison
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Fig. 2. Average delay - outage approach. Delay is demonstrated for minimal delay power assignment (SNR=0dB) Bounds of

[10] are compared withWUB,W (13) andWLB,K (17).

Figure 2, 3 demonstrate the average delay bounds for the outage approach. The rate and power

allocation of the transmitter are optimized for everyλ such that the upper boundWUB,W (13) is

minimized. All other bounds are computed for the same fadingparameter threshold as optimized

for WUB,W . It may be seen thatWUB,W and the lower boundWLB,L from [10] closely predict

the average delay, as these two bounds are tightest, even forlow SNR. Furthermore, the lower

boundWLB,K (17) is not tight, and therefore will not be used in followingnumerical results

presentation.

September 22, 2004 DRAFT



21

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Outage approach, upper and lower bounds, SNR=40 [dB]

Input rate (λ) [Nats per channel use]

D
el

ay
 [P

ac
ke

ts
]

W
UB,W

W
UB,L

W
LB,K

W
LB,L

Fig. 3. Average delay - outage approach. Delay is demonstrated for minimal delay power assignment (SNR=40dB) Bounds of

[10] are compared withWUB,W (13) andWLB,K (17).

B. Multi-level coding approach delay bounds comparison

Figures 4-5 demonstrate the average delay upper bounds for outage, two, three-level coding

and continuous layering (broadcasting). The rate and powerallocation for each approach are

jointly optimized for everyλ. The upper boundWnL,UB,W (13) is minimized for every coding

approach over all power and rate allocation free parameters. In the continuous layering case the

delay is optimized over the two variables in (63) to produce aminimal delay. In three level

coding there arethree fading power thresholds, andtwo power allocation fractions specifying

together the rate allocation for each layer.WnL,UB,W is optimized over all these parameters,

which are then used to compute the upper boundsWnL,UB,L (43) for each coding strategy. As

may be noticed theWnL,UB,W (13) upper bounds are tighter thanWnL,UB,L bounds, particularly

in low input rates, and high SNRs. For this reason we use onlyWnL,UB,W (13) upper bounds

for computation of average delays and comparison toWnL,LB,L lower bounds in the following.
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Fig. 4. Average delay for outage approach, 2-level and 3-level coding and continuous layering (BS), for SNR=10dB. The

boundsWnL,UB,L denote the n-level coding upper bounds specified in (43). The boundsWnL,UB,W denote the n-level coding

upper bounds specified in its general form in (13).

1) Fixed SNR, variable input rate λ: Figures 6 - 10 demonstrate the average delay bounds

(upper and lower) for outage, two, three-level coding and continuous layering. The rate and

power allocation for each approach is optimized for everyλ. The upper boundWnL,UB,W (13) is

minimized for every coding approach over all free parameters. The lower boundsWnL,LB,L (42)

are then computed with the same power and rate parameters used for computingWnL,UB,W . As

may be noticed in low SNR multi-level coding does not show much improvement over single

level coding (outage). However, in high SNRs and moderate input rates the three level coding

has a pronounced delay improvement over the outage approach. Figures 9 - 10 also show, as

expected, that delay gains in two level coding over outage are greater than those of three-level

coding compared to two level coding. This suggests that in limit of continuous layering there

will be no significant delay improvement over the three-level coding delays.
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Fig. 5. Average delay for outage approach, 2-level and 3-level coding and continuous layering (BS), for SNR=30dB. The

boundsWnL,UB,L denote the n-level coding upper bounds specified in (43). The boundsWnL,UB,W denote the n-level coding

upper bounds specified in its general form in (13).

2) Fixed input rate λ, variable SNR: Figures 12 - 15 demonstrate the average delay bounds

(upper and lower) for outage, two, three-level coding and continuous layering. The bounds are

computed for some given input rates, and presented as function of the SNR. The rate and

power allocation for each approach are jointly optimized for every SNR value. The upper bound

WnL,UB,W (13) is minimized for every coding approach over all free parameters. In the continuous

layering case the delay is optimized over the two variables in (63) to produce a minimal delay.

Interestingly, as the SNR increases the delay ratio betweenthe different methods is maintained.

From these figures the SNR gain for some input rate and expected packet delay may be

computed. For example, in Figure 16 the input rate isλ = 5 Nats/channel use. For an expected

packet delay of 0.2, an SNR of∼39.5dB is required for single-level coding,∼36.5dB is required

for two-level coding,∼35.5dB is required for three-level coding and∼35dB is required for
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Fig. 6. Average delay for outage approach, 2-level and 3-level coding and continuous layering (BS), for SNR=0dB. The bounds

WnL,LB,L denote the n-level codinglower bounds specified in (42). The boundsWnL,UB,W denote the n-level codingupper

bounds specified in its general form in (13).

continuous layering. This suggests a gain of 3dB of two levelcoding over outage, another 1dB

for three level coding, and an additional 0.5dB for continuous layering. In total, continuous

layering gains∼4.5dB over outage approach in terms of average delay.

When comparing to Figure 11, throughput gain of two level coding over outage is∼1.5dB

at SNR=40dB, as opposed to a 3dB gain in delay performance. When comparing outage to

continuous layering, the throughput gain is∼3.3dB, whereas the delay gain is more than∼4.5

dB. We have used an approximation of the power distribution (63) in continuous layering,

therefore the maximal delay gain is expected to be even higher. This clearly shows that when

considering delay as a performance measure, code layering may give pronounced gains in delay,

which were not predicted when analyzing only the maximal throughput performance.
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Fig. 7. Average delay for outage approach, 2-level and 3-level coding and continuous layering (BS), for SNR=10dB. The

boundsWnL,LB,L denote the n-level codinglower bounds specified in (42). The boundsWnL,UB,W denote the n-level coding

upper bounds specified in its general form in (13).

IX. CONCLUSION

We have studied a single-server queue concatenated with a multi-level channel encoder. The

main focus of this work is on minimization of the average delay of a packet from entering the

queue until completion of successful service. Tight boundsare derived for the average delay for

different numbers of coded layers. The bounds are optimizednumerically for a Rayleigh block

fading channel.

Delay bounds are also derived for continuous layering (single user broadcast approach). The

optimizing power distribution of the minimal delay is approximated, and numerically evaluated.

An interesting observation from the numerical results is that when considering delay as a

performance measure, code layering may give pronounced performance gains in terms of delay,

which are more impressive than those associated with throughput. This makes layering more
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Fig. 8. Average delay for outage approach, 2-level and 3-level coding and continuous layering (BS), for SNR=20dB. The

boundsWnL,LB,L denote the n-level codinglower bounds specified in (42). The boundsWnL,UB,W denote the n-level coding

upper bounds specified in its general form in (13).

attractive when communicating under stringent delay constraints.

The results can be extended to SIMO, and MISO systems in a direct manner, and the

derived bounds may be used just by replacing the fading parameter distribution with the one

corresponding to the multiple antenna case.

APPENDIX A

PROOF OFTHEOREM 5.1

Proof: The proof consists of two parts. In the first part we assume that R1 ≤ λ and in the

second part the inverse is assumedR1 > λ. It is shown that the same bounds (28)-(29) are

reached in both cases.
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Fig. 9. Average delay for outage approach, 2-level and 3-level coding and continuous layering (BS), for SNR=30dB. The

boundsWnL,LB,L denote the n-level codinglower bounds specified in (42). The boundsWnL,UB,W denote the n-level coding

upper bounds specified in its general form in (13).

A) R1 ≤ λ: The queue size CDF follows from (26) and (27),

FW (w) =



























0 w < 0

p1FW (w − (λ − R1 − R2)) 0 ≤ w ≤ λ − R1

p1FW (w − (λ − R1 − R2)) + p2FW (w − (λ − R1)) λ − R1 ≤ w ≤ λ

p1FW (w − (λ − R1 − R2)) + p2FW (w − (λ − R1)) + pFW (w − λ) λ ≤ w

.(A.1)
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Fig. 10. Average delay for outage approach, 2-level and 3-level coding and continuous layering (BS), for SNR=40dB. The

boundsWnL,LB,L denote the n-level codinglower bounds specified in (42). The boundsWnL,UB,W denote the n-level coding

upper bounds specified in its general form in (13).

Taking the laplace transform of the PDF of (A.1) is required as an initial step of deriving the

bounds,

LW (s) =
∞
∫

0

e−swdFW (w)

(1)
= FW (0) + p1

∞
∫

0

e−swdFW (w − λ + R1 + R2) + p2

∞
∫

λ−R1

e−swdFW (w − λ + R1)

+p
∞
∫

λ

e−swdFW (w − λ)

(2)
= FW (0) + p1

∞
∫

R1+R2−λ

e−s(w+λ−R1−R2)dFW (w) + p2

∞
∫

0

e−s(w+λ−R1)dFW (w)

+p
∞
∫

0

e−s(w−λ)dFW (w)

(3)
= FW (0) + [p1e

−s(λ−R1−R2) + p2e
−s(λ−R1) + pe−sλ]

∞
∫

0

e−swdFW (w)

−p1

R1+R2−λ
∫

0

e−s(w+λ−R1−R2)dFW (w)

(4)
= FW (0) + [p1e

−s(λ−R1−R2) + p2e
−s(λ−R1) + pe−sλ]LW (s)

−p1

R1+R2−λ
∫

0

e−s(w+λ−R1−R2)dFW (w)

(A.2)

September 22, 2004 DRAFT



29

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

SNR [dB]

R
a

te
 [
N

a
ts

/c
h

a
n

n
e

l u
se

]

Maximal throughput rates for 1L, 2L and continuous layering (BS)

R
1L

R
2L

R
BS

Fig. 11. Maximal throughput vs. SNR, for outage approach, 2-levelcoding and continuous layering (BS).

where the PDF ofdFW (w) is denotedLW (s). (1) substituting the right-hand side of (A.1) into

the Laplace transform definition. (2) change of integral variables. (3) Taking the integral as a

common factor. (4) Substituting back the integral definition with the Laplace transform. The last

step suggests a new expression for the Laplace transform ofdFW (w). That isLW (s) can now

be expressed by

LW (s) =
FW (0)−p1

∫ R1+R2−λ

0
e−s(w+λ−R1−R2)dFW (w)

1−[p1e−s(λ−R1−R2)+p2e−s(λ−R1)+pe−sλ]

=(1) p1

∫ R1+R2−λ

0
(1−e−s(w+λ−R1−R2))dFW (w)

1−[p1e−s(λ−R1−R2)+p2e−s(λ−R1)+pe−sλ]

=(2) p1

∫ R1+R2−λ

0
(e−s(R1+R2−λ)−e−sw)dFW (w)

e−s(R1+R2−λ)−[p1+p2e−sR2+pe−s(R1+R2)]

,
LY (s)
LX(s),

(A.3)

where the first equation is a direct substitution ofLW (s) from (A.2). (1) involves replacement

of FW (0) with its equivalent from eq. (A.1), that isFW (0) = p1FW (w − (λ − R1 − R2)). (2)

multiplication of numerator and denominator by a common factor.

Generally, the first moment ofW is given by

E[W ] = lim
s→0

−
dLW (s)

ds
, (A.4)
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Fig. 12. Average delay vs. SNR, for outage approach, 2-level, 3-level coding and continuous layering (BS), forλ = 1

[Nats/channel use]. The boundsWnL,LB,L denote the n-level codinglower bounds specified in (42). The boundsWnL,UB,W

denote the n-level codingupper bounds specified in its general form in (13).

however in (A.3) we can see that fors = 0 both LY (s)|s=0 = 0 andLX(s)|s=0 = 0. Therefore,

L’Hospital rule for a fraction, for which numerator and denominator tend to zero, should be

used. This requires assuming thatLY (s) and LX(s) have second order derivatives. Applying
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Fig. 13. Average delay vs. SNR, for outage approach, 2-level, 3-level coding and continuous layering (BS), forλ = 2

[Nats/channel use]. The boundsWnL,LB,L denote the n-level codinglower bounds specified in (42). The boundsWnL,UB,W

denote the n-level codingupper bounds specified in its general form in (13).

L’Hospital rule on (A.3),

E[W ] = lim
s→0

−dLW (s)
ds

(1)
= lim

s→0
−L′

Y (s)LX(s)−L′

X(s)LY (s)
L2

X(s)

(2)
= lim

s→0

L′′

X(s)LY (s)+L′

X(s)L′

Y (s)−L′′

Y (s)LX(s)−L′

X(s)L′

Y (s)
2LX(s)L′

X(s)

(3)
= lim

s→0

L′′′

X(s)LY (s)+L′′

X(s)L′

Y (s)−L′′′

Y (s)LX(s)−L′

X(s)L′′

Y (s)
2[(L′

X(s))2+LX(s)L′′

X(s)]

(4)
= lim

s→0

L′′

X(s)L′

Y (s)−L′

X(s)L′′

Y (s)
2(L′

X(s))2

(5)
= lim

s→0

L′′

X(s)−L′′

Y (s)
2L′

X(s)

(A.5)

whereL′

X(s) represents the first order derivative ofLX(s) w.r.t. s. (1) a derivative of a fraction,
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Fig. 14. Average delay vs. SNR, for outage approach, 2-level, 3-level coding and continuous layering (BS), forλ = 3

[Nats/channel use]. The boundsWnL,LB,L denote the n-level codinglower bounds specified in (42). The boundsWnL,UB,W

denote the n-level codingupper bounds specified in its general form in (13).

by definition. (2) applying L’Hospital rule, derivation of numerator and denominator separately.

(3) usesLY (s)|s=0 = 0 and LX(s)|s=0 = 0, and performing another L’Hospital derivation. (4)

uses againLY (s)|s=0 = 0 and LX(s)|s=0 = 0. (5) comes from the fact thatlim
s→0

LW (s) = 0,

which suggests

lim
s→0

L′

Y (s)

L′

X(s)
= 1 (A.6)

In this stage the first order derivatives ofLY (s) andLX(s) are computed.

lim
s→0

L′

Y (s) = lim
s→0

p1

∫ R1+R2−λ

0
[we−sw − (R1 + R2 − λ)e−s(R1+R2−λ)]dFW (w)

= p1

∫ R1+R2−λ

0
(w − R1 − R2 + λ)dFW (w)

(1)
= − p1

∫ R1+R2−λ

0
FW (w)dw

(A.7)
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Fig. 15. Average delay vs. SNR, for outage approach, 2-level, 3-level coding and continuous layering (BS), forλ = 4

[Nats/channel use]. The boundsWnL,LB,L denote the n-level codinglower bounds specified in (42). The boundsWnL,UB,W

denote the n-level codingupper bounds specified in its general form in (13).

where (1) is a result of solving the integral in parts.

lim
s→0

L′

X(s) = lim
s→0

−(R1 + R2 − λ)e−s(R1+R2−λ) + p2R2e
−sR2 + p(R1 + R2)e

−s(R1+R2)

= λ − p1(R1 + R2) − p2R1.
(A.8)

Taking the recent two equations (A.7) and (A.8), substituting the derivatives in (A.6) results in

a useful equality

p1

∫ R1+R2−λ

0
FW (w)dw = p1(R1 + R2) + p2R1 − λ. (A.9)

Now the second order derivatives ofLY (s) and LX(s) are required. From (A.8),L′′

X(s)|s=0 is

directly derived

L′′

X(s)|s=0 = (R1 + R2 − λ)2 − p2R
2
2 − p(R1 + R2)

2, (A.10)
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Fig. 16. Average delay vs. SNR, for outage approach, 2-level, 3-level coding and continuous layering (BS), forλ = 5

[Nats/channel use]. The boundsWnL,LB,L denote the n-level codinglower bounds specified in (42). The boundsWnL,UB,W

denote the n-level codingupper bounds specified in its general form in (13).

calculatingL′′

Y (s)|s=0 will allow also to compute the bounds.

L′′

Y (s)|s=0 = p1

∫ R1+R2−λ

0
[−w2e−sw + (R1 + R2 − λ)2e−s(R1+R2−λ)]dFW (w)|s=0

= p1

∫ R1+R2−λ

0
[−w2 + (R1 + R2 − λ)2]dFW (w)

= p1

∫ R1+R2−λ

0
(R1 + R2 − λ − w)(R1 + R2 − λ + w)dFW (w).

(A.11)

The last equation in (A.11) can be upper bounded by replacing(R1 + R2 −λ + w) with 2(R1 +

R2 − λ), that is

L′′

Y (s)|s=0 ≤ 2(R1 + R2 − λ)p1

∫ R1+R2−λ

0
(R1 + R2 − λ − w)dFW (w)

(1)
= 2(R1 + R2 − λ)(p1(R1 + R2) + p2R1 − λ)

(A.12)

where we have used (A.9) in step (1) to obtain an explicit expression for the upper bound on

L′′

Y (s)|s=0. Substituting this bound together with (A.8) and (A.10) into (A.5) we reach

EW ≤
2(R1 + R2 − λ)(p1(R1 + R2) + p2R1 − λ) − (R1 + R2 − λ)2 + p2R

2
2 + p(R1 + R2)

2

2(p1(R1 + R2) + p2R1 − λ)
(A.13)
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which after some algebra reduces to (29).

Similarly a lower bound ofL′′

Y (s)|s=0 is obtained by replacing(R1 + R2 − λ + w) with

R1 + R2 − λ in (A.11),

L′′

Y (s)|s=0 ≥ p1(R1 + R2 − λ)
∫ R1+R2−λ

0
(R1 + R2 − λ − w)dFW (w)

(R1 + R2 − λ)(p1(R1 + R2) + p2R1 − λ).
(A.14)

where we have used (A.9) in step (1) again to obtain an explicit expression for the lower bound

on L′′

Y (s)|s=0. Substituting this bound together with (A.8) and (A.10) into (A.5) we reach

EW ≥
(R1 + R2 − λ)(p1(R1 + R2) + p2R1 − λ) − (R1 + R2 − λ)2 + p2R

2
2 + p(R1 + R2)

2

2(p1(R1 + R2) + p2R1 − λ)
(A.15)

which after some algebra reduces to (28). It takes only normalization byλ to reach (30) and (31)

from (28) and (29) respectively. This concludespart A of the proof, for the case thatR1 ≤ λ.

B) R1 > λ: The queue size CDF follows from (26) and (27), differs from (A.1),

FW (w) =



















0 w < 0

p1FW (w − (λ − R1 − R2)) + p2FW (w − (λ − R1)) 0 ≤ w ≤ λ

p1FW (w − (λ − R1 − R2)) + p2FW (w − (λ − R1)) + pFW (w − λ) λ ≤ w

.(A.16)

Taking the laplace transform of the PDF in both of (A.16) is required as an initial step of deriving

the bounds,

LW (s) =
∞
∫

0

e−swdFW (w)

(1)
= FW (0) + p1

∞
∫

0

e−swdFW (w − λ + R1 + R2) + p2

∞
∫

0

e−swdFW (w − λ + R1)

+p
∞
∫

λ

e−swdFW (w − λ)

(2)
= FW (0) + p1

∞
∫

R1+R2−λ

e−s(w+λ−R1−R2)dFW (w) + p2

∞
∫

R1−λ

e−s(w+λ−R1)dFW (w)

+p
∞
∫

0

e−s(w−λ)dFW (w)

(3)
= FW (0) + [p1e

−s(λ−R1−R2) + p2e
−s(λ−R1) + pe−sλ]LW (s)

−p1

R1+R2−λ
∫

0

e−s(w+λ−R1−R2)dFW (w) − p2

R1−λ
∫

0

e−s(w+λ−R1)dFW (w)

(A.17)

where (1) is substituting the right-hand side of (A.16) intothe Laplace transform definition.

(2) change of integral variables. (3) substituting back theintegral definition with the Laplace
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transform and taking a common factor. The last step suggestsa new expression for the Laplace

transform ofdFW (w), similarly to (A.3),

LW (s) =
p1

∫ R1+R2−λ

0
(e−s(R1+R2−λ)−e−sw)dFW (w)+p2

∫ R1−λ

0
(e−s(R1+R2−λ)−e−s(w+R2))dFW (w)

e−s(R1+R2−λ)−[p1+p2e−sR2+pe−s(R1+R2)]

,
LZ(s)
LX(s),

(A.18)

where we have used the equalityFW (0) = p1FW (w−(λ−R1−R2))+p2FW (w−(λ−R1)) from

(A.16). As may be noticed here the denominator is exactly thesameLX(s) of () in part A of the

proof, which means that the denominator ofLW (s) is independent on the value ofR1 relative

to λ. We use here (A.18) to boundE[W ]. Here again, bothLZ(s)|s=0 = 0 andLX(s)|s=0 = 0.

Therefore we will use L’Hospital rule and the result of (A.5). Expressions ofL′

X(s) andL′′

X(s)

are already stated in (A.8) and (A.10) respectively.

L′

Z(s)|s=0 = {p1

∫ R1+R2−λ

0
[we−sw − (R1 + R2 − λ)e−s(R1+R2−λ)]dFW (w)

+p2

∫ R1−λ

0
((w + R2)e

−s(w+R2) − (R1 + R2 − λ)e−s(R1+R2−λ))dFW (w)} |s=0

= p1

∫ R1+R2−λ

0
(w − R1 − R2 + λ)dFW (w) + p2

∫ R1−λ

0
(w − R1 + λ)dFW (w)

(1)
= −p1

∫ R1+R2−λ

0
FW (w)dw − p2

∫ R1−λ

0
FW (w)dw

(A.19)

Substituting (A.8) and (A.19) into (A.6) we reach an equality similar to (A.9),

p1

∫ R1+R2−λ

0
FW (w)dw + p2

∫ R1−λ

0
FW (w)dw = p1(R1 + R2) + p2R1 − λ. (A.20)

Now the second order derivative ofLZ(s) is required.

L′′

Z(s)|s=0 = {p1

∫ R1+R2−λ

0
[−w2e−sw + (R1 + R2 − λ)2e−s(R1+R2−λ)]dFW (w)

+p2

∫ R1−λ

0
(−(w + R2)

2e−s(w+R2) + (R1 + R2 − λ)2e−s(R1+R2−λ))dFW (w)} |s=0

= p1

∫ R1+R2−λ

0
(R1 + R2 − λ − w)(R1 + R2 − λ + w)dFW (w)

+p2

∫ R1−λ

0
(w + R1 + 2R2 − λ)(R1 − λ − w)dFW (w).

(A.21)

The last expression ofL′′

Z(s)|s=0 in (A.21) can be upper bounded by replacingw with its

maximal values in both integrals. That is substitute(R1 + R2 − λ + w) by 2(R1 + R2 − λ) and

also (R1 + 2R2 − λ + w) is substituted by2(R1 + R2 − λ), thus

L′′

Z(s)|s=0 ≤ 2p1(R1 + R2 − λ)
∫ R1+R2−λ

0
(R1 + R2 − λ − w)dFW (w)

+2p2(R1 + R2 − λ)
∫ R1−λ

0
(R1 − λ − w)dFW (w).

(1)
= 2(R1 + R2 − λ)(p1(R1 + R2) + p2R1 − λ)

(A.22)
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where we have used (A.20) in step (1) to obtain an explicit expression for the upper bound on

L′′

Z(s)|s=0. Substituting this bound together with (A.8) and (A.10) into (A.3) we reach the same

upper bound as in (A.13),

EW ≤
2(R1 + R2 − λ)(p1(R1 + R2) + p2R1 − λ) − (R1 + R2 − λ)2 + p2R

2
2 + p(R1 + R2)

2

2(p1(R1 + R2) + p2R1 − λ)
(A.23)

which after some algebra reduces to (29). Similarly a lower bound ofL′′

Z(s)|s=0 is obtained by

substituting(R1 + R2 − λ + w) by (R1 + R2 − λ) and by replacing(R1 + 2R2 − λ + w) also

by (R1 + R2 − λ) in the second integral of (A.21),

L′′

Z(s)|s=0 ≥ p1(R1 + R2 − λ)
∫ R1+R2−λ

0
(R1 + R2 − λ − w)dFW (w)

+p2(R1 + R2 − λ)
∫ R1−λ

0
(R1 − λ − w)dFW (w).

(1)
= (R1 + R2 − λ)(p1(R1 + R2) + p2R1 − λ)

(A.24)

where we have used (A.20) in step (1) again to obtain an explicit expression for the lower bound

on L′′

Z(s)|s=0. Substituting this bound together with (A.8) and (A.10) into (A.3) we reach the

same lower bound as in (A.15),

EW ≥
(R1 + R2 − λ)(p1(R1 + R2) + p2R1 − λ) − (R1 + R2 − λ)2 + p2R

2
2 + p(R1 + R2)

2

2(p1(R1 + R2) + p2R1 − λ)
(A.25)

which after some algebra reduces to (28). It takes only normalization by λ to reach (30) and

(31) from (28) and (29) respectively.

This shows that in both parts for eitherR1 > λ and R1 ≤ λ the same upper and lower

bounds on the expected waiting time are valid, although the CDF FW (w) is different in these

two cases.�

APPENDIX B

PROOF OFTHEOREM 6.1

Proof: The main steps of the proof resemble the two level layering. Only here we assume

that there is somek, 1 ≤ k ≤ K for which
k

∑

i=1

Ri ≤ λ ≤
k+1
∑

i=1

Ri (B.1)
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The queue size CDF follows from (26) and (39),

FW (w) =







































































0 w < 0
K−k
∑

i=1

piFW (w − (λ −
∑K−i+1

j=1 Rj)) 0 ≤ w < λ −
∑k

i=1 Ri

K−k+1
∑

i=1

piFW (w − (λ −
∑K−i+1

j=1 Rj))
∑k

i=1 Ri ≤ w < λ −
∑k−1

i=1 Ri

...
...

K
∑

i=1

piFW (w − (λ −
∑K−i+1

j=1 Rj))
∑k

i=1 Ri ≤ w < λ

K
∑

i=1

piFW (w − (λ −
∑K−i+1

j=1 Rj)) + pFW (w − λ) λ ≤ w

.(B.2)

For compactness of presentation
∑V

j=1 Rj will be denotedℜV ,
∑V

j=1 Rj. Taking the laplace

transform of the PDF in both of (B.2) is required as an initial step of deriving the bounds,

LW (s) =
∞
∫

0

e−swdFW (w)

(1)
= FW (0) +

∞
∫

0

e−sw
K−k
∑

i=1

pidFW (w − λ + ℜK−i+1) + pK−k+1

∞
∫

λ−ℜk

e−swdFW (w − λ + ℜk) + · · ·

pK

∞
∫

λ−R1

e−swdFW (w − λ + R1) + p
∞
∫

λ

e−swdFW (w − λ)

(2)
= FW (0) + [

K
∑

i=1

pie
s(ℜK−i+1−λ) + pe−sλ]LW (s)

−
K−k
∑

i=1

pi

ℜK−i+1−λ
∫

0

e−s(w+λ−ℜK−i+1)dFW (w)

(B.3)

where the PDF ofdFW (w) is denotedLW (s). (1) substituting the right-hand side of (B.2) into

the Laplace transform definition. (2) change of integral variables and takes the integral as a

common factor. The last step suggests a new expression for the Laplace transform ofdFW (w).

That isLW (s) can now be expressed by

LW (s) =
FW (0)−

K−k
∑

i=1

pi

ℜK−i+1−λ
∫

0

e−s(w+λ−ℜK−i+1)dFW (w)

1−[
K
∑

i=1

pie
s(ℜK−i+1−λ)+pe−sλ]

(1)
=

K−k
∑

i=1

pi

ℜK−i+1−λ
∫

0

(e−s(ℜK−λ)−e−s(w+ℜK−ℜK−i+1))dFW (w)

e−s(ℜK−λ)−[
K
∑

i=1

pie
s(ℜK−ℜK−i+1)+pe−sℜK ]

,
LY (s)
LX(s)

(B.4)
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where the first equation is a direct substitution ofLW (s) from (B.3). (1) involves replacement

of FW (0) with its equivalent from eq. (B.2), that isFW (0) =
K−k
∑

i=1

piFW (−λ + ℜK−i+1). (2)

multiplication of numerator and denominator by a common factor.

In general the first moment ofW is specified in (A.4), however in (B.4) it can be noticed that

for s = 0 both LY (s)|s=0 = 0 andLX(s)|s=0 = 0, like in the two level coding case. Therefore

L’Hospital rule is used here as well. This requires assumingthat LY (s) andLX(s) have second

order derivatives. The result ofE[W ] specified by the first and second order derivatives in (A.5),

shall be used in the following.

In this stage the first order derivatives ofLY (s) andLX(s) are given by

L′

Y (s)|s=0 =
K−k
∑

i=1

pi

ℜK−i+1−λ
∫

0

[(w + ℜK −ℜK−i+1)e
−s(w+ℜK−ℜK−i+1) − (ℜK − λ)e−s(ℜK−λ)]dFW (w)|s=0

=
K−k
∑

i=1

pi

ℜK−i+1−λ
∫

0

(w −ℜK−i+1 + λ))dFW (w)

= −
K−k
∑

i=1

pi

ℜK−i+1−λ
∫

0

FW (w)dw

(B.5)

L′

X(s)|s=0 = −(ℜK − λ)e−s(ℜK−λ) +
K
∑

i=1

pi(ℜK −ℜK−i+1)e
−s(ℜK−ℜK−i+1) + ℜKpe−sℜK |s=0

= −ℜK + λ +
K
∑

i=1

pi(ℜK −ℜK−i+1) + ℜKp

= λ −
K
∑

i=1

piℜK−i+1

(B.6)

Taking the recent two equations (B.5) and (B.6), substitutingthe derivatives in (A.6) results in

a useful equality

K−k
∑

i=1

pi

ℜK−i+1−λ
∫

0

FW (w)dw =
K
∑

i=1

piℜK−i+1 − λ. (B.7)

Now the second order derivatives ofLY (s) and LX(s) are required. From (B.6),L′′

X(s)|s=0 is

directly derived

L′′

X(s)|s=0 = (ℜK − λ)2 −
K
∑

i=1

pi(ℜK −ℜK−i+1)
2 − pℜ2

K (B.8)

calculatingL′′

Y (s)|s=0 will allow also to compute the bounds.

L′′

Y (s)|s=0 =
K−k
∑

i=1

pi

ℜK−i+1−λ
∫

0

[−(w + ℜK −ℜK−i+1)
2 + (ℜK − λ)2]dFW (w)

=
K−k
∑

i=1

pi

ℜK−i+1−λ
∫

0

(w + 2ℜK −ℜK−i+1 − λ)(ℜK−i+1 − λ − w)dFW (w)

(B.9)
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The last equation in (B.9) can be upper bounded by replacingw of (w + 2ℜK + ℜK−i+1 − λ)

by ℜK−i+1 − λ,

L′′

Y (s)|s=0 ≤ 2(ℜK − λ)
K−k
∑

i=1

pi

ℜK−i+1−λ
∫

0

(ℜK−i+1 − λ − w)dFW (w)

= 2(ℜK − λ)(
K
∑

i=1

piℜK−i+1 − λ)

(B.10)

where we have used (B.7) in the final step to obtain an explicit expression for the upper bound

of L′′

Y (s)|s=0. Substituting this bound together with (B.6) and (B.8) into (A.5) we reach

EW ≤

2(ℜK − λ)(
K
∑

i=1

piℜK−i+1 − λ) − (ℜK − λ)2 +
K
∑

i=1

pi(ℜK −ℜK−i+1)
2 + pℜ2

K

2(
K
∑

i=1

piℜK−i+1 − λ)

(B.11)

which is exactly the desired upper bound in (41). Similarly alower bound ofL′′

Y (s)|s=0 is

obtained from (B.9) by replacingw of (w + 2ℜK + ℜK−i+1 − λ) with ℜK−i+1 −ℜK ,

L′′

Y (s)|s=0 ≥ (ℜK − λ)
K−k
∑

i=1

pi

ℜK−i+1−λ
∫

0

(ℜK−i+1 − λ − w)dFW (w)

= (ℜK − λ)(
K
∑

i=1

piℜK−i+1 − λ)

(B.12)

where we have used (B.7) in the last step again to obtain an explicit expression for the lower

bound onL′′

Y (s)|s=0. Substituting this bound together with (B.6) and (B.8) into (A.5) we reach

EW ≥

(ℜK − λ)(
K
∑

i=1

piℜK−i+1 − λ) − (ℜK − λ)2 +
K
∑

i=1

pi(ℜK −ℜK−i+1)
2 + pℜ2

K

2(
K
∑

i=1

piℜK−i+1 − λ)

(B.13)

which is exactly the desired lower bound (40). It takes only normalization byλ to reach (42)

and (43) from (40) and (41) respectively.�
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