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Abstract

A broadcast transmission strategy for the slowly fading Gaussian multiple input multiple output (MIMO)

channel is introduced. This broadcast strategy is an extension of the single input single output (SISO)

broadcast approach. Perfect channel state information (CSI) is assumed known at the receiver end only.

This strategy facilitates to adapt the reliably decoded rate to the actual channel state without having any

feedback link to the transmitter. Transmission of layered coded information is motivated by the theory of

majorization. We derive the basic equations characterizing achievable rates of the strategy. Several ad-hoc

approximations to the achievable region are considered and their performance is compared with the SISO

setting and the ergodic capacity. It has been demonstrated that a single layer outage approach is reasonably

efficient in the MIMO setting in terms of the average reliably decoded rate. A multiple-access (MAC)

broadcast approach is also applied for the MIMO case, and demonstrated to be relatively efficient.

I. Introduction

Fading channels are often used for models of wireless communications, see [1] and references

therein. Slowly fading channels serve as a common model of relatively slowly varying channel
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2characteristics. This is true for a mobile front-end moving slowly relative to the transmission

rate. In such conditions a receiver can estimate the channel fading coefficients with high

accuracy, and this motivates the consideration of channel state information (CSI) available

perfectly at the receiver. With no delay constraints imposed and very long transmission

blocks, in terms of the fading dynamics, the ergodic nature of the fading process is revealed.

The achievable rate is the well studied ergodic capacity [1].

We assume however that stringent delay constraints imply that the transmission block of

length L though still large (as to give rise to the notion of reliable communication [2]) is

much shorter than the dynamics of the slow fading process. This scenario is approximated

by assuming that hi = h ∀i = 1, 2, ..., L. In this case the notion of capacity versus outage

was introduced and discussed [2] and [1, see references therein]. In an outage strategy the

transmission rate is fixed, and the information is reliably detected when the instantaneous

channel realization allows, otherwise nothing gets decoded, and this is called an outage event

[1]. The term outage capacity refers to the maximal achievable average rate, and can be also

cast as the capacity of the appropriately defined compound channel [1].

In this paper we introduce another approach, termed the broadcast strategy. This strat-

egy facilitates reliable transmission rates adapted to the actual channel conditions, without

providing any feedback from the receiver to the transmitter. Cover in his original paper [3]

suggests the use of a broadcast approach for the compound channel. Since the slowly fading

channel may be viewed as a compound channel with the channel realization as the parameter

of the compound channel, it is essentially what the broadcast strategy is. This strategy is

useful in a variety of applications and it matches the successive refinement source coding ap-

proach [4] and later work [5]. That is, the more information rate is provided, the less average

distortion is evident in the reconstructed source. An example for successive refinement of

source coding [4] is image compression in which a gross description exists at first, and only

later follow successive refinements of the description that further refine the image quality.

An application example is progressive JPEG encoding, where additional coded layers serve

to refine the image quality. In the broadcast approach, the transmitter sends layered coded

information, and in view of the receiver as a continuum of ordered users, the maximum

number of layers successively decoded is dictated by the fading channel realization. Thus,

the channel realization implies on the received quality of the data. The broadcast approach



3has a practical appeal in a voice communication cellular environment, where layered voice

coding is possible. Service quality then, depends on the channel realization.

The problem of layered coding suggests unequal error protection on the transmitted data,

which was studied in [6, see references therein]. A related subject is the priority encod-

ing transmission (PET). Boucheron et. al. [7] show that sending hierarchically organized

messages over lossy packet-based networks [8], can be analyzed using the broadcast erasure

channel with degraded message set, using the information spectrum approach.

This approach hinges on the broadcast channel, which was first explored by Cover [3], [9].

In a broadcast channel a single transmission is directed to a number of receivers, each enjoying

possibly different channel conditions, reflected in their received signal-to-noise ratio (SNR).

The Gaussian broadcast channel with a single transmit antenna coincides with the classical

physically degraded Gaussian broadcast channel, whose capacity region is well known, see

[9] for the deterministic case and [10], [11] in the composite or ergodic cases. However, for

multiple transmit antennas the Gaussian broadcast channel is in general a non-degraded

broadcast channel, for which the capacity region is not fully known [12], [13], [14], [15],

[16] and cannot be reduced to an equivalent set of parallel degraded broadcast channels, as

studied in [17], [10], [11].

Broadcasting for a single user implies on broadcasting of common information. Informa-

tion theoretic results and challenges for broadcasting a common source are discussed in [18],

and in light of endless information data transmission termed streaming in [19]. The very

straightforward interpretation of single user broadcasting is the hierarchical broadcasting

using multi-level coding (MLC) [20], [21], [22]. Schill et. al. [21] demonstrates the spec-

tral efficiency of MLC with hierarchical demodulation in an additive white Gaussian noise

(AWGN) channel and a fading channel. In work of Sajadieh et. al. [23] the fading inter-

leaved channel is examined, with one bit of side information about the fading process. The

broadcast approach is adapted, so that different rates can be decoded for channels taking

these two distinct states (determined by whether the SNR is above or below a threshold

value). Since the channel is memoryless the average rate I(Y, Ŝ, ;X) (where Ŝ is the partial

state information) is achievable which is not the case with the broadcast approach, which

seems to be unfit here, where channel state is assumed to be iid.



4Liu et. al. [24] considers a super-position coding scheme to achieve higher transmission

rate in the slowly fading channel. This work adopts the broadcast approach for the SISO

channel with a finite number of receivers. The number of receivers is the number of code

layers, e.g. in a single receiver case the maximal achievable rate is the outage capacity. It is

evident from [24], that for the SISO channel, a few levels of code layering closely approximates

the optimal strategy employing transmission of infinite code layers.

In the sequel, we consider the single transmit antenna case, where the realization of the

fading parameter can be interpreted as an index (possibly continuous), which designates the

SNR at the receiver of interest. This original approach first presented in [25], is elaborated

here and we provide the derivation of the expressions related to the broadcast approach

concept, optimal power distribution, and the associated maximal achievable average rate.

The maximal achievable average rate is demonstrated for the SISO and single input multiple

output (SIMO) Rayleigh fading channel, and is compared to the ergodic capacity reference.

We then consider the multiple-input multiple-output (MIMO) channel, for which we suggest

a sub-optimal ranking at the receiver. The ranking of channel matrices (as opposed to a

vector in a SIMO case) is achieved via supermajorization ranking of the singular values of

HH†, which imply on channel conditioned capacity ranking. We state the optimization

variational problem for deriving the optimal power distribution for the MIMO broadcast

strategy. The optimal solution seems not to lend itself to close form expressions, thus a sub-

optimal solution using majorization is considered and demonstrated for the Rayleigh fading

channel. This approach is called the 1-D approximation, and is developed for the 2x2 (two

transmit and two receive antennas) channel. It suggests breaking the mutual dependency of

the optimal power distribution ρ(a, b) by requiring ρ(a, b) = ρ(a)ρ(b). Such a representation

bares two independent solutions, solved from the optimal SISO broadcast strategy. Another

sub-optimal approach is based on finite level of code layering, and was suggested in [24]

for the SISO scheme. Accordingly, we examine the single layer (outage) coding with and

without employing majorization ranking at the reciver. A two layers coded scheme for the

2x2 channel is also studied and compared to the outage approach. We then approach the

MIMO channel as a multiple-access channel (MAC). In a MAC approach for the MIMO

channel, instead of performing joint encoding for all transmit antennas, each antenna has

an independent encoder, thus the receiver then views a multiple-access channel. When

each encoder performs layered coding, we essentially get a MAC-Broadcast strategy. This



5approach was first presented in [26] for the multiple-access channel, employing the broadcast

approach at the receiver. Its advantage is that each transmitter views an equivalent degraded

broadcast channel, and the results of the SISO broadcast strategy may be directly used.

We pose an iterative algorithm for optimizing the transmit power distribution. The MAC

approach is also studied for a single code layer at each transmitter. Its performance is

evaluated with both successive decoding as used in the broadcast strategy, and with optimal

joint decoding.

The structure of the paper is as follows. In section 2. the SISO broadcast strategy is pre-

sented, and the optimal achievable rate is outlined and demonstrated for the Rayleigh fading

channel. A general MIMO broadcast strategy is presented in section 3., and a sub-optimal

solution to the optimal transmit power distribution is suggested in section 4.. Finite level

code layering is considered in section 5.. Section 6. presents the MAC-broadcast approach.

A summary of the MIMO numerical results is then given in section 7., followed by concluding

remarks.

II. SISO Broadcast Strategy

We start by describing the broadcast strategy conceptually for a single user SISO channel,

first presented in [25]. A Gaussian SISO channel is also known to be physically degraded

[9]. This is used in developing the broadcast strategy, which assumes an infinite number of

ordered receivers. We give here some preliminaries and definitions, and then describe the

broadcast strategy for the SISO channel.

A. Channel Model

Consider the following SISO channel,

yi = hxi + ni , (1)

where {yi} are samples of the received symbols, {xi} are the transmitted complex symbols.

{ni} are the additive noise samples, which are complex Gaussian i.i.d CN (0, 1), and h is the

fading coefficient. For each realization of h there is an achievable rate. We are interested

in the average achievable rate for various independent transmission blocks. Thus we present

the results in terms of average performance, averaged over the distribution of h.
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Fig. 1. a. A SISO channel with a fading parameter h. b. The equivalent SISO broadcast channel model.

For a channel realization h(j), only receivers indexed up to j can decode their fractional rate dR.

Information theoretic considerations for this simple model were discussed in [2, and ref-

erences therein], as a special case of the multi-path setting. With the h value informed to

the transmitter, and with a short term power constrained (excluding power optimization in

different blocks), the expected reliable rate over many block realization is given by

Cerg = Es log(1 + sP ) (2)

where s , |hi|2 is the random fading power, the normalized signal-to-noise ratio (SNR), fol-

lowing the channel model definition (1), is P = E|x|2. E stands for the expectation operator

(subscripts if added denote the random variables with respect to which the expectation is

taken).



7B. The Broadcast Strategy

The SISO channel defined in (1) is also illustrated in Figure 1a. An equivalent broadcast

channel is demonstrated in Figure 1b. This figure also illustrates the broadcast approach,

where the transmitter sends infinite number of layers of coded information. The receiver is

equivalent to a continuum of ordered users, each decoding a code layer if channel realization

allows. In general, the number of code layers(and respectively receivers) depends on the

cardinality of the fading power random variable (RV). Predetermined ordering is achieved

due to the degraded nature of the Gaussian SISO channel [9]. Each of the users has to

decode a fractional rate, denoted dR in Figure 1b. The fractional rates dR of the different

users are not equal, but depend on their receiver index. For some fading realization h(j), only

the continuum of receivers up-to receiver j can decode their fractional rates dR. The first

receiver decodes only its own dR, the second decodes initially the interference dR (informa-

tion intended to the first user) and then decodes its own dR. Finally, receiver j decodes all

fractional interferences up-to layer j − 1, and then decodes its information layer dR. Hence

the total achievable rate for a realization h(j) is the integral of dR over all receivers up-to j.

This model is the general case of code layering. The broadcast approach in [25] with finite

number of code layers, termed also superposition coding is presented in [24]. In finite level

code layering, only a finite set of ordered receivers is required. Obviously, the approach has

lower decoding complexity, however it is a broadcast sub-optimal approach.

Assume now that the fading power RV S is continuous. Then for some channel realization

h(j) of Figure 1b, with a fading power s(j), the designated reliably conveyed information

rate is denoted by R(s(j)). We now drop the superscript j, and refer to s as the realization

of the fading power RV S. As illustrated, the transmitter views the fading channel as a

degraded Gaussian broadcast channel [9] with a continuum of receivers each experiencing

a different signal-to-noise ratio specified by s · P . The total transmitted power P is also

the SNR as the fading and additive noise are normalized according to (1). The value s is

therefore interpreted as a continuous index. The incremental differential rate is then given

by

dR(s) = log

(

1 +
sρ(s)ds

1 + sI(s)

)

=
sρ(s)ds

1 + sI(s)
(3)

where ρ(s)ds is the transmit power of a layer parameterized by s, intended for receiver s,



8which also designates the transmit power distribution. Information streams intended for

receivers indexed by u > s are undetectable and play a role of additional interfering noise,

denoted by I(s). The interference for a fading power s is

I(s) =

∞
∫

s

ρ(u)du, (4)

which is also a monotonically decreasing function of s. The total transmitted power is the

overall collected power assigned to all layers,

P =

∞
∫

0

ρ(u)du = I(0). (5)

As mentioned earlier, the total achievable rate for a fading realization s is an integration of

the fractional rates over all receivers with successful layer decoding capability,

R(s) =

∫ s

0

uρ(u)du

1 + uI(u)
. (6)

Average rate is achieved with sufficiently many transmission blocks, each viewing an inde-

pendent fading realization. Therefore, the total average rate Rbs over all fading realizations

is

Rbs =

∞
∫

0

du f(u)R(u) =

∫ ∞

0

du(1− F (u))
uρ(u)

1 + uI(u)
(7)

where f(u) is the probability distribution function (PDF) of the fading power, and F (u) =

u
∫

0

daf(a) is the corresponding cumulative distribution function (CDF).

For performance comparison, it is of interest to examine the average rate versus outage

probabilities. This follows directly by replacing F (u) in (7) with the conditional probability

distribution function conditioned on s ≥ sth, given by

Fsth
(u) = Pr(s < u|s ≥ sth) =

F (u)− F (sth)

1− F (sth)
, sth ≤ u ≤ ∞. (8)



9The average rate conditioned on s ≥ sth is denoted by Rav(sth) and is given by

Rbs,o(sth) = (1− F (sth))
−1

∞
∫

sth

(1− F (u))
uρ(u)du

1 + uI(u)
, (9)

where evidently Rbs = Rbs,o(0).

The notion of Rav(sth) plays the role of the average transmission rate associated with

the outage probability F (sth). As opposed to the standard approach, here with probability

1−F (sth) the reliably conveyed rate is not fixed but depends on actual realization of s ≥ sth.

The standard capacity versus outage relation is found as a special case with ρ(s)→ Pδ(s−
sth), where δ(s) is the dirac delta function.

Optimization of Rbs,o(sth) with respect to the power distribution ρ(s) (or equivalently with

respect to I(u), u ≥ 0) under the power constraint P (5) is of interest and can in certain

cases be found by solving the associated constrained Eüler equation [27]. We turn back to

the expression in (7), corresponding to sth = 0, and explicitly write the optimization problem

posed

Rbs,max = max
I(u)

∫ ∞

0

du(1− F (u))
uρ(u)

1 + uI(u)
(10)

where we maximize Rbs (7) over the residual interference function I(u). For an extremum

function I(x), the variation of the functional (10) is zero [27], corresponding to a proper Eüler

equation, which yields the extremal solution for I(x). Let us first present the functional of

(10) subject to maximization

S(x, I(x), I ′(x)) = (1− F (x))
−xI ′(x)
1 + xI(x)

. (11)

The necessary condition for a maximum of the integral of S(x, I(x), I ′(x)) over x is a zero

variation of the functional [27]. Correspondingly, the Eüler Equation is given by

SI −
d

dx
SI′ = 0 (12)



10where

SI = (1− F (x)) x2I′(x)
(1+xI(x))2

SI′ = (1− F (x)) −x
1+xI(x)

d
dx
SI′ =

xf(x)
1+xI(x)

+ (1− F (x)) x2I′(x)−1
(1+xI(x))2

(13)

which finally simplifies from a differential equation (12) to a linear equation by I(x), and

has the following closed form solution

I(x) =







1−F (x)−x·f(x)
x2f(x)

x0 ≤ x ≤ x1

0 else
, (14)

where x0 is determined by I(x0) = P , and x1 by I(x1) = 0. Some of the results are

demonstrated in the following, for an exponentially distributed fading power.

All above derivations stand also for the SIMO channel. As long as the transmitter has

a single antenna, the Gaussian channel is a degraded channel regardless of the number

of receive antennas. Therefore the described broadcast strategy withholds. The number

of receive antennas is related with the distribution f(u) of the equivalent fading power

coefficient. The contribution of increasing the number of receive antennas to the achievable

average rate is demonstrated in section 2.4..

C. The Rayleigh Flat Fading Channel

We demonstrate here some results for the SISO Rayleigh flat fading channel. That is the

fading power S is exponentially distributed with

f(u) = e−u, F (u) = 1− e−u, u ≥ 0. (15)

The optimal transmitter power distribution which maximizes Rbs in (10) is given by substi-

tution of f(u) and F (u) from (15) into (14), and by derivation with respect to the fading

power s,

ρ(s) = − d

ds
I(s) =







2
s3
− 1

s2
, s0 ≤ s ≤ s1

0 , else
(16)



11where s0,is determined by I(s0) = P , which simplifies here to

s0 =
2

1 +
√
1 + 4P

,

and s1 by I(s1) = 0, thus s1 = 1. The corresponding rate R(s) using (6) is

R(s) =



















0 , 0 ≤ s ≤ s0

2 ln( s
s0
)− (s− s0) , s0 ≤ s ≤ 1

−2 ln(s0)− (1− s0) , s ≥ 1

(17)

and the associated total average rate following (7) is

Rbs = 2Ei(s0)− 2Ei(1)− (e−s0 − e−1), (18)

where

Ei(x) =

∞
∫

x

e−t

t
dt, x ≥ 0 (19)

is the exponential integral function. The limiting behavior of Rbs is found to be

Rbs ≈







ln P
9.256

, P →∞
1
e
P , P → 0

(20)

The ergodic capacity in this case is given by [2],

Cerg = e1/P · Ei(
1

P
) ≈







ln P
1.78

, P →∞
P , P → 0

(21)

where Ei(x) is the exponential integral function defined in (19). The average achievable rate

of the standard outage approach, depends on the outage probability Pout = Pr{s ≤ sth} =

1− e−sth . Thus the achievable outage rate is given by

Ro(sth) = e−sth log(1 + sthP ). (22)
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Fig. 2. SISO broadcast achievable rate Rbs(s) , outage rate Ro for an outage probability associated with s0

(16), and the upper bound RG(s) vs. the fading realization s. Different values of SNR demonstrated.

The outage capacity is the product of maximizing the achievable outage average rate (22)

with respect to the outage probability (or the fading power threshold sth). This yields an

outage capacity

Ro,max = e−sth,opt log(1 + sth,optP ). (23)

where sth,opt solves the equation

log(1 + sth,optP ) =
P

1 + sth,optP
. (24)

D. Numerical Results

We present here results of achievable rates for the single user SISO and SIMO Rayleigh

flat fading channels under the broadcast approach. Figure 2 demonstrates the broadcast

achievable rate Rbs(s) (17) versus channel realizations s (0 ≤ s ≤ 2). It is compared to the

evident upper bound

RG(s) = log(1 + sP ), (25)
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Fig. 3. SISO broadcast achievable average rate Rbs, outage capacity Ro, ergodic capacity Cerg and Gaussian

channel (AWGN) upper bound CG vs. SNR.

for SNR (P ) values of 5dB, 10dB, 20dB. As an example for the capacity outage tradeoff we

check the outage rate associated with sth = s0, where s0 is defined below (16) and stands

for the transmission threshold in the broadcast strategy. The outage probability is therefore

Pout = 1−e−s0 , and the rate related to that is the standard capacity-outage approach Ro(s0)

(22). The associated outage rate is compared with the broadcast achievable rate Rbs(s) in

Figure 2.

Figure 3 demonstrates the SISO broadcast achievable average rate Rbs (18), outage ca-

pacity Ro (23), the ergodic capacity Cerg (21) upper bound, and the Gaussian capacity

CG = log(1 + P ) as a reference. Clearly, Rbs > Ro as the latter is achieved by substituting

ρ(s) with Pδ(s − sth,opt) in lieu of the optimized ρ(s) in (6). Outage capacity is equivalent

to optimized single layer coding rather than the optimized intrinsic continuum of code lay-

ers in the broadcast approach. This difference is more pronounced for high SNR. Such a

comparison of the single level code-layer, and two level achievable rates is done in [24]. This

comparison shows that two level code layering is already very close to the optimum Rbs.

The ergodic capacity in the general SIMO case, with N receive antennas, is given by (9)
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in [28], which reduces to the SISO ergodic capacity for N = 1,

Cerg =
1

Γ(N)

∫ ∞

0

dx log(1 + P · x)xN−1e−x. (26)

The channel density is given by [29]

f(λ) = const(N) · λN−1e−λ, (27)

where const(N) is a normalization constant.

Figure 4 demonstrates the SIMO broadcast achievable average rates Rbs compared to the

ergodic capacities Cerg upper bound vs. SNR, for various number of receive antennas. There

is a noticeable gain in spectral efficiency for all cases N = 1, 2, 4, 8. Increasing N reduces the

spectral efficiency loss of the broadcast approach with respect to the ergodic capacity. As

for N →∞, the impact of fading is mitigated due to the central limit theorem, both ergodic

capacity [28], and the broadcast approach yield the same spectral efficiency, approaching

log(1 + PN) for N >> 1.
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Fig. 5. a. A MIMO channel with a channel propagation matrix H. b. The equivalent MIMO broadcast

channel model. A continuum of ordered receivers, with ordering dictated by supermajorization of singular

values of channel norm matrix HH†. Only receivers indexed up to j decode their fractional rate dR.

III. MIMO Broadcast Strategy

We adopt here the broadcast approach [3], [25], [26] described earlier for the SISO/SIMO

channels, where the receiver opts to detect the highest possible rate based on the actual

realization of the propagation matrix H not available to the transmitter. In short, the

better H is the higher becomes the reliably decoded information rate. Since the MIMO

setting in view of infinite layer coding is equivalent to the general broadcast channel, rather

than a degraded broadcast channel as in the single input case. In the sequel we demonstrate

a broadcast approach, suited for this MIMO scenario. The approach suggests ordering of

receivers for the broadcast approach based on supermajorization of singular values of the

channel norm matrix, as illustrated in Figure 5b.



16A. Channel Model

Consider the following flat fading MIMO channel withM transmit antennas and N receive

antennas,

y = Hx + n , (28)

where x is the input (M×1) vector, n is the (N×1) noise vector with complex Gaussian i.i.d

CN (0, 1) distributed elements. The propagation matrix (N ×M) is designated by H and

possesses also complex Gaussian i.i.d CN (0, 1) distributed elements. The received (N × 1)

vector is denoted by y. We adhere to the non-ergodic case, where H is fixed throughout the

code word transmission. We assume that the receiver is aware of H while the transmitter is

not.

B. Receivers Ordering

B.1 Weak Supermajorization

First we introduce some partial ordering relations based on classical theory of majorization

[30]. Let α = {αi}, β = {βi} be two sequences of length K. Let {α(i)} , {β(i)} be the

increasing ordered version of the sequences,

α(1) ≤ α(2) · · · ≤ α(K)

β(1) ≤ β(2) · · · ≤ β(K) . (29)

Let α be weakly supermajorized by β, α ≺w β, that is

k
∑

i=1

α(i) ≥
k
∑

i=1

β(i) , k = 1 . . . , K . (30)

Then [30], the relation α ≺w β implies that,

K
∑

i=1

φ(αi) ≤
K
∑

i=1

φ(βi) , (31)

for all continuous decreasing convex functions φ(·).



17B.2 Relation to Capacity

Consider now the received signal in (28), where the undetectable code layers are explicitly

stated,

y = H(xS + xI) + n , (32)

where xS and xI are decodable information and residual interference Gaussian vectors re-

spectively, with average norms PS and PI correspondingly, where the total transmit power

is P = PI +PS. n is an iid Gaussian complex vector with unit variance per component. The

mutual information

I(y;xS) = I(y;xS,xI)− I(y;xI |xS)

= log det

(

I +
PS + PI

M
HH†

)

− log det

(

I +
PI

M
HH†

)

=
J
∑

k=1

log

(

1 +
PSλk

1 + PIλk

)

, C(λ;PS, PI) ,

(33)

where {λk}, k = 1, 2 . . . J , min(N,M) designate the singular values (or eigenvalues) of

the matrix 1
M
H†H for M ≤ N , or 1

M
HH† for N ≤ M , [28], and where the expression was

explicitly designated by C(λ;PS, PI). Now since,

φ(x) = − log

(

1 +
ax

1 + bx

)

(34)

is a continuous decreasing convex function of x ≥ 0 for a, b ≥ 0. Finally, if λ ≺w δ

C(λ;PS, PI) ≥ C(δ;PS, PI) . (35)

C. The Broadcast Approach

We develop the broadcast approach for the MIMO channel, discussing for simplicity the

case of M = N = 2. The signal x is composed of a layered double indexed data stream with

indices denoted u and v. We refer to layer ordering by columns bottom up, as depicted in

Figure 6, where u and v are described as a pair of indices taking integer values within the

prescribed region. This is only for demonstration purposes, as indices u and v are continuous
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u

v

Fig. 6. Ordering of Layered Communications.

singular values of 1
2
HH†. Say u and v are associated with the minimal eigenvalue λ2 and

the sum of eigenvalues λ2 + λ1, respectively. Evidently, u ≥ 0, v ≥ 2u. Say that λ2, λ1 take

on the set of integer values {0, 1, 2, 3, 4}, then the layered system is described by (u, v) in

the order: (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 4). The actual ordering of

the layers is in fact immaterial, as will be shown decoding is not done successively as in the

SISO case [25], but rather according to what is decodable adhering to partial ordering.

We envisage all possible realizations of H and order them by u = λ2, v = λ2 + λ1 where

λ2 and λ1 are respectively the minimal and maximal eigenvalues of 1
2
HH† (a 2 × 2 matrix

in our case). Supermajorization ordering dictates that all streams decodable for realization

H will be decodable for realization H ′ as long as

λ
′

2 ≥ λ2, λ
′

2 + λ
′

1 > λ2 + λ1 . (36)

Thus, we visualize all possible realizations of H as channels referring to different users in a

broadcast setting, and we investigate the associated rates of the users which we have ranked

as in section 3.2.1., via a degraded ordering. It is evident that the current approach specifies

an achievable rate region, but by no means it is claimed to be optimal. In fact we shall point

out some inherent limitations of this approach. We shall investigate the current approach in

the limit of an infinite array of layered codes, in parallel to the single dimensionalM = N = 1
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D. Optimal Power Distribution - Variational Problem Definition

Let u = λ2 and v = λ1 be the eigenvalues of 1
2
HH† for some channel realization such that

v ≥ u ≥ 0. Let ρ(u, v) dudv be the power associated with the information stream indexed

by (u, v), (v ≥ u), and featuring the incremental rate d2R(u, v). Again, for a given u and

v, all rates associated with the indices (a, b) , a ≤ u, b ≤ v can be decoded, as (λ2, λ1) is

supermajorized by (λ2 = a, λ1 = b).

A natural optimization problem, in parallel to that posed and solved for the single di-

mensional case is to optimize the power density ρ(u, v), or the related interference pattern

I(u, v) maximizing the average rate, under the power constraint I(0, 0) = P .

Let I(u, v) designate the residual interference at (u, v) (of the undetected streams) λ2, λ1,

I(u, v) = P −
u
∫

0

da

v
∫

a

db ρ(a, b). (37)

The associated incremental rate d2R(u, v) equation, based on (3) and (33), is then given by

d2R(u, v) = log
(

1 + uρ(u,v) dudv
1+uI(u,v)

)

+ log
(

1 + vρ(u,v) dudv
1+vI(u,v)

)

= uρ(u,v) dudv
1+uI(u,v)

+ vρ(u,v) dudv
1+vI(u,v)

(38)

The power density is the second order derivative of the residual interference function (37),

ρ(u, v) = − ∂2

∂uv
I(u, v) , Iuv (39)

and the incremental rate may be expressed as

d2R(u, v, I, Iuv) = −
uIuv(u, v)dudv

1 + uI(u, v)
− vIuv(u, v)dudv

1 + vI(u, v)
. (40)

The accumulated reliable rate decoded at (u, v) is

R(u, v) =

u
∫

0

v
∫

a

d2R(a, b). (41)



20The expected rate is then given by

Rav =

∞
∫

0

∞
∫

0

f(u, v)R(u, v) , (42)

where f(u, v) designates the joint density distribution function of the ordered eigenvalues of

1
2
HH†, random variables u and v. For Gaussian H with iid components the joint density

function of λ2, λ1 is given by, [28]

fλ2,λ1
(u, v) = 16 e−2v−2u(v − u)2, v ≥ u ≥ 0 (43)

The optimal expected rate is a product of optimal selection of the power distribution ρ(u, v).

Power distribution directly implies the residual interference function I(u, v) (37) and (39) ,

hence the optimization of Rav can be over I(u, v).

Rmax
av = max

I(u,v)

∞
∫

0

da

∞
∫

0

dbf(a, b)

a
∫

0

du

b
∫

u

dvRF (u, v, I, Iuv) (44)

where f(a, b) is defined by (43), RF (u, v, I, Iuv) , d2R(u,v,I,Iuv)
dudv

from (40) which depends on the

interference function I(u, v) and the power density Iuv(u, v) from (37) and (39) correspond-

ingly. The maximization of Rav (42) with respect to the functional I(u, v) is a variational

problem, which is developed in Appendix A. Consequently, the optimization problem may

be stated in a form of partial differential equation (PDE),

SI +
∂2

∂uv
SIuv

= 0. (45)

where

S(a, b, I, Iab) , (1 + F (a, b)− F (a)− F (b)) ·RF (a, b, I, Iab),

and SI is the partial derivative with respect to the function I(u, v). SIuv
is the partial

derivative with respect to the function Iuv. Iuv is the second order partial derivative of

I(u, v) with respect to u and v.

The necessary condition for extremum (45) is given, in Appendix A, in terms of a non-linear

second order PDE, and does not appear to have any straight forward analytical solution.



21Therefore, we demonstrate, in the following, a single dimension approximation to the optimal

solution.

This approximation is termed the 1-D approximation, where the maximization problem is

solved by assuming independency between the random variables u and v. As this assumption

is never true, the sub-optimal solution may depend on the variables (u, v) assignment. We

demonstrate three variable transformations for (u, v) in Appendix B. We explicitly state

there the joint CDF, the marginal distributions and the incremental rate RF (u, v, I, Iuv),

which depend on the variable transformations. It should be noted that the solution of the

optimization problem stated in (45) is invariant to the selection of variable transformation

of the ordered eigenvalues.

Another sub-optimal approach, not assuming majorization at the receiver is based on

finite level of code layering, and was suggested in [24]. In this approach the transmitted data

consists of a finite number of code layers, and the number of decodable layers depends on

the channel realization, this method is presented in section 5..

IV. The MIMO 1-D Approximation

We suggest here to approximate the optimal ρ(a, b) by breaking the mutual dependency

of the variables a and b requiring

ρ(a, b) = ρ(a)ρ(b). (46)

Such a representation (46) bares two independent solutions for I(a) and I(b) as ρ(a) =

− d
da
I(a) and ρ(b) = − d

db
I(b) respectively. Hence it is desired to adhere two separate 1-D

problems. Each channel is slowly fading, one is F (a) distributed and the other F (b) given

by (B.2) and (B.3) respectively. In a SISO channel with a fading distribution (B.2) the

achievable average rate denoted by RT,a is given in (7) and equivalently for F (b) the total

rate is denoted RT,b.

We use the general result of (14) to explicitly determine the residual interference function

for three variable transforms suggested in Appendix B. For all three variable transforms

the channel distribution F (a) is similar since u = λ2. Therefore, the residual interference



22function is also common, and its solution using (14) and (B.2) is

I(a) =







1
4
a−2 − a−1 a0 ≤ a ≤ a1

0 else
(47)

where a0, a1 are determined by I(a0) =
√
SNR, I(a0) = 0 respectively, and

ρ(a) = − d

da
I(a) =







−1
2
a−3 + a−2 a0 ≤ a ≤ a1

0 else
(48)

this is exactly the scalar Rayleigh channel solution as the distribution density of a is also

exponential (see [25] for the slowly fading SISO channel).

We similarly solve the Eüler equation for I(b) and ρ(b) for the pairs (a, b) = (λ2, λ1),

(a, b) = (λ2, λ1 + λ2) and (a, b) = (λ2, λ1 − λ2). This is done using (14) and the marginal

distribution F (b) for each pair given by (B.3), (B.6) and (B.10) respectively. Finally, the

residual interference function is the product of the single dimensional interference functions

I(a, b) = I(a)I(b). The achievable average rate RF (a, b, I, Iab) can then be computed for each

pair of variable transform using (40), (B.7) and (B.11) for the respective variable transform.

V. MIMO Finite Level Code Layering

Finite level of code layering was suggested in [24] for the single transmit antenna case.

In this approach the transmitted data consists of a finite number of code layers, and the

number of decodable layers depends on the channel realization.

A. Single State Channel Approximation

We consider now the achievable rates with an outage approach, which will also enhance

the understanding of the limitations of the majorization approach discussed earlier. In this

scheme we transmit in a constant rate Rm1,c, and assume nothing is decoded on the outage

events.

This setting is described by assuming two delta functions for the power density

ρ(λ1, λ2) = δ(λ1 − L1)δ(λ2 − L2) (49)



23

0
0.5

1
1.5

2
2.5

3
3.5

4

0
0.5

1
1.5

2
2.5

3
3.5

4
0

0.5

1

1.5

2

2.5

L1
L2

Fig. 7. Rx,av(λ1, λ2), for SNR=15 dB, where L1 denotes λ1 and L2 denotes λ2

where L1 ≥ L2 are some non-negative constants, and λ1, λ2 are associated with the maximal

and minimal singular values of the realization of 1
2
HH†. The associated, constant transmit

rate Rm1,c is then

Rm1,c = log(1 + PL1) + log(1 + PL2). (50)

The transmitter sends a single stream at rate Rm1,c, with a total power P . This stream will

be correctly decoded, if (L1, L2) is weakly supermajorized [30] by the (λ1, λ2) ((λ1, λ2) ≺w

(L1, L2)), where λ1 ≥ λ2. The associated probability of that is

Pmajor = Pr {λ2 ≥ L2, λ2 + λ1 ≥ L2 + L1} . (51)

The average rate for some (L1, L2) is then

Rm1 = Pmajor ·Rm1,c. (52)

It is optimized over (L1, L2) to achieve a maximal rate in the proposed setting, given the

joint density of (λ1, λ2) by (43). The explicit expression of Pmajor is

Pmajor =

L1+L2
2
∫

L2

da
∞
∫

L2+L1−a

dbfλ2,λ1
(a, b) +

∞
∫

L1+L2
2

da
∞
∫

a

dbfλ2,λ1
(a, b) =

=
(

1 + 2
3
(L1 − L2 )

(

2 (L1 − L2 )
2 − 3L1 + 3L2 + 3

))

e−2L1−2L2

(53)



24Figure 7 demonstrates Rm1 for the different selections of threshold pairs (L1, L2), and a fixed

SNR.

It is clear that the majorization requirement λ1 ≥ L1 and λ1 + λ2 ≥ L1 + L2 guarantees

reliable decoding, however it is a sufficient but not necessary condition. If this requirement

is not met, it does NOT imply that this rate is undecodable. This stands in contrast to the

scalar (SISO) case.

It would be interesting to see the loss in SNR from the majorization requirement. The

Outage Capacity is the maximal achievable average rate under the single state constraint,

when the transmitter sends data in a fixed rate Rm1,c. The conveyed rate is limited by the

mutual information For channel realization (λ1, λ2),

Ro1,c ≤ log (1 + Pλ1) + log (1 + Pλ2)

For some rate Ro1,c, the probability of successfully decoding the stream is

Po1 = Pr {Ro1,c ≤ log (1 + Pλ1) + log (1 + Pλ2)} .

Using the joint density of (λ1, λ2) (43), we practice change of variables Rk = log (1 + Pk),

for k = λ1, λ2. The new density function is given by

fRb,Ra
(r1, r2) =

16

P 4
exp {−2/P (er1 + er2 − 2)} (er1 − er2)2 er1+r2 (54)

where the factor er1+r2/P 2 is the Jacobian. Thus the probability (54) is given by

Po1 =

∞
∫

0

dr2

∞
∫

max{Rx1−r2,r2}

dr1fRb,Ra
(r1, r2) (55)

The consequential average rate for some Ro1,c is

Ro1 = Po1 ·Ro1,c. (56)

which is optimized over Ro1,c to achieve maximal average rate Ro1.

B. The 2-State Channel Approximation

Let the transmit power P consist of two streams of power P1, P2 and with associated rates

R1, R2 respectively. This setting is associated with a double impulse (extension of the single

impulse as in equation (49)).



25Let region A be the region where R1 can be decoded reliably, treating R2 as interference,

and similarly region B, as the region where R2 can be decoded treating R1 as an interference.

Region C, is the MAC region, where both R1 and R2 can be decoded. Naturally, the regions,

as defined below, are not disjoint.

Region A, is then defined for some channel realization (λ1, λ2) (λ1 ≥ λ2) that satisfy

R1 ≤ log(1 +
P1λ1

1 + P2λ1
) + log(1 +

P1λ2
1 + P2λ2

). (57)

Region B is defined by by (λ1, λ2) that satisfy

R2 ≤ log(1 +
P2λ1

1 + P1λ1
) + log(1 +

P2λ2
1 + P1λ2

). (58)

Region C where both R1 and R2 are decoded (interpreted as a multiple access channel with

two users), is defined (λ1, λ2) that satisfy:

R1 ≤ log(1 + P1λ1) + log(1 + P1λ2),

R2 ≤ log(1 + P2λ1) + log(1 + P2λ2),

R1 +R2 ≤ log(1 + Pλ1) + log(1 + Pλ2)

(59)

Now let Pr1, Pr2 and Pr3 be the following probabilities:

Pr1 = Pr {A⋂Bc
⋂ Cc}

Pr2 = Pr {B⋂Ac
⋂ Cc}

Pr3 = Pr {C}
(60)

where Xc denotes the complementary of X. The average rate is given by:

Ro2 = Pr1R1 + Pr2R2 + Pr3(R1 +R2) (61)

Evidently Ro2 is optimized over R1, R2 and P1, (P1 + P2 = P ). This two-state channel

approximation was shown to compensate the loss of the outage approach in the SISO setting,

as can be seen in figure 8 of [24].

It was observed in numerical optimization, that for the MIMO channel this approach has

only a small gain over the outage approach from the previous sub-section.
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Fig. 8. a. A MIMO channel with a channel propagation matrix H. b. The equivalent MIMO (MAC)

broadcast channel model. The transmitter includes independent encoders. Ordering of receiver is follows

from the SISO broadcast approach.

VI. MAC-Broadcast Approach

We extend the broadcast approach here by reducing the coding complexity. Instead of per-

forming joint encoding for all transmit antennas, each antenna has an independent encoder,

as illustrated in Figure 8. The receiver then views a multiple-access channel.

This approach was first presented in [26] for the multiple-access channel, employing the

broadcast approach at the receiver. Its advantage is that each transmitter views an equivalent

degraded broadcast channel, and the results of the SISO broadcast strategy may be directly

used here. In the following we present a broadcast strategy for the MAC or MIMO channel.

We suggest an iterative algorithm for optimizing the power distribution. In the work of

Liu et. al. [31], which also incorporates the MAC approach of [26], the authors suggest

an iterative algorithm for computing the achievable rate using MMSE based decoding, for



27some transmit power distribution, without optimizing the transmit power distribution. The

MAC approach is also studied with a single code layer at each transmitter, denoted as

MAC-Outage. It is considered with both successive decoding as proposed in the broadcast

strategy, and with optimal joint decoding. Numerical results of achievable rates are then

demonstrated in the next section.

A. MAC-Outage

In this subsection we discuss a MAC-outage approach. In contrast to the MAC-Broadcast

each encoder has a single code layer here. The decoder attempts first to decode both streams

adhering to the optimal joint detection. If that fails it tries to decode either of the streams,

treating the other stream as an interfering signal, while optimally preprocessing for the

channel response H. We use the term joint detector to characterize this detection procedure,

which resembles the strongest user detector concept, first introduced in [32]. Later on, we

bring the relevant mutual information expressions that govern the performance of both the

joint detector and a successive decoding strategy.

A.1 Optimal Detection

Consider the MIMO channel defined in (28). We specify the received signal again, for the

case of M = N = 2:





y1

y2



 =





h11x1 + h12x2 + n1

h21x1 + h22x2 + n2



 (62)

where hij are the elements of the channel propagation matrix H.

Each antenna is assumed to transmit independently at rate R and power P/2. Thus the

SNR at each receive antenna is P . We define now the three decoding regions, which are not

disjoint. When trying to decode just one stream (if joint detection has failed), the receiver

decodes user I as if the other user is an additive Gaussian interferer, using an MMSE decoder

[33], [34]. The actual achievable rate by a single user decoder depends on the distribution of

symbols transmitted by the interferer. However, as the channel inputs are power-constrained,

the minimax distribution of the interferer is Gaussian [34]. Hence, a single-user transmitting



28at rate R and power P/2 in presence of a single interferer will be decoded if

R ≤ I(y;x1) (63)

where I(y;x1) is the mutual information of the received vector and the transmitted informa-

tion x1. The decoding region of user I as defined by (63) is denoted by A. Region A includes

all possible channel realizations H for which the mutual information I(y;x1) is greater than

the transmission rate of user I. Similarly, a second case is defined, the condition for decoding

user II successfully, when considering user I as an interferer, and using the MMSE decoder

is

R ≤ I(y;x2), (64)

and decoding region of user II is denoted by B. In the third case, which in fact the decoder

attempts first, the receiver tries to decode both users jointly. The condition for decoding

both users, is the same as in a multi access channel (MAC) with two users. Hence the

decoding region C is

C1 : 2R ≤ I(y;x)

C2 : R ≤ I(y;x1|x2)
C3 : R ≤ I(y;x2|x1)

, (65)

and is defined as the intersection of all three subregions C = {C1 ∩ C2 ∩ C3}.

The average achievable rate is

Rmac1,opt = (PA + PB + 2PC)R (66)

where the disjoint probabilities of correct decoding in each region is defined by

PA = Pr {A ∩ Bc ∩ Cc}
PB = Pr {B ∩ Ac ∩ Cc}
PC = Pr {C}

(67)

where Xc denotes the complementary of X.



29The explicit expressions of mutual information in each region are detailed in the following.

For region A,

I(y;x1) = log det Λy − log

{

1 +
P

2
(|h12|2 + |h22|2)

}

= log det {Λy} − log(1 +
P

2
ΛH,22) (68)

where Λy = I+ P
2
ΛH , and ΛH is the covariance matrix of the channel propagation coefficients.

Similarly, we derive I(y;x2)

I(y;x2) = log det Λy − log

{

1 +
P

2
(|h21|2 + |h11|2)

}

= log det {Λy} − log(1 +
P

2
ΛH,11). (69)

For region C the expressions of mutual information are given by

I(y;x) = log det Λy

I(y;x1|x2) = log
{

1 + P
2
(|h21|2 + |h11|2)

}

= log(1 + P
2
ΛH,11)

I(y;x2|x1) = log
{

1 + P
2
(|h12|2 + |h22|2)

}

= log(1 + P
2
ΛH,22)

. (70)

The maximal achievable average rate is achieved by optimizing Rmu (66) over the transmis-

sion rate R.

Interestingly, ΛH is a complex Wishart matrix [29], which is an Hermitian random matrix

HH†, where H consists of iid complex Gaussian elements. The distribution of its elements

is [29]

p(ΛH) =
1

2MN Γ̃M(N)
exp(−1

2
tr(ΛH))(det ΛH)

N−M (71)

where the complex multivariate gamma function is defined by

Γ̃M(N) = πM(M−1)/2

M
∏

i=1

Γ(N − i+ 1)

In [29] (and also in (71)) the elements of H are iid complex Gaussian distributed, where

the real and imaginary parts are each distributed N(0, 1). Therefore the distribution of the

Wishart matrix ΛH with complex elements distributed CN(0, 1) each, for M = N = 2 is

given by

p(ΛH) = exp(−tr(ΛH)), (72)



30If we further specify the elements of ΛH

ΛH =





w1 w12

w21 w2





and recall that the determinant of Λy is w1 ·w2−w12 ·w21, with w12 = w′
21, it turns out that

the PDF of ΛH depends solely on three real variables:

pΛH
(w1, w2, w3) =







exp(−tr(w1 + w2)) , w1w2 ≥ w3

0 , otherwise
(73)

where w3 , w12w21. Note that ΛH can be defined as either ΛH = HH† or ΛH = H†H. In

both cases ΛH is a Wishart matrix and det(I + P
2
HH†) = det(I + P

2
H†H), therefore it’s

preferable to use ΛH = H†H and keep consistency with definitions of (68)-(70).

A.2 Successive Decoding

Consider here as well the MIMO channel defined in (28). The transmission scheme is

identical to the one described in sub-section 6.1.1.. That is each antenna transmits inde-

pendently at rate R and power P/2. Three decoding regions for successive decoding are

specified in the following. In the first case, the receiver decodes user I as if the other user

is an additive Gaussian interferer. A single-user transmitting at rate R and power P/2 in

presence of a single interferer will be decoded in the region A specified in (63). Similarly, the

region B for decoding user II successfully, when considering user I as an interferer is given

by (64).

A rate 2R may be achieved, when both users are successfully decoded. In contrast to the

optimal joint detection region specified in (65), here the receiver tries to decode a user, and

when if successful decodes the other user cancelling the first user. The implied region C of

successive decoding is

{R ≤ I(y;x1) ∩R ≤ I(y;x1|x2)}
∪

{R ≤ I(y;x2) ∩R ≤ I(y;x2|x1)}
(74)



31The average achievable rate, denoted by Rmac1,bs, is specified in (66), where PC in (66) is the

probability of the new region C from (74). The expressions of the mutual information, are

specified also in (68)-(70).

B. Two User Broadcast Approach

We now adapt the single user broadcast strategy to fit a two-user multiple-access fading

channel. Consider the channel model described by (28), where M designates the number of

transmit antennas, or the number of users in the MAC equivalent. We restrict the study to

M = 2, and outline the implications of generalization to M -users.

As in the SISO broadcast strategy, each user comprises a continuum of parallel transmis-

sions with the power distributions ρm(s)ds, m = 1, 2. Let

Im(s) =

∞
∫

s

ρm(u)du, m = 1, 2. (75)

The receiver performs MMSE Decision feedback equalization (DFE) front end for each user.

That is it does MMSE accounting for the residual interference of the other user, and assuming

also cancellation of his decoded layers. This results in a new normalized SIR denoted by

ωm, which is equivalent to the fading power in the SISO case. This ωm defines the residual

interference I(ωm) to be accounted for by the MMSE receiver of the other user. Thus when

decoding one user by an MMSE-DFE receiver, it considers the undecoded layers of the other

user as interference.

We now formalize the MMSE-DFE decoding rules. The MMSE resulting signal to inter-

ference ratio (SIR) [34] for users m = 1, 2, for some residual interference from the other user,

is given by

SIR1 =
1

[1+HQ1H†]
−1
1,1

− 1

SIR2 =
1

[1+HQ2H†]
−1
2,2

− 1
(76)

where H is the channel propagation matrix, Q1 , diag{P1, I2(ω2)}, Q2 , diag{I1(ω1), P2)},
and Pm is the original transmit power of user m = 1, 2. The normalized SIR of user m, is



32simply a normalization of the SIR by the transmit power of user m,

ω1 = SIR1/P1 =
1

P1[1+HQ1H†]
−1
1,1

− 1/P1

ω2 = SIR2/P2 =
1

P2[1+HQ2H†]
−1
2,2

− 1/P2
(77)

The simultaneously achievable rate of the users R1(ω1, ω2), R2(ω1, ω2) respectively depend

now on both normalized SIRs ω1 and ω2 through (77),

Rm =
ωm
∫

0

sρm(s)ds
1+sIm(s)

m = 1, 2 (78)

where ρm(s) is the transmit power distribution defined earlier. The expected rates per user

are then

Rmac−bs,m = EH [Rm(ωm)] m = 1, 2

which is the average of instantaneous achievable rates Rm for all channel realizations H.

Using (78) for the instantaneous rate and performing variable transform on the RVs H to

ωm, the expected rate per user is

Rmac−bs,m =

∞
∫

0

(1− Fωm
(u))

uρm(u)du

1 + uIm(u)
, m = 1, 2 (79)

where Fωm
(s) is the CDF of the ωm, that is

Fωm
(ν) = Pr(ωm(H) ≤ ν) =

∫ ∫

R(ν)

fH . (80)

where R(ν) stands for the associated region in which the RVs of H lie. The functions I1(u),

I2(u) can be optimized as to maximize the expected rates, or the total expected throughput

Rmac−bs,1 + Rmac−bs,2 as is discussed in the following subsection. In parallel to the single

user case, also here expected rates per outages can be considered by replacing the original

probability distribution of the fading powers Fωm
(u) by F sth

ωm
(u) similar to (8), where now

F sth
ωm

(u) designates the conditional distribution function of ωm, conditioned on the event

ωm /∈ sth, where sth denotes now the a region 0 ≤ ωm ≤ sth, which is associated with an

outage probability.
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We pose an algorithm for optimizing the maximal average rate Rmac−bs, in the symmetric

case where Rmac−bs,m = Rmac−bs for m = 1, 2. The following algorithm presented for the

two-user setting, is straightforwardly extended to the M-user setting. Assuming the users

are transmitting with power P/2 each, due to symmetry Im(u) = I(u) for m = 1, 2. The

algorithm’s main steps are as follows

1. Initialization - I0(u) is the interference function initialized, possibly to the optimized

single-user function satisfying (14). The following steps are repeated iteratively. The itera-

tion index is denoted iit.

2. Solve ωm(H) for m = 1, 2, by the set of equations defined in (77).

3. Find the associated CDF of Fωm
(ν) for m = 1, 2, using (80).

4. Calculate I iit(u), using (14), and by replacing the previous Fωm
(ν) with the one computed

in the previous step. The new I iit(u) is used in the next iteration, starting at step No. 2.

This procedure is iteratively repeated until convergence to I∞ , I∗(u). Equation (77) does

not in general guarantee a unique solution. However all solutions here are jointly monotonic.

That is if ω′
1 > ω1, so is ω′

2 > ω2. The stable solution to be selected is the minimal pair.

This ensures a unique solution.

VII. MIMO - Numerical Results

In the following, the average achievable rates of the various suggested methods are com-

pared in Figure 9, the ergodic capacity upper bound for the SISO, SIMO, MIMO is illustrated

as a performance reference measure. The MIMO approach is tested in the 1-D approximation

with different set of indices. It turns out that only for the set u = λ2 and v = λ1−λ2 the ad-
hoc MIMO setting has some gain over the SISO setting. A comparison the MIMO approach

to the SIMO, SISO using the 1-D approximation was performed. The best performance was

evident for the selection of u = λ2 and v = λ1 − λ2, as demonstrated by Rma in Figure

9. It can be seen that for high SNR, the MIMO majorization based approach is inferior to

both SIMO and SISO schemes. It may be concluded that all proposed schemes, using two

transmit antennas and two receive antennas in the 1-D approximation fail to introduce the

expected gain. Reference SIMO, SISO ergodic capacities are also given in (26).
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Fig. 9. Comparison a MIMO channel: Rmac1,opt - average achievable rate in the single layer MAC outage

approach (optimal joint detection). Rmac1,bs - average achievable rate in the single layer MAC-broadcast

approach (successive decoding). Rma - average achievable rate via the single dimensional approximation

for the optimal power distribution enforcing majorization. Ro1 - outage capacity. Rm1 - outage achievable

average rate when enforcing majorization ordering at the receiver. Rbs - optimal achievable average rate

in the broadcast approach using a single transmit antenna (SIMO, SISO results are demonstrated). The

ergodic capacity Cerg is also presented as upper bound for each of the settings.

Figure 9 also shows the calculation results of Rm1 and Ro1 and Rmac vs. SNR, compared

to the ergodic capacity of this MIMO setting. For M = N = 2 the ergodic capacity [28] is

Cerg =

∫ ∞

0

dx log(1 +
P

2
x)(1 + (1− x)2)e−x. (81)

The optimized Rmac1,opt (66) is higher than the outage capacity Ro1 of the M = N = 2

setting, for high SNR. As can be inferred from Figure 9, the loss of Rmac1,opt relative to the

ergodic capacity Cerg for high SNR is 6.4 dB, the outage capacity Ro1 has an additional loss

of 0.6 dB, and the majorization limited outage capacity has an additional ∼ 6 dB loss.

The large penalty paid due to majorization is clearly demonstrated in figure 9, which



35emphasizes the advantage of the independent antenna coding for high SNR in the MAC

outage approach. The slopes of the outage and MAC curves though close seem to be different,

which point to the asymptotic advantage of the MAC approach. Intuitively, the MAC

approach allows three levels of decoding, i.e. a level where both streams (users) are detected

(rate 2R), and a second level where only one of the streams (users) is decoded correctly (rate

R), and a third where neither streams can be detected (outage event). As opposed to the

classical outage approach, where there are two levels of decoding, i.e. either the received

signal can be correctly decoded, or in an outage event nothing is decoded. It can be noted

that the rate Rmac1,opt achieved with optimal joint detection at the receiver, a gain of about

2 dB over the Rmac1,bs achieved with successive decoding, inherent in the MAC-broadcast

approach.

VIII. Conclusions

The MIMO broadcast approach, as described here, demonstrates an achievable region

which by no means is claimed to be optimal. The central reason for sub-optimality is the

ordering of information layers required by the supermajorization which, at this point is not

proved to maintain optimality. Thus, the very idea of layering in the fashion done here may

imply inherent suboptimality, as also observed through some ad-hoc approximations.

As opposed to the single dimensional broadcast approach to fading channels, where the

layers were decoded up to a certain point (index) determined by the actual fading realization,

the relation of fading and indexing in MIMO is different. Namely, the layers indexed now

in an array (u, v) are decoded as dictated by the decodable set that is all indices u, v which

are associated with eigenvalues, such that, those eigenvalues supermajorize the actually

realized eigenvalues. This facilitates different selection of the index coordinate system, as

was demonstrated here for N = M = 2. In the single dimensional case the supermajorization

property follows trivially.

We have demonstrated here the MIMO broadcast approach for M = N = 2. The gener-

alization to any (M,N) is evident, as the supermajorization ranking holds in general. The

variational problem associated with maximization of the average rate for M = N = 2 has

no straight-forward solution. Some approximations for the realizing power distribution was

used. By requiring independency in each dimension (46), we get two separate optimization



36problems. The results of this approximation show a degradation from the SISO approach.

Another ad-hoc method is the outage approach demonstrated here for M = N = 2, in this

setting one decodes all information if the channel realization is better then a predetermined

threshold. We extend the outage approach to the double impulse distribution, suggesting

transmission of two streams, each decoded above a different predetermined threshold. The

numerically optimized rates of the different methods demonstrate the large penalty paid by

the sufficient but not necessary demand for decoding of supermajorization. Moreover the

fact that the double impulse gains only marginally over a single impulse and only at very

high SNR, indicates on the relative efficiency of the outage approach in the MIMO case as

compared to the SISO case. This is due to the less randomness (hardening) associated with

the MIMO case, and at the extreme of large number of received and transmitted antennas,

keeping their ratio constant, the capacity crystallizes and becomes deterministic, equaling to

the ergodic rate, which makes the this approach optimal. This is true for the MAC-outage

approach as well, and is an immediate artifact of the results in [28], [34] and [35].

We adapted the SISO broadcast approach for the MIMO channel, by requiring independent

encoding at each transmit antenna, similar to the multiple-access channel, and employing

the broadcast approach at the receiver. Its advantage is that each transmitter views an

equivalent degraded broadcast channel, and the results of the SISO broadcast strategy can

be directly used. An iterative algorithm for optimizing the transmit power distribution was

suggested for this setting. We have presented the MAC approach with a single code layer at

each transmitter, considered with both successive decoding as used in the broadcast strategy,

and with optimal joint decoding. It was demonstrated that broadcast strategy may suffer a

non-negligible penalty due to its inherent successive decoding. Solving in general the optimal

transmit power distribution is a subject for further research.

The relative small loss of the successive decoding as compared to the optimal joint decoding

in the MAC setting supports the application of the MAC broadcast approach as discussed

in section 6.2.. Further the observation that every point in the dominant rate face in the

MAC M user case, can be also achievable by successive cancellation where each user mimics

at most a two user signal [36] bolsters the argument that marginal degradation is expected

in the broadcast approach as compared to the joint detection of the layered system. See also

[37] for application to a faded ergodic environment.
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extend in a direct manner to the M transmit and N receive antennas case. Specifically, for

the MAC broadcast approach, the extension is outlined in Appendix C.

Appendix

Appendix A

Rate optimization - variational problem

Let us define a functional of interest, which is the average rate in (42) for some residual

interference function I(u, v),

J [I] =

∞
∫

0

da

∞
∫

0

dbf(a, b)

a
∫

0

du

b
∫

u

dvRF (u, v, I, Iuv). (A.1)

For simplicity, we write G(u, v) ,
∫ a

0
du
∫ b

u
dvRF (u, v, I, Iuv), and the joint cumulative dis-

tribution F (a, b) ,
∫ a

0
du
∫ b

u
dvf(u, v). Moreover, for compactness of the presentation the

joint density function will be denoted as f(a, b) , Fab. Now we can rewrite equation (A.1)

J [I] =

∫ ∞

0

da

∫ ∞

0

dbFabG(a, b) (A.2)

Applying integration in parts is developed here in the next few steps

J [I] = [F (a, b)G(a, b)]∞a,b=0 −
∫∞

0
da
∫∞

0
db (FGab+ FaGb + FbGa) =

[F (a, b)G(a, b)]∞a,b=0 −
∫∞

0
da
∫∞

0
dbFGab

−
∫∞

0
db [FGb]

∞
a=0 +

∫∞

0
da
∫∞

0
dbFGab−

−
∫∞

0
da [FGa]

∞
b=0 +

∫∞

0
da
∫∞

0
dbFGab =

=
∞
∫

0

da
∞
∫

0

db (1 + F (a, b)− F (a)− F (b)) ·RF (a, b, I, Iab)

(A.3)

where F (a) and F (b) denote the marginal cumulative distributions of a and b respectively.

Now that the functional contains less integrals, we can define the integrand, which is also a

function of I as

S(a, b, I, Iab) , (1 + F (a, b)− F (a)− F (b)) ·RF (a, b, I, Iab).



38According to the selection of transformation for variables a and b, our functional J [I] is

defined over an area where b ≥ a ≥ 0, and therefore

J [I] =

∫ ∞

0

da

∫ ∞

a

dbS(a, b, I, Ia,b) (A.4)

We are interested in I(u, v), which maximizes J [I]. One can replace I by some varied funtion

I(u, v) + h(u, v). Let h(u, v) be an arbitrary function which has first and second derivatives

in R (the region of integration (A.4)), and vanishes on the boundary Γ of R. Then if I(u, v)

belongs to the domain of the definition of (A.4), so does I(u, v) + h(u, v).

∆J = J [I + h]− J [I] =

∫ ∫

R

S(u, v, I + h, Iuv + huv)− S(u, v, I, Iuv)dudv (A.5)

It follows by using the first order representation of the Taylor’s theorem, that the actual

variation of J [I] [27] is

δJ =

∫ ∫

R

SIh+ SIuv
huvdudv (A.6)

where SI is the partial derivative of S(u, v, I, Iuv) with respect to I. The integral over SIuv
huv

may be simplified by considering the properties of h. Using the rules of partial derivatives

SIuv
huv = ∂

∂u
(SIuv

hv)− ( ∂
∂u
SIuv

)hv =

= ∂
∂u
(SIuv

hv)− ∂
∂v
[( ∂

∂u
SIuv

)h] + ( ∂2

∂uv
SIuv

)h.
(A.7)

Further on, using Green’s theorem

∫ ∫

R

(
∂Q

∂x
− ∂P

∂y
)dxdy =

∮

Γ

(Pdx+Qdy)

and substituting P , Q with the two left arguments in the second line of (A.7) we get

∫ ∫

R

(

∂

∂u
(SIuv

hv)−
∂

∂v
[(
∂

∂u
SIuv

)h]

)

dudv =

∮

Γ

(SIuv
hv)dv + ((

∂

∂u
SIuv

)h)du. (A.8)

The integral along Γ is zero, since h(u, v) and its derivatives vanish on Γ. Consequentially,

the variation may be expressed by an integral of a product of h and a function of S

δJ =

∫ ∫

R

(

SI +
∂2

∂uv
SIuv

)

· h dudv. (A.9)



39According to Theorem 2 in section 3.2 of [27], a necessary condition for J [I] to have an

extremum for I = I(u, v) is that δJ = 0. Furthermore, using the lemma (21) on p. 22 of

[27] we get

SI +
∂2

∂uv
SIuv

= 0. (A.10)

In order to give explicit expressions to SI and SIuv
, we need to compute F (a, b), F (a) and

F (b). Let us recall the joint density of the ordered eigenvalues (λ1 ≥ λ2 ≥ 0) of 1
2
HH† (43).

In the next section we explicitly state the joint CDF, the marginal distributions and the

incremental rate.

Appendix B

Eigenvalues pairs variable transformations

We explicitly state the joint CDF, the marginal distributions and the incremental rate

RF (u, v, I, Iuv), for three variable transformations. Naturally, there are many more, however

the main intension in these transformations is to show the difference in achievable rates of

the corresponding sub-optimal solutions, which depend on variable transformations.

A. (u, v) = (λ2, λ1)

The region of majorization is demonstrated in figure 10. The darkened area in figure 10

represents all the layers (streams) of information decodable. The joint cumulative distribu-

tion function of (43) is

Fλ2,λ1
(a, b) = 1 +

(

4 (b+ a)2 + 2 + 8b− 16ba
)

e−2b−2a − e−4a −
(

4b2 + 2
)

e−2b (B.1)

The marginal distribution of a is thus given by

Fλ2
(a) = lim

b→∞
F (a, b) = 1− e−4a (B.2)

and the marginal distribution of b is

Fλ1
(b) = F (a, b)|a=b = 1 + e−4b − (4b2 + 2)e−2b. (B.3)

The incremental rate RF (u, v, I, Iuv) for (u, v) = (λ2, λ1) is given in (40).
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b
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2
a



Fig. 10. The majorized area (dotted) for the selection of indices a = λ2 and b = λ1 + λ2, where (λ1 ≥ λ2).

B. (u, v) = (λ2, λ1 + λ2)

The region of majorization for this case is demonstrated in figure 11. Here also, the

darkened area represents all the layers (streams) of information decodable. In this case, the

density function is

fλ2,λ1+λ2
(a, b) = 16e−2b(b− 2a)2, (B.4)

and the associated joint cumulative distribution is

Fλ2,λ1+λ2
(a, b) = 1− e−4a + e−2b

(

−8b2a− 8ab− 4a+ 16a2b+ 8a2− 32
3
a3
)

(B.5)

The marginal distribution of a is unchanged from the previous transform, and is given by

(B.2).

Fλ1+λ2
(b) = F (a, b)|a=b/2 = 1−

(

2b2 + 2b+
4

3
b3 + 1

)

e−2 b. (B.6)

The incremental rate is now

RF (u, v, I, Iuv) = −
uIuv(u, v)dudv

1 + uI(u, v)
− (v − u)Iuv(u, v)dudv

1 + (v − u)I(u, v)
. (B.7)
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Fig. 11. The majorized area (dotted) for the selection of indices a = λ2 and b = λ1, where (λ1 ≥ λ2).

C. (u, v) = (λ2, λ1 − λ2)

Figure 12 demonstrates the region of majorization for this case. The density function is

fλ2,λ1−λ2
(a, b) = 16e−2b−4ab2 (B.8)

and the associated joint cumulative distribution is

Fλ2,λ1−λ2
(a, b) = 1− e−4a − (2b2 + 2b+ 1)e−2b(1− e−4a) (B.9)

The marginal distribution of a is stays (B.2) in this case as well.

Fλ1+λ2
(b) = F (a, b)|a→∞ = 1− (2b2 + 2b+ 1)e−2b. (B.10)

The incremental rate is then

RF (u, v, I, Iuv) = −
uIuv(u, v)dudv

1 + uI(u, v)
− (v + u)Iuv(u, v)dudv

1 + (v + u)I(u, v)
. (B.11)

Appendix C
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Fig. 12. The majorized area (dotted) for the selection of indices a = λ2 and b = λ1 − λ2, where (λ1 ≥ λ2).

K-User MAC-Broadcast

The two user MAC-Broadcast approach extends straightforwardly to the general M -user

case, with N receive antennas. Let now m = 1, 2, ...,M in (75), where ρm(s) stands for the

power distribution of the m-th user - all subjected to the same average power constraint,

SNR. The strategy induces a set of M -nonlinear equations of the MMSE SIR of each user,

SIRm = 1
[1+HQmH†]−1

m,m
− 1 (C.1)

whereH is theN×M channel propagation matrix, Qm , diag{I1(ω1), I2(ω2), .., Pm, ..., IM (ωM)},
and Pm is the original transmit power of user m. The normalized SIR of user m, is simply

a normalization of the SIR by the transmit power of user m,

ωm = SIRm/Pm = 1
Pm[1+HQmH†]−1

m,m
− 1/Pm (C.2)

which replaces (77). The achievable rates associated with user m, and the average achievable

rates for each user can be directly taken from (78)-(80), using the new normalized SIRs from

(C.2) above.



43The total expected throughput is then

Rmac−bs,T =
M
∑

m=1

Rmac−bs,m. (C.3)

The extension of the transmit power density optimization algorithm to the M-user setting

is also straightforward.
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[33] S. Verdú, Multiuser Detection. New-York: Cambridge Univ. Press, 1998.
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