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Multi-Layer Broadcasting over a Block Fading

MIMO Channel
Avi Steiner and Shlomo Shamai (Shitz), Fellow, IEEE

Abstract—This paper introduces extensions for the broadcast
approach for a multi-input multi-output (MIMO) block fading
channel, with receiver only channel state information (CSI).
Previous works have not been able to fully characterize the
fundamental MIMO broadcasting upper bound. As it seems that
analytical solution for this problem is quite difficult to achieve,
we consider here sub-optimal schemes, for which achievable
rates may be computed. In particular, finite level coding over
a MIMO channel instead of continuous layering is analyzed,
the expressions derived for decoding probability regions allow
numerical computation of finite level coding upper bounds. Notic-
ing that the gains of two level coding over a MIMO channel are
rather small, we consider sub-optimal techniques, which are more
straightforward to implement. Among these techniques is the
multiple-access channel (MAC) approach with single level coded
streams, which is similar in concept to V-BLAST. Closed form
expressions for probabilities of decoding regions here are derived,
allowing numerical evaluation. We further consider multi-access
permutation codes (MAPC). A Hadamard transform is compared
with a suggested diagonal permutation code, which are shown
to have similar performance, while diagonal permutation has
lower implementation complexity. For all approaches, we derive
information theoretic upper bounds of achievable rates.

Index Terms—MIMO, MISO, MAC, broadcasting, code

layering, permutation codes, MAPC.

I. INTRODUCTION

THEORETICAL limitations of transmission rates in point

to point wireless communications have been a growing

field of interest. In particular, for a block fading channel,

when transmitter has no access to CSI, and only knows the

fading statistics, the achievable rate for a transmission block

is unknown. That is, even if the receiver can perform channel

estimation, and has perfect CSI, the transmitter cannot predict

the achievable rate of some arbitrary transmission block. The

theoretical achievable rate for block k, characterized by a

channel matrix Hk, is given by Ik = log det(I + P
M

HkHH
k ),

where P is the transmit power, and M is the number of trans-

mit antennas. In traditional single-level coded communication,

the transmitter sends coded data using one code at some fixed

rate, say R1. Then, in case the channel conditions are suffi-

ciently good the data may be reliably decoded, which means

R1 ≤ Ik. In case of bad channel conditions, that is R1 > Ik,

the receiver cannot decode its received signal, and an outage

event is declared. Such a model gives rise to the notion of
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outage capacity [1], [2, see references therein]. The achievable

rate of the described setting is R1,avg = Pr(R1 ≤ Ik) · R1.

However, the outage capacity is not the fundamental upper

bound of achievable rates for the block fading channels

(with receiver only CSI). Consider the following transmission

scheme. Let the transmitter perform multi-layer coding. A

practical example is super-position coding. Let the receiver

decode as many layers as possible, and return a feedback

to the transmitter indicating which layers were successfully

decoded. Then, the transmitter reschedules only the undecoded

layers for retransmission. This basically describes the essence

of the broadcast approach [3],[4]. Clearly with only one layer

the maximal achievable rate is the outage capacity, and with

an unlimited number of layers the fundamental broadcasting

upper bound can be obtained. Cover in his original paper

[5] suggested broadcasting for the compound channel, where

for every realization of the compound channel parameter a

different set of users may reliably decode the transmission.

The fading channels without transmitter CSI may be viewed as

a compound channel with the instantaneous fading realization

as the parameter of the compound channel.

In [4], the broadcast approach was fully analyzed for the

single-input-single-output (SISO) channel. That is, optimal

power distribution was derived, obtaining the fundamental

broadcasting upper bound for continuous layering (unlimited

number of layers). Then, the broadcast approach in [4] was

considered for the MIMO channel as well, however only

sub-optimal approaches have been analyzed, as the MIMO

fading channel may be viewed as a non-degraded broadcast

channel. A sub-optimal ranking using majorization theory was

attempted, and other sub-optimal approaches - non showing

any advantage over the outage approach for a 2 × 2 channel.

This paper extends the results of [4], and enhances the un-

derstanding of potential gains in MIMO broadcasting through

finite code layering or other sub-optimal approaches. The main

contributions of this paper are as follows:

• Continuous broadcasting - we review the continuous

broadcast approach [4], which serves as the multi-layer

coding fundamental upper bound. The SISO case is ex-

tended to the multi-input-single-output (MISO) channel,

which unlike the MIMO case can be fully analyzed, and

its maximal achievable rate may be analytically obtained.

• Finite level coding - motivated by the potential gains

of the above continuous broadcasting relative to the con-

ventional outage approach, we consider practical finite-

level coding for the MIMO channel. Since in the MIMO

case the continuous broadcasting upper bound was not

obtained analytically [4], the gains of finite level coding

in MIMO may indicate some of the potential gains in
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continuous MIMO broadcasting. In particular, two level

coding is analyzed. As demonstrated in Section II, two

level coding captures most of the broadcasting gain w.r.t.

an outage approach for channels with one degree of free-

dom. This emphasizes the importance of understanding

the achievable rates with finite level coding.

• Multi-access permutation codes (MAPC) - since the

implementation of MIMO broadcasting is quite involved,

we consider MAPC [7] (also known as multi-stratum

codes). The main motivation here is to obtain funda-

mental achievable upper bounds for rather simple MAPC

coding schemes. The first transmission scheme consid-

ered is a multi-access (MAC) outage. This approach is

basically similar to V-BLAST, where different streams are

transmitted using different antennas. Explicit expressions

for the probability of decoding regions are derived, which

enable direct computation of achievable rates. The second

coding scheme considered is the space-time Hadamard

permutation, also used in [7]. Another suggested scheme

is a diagonal permutation. We show that the last two per-

mutation codes achieve outage capacity under the optimal

joint decoding rule, however a performance penalty is

evident for sub-optimal successive decoding.

The structure of the paper is as follows. In section II

the MISO broadcasting is considered. Then MIMO finite-

level code layering in discussed in section III. In section IV,

several MAPCs are considered for the MIMO channel, where

achievable rates are characterized and evaluated. A summary

of numerical results, and concluding remarks follow.

II. THE CONTINUOUS BROADCAST APPROACH

The SISO broadcasting strategy was discussed in detail in

[4]. For completeness, we briefly review the SISO broadcast

approach, and then extend it to the MISO channel. The

results in this section provide a full characterization of the

ultimate broadcast achievable upper bounds for channels with

one degree of freedom. Consider the following SISO channel

model,

y = hx + n , (1)

where y is a scalar received signal, h is a channel fading

coefficient, and n is the additive noise. Both h and n are

complex Gaussian i.i.d CN (0, 1) distributed. In this block

fading model h remains fixed throughout every transmission

block.

The concept of the broadcast approach is demonstrated in

Fig. 1. As may be noticed, in the outage approach transmis-

sion is either reliably decoded or completely fails (outage).

Whereas in the broadcast approach the number of decoded lay-

ers varies w.r.t. the channel fading gain. The undecoded layers

induce an outage region. In the continuous broadcast approach,

every layer is associated with a fading gain s = |h|2, and is

allocated a fractional power ρ(s)ds. Thus the incremental rate

associated with layer s is [4]

dR(s) = log

(

1 +
ρ(s)sds

1 + I(s)s

)

=
ρ(s)sds

1 + I(s)s
, (2)
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Fig. 1. A timing diagram illustrating the concept of the broadcast approach
versus the conventional outage approach.

where I(s) is the residual interference function, such that

I(0) = P , and ρ(s) = − d
ds

I(s) is the power allocation density

function. The maximal average rate is expressed as follows

Rbs,avg = max
I(s)

∞
∫

0

ds(1 − F (s))
ρ(s)s

1 + I(s)s
(3)

where F (s) is the cumulative distribution function (cdf) of

the fading gain random variable. It can be shown [4] that the

optimal power allocation for (2) is given by

ISISO(s) =







P s < s0
1−F (s)−s·f(s)

s2f(s) s0 ≤ s ≤ s1

0 s > s1

(4)

where s0, s1 are specified by the boundary conditions

ISISO(s0) = P , ISISO(s1) = 0, respectively.

Consider now a MISO channel, with M transmit antennas,

y = (xS + xI)h + n , (5)

where y is a scalar received signal, h is a [M × 1] channel

fading vector with complex Gaussian CN (0, 1) i.i.d elements.

The decodable data vector is denoted xS, and the undecodable

data to be treated as additive interference is denoted xI. The

mutual information I(y;xS) is

I(y;xS) = log









1 +

PS

M

M
∑

m=1
|hm|2

1 + PI

M

M
∑

m=1
|hm|2









. (6)

The distribution of I(y;xS) depends on the distribution of

s ,
M
∑

m=1
|hm|2 which defines an equivalent fading parameter

s. This allows specification of the incremental transmission

rate dR(s), following similar steps to the derivation of (2),

dR(s) = log

(

1 +
sρ(s)ds

M + sI(s)

)

=
sρ(s)ds

M + sI(s)
. (7)

Like demonstrated in Fig. 1, the average achievable rate

over all possible channel realizations is Rbs,MISO =
∞
∫

0

(1 −
F (s))dR(s). Optimization of Rbs,MISO with respect to the

power distribution I(s), under the power constraint P , may

be done by solving the associated constrained Eüler equation
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[8]. The MISO broadcasting optimal residual interference

distribution is thus

I(s) =
M(1 − F (s) − sf(s))

s2f(s)
, s0 ≤ s ≤ s1 (8)

where I(s0) = P and I(s1) = 0.

Numerical results for the MISO and SIMO Rayleigh fading

channels are given in Figs. 2-3. The ergodic capacity upper
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Fig. 2. MISO broadcasting maximal achievable rates, compared

with single, two-level coding and ergodic capacity, for M =
1, 8 and N = 1.
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Fig. 3. SIMO broadcasting maximal achievable rates, compared with single,
two-level coding and ergodic capacity, for N = 1, 8 and M = 1.

bound serves as a performance reference. Two-level coding

achievable rate R2L is compared to the broadcasting achiev-

able rate Rbs. In the SISO case, the largest performance gain of

broadcasting over finite layer coding is observed. In a MISO

setting, with M = 8, the broadcasting gain over an outage

approach is marginal. This is due to the less randomness

(hardening) associated with the MISO/SIMO relatively to the

SISO channel.

III. FINITE LEVEL CODE LAYERING

Motivated by the potential gains of the continuous broad-

casting relative to the conventional outage approach, as

demonstrated in Section II, we consider practical finite-level

coding for the MIMO channel. Since, for the MIMO case, a

continuous broadcasting upper bound was not obtained in [4],

and seems to be hard to determine analytically, the gains of

finite level coding in MIMO may indicate some of the potential

gains in continuous MIMO broadcasting. In particular, this

section focuses on two level coding. As observed in Section

II, two level coding captures most of the broadcasting gain

w.r.t. an outage approach for channels with one degree of

freedom. This emphasizes the importance of understanding the

achievable rates with finite level coding.

Consider the following flat fading MIMO channel,

y = Hx + n , (9)

where x is the [M × 1] input vector, n is the [N × 1]
noise vector with complex Gaussian i.i.d CN (0, 1) distributed

elements. The propagation matrix H [N ×M ] consists of i.i.d

CN (0, 1) distributed elements. The received [N × 1] vector is

denoted by y. We adhere to the non-ergodic case, where H
is fixed throughout the codeword transmission, and perfectly

known at the receiver.

We adhere now to two level code layering for M = N =
2, and derive single integral expressions for the probability

regions of joint/successive decoding. This allows computation

of the achievable rates for this coding scheme, which is later

optimized numerically.

Consider a two layer code, with rate 2αR and power βP
for the first layer, and 2(1 − α)R, (1 − β)P pair for the

second, where 0 ≤ α ≤ 0.5, and 0 ≤ β ≤ 0.5 without loss of

generality. Single layer decoding regions are denoted A, B,

and the joint decoding region is denoted C,

A : 2αR ≤ I(y; s1)
B : 2(1 − α)R ≤ I(y; s2)

C :











C1 : 2αR ≤ I(y; s1|s2)

C2 : 2(1 − α)R ≤ I(y; s2|s1)

C3 : 2R ≤ I(y; s) = I(y;x)

(10)

A. Optimal decoding

The optimal decoding approach considers first a joint de-

coding strategy for the two layers. When not successful, single

layer decoding is attempted. The probability of joint decoding

is denoted by PC , Pr {C} (10). A rate 2αR is achieved when

layer s1 is decoded while joint decoding fails, with probability

PACc , Pr {Cc ∩ A}, and similarly PBCc , Pr {Cc ∩ B},

where Cc denotes the complementary of C. The achievable

average rate is then

R2L,opt = 2R · (PC + αPACc + (1 − α)PBCc) . (11)

The probability density for all mutual information expressions

depends only on the eigenvalues distribution, since there is

no restriction on the utilization of the transmit antennas.

Our main result here is the single integral expressions for

computation of PC , PACc , and PBCc . These allow numerical

evaluation of R2L,opt, which otherwise cannot be evaluated

[4]. The following proposition specifies PC .

Proposition 3.1: The probability of successful joint decod-

ing of two layers, in any two level coding scheme over a 2×2
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MIMO channel (9), is given by

PC = Ppdf (0,∞, xC ,∞), s.t.

xC = max

{

0,
1

P

(

e2R

1 + Pλ2
− 1

)

,

1

βP

(

e2αR

1 + βPλ2
− 1

)

,

1

(1 − β)P

(

e2(1−α)R

1 + (1 − β)Pλ2
− 1

)

}

. (12)

where

Ppdf (a0, a1, b0, b1) =

a1
∫

a0

dλ2 F1(λ2, b0, b1), (13)

and

F1(λ2, b0, b1) , 4e−2λ2

[

(

(b0 − λ2)
2 + (b0 − λ2) + 1

2

)

e−2b0 −
(

(b1 − λ2)
2 + (b1 − λ2) + 1

2

)

e−2b1

]

.

Proof: See Appendix A.

The probability of single layer decoding, when joint decoding

fails (PACc ) is computed similarly,

PACc = Pr

{

e2R > min
[

(1 + Pλ1) (1 + Pλ2) ,

e2(1−α)R (1 + βPλ1) (1 + βPλ2) ,

e2αR (1 + (1 − β)Pλ1) (1 + (1 − β)Pλ2)
]

and

e2αR ≤ Gys1
(λ1, λ2)

}

, (14)

where Gys1
(λ1, λ2) ,

(

1 + βPλ1

1+(1−β)Pλ1

)(

1 + βPλ2

1+(1−β)Pλ2

)

.

And in a similar manner the decoding of the second layer

only probability PBCc is derived. Further details may be

found in [16].

B. Successive decoding

The probability of successively decoding both layers Psucc

is the union of two regions: AC2 , A∩ C2 (10) is the region

of reliable decoding when starting from layer s1, and similarly

BC1 , B ∩ C1 corresponds to initially decoding s2. The

intersection of these regions is the single-user decoding region,

denoted AB , A∩B. The probability of two layers successive

decoding is

Psucc = PAC2
+ PBC1

− PAB , (15)

where PAC2
is given by

PAC2
= Pr

{

e2αR ≤ Gys1
(λ1, λ2) and e2(1−α)R

≤ (1 + (1 − β)Pλ1) (1 + (1 − β)Pλ2)

}

. (16)

Other probabilities PBC2
, and PAB are similarly derived, and

a single integral expression is obtained like in Proposition 3.1.

The average achievable rate with successive decoding is

R2L,bs = 2R ·
(

Psucc + αPACc

2
+ (1 − α)PBCc

1

)

, (17)

where PACc

2
and PBCc

1
are the probabilities of decoding

layer s1 only and s2 only, respectively. Again all the above

probability expressions can be evaluated following Proposition

3.1, and thus numerical results may be obtained for two level

coding. Further details may be found in [16].

Interestingly, the case of equal rate and power assignment

to both layers suggests that separate single user decoding

will perform like successive decoding since it implies that

I(y; s1) = I(y; s2). In this case, successive decoding is

not necessary, a single layer decoding achieves the same

performance. Therefore, it is expected that unequal rate and

power assignment to both layers would allow higher average

rates, and when optimizing jointly α, β for each SNR, the

performance of this approach is expected to be lower bounded

by the outage capacity, and upper bounded by the optimal two

layer scheme introduced in the previous subsection.

IV. PERMUTATION CODES

We consider now coding schemes, which are more straight-

forward for implementation than the finite level coding

schemes discussed in Section III. We adhere to some space-

time coding approaches, namely multi-access permutation

codes (MAPC) [15], which utilize the diversity inherent in the

MIMO channel, and obtain achievable rates for the different

MAPC schemes. The achievable rates shed light on the effi-

ciency of the MAPC schemes, and the expected degradation

due to their inherent sub-optimality. In the first example, a

MAC-outage approach is considered, where every antenna

transmits its separately coded block. In other schemes, the

two coded blocks are permuted such that each coded block is

transmitted using both antennas, by altering the antennas in

time according to some permutation.

A. MAC Outage

Consider the M = N = 2 MIMO channel model (9). In the

MAC outage approach, like in V-BLAST, every single level

coded stream is associated with a transmit antenna. Thus for

the case of 2 transmit antenna the first stream denoted s1

in (10) corresponds to x1. The specification of the decoding

regions relies on the definitions in (10). Furthermore, since

transmitter has no CSI information, equal rate R and equal

power P/2 are used for each stream. Hence, using notations

of previous section, α = 0.5, and β = 0.5 in (10).

1) Optimal Decoding: The decoder initially attempts de-

coding both streams adhering to the optimal joint detection. If

that fails it tries to decode either of the streams, treating the

other stream as additive interference, while optimally prepro-

cessing for the channel response H , using an MMSE decoder

[12], [13]. We use the term joint decoding to characterize

this detection procedure, which resembles the strongest user

detector concept, first introduced in [11].
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The joint decoding region is specified in (10)

and its probability corresponds to PC , Pr {C}.

Probability of decoding of stream s1 only is given by

PACc = Pr {A ∩ Bc ∩ Cc}. The next lemma will help

simplifying PACc .

Lemma 1: The probabilities Pr {A ∩ B} =
Pr {A ∩ B ∩ C}.

Proof : The left hand side probability is the probability of

successfully decoding both users in a single user decoding

strategy. The right hand side probability is the probability of

successfully decoding both users in a single user strategy and

in an optimal (joint) decoding strategy. Clearly, if the single

user decoding strategy is successful, optimal decoding will

surely succeed. ¥

Using Lemma 1, it is immediate to see that

PACc = Pr {A} − Pr {A ∩ C} . (18)

A similar result holds for PBCc . The average rate Rmac1,opt is

thus specified in (11) with α = 0.5. However the probabilities

of the decoding regions are definitely different from those of

two level coding, due to the MAC-outage setting constraints.

Due to symmetry of power and rate allocation the single

stream decoding probabilities match, that is PACc = PBCc .

The following proposition explicitly states these decoding

probabilities.

Proposition 4.1: Probabilities of joint decoding of two

streams PC , and single stream decoding PACc , in a two stream

MAC-outage scheme over a 2×2 MIMO channel (9), are given

by

PC =
2

P
(2x − 2 − x2) e−x2

+
2

P
(2x − x2 + 2) e−2x + (x + 1)2e−2x. (19)

where x , 2
P

(eR − 1), and x2 , 2
P

(e2R − 1). Probability of

decoding first stream only (18) is

PACc = PA1 − PA2 (20)

where

PA1 = (8+8x+12Px+2P 2x3+P 3x3+6P 2x2+8Px2)
(2+Px)3 e−x, (21)

and

PA2 = (8P+32Px+12P 2x+6P 3x2+P 4x3+24P 2x2+8P 3x3+P 4x4+16)
P (2+Px)3

e−2x − (16Px+4P 2x2+16)
P (2+Px)3 e−2x−P x

2

2

(22)

Proof: See Appendix B.

2) Successive Decoding: We adhere now to a sub-optimal

decoding strategy, known as successive decoding. Successive

decoding is also implied in the MAC broadcast strategy

[4]. The decoding regions are again derived from (10). The

probability of successive decoding Psucc based on (15), where

due to symmetry in rate and power allocation PAC2
= PBC1

,

thus

Psucc = 2PAC2
− PAB . (23)

In order to use previous results to compute Psucc, we prove

the following Lemma.

Lemma 2: Pr {A ∩ C2} = Pr {A ∩ C}.

Proof : Existence of A ∩ C2 suggests that I(y;x1) > R
and I(y; x2|x1) > R. Clearly, from the first inequality

I(y; x1|x2) ≥ I(y;x1) > R, therefore I(y; x1|x2) > R.

And since I(y; x1, x2) = I(y; x2|x1) + I(y; x1), where each

element in the right hand side is greater than R, we have

I(y; x1, x2) > 2R. ¥

This means that PAC2
= PAC , which is specified in closed

form in (22). The rest of the probabilities PAB , and PACc

2
, and

PBCc

1
can be computed in closed form, using the same steps

as in Proposition 4.1. More details regarding these derivations

may be found in [16].

B. Diagonal Permutation

Consider the channel model defined in Eq. (9). Let the

input coded layers be denoted by s1(n) and s2(n), where n
is a discrete time index (within a single transmission block).

The diagonal permutation switches between antennas for each

channel use, yielding transmitted signals








x1(2n)
x2(2n)

x1(2n + 1)
x2(2n + 1)









= (24)

Mperm ·









s1(2n)
s2(2n)

s1(2n + 1)
s2(2n + 1)









, Mperm =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









The next proposition summarizes main result for optimal

decoding using diagonal permutation.

Proposition 4.2: The maximal achievable rate using a diag-

onal permutation for a 2× 2 MIMO channel (9) is the outage

capacity, that is

Rdiag,opt = Pr

(

log det(I +
P

M
ΛH) > 2R

)

· 2R (25)

Proof: Using the same tools as for the proof of Proposition

4.1, I(y; s1|s2) is given by

I(y; s1|s2) =
1

2
log det

(

1 +
P

2
w1

)

+
1

2
log det

(

1 +
P

2
w2

)

, (26)

where wi are defined in (B.1). Due to the symmetry in the

diagonal permutation we have I(y; s1|s2) = I(y; s2|s1). In

addition, the optimal decoding region is solely governed by a

single mutual information threshold I(y; s) ≥ 2R. This can

be verified by using

I(y; s) = log

[(

1 +
P

2
w1

)(

1 +
P

2
w2

)

− P 2

4
w3

]

(27)

which results from the mutual information definition. From

(26) and (27) it is clear that 2I(y; s1|s2) ≥ I(y; s). Now

since the two streams are allocated equal rates it is clear



6

that optimal decoding may be successfully performed when

I(y; s) = log det Λy ≥ 2R. ¥

Consider now successive decoding with the diagonal per-

mutation specified by Mperm in (24). The next proposition

summarizes the result of the achievable rate.

Proposition 4.3: The maximal achievable rate using a diag-

onal permutation for a 2× 2 MIMO channel (9) is the outage

capacity, that is

Rdiag,bs = 2RPA (28)

where

PA =
∞
∫

0

dw1

∞
∫

0

dw2

max
{

0, min
[

w1w2,
4

P 2 (W4 −
√

W4e
R)

]}

e−w1−w2

(29)

where W4 ,
(

1 + P
2 w1

) (

1 + P
2 w2

)

.

Proof: From the symmetry in rate and power allocations for

the users, it is clear that if one of the streams is decoded

successfully (when considering the other as interference),

then the other user will also be successfully decoded. That

is, the condition for successful decoding of both streams is

I(y; s1) ≥ R, with probability PA = Pr {I(y; s1) ≥ R},

and thus achievable average rate is (28). Using the definitions

of the mutual information and ΛH (B.1), PA can be computed

from its condition I(y; s1) ≥ R,

log

[(

1 +
P

2
w1

)(

1 +
P

2
w2

)

− w3
P 2

4

]

− 1

2
log

(

1 +
P

2
w1

)(

1 +
P

2
w2

)

≥ R (30)

and from the definition of the joint distribution of (w1, w2, w3)
(B.2), we get (29). ¥

The results of Propositions 4.2, and 4.3 allow to numerically

compute the average achievable rate with diagonal permuta-

tion, in a rather low complexity.

C. Hadamard Permutation

Consider the channel model defined in Eq. (9). Let the input

coded layers be denoted by s1(n) and s2(n), where n is a

discrete time index (within a single transmission block). The

Hadamard permutation is used as the interlayer orthogonal

transformation, which is rotated for increasing transmit diver-

sity [15]. The transmitted streams from the two antennas are

defined as in (24), where the permutation matrix Mperm is

given by

Mperm =









1 1 0 0
0 0 1 1
0 0 −1 1
1 −1 0 0









(31)

Consider first the problem of optimal decoding. That re-

quires derivation of mutual information for the input stream

and the channel output. As each input symbol is transmitted at

two sequential epochs, the achievable rate is half the mutual

information

I(s;y) =
1

2
log det

(

I4 +
P

4
H4H

†
4

)

, (32)

where H4 is the channel matrix given two consecutive chan-

nel uses, and input vector s. After some algebra on (32),

it turns out that the mutual information (MI) reduces to

the standard 2 × 2 MI, achieved without any permutation,

I(s;y) = log det(I + P
M

ΛH).
The mutual information of a single stream, after cancellation

of the other is denoted I(y; s1|s2). With s2 known at the

receiver, it can be removed from the received signal,








y1(2n)
y2(2n)

y1(2n + 1)
y2(2n + 1)









s2=0

=









h11 h12

h21 h22

h12 −h11

h22 −h21









[

s1(2n)
s1(2n + 1)

]

+ w. (33)

The mutual information I(y; s1|s2), is then given by

I(y; s1|s2) =
1

2
log det

(

I2 +
P

4
H†H

)

, (34)

where H is the channel matrix in (33), and I2 denotes a 2 ×
2 identity matrix. An interesting observation is made in the

following proposition.

Proposition 4.4: For the 2×2 Hadamard permutation codes

I(y; s1|s2) ≥ 1
2I(y; s).

Proof: See Appendix C.

We note here that due to the symmetry of the permuta-

tion I(y; s1|s2) = I(y; s2|s1), which directly implies on

I(y; s1) = I(y; s2). From proposition 4.4, and by recalling

that both layers have equal rates R, the joint detection region is

specified solely by I(y; s) ≥ 2R, which is the outage capacity.

Hence both permutations considered achieve outage capacity

with optimal decoding, specified in Proposition 4.2.

Considering successive decoding, it is clear from above

that the region of successive decoding, is given by the re-

gion of a single user decoding, specified by I(y; s1) ≥
R. The probability of a single user decoding is PA =
Pr {I(y; s) − I(y; s1|s2) ≥ R}, and the achievable average

rate is thus, RHad,bs = 2RPA, which is computed by Monte-

Carlo simulation in section V.

V. NUMERICAL RESULTS

Fig. 4 shows the maximal average achievable rates for

the different approaches discussed in previous sections. As

expected, the highest achievable rate among the examined

schemes with near outage performance is the two-layered

coding. The two-layered scheme, was optimized over the α, β
and rate allocation. Its advantage over the single layer coding

(outage) is marginal. Outage capacity is also achieved in the

Hadamard permutation codes employing optimal detection.

When performing successive decoding MAC approach has a ∼
2.5dB loss from the outage capacity, and Hadamard/Diagonal

permutation codes suffer another ∼ 1 dB loss relatively to

MAC broadcast strategy, while the diagonal permutation has

lower implementation complexity.

In Fig. 5 the performance of the optimal two-layered cod-

ing scheme is compared with the outage and MAC optimal
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Fig. 4. MIMO (M = N = 2) average achievable rates: Ro1 - Outage
capacity, which is the maximal average rate of a single layer code employing
optimal detection. Rmac1,opt - optimal MAC strategy, Rmac1,bs - successive
(broadcast) MAC approach, RHadPC,bs - Hadamard permutation codes
with successive decoding, RDiagPC,bs - Diagonal permutation codes with
successive decoding, R2L,bs - successive (broadcast) two layered coding
approach with optimized power and rate assignment per layer, R2L,opt -
optimal two layered coding strategy with optimized power and rate assignment
per layer.
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Fig. 5. MIMO (M = N = 2) average achievable rates, at a low SNR
range, and when employing optimal decoding. Ro1 - Outage capacity, which
is the maximal average rate of a single layer code. Rmac1,opt - MAC
approach. R2L,opt - two layered coding strategy with optimized power and
rate assignment per layer.

approaches at low SNRs. In this figure the advantage of

optimized two-layered coding is clearly noticeable. Table I

SNR [dB]: 0 10 20 30 40 50

R2L,opt 0.662 2.469 5.477 9.378 13.685 18.15
αopt 0.34 0.35 0.5 0.5 0.5 0.496
βopt 0.15 0.15 0.14 0.056 0.02 0.007

R2L,bs 0.662 2.464 5.456 9.333 13.675 18.149
αbs 0.33 0.005 0.001 0.125 0.5 0.496
βbs 0.237 0.001 0.005 0.5 0.02 0.007

Coutage 0.657 2.461 5.453 9.299 13.487 17.97
TABLE I

SUMMARY OF MAXIMAL ACHIEVABLE RATES OF THE TWO-LAYER

CODING, COMPARED WITH THE OUTAGE CAPACITY (SINGLE LAYER). THE

TWO DECODING RATES (FOR THE OPTIMAL AND SUCCESSIVE

STRATEGIES) ARE OPTIMIZED OVER α, β , AND THEIR REALIZING VALUES

ARE PRESENTED.

presents the numerical values of the maximal achievable rate

and the realizing α, β for various SNR values. The sensitivity

of power/rate allocation (α, β) is examined in Fig. 6, where

the achievable rates for fixed values of (α, β) are compared.

Interestingly, non-optimal rate/power assignments has neg-
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Fig. 6. MIMO (M = N = 2) a comparison of different power and
rate assignments in the two layered coding approach R2L,bs - successive
(broadcast) two layered coding approach, R2L,opt - optimal two layered
coding strategy. Equal rate assignment (α = 0.5) is compared with unequal
rates for each layer (α = 0.1).

ligible loss relative to the optimum (α, β) allocation under

optimal decoding strategy. However, when successive decod-

ing is employed the rate and power assignments should be

carefully chosen, otherwise a significant performance penalty

is expected.

VI. CONCLUSION

New achievable rates of sub-optimal MIMO broadcasting

approaches were derived, allowing enhanced understanding

of the potential gains of MIMO broadcasting over a slowly

fading channel. For MIMO two level code layering, single

integral expressions were obtained for the probabilities of

decoding regions. Only a small gain of two level layering

relative to outage approach was noticed. The efficiency of

layering over the outage approach is expected to be completely

negligible when increasing the number of antennas, as channel

hardening has noticeable effect already for M = N = 2. It

was demonstrated that non-optimal rate and power allocation

to each layer has a rather subtle penalty on the achievable rate

under optimal decoding. However when successive decoding is

performed the arbitrary rate and power allocation may induce

significant degradation.

A V-BLAST like, MAC-outage approach for the MIMO

channel was further discussed. Closed form expressions for

the probabilities of the different decoding regions in MAC

outage scheme were obtained. Two additional schemes of

MAPC were considered due to their simplicity of imple-

mentation. A Hadamard transformation is compared with a

suggested diagonal permutation. It was shown that diagonal

and Hadamard permutations achieve outage capacity under

optimal joint decoding rule, however a large performance

penalty is evident for sub-optimal successive decoding. While

having similar performance the diagonal permutation is more

straightforward for implementation.

An extension of SISO broadcasting [4] for a MISO chan-

nel was presented, along with a derivation of the maximal

achievable rate with layered coding. Numerical results clearly

demonstrate that as the number of antennas increases, broad-

casting gain over outage vanishes.
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APPENDIX A

FINITE LEVEL CODING - COMPUTATION OF PC

The calculation of the probability of joint decoding is

derived as follows

PC = Pr {C} = Pr{2αR log (1 + βPλ1) + log (1 + βPλ2) ,
2(1 − α)R ≤ log (1 + (1 − β)Pλ1) + log (1 + (1 − β)Pλ2) ,
2R ≤ log (1 + Pλ1) + log (1 + Pλ2)}

(A.1)

where C is defined in (10). The pdf of the channel covariance

unordered eigenvalues, is [9]

funordered(λ1, λ2)

= 8(λ1 − λ2)
2e−2λ1−2λ2 λ1 > 0, λ2 > 0. (A.2)

The different decoding regions have probabilities which can

be expressed by integration over the pdf (A.2) in regions

corresponding to the successful decoding regions,

Ppdf (a0, a1, b0, b1) =
a1
∫

a0

dλ2

b1
∫

b0

dλ1 funordered(λ1, λ2)

=
a1
∫

a0

dλ2 F1(λ2, b0, b1),

(A.3)

where

F1(λ2, b0, b1)

, 4e−2λ2

[

(

(b0 − λ2)
2 + (b0 − λ2) +

1

2

)

e−2b0

−
(

(b1 − λ2)
2 + (b1 − λ2) +

1

2

)

e−2b1

]

From here the result of PC is straightforward. ¥

APPENDIX B

MAC-OUTAGE - OPTIMAL DECODING REGION

PROBABILITIES

We begin by recognizing that the channel covariance matrix

ΛH , HH† is a complex Wishart matrix [14]. Its distribution

for M = N = 2 is

p(ΛH) = exp(−tr(ΛH)), where ΛH =

[

w1 w12

w21 w2

]

(B.1)

Recall that the det{ΛH} = w1w2−w12 ·w21, with w12 = w∗
21,

thus the pdf of ΛH depends solely on three real variables,

pΛH
(w1, w2, w3) =

{

e−w1−w2 , w1w2 ≥ w3

0 , otherwise
(B.2)

where w3 , w12w21. Using the notations of (B.1) for the

elements of ΛH , the probability of joint decoding, as may

also be interpreted from Figure 7, is given by

Fig. 7. Two-Layers approach decoding regions. Layer s1 is decoded
considering s2 as interference in region A. Layer s2 is decoded considering
s1 as interference in a contained region B, and region C is the joint decoding
region

PC = Pr

(

(1 + w1
P

2
)(1 + w2

P

2
) − w3

P 2

4
> e2R,

(1 + w1
P

2
) > eR, (1 + w2

P

2
) > eR

)

. (B.3)

By translating the probability into integrals over the pdf (B.2),

and substituting x , 2
P

(eR − 1),

PC =

∞
∫

x

dw1

∞
∫

x

dw2

w1w2
∫

0

dw3 (B.4)

1

(

(1 + w1
P

2
)(1 + w2

P

2
) − w3

P 2

4
− e2R

)

e−w1−w2 ,

where 1(·) is the indicator function. After determining the

nonzero indicator regions, the integral may be solved in a

closed form expression obtaining (19). Turning to the single

stream decoding probability PACc , the decoding probability

stream s1 is generally,

PA1 = Pr (A)

= Pr{(1 + w1
P
2 )(1 + w2

P
2 ) − w3

P 2

4 > (1 + w2
P
2 ) · eR}.

(B.5)

The above probability (B.5) can be represented in its integral

form and solved into closed form expression yielding (21).

The second part of (18), is the probability of decoding the first

stream treating the second as interference, and also succeeding

in joint decoding. This is given by

PA2 = Pr {A ∩ C} = Pr{(1 + w1
P
2 )(1 + w2

P
2 ) − w3

P 2

4

> max
{

(1 + w2
P
2 ), eR

}

· eR,
(1 + w1

P
2 ) > eR, (1 + w2

P
2 ) > eR},

(B.6)

which also lends itself in a similar manner into a closed form

expression (22). ¥

APPENDIX C

PROPERTIES OF THE HADAMARD PERMUTATION

MI expression for I(y; s) is I(y; s) =
log det

{

1 + P
2 HH†

}

, where H is a 2 × 2 channel matrix
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defined in (9). The explicit expression of I(y; s1|s2), as in

(34) is

I(y; s1|s2) =
1

2
log det

(

I2 +
P

4
H†

42H42

)

, (C.1)

where H42 =









h11 h12

h21 h22

h12 −h11

h22 −h21









,

where H42 stands for the equivalent channel matrix. We aim

at proving

log det

(

I2 +
P

4
H†

42H42

)

≥ log det

(

I2 +
P

2
H†H

)

(C.2)

Specifying the determinant above, and using the elements of

H we get

(

1 +
P

4
(|h11|2 + |h21|2 + |h12|2 + |h22|2)

)2

−P 2

4
(Im {h∗

11h12 + h∗
21h22})2 ≥

(

1 +
P

2
(|h11|2 + |h12|2)

)(

1 +
P

2
(|h21|2 + |h22|2)

)

−P 2

4
|h11h

∗
21 + h12h

∗
22|2 (C.3)

The square imaginary part of an expression may be upper

bounded by its square absolute value,

(Im {h∗
11h12 + h∗

21h22})2 ≤ |h∗
11h12 + h∗

21h22|2. (C.4)

The right hand-side expression in (C.4) may replace the left

one in (C.3). Clearly, this poses a tighter inequality

(

1 +
P

4
(|h11|2 + |h21|2 + |h12|2 + |h22|2)

)2

−P 2

4
|h∗

11h12 + h∗
21h22|2 ≥

(

1 +
P

2
(|h11|2 + |h12|2)

)(

1 +
P

2
(|h21|2 + |h22|2)

)

−P 2

4
|h11h

∗
21 + h12h

∗
22|2 (C.5)

which after some algebra, receives the following form

(|h11|2 + |h21|2 − |h12|2 − |h22|2)2 ≥ 0 (C.6)

This concludes the proof. ¥
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