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Abstract

We investigate the performance of the broadcast approach for various fading distributions, which
correspond to different models of partial transmit channel state information (CSI). The first model
considered is the quantized limited feedback. In this model, the receiver can send as feedback only a
finite number of bits describing the fading gain. We derive the optimal power allocation for the broadcast
approach for the quantized feedback model. For a Rayleigh fading channel, numerical results here show
that if the feedback word can be longer than one bit, the broadcasting gain becomes negligible, due to
diminished channel uncertainty. The second partial transmit CSI model is a stochastic Gaussian model
with mean and variance information, which is commonly used for modeling the channel estimation
error. In a single-input single-output (SISO) channel, this model also corresponds to the Ricean fading
distribution, for which we derive maximal achievable broadcasting rates. We further consider a multiple-
input single-output (MISO) channel, and derive the optimal power allocation strategy in a broadcast
approach. Numerical results here show that uniform power allocation is preferable over beamforming

power allocation in the region where broadcasting gain over single level coding is non-negligible.

Index Terms

Broadcast approach, code layering, channel state information, quantized feedback.
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I. INTRODUCTION

Transmitter channel state information (CSI) can be useful for increasing achievable rates of
a wireless communication system. However, in a rapidly changing environment, transmit CSI
(TCSI) may be hard to acquire, as it requires availability of an uplink channel from receiver to
transmitter, and even then causal TCSI can be inaccurate in a rapidly varying channel, due to
the delay between the channel estimation and the transmission opportunities. In this paper, two
models of partial TCSI are considered, namely, a quantized feedback model, and a stochastic
Gaussian model.

A quantized feedback model can be found when there is a limited uplink bandwidth. For
example, in the UMTS standard there are two bits available for feedback. In [1], the authors
study the efficiency of using feedback bits, which determine the quadrant between relative phase
of the transmit channels. Power adaptation for applications with long-term power constraint with
a quantized feedback is studied in [2], based on the classical time-domain water-pouring approach
with perfect TCSI [3]. A generally quantized feedback is studied in [4], in the context of multi-
level coding. The authors in [4] use a finite code layering and optimize the quantized information
as to maximize the throughput. The broadcast approach [5] is intended for maximizing the
expected throughput over fading channels, and for channels with one degree of freedom it is
also the ultimate achievable upper bound [6]. In our work, we consider the same channel model
as in [4], and derive the maximal throughput achievable adhering to the continuous broadcast
approach. The broadcast approach for a single-user facilitates reliable transmission rates adapted
to the actual channel conditions, in presence of channel uncertainty at the transmitter [5], [7].
The single-user broadcast approach hinges on the broadcast channel, which was first explored by
Cover [8]. In a classical broadcast channel every transmission is composed of multiple messages,
each directed to another receiver, where different channel conditions may characterize each

receiver, which is reflected in their received SNR. In the broadcast approach [5] considered here,
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there is only one transmitter and one receiver, which communicate over a fading channel. For
channels with one degree of freedom, the multi-level codeword can be (optimally) successively
decoded up to highest layer associated with an instantaneous channel realization. The rest of the
layers cannot be decoded, and thus will be in outage. Numerical results demonstrate here that
with more than one feedback bit the broadcasting gains relative to the outage approach become
negligible, as the level of CSI uncertainty diminishes rapidly. The feedback scalar quantization
is motivated by [9], which showed that for causal source coding, a scalar quantizer followed by
entropy compression is optimal.

The stochastic Gaussian model includes a mean and variance side information of the fading
coefficients at the transmitter. This model is useful, for example, in a time-division duplex
(TDD) system, where the transmitter can perform channel estimation of inputs from the uplink
channel, and use it for transmission. Often, the channel estimation acquired independently by
the transmitter may suffer from channel estimation inaccuracy due to RF chain impairments,
which limit channel estimation reciprocity. Furthermore, causality requires acquiring CSI prior
to transmission, while the channel may change when actual transmission takes place. These give
rise to the practical stochastic Gaussian model with mean and variance. This model was used
in [10], where it was shown that in the cases of small CSI uncertainty simple beamforming in
the direction of the mean channel is quite close to the optimum strategy. Optimal transmission
strategies for this model, in terms of outage probability, were studied in [11], [12]. It was shown
in [13], that the beamforming is the optimal strategy maximizing the compound capacity of a
rank one Ricean channel. We show here that for the broadcast approach in a multi input single
output (MISO) channel the optimal power allocation is a linear combination of beamforming
and uniform power allocation to the null-space of the known channel.

The rest of the paper is organized as follows. The broadcast approach with quantized feedback
is discussed in section II, and for the stochastic Gaussian partial TCSI in section III. It is extended

to a MISO channel in section 1V. Finally, we conclude with section V.
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II. BROADCASTING WITH QUANTIZED FEEDBACK

Consider a slowly fading channel, where a limited uplink channel sends only a predeter-
mined number of information bits as feedback. In a channel with one degree of freedom
(SISO/SIMO/MISO) this information can be a quantized version of the equivalent fading gain.
It may indicate a fading gain range, as observed by the receiver. Transmission is then optimally
adapted to the fading gain feedback via an outage strategy or a broadcast strategy.

Figure 1, illustrates an exemplary communication protocol, which enables transmit side infor-
mation via a quantized feedback. Every transmission is initiated with a request-to-send (RTS)
message. The receiver replies with a clear-to-send (CTS) indication, and adds to the CTS message
N bits describing the link quality. Then the transmitter adapts its transmission rate and broadcast
strategy to this feedback.

Consider the following SISO channel model,

y=hx+n, (1

where y is a received vector of length L, corresponding to the number of channel uses per
transmission block. The channel input x is the transmitted vector of length L, which satisfies the
power constraint E% ZL: |z;|?> < P, where z; is the " transmitted symbol within a block. The
additive noise vector ils:cllenoted n and its elements are complex Gaussian i.i.d with zero mean and
unit variance, denoted by CN (0, 1). The channel fading coefficient 4 is assumed to remain fixed
during a transmission block. Over multiple transmission blocks A admits the normalized Gaussian
distribution CN (0, 1). Partial TCSI information modifies the fading coefficient distribution, with
implications on achievable rates.

Throughout this paper, only the short term power constraint P is imposed, that is £ % ZL: lzs? <

i=1

P per block. We note here that under a long term power constraint (average power constraint

over multiple transmission blocks), higher average throughput may be achievable with a different
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optimal power allocation, since the quantized feedback indicates a coarse channel quality, and
a water-pouring like strategy is required to maximize throughput [2], [3].

Before the analysis of the broadcast approach with partial CSI, we formulate the perfect TCSI
upper bound. This is also the ergodic capacity, which is explicitly given for the Rayleigh fading

case,

CRayleigh =E, 10g<1 + Pl/) = @1/PE1(1/P) (2)

erg

where v is Rayleigh distributed, and F;(z) = f;o et;tdt is the exponent integral function.

A. Single Bit of Transmit Side Information

Consider first the case that only 1-bit of side information is available at the transmitter. The
feedback indicates whether the actual fading gain is above or below some threshold s;,. The

average achievable rate is given, in general, by
Ravg = PZ/(V < Sth)Ravg,l + PU(V > Sth)Ravg,2 (3)

where v is the channel fading gain random variable, and sy, is the fading gain threshold. The
rates g1 and Rq,4 0 are average achievable rates for v < s, and v > sy, respectively.

1) Outage Approach: In a single level coding scheme (outage approach), there is a single
fixed rate code per transmission block. Therefore, in case of severe channel conditions, nothing
is decoded, and an outage event occurs. When fading gain is above some level all transmitted
information is reliably decoded. The maximal achievable average throughput is known as the
outage capacity [14]. For a given threshold selection sy, the rates R,,,.1, and R,,4 2 are average

achievable rates of single level coding. The achievable rate, for a given feedback (k = 1, 2), is
Ravg,k = (1 - Po,k)Rk (4)

where P, ;. is the outage probability on a k" fading gain interval, and Ry is the corresponding

single level code rate allocated, where k£ = 1,2 for a single bit feedback. Each of the average
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rates Rq,q may be optimized independently, for some s, such that R, (3) is maximized.
The outage probability for v < s;;,, and a transmission in a fixed rate R = log(1 + u; P), is

l—e™

P,i=P,(v<u|v <sy)= 1— e—sun’

(&)

The corresponding maximal average rate is

—Uu —S
e 1 e th

Ripgn = max (1 —P,1)log(l+u;P) = max

u1€[0,8¢p) u1 €[0,8¢p] 1 — e Stn

log(1 + w1 P). 6)
Similarly, for a given threshold us, the probability of outage for v > sy, is

P,o=P,(v <us|v > sy) = e~ (u2=sen) 7
The maximal average rate is then

Ruyg2 = max (1 — P,3)log(l +uyP)= max e~ (u2=stn) log(1 + us P), (8)

u2€(8¢p,00) u26€(8¢1,00)

where (8) is maximized for

P—W(P
uf’ = max (W((P))’ sth) )

where W (x) is the Lambert W-function, also called the omega function. The selection of sy,
can be numerically optimized, to maximize the total average rate R,,, in (3) for the outage
approach.

2) Broadcast Approach: The achievable outage average rates may be further enhanced by
using a broadcast approach [5] optimized for every channel state. We derive here the continuous
broadcast approach for R,,,1 and R,,4 2 in (3). The broadcast approach for the SISO channel was
introduced in detail in [7]. For completeness of presentation, we quickly review the principles
of the broadcast approach. The concept of the broadcast approach is demonstrated in Figure 2.
As may be noticed, in the outage approach transmission is either reliably decoded or completely
fails (outage). Whereas in the broadcast approach the number of decoded layers varies w.r.t. the

channel fading gain. The undecoded layers induce an outage region. In the continuous broadcast
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approach, every layer is associated with a fading gain u = |h|?, and is allocated a fractional

power p(u)du. Thus the incremental rate associated with layer w is [7]

p(u)udu p(u)udu
dR(u) =1 1 = 10
() og( +1—|—I(u)u> 1+ I(u)u (10)
where I(u) is the residual interference function, such that 1(0) = P, and p(u) = —-L1(u) is
the power allocation density function. The maximal average rate is expressed as follows
R vy = max/du(l - ﬂ(u))M (11)
9 W) 1+ I(u)u

0

where F,(u) is the cumulative distribution function (cdf) of the fading gain random variable. It

may be shown [7] that the optimal residual interference distribution function is given by

P U < Ug
Lope(u) = § =Rl g <u <y (12)
0 U > Uy

where v, and u; are obtained from the boundary conditions I, (ug) = P, and I, (u1) = 0,
respectively. From /(u), the power density function is directly obtained by pop(u) = —1I7 (),
which yields the optimal layering power distribution. In order to study the benefits of layering,
the broadcast approach is always compared to the single level coding under the same channel
uncertainty.

When a single feedback bit is available at the transmitter, two different broadcast approaches
are to be used, 24,41 corresponding to the first state described by v < sy, and R, 2, corre-

sponding to v > s;,. The average broadcasting rate for v < sy, 1s specified by

Sth

Ruvg1 = /(1 — Fl(u))%du (13)
0

October 22, 2007 DRAFT



where Fi(u) = l:il. Similarly, for R4,,2 in (3), when v > sy, the broadcasting average rate

is specified by,

oo

p2(u)u
Rovgo= [ (1 = F ———d 14
o= [ (1= ) P22 (14)
Sth
where Fy(u) = e_etf—s::ﬂ The maximal achievable rate is specified by the following proposition.

Proposition 2.1: Maximal Achievable rates, in presence of a single bit feedback for TCSI, is

given for a Rayleigh fading channel by

(1)
(1) (
Ravg,l,ma:r: - (1—6_Sth)_1(2E1(8(()1))—2E1(8§1))—|—e_511 _6_501)+e—5th(sgl)_s(()l)_Qlog (Sl )))

sy
(15)
e (2Ei(sy”) — 2Bi(s\)~
(e — =) S < 57
Rovg2maz = § 2€°" <Ez’(sth) — E@'(sf))) — 1+ (16)
e=(1" —su) 10g[(1 + s P)s] 55 < s < 517
log(1 4+ sy, P) S > 552)

\

(k)

k
where s, and sg )

are determined by requiring separately in (15)-(16) that I;” t(sék)) = P, and
I ,;’pt(sgk)) = 0, respectively, and k& = 1, 2. The expected rate is then given by (3).
Proof: See Appendix A.

B. Multi-level Transmit Side Information

When the receiver is capable of sending as feedback a higher resolution quantized fading
gain, the transmitter can perform closer to the ergodic capacity upper bound (2). Consider a
K level feedback, which indicates that the fading gain belongs to one of K possible intervals,
represented by N = [log, (/)] bits. Let the intervals be denoted by

(T, = {[Stho, Sth1), [Sthi1, Sth2), s [Sthic—1, Stnic) (17)
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where Zj, = [Stnk—1, Sthr) With Sy 0 = 0, and sy, k = oo. The average achievable rate given

K-level transmitter side information is generally given by
K
Ravg =Y Pu(v € Ti) - Ravg (18)
k=1

where v is the channel fading gain random variable, Ry, is the average rate for the k' channel
state interval, and P,(v € Zy) is the probability that the channel state is within an interval Zy.

1) Outage Approach: Consider first the single level coding (outage) approach. For some
interval 7y, the rate R,,, , may be optimized for maximizing the overall throughput 2, (18). Let
uy, determine the k' fading gain threshold by fixing the k%" transmit rate to Ry = log(1 + u;P).
Then the outage probability with side information Z;, is

exp(—Simk—1) — exp(—ug)

P,.=P,(v< €1y) =
ok (V< ug|v ) exp(—s k1) — exp(—sm k)

19)

where it is implicitly assumed that u;, € Z;. The maximal average outage rate is then

exp(—ug) — exp(—Swm.k)
Rapor = max(1— P, ;) log(1+u,P) = max .
ok “kefk( ) log eP) ur€ly €XP(—Sphk—1) — €XP(—Snk)

log(14uxP). (20)
2) Broadcast Approach: The optimal continuous broadcast approach can be computed for
every fading gain interval Z;. This is summarized in the following proposition.
Proposition 2.2: The k'™ maximal achievable rates, in presence of a K -level feedback, is

given by

Sth,k

Ravgiobs = / (1- Fk(u))%du Q1)

Sth,k—1

with optimal power allocation,

(k)

P 5 < 8
[F(s) = § et =L s <s < (22)
0 5> sgk)
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10

where s\ =1 - W (e~(mr=1) and s is determined by Izpt(s(k)) =P.
Proof: The derivation of the optimal power distribution I;” *(s) follows the same guidelines of
the proof of Proposition 2.1.

Notice that when sy < sy, ,—1, there is no point in power allocation for fading gains smaller
than the minimal possible fading gain. Therefore, all power intended for lower layers is unified

into the first layer, denoted by sy, 1. Thus the power for s, 1, when so < sy, 11 < 51 18

P(sihr-1) =P — 1767(:5’27_51%#1) + sth,lk,l' In case sy, ;-1 > s1, then no layering is required,
and single level coding iswoptimal, in a rate corresponding to R,,q; = log(1 + sy -1 P).

A common assumption in literature is that the transmitter knows the fading gain pdf, denoted
f(s). Our results can be adapted for any given fading distribution f(s), and thus the thresholds
Sth,, are optimized once, during system configuration, which means the transmitter does not need

any additional feedback to determine sy, 1.

C. Numerical Results

Numerical results for a SISO Rayleigh fading channel are presented in the following. Figure
3 demonstrates the outage and broadcast approaches maximal achievable rates as function of
the threshold s, for a single bit feedback. The receive SNR is 20 dB in this example. As may
be noticed, the broadcasting gain over the outage approach strongly depends on the selection of
the feedback threshold. This gain is minimized at the point of optimal selection of the feedback
threshold (s;, = 0.7).

Figure 4 demonstrates the broadcasting gain over outage approach with K = 2, and K = 3
transmit intervals side information. In high SNRs, and K = 2, the broadcasting gain over outage
is reduced to ~1 dB in presence of a single bit feedback, relative to a ~3.5 dB broadcasting
gain without feedback. For K = 3, the broadcasting gain practically diminishes. Note also that
when K = 3 the feedback has to include N = 2 bits.
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11

III. BROADCASTING WITH PARTIAL CSI ADHERING TO THE GAUSSIAN MODEL

The case of quantized feedback is not always a valid model for imperfect transmitter side
information. In a TDD system, for example, the transmitter may perform uplink channel esti-
mation and use it for downlink transmission. However, the channel estimation may be limited
due to many reasons, e.g. the channel estimation acquired independently by the transmitter may
suffer from inherent inaccuracy due to RF chain impairments, which limit channel reciprocity.
Therefore, we consider now a SISO channel, as defined in (1), with a stochastic TCSI model
[10], [15]. The transmitter performs broadcasting, in order to maximize the average throughput
under this Gaussian channel model. The average throughput is compared with the outage capacity

lower bound, and the ergodic capacity upper bounds.

A. SISO Broadcasting over a Ricean Fading Channel

The channel fading coefficient is described by
h="h+ h, (23)

where 7, represents the estimated fading coefficient, and %, ~ CN'(0,0?) is the estimation error
random variable. The transmitter knows ﬁt and 2. This channel model corresponds also to
the line-of sight model, where ﬁt represents the channel fading coefficient on the line-of-sight
path. Clearly, the square norm of the fading random variable v = |h|? is Ricean distributed.
Ricean distribution is a particular case of the noncentral Chi-square (x?) distribution, with a
noncentrality parameter ||

The perfect TCSI ergodic capacity upper bound for the this channel model is given by

CHice — [, log(1 + Pv) (24)

erg

where v = |h|2, and for the Gaussian channel model (23), we have h ~ CA(h;, 0?), and v has

a Ricean distribution, which 1s a noncentral X2 distribution with two degrees of freedom. Its
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12

probability density function (pdf) is [16]
1 _helP4u 2[he|\/u
folu) = ;e <> By ( | t‘g\/_) ) (25)

g

where By(x) is the 0" order modified Bessel function of the first kind.

For single level coding, the outage capacity can be expressed as function of the fading cdf,

Clice  — max(1 — F,(v)) - log(1 + Puy,) (26)

outage
g Vth

where F,(z) is the cdf of v, and is also an outage probability. The optimizing fading threshold
satisfies vy, e = argmax(l — F,(vy,)) - log(1 + Puyy,). Hence an outage event occurs for
channel realizations whi(yzﬁ satisfy v < Vi mas, Otherwise a rate Ry = log(1l + Pvypmaz) 1S
reliably decoded. The broadcast approach [7] throughput can be derived in the same lines of the
SISO channel, which was introduced in the previous section. The broadcast approach throughput
is specified in (11), and its optimizing power distribution is maximized using Eq. (12), where

the fading gain distribution used in (11)-(12) is the Ricean distribution given in (25).

B. Numerical Results

We present here numerical results for the maximal average throughput of the broadcast

Rice (11), outage approach CZic¢ (26), and the ergodic upper bound Cfce (24).

bs,avg outage erg

approach R,

Figures 5.(a)-5.(d) demonstrate the potential gains of broadcasting for different values of o2
For 0% = 1, the channel estimation is Et = 0 (or alternatively there is no line of sight), and
thus v, is Rayleigh distributed. In all other cases o < 1, and the gains of broadcasting over the
outage approach are lower. The smaller 0% the lower the broadcasting gain. For 02 = 1, in high
SNRs the broadcasting gain over the outage approach reaches ~ 3.5 dB, and for o2 = 0.1, the

broadcasting gain is approximately 1.8 dB.
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IV. BROADCASTING OVER THE MISO CHANNEL WITH PARTIAL CSI

When transmitter has more than one antenna, it may utilize both phase and amplitude of
the TCSI for maximizing throughput, by using beamforming like strategies. This is unlike the
case of one transmit antenna, where only the channel magnitude is helpful. We consider here
the MISO channel with partial TCSI under the stochastic Gaussian TCSI model. It was shown
in [12] that with such TCSI, and an outage approach, the optimal power allocation is a linear
combination of beamforming and uniform power distribution over the null-space. We extend this

result for the broadcast approach. Consider the following MISO channel,
y =h, X +n, 27)

where y is a received vector of length L, corresponding to the number of channel uses per
transmission block. The channel input X is the transmitted [N x L] matrix, which satisfies the
power constraint E% EL: x(i)Tx(i) < P, where x* is the i, [N x 1], transmitted column of X.
The [1 x L] additive rzlzilse vector is denoted n and its elements are complex Gaussian 1.i.d with
zero mean and unit variance, denoted by CN(0, 1). The fading channel vector h; is a [1 x N]
vector, its elements h,(i) are Ricean distributed as in (23). It is assumed that the {h,(i)}¥,
are independently distributed each with a specific line-of sight parameter Fh,(i) = m;, and my,
is the IV element vector of the channel mean available to transmitter. The channel uncertainty

random variables h,.(i) are i.i.d h,(i) ~ N(0,0%), i = 1,.., N. The average mutual information

is give by
I(x;y|h,) = log(1 + Ph,Qh!) (28)

where () is an [N x N] covariance matrix of the power distribution, such that tr(Q)) = 1.
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A. Uniform Power Allocation

For uniform power allocation, () = %I ~, where Iy is an NV X N identity matrix. The mutual

information for this power allocation is

P
Ium'(x; y|hs) = 1Og<1 + Nyu)a (29)

N
where v, = Y s;, with 5; = |h,(i)|%. The random variable v, has a noncentral x? distribution
=1
' N
with N degrees of freedom, and noncentrality parameter m = »_ |m;
i=0

|2, and variance o to each

element in the sum. The pdf of v, is given by

1 z\N-2)/4  oim vJrm
) =5 () B (V) o

where B, (z) is the n'" order modified Bessel function of the first kind. Note that the average
receive SNR here is SN R,,,,; = %(m+N 0?). Given the mutual information expression (29), and
the distribution of the equivalent fading v, (30), broadcasting and outage rates may be derived
straightforwardly, following same guidelines as in the scalar Ricean fading case, Section III.
However, the uniform power allocation for a MISO channel in case of TCSI is sub-optimal. It is
therefore interesting to characterize the optimal power distribution for MISO broadcasting with

partial TCSI.

B. Optimal Power Allocation

We refer here to the optimal power allocation strategy. The known result for the outage
approach strategy [12] is derived first, which is then extended to the broadcast approach.

1) Outage Approach: Consider the power covariance matrix () in its SVD representation
Q = UAU'. Let v = Uth,, it was shown in [12] that for minimal outage probability the
independent elements of v satisfy v; ~ N (y/m,c?), and vy, ..,vn ~ N(0,0?), where A\; > \;

for all 7 = 2, .., N without loss of generality. The columns of the unitary matrix U are composed
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of <\‘/n—tm, u, ..., uN), where {w;} (i = 2,.., N) is an orthonormal set of arbitrary vectors, which

amg

vm’
direction. The other singular values represent power allocation in the null-space, to random

are also orthonormal to This means that A\; is the power assignment in the beamforming

variables (RV) vy, .., vy ~ N(0, 0?), since these are i.i.d. Gaussian RVs equal power allocation

is optimal here [12], hence Ay = A3 = --- = Ay is optimal. The mutual information is then
Iopt(X; y|hs) = log(l + P (/\131 + ﬁsu))v (31)
N
which results from 2 Ay = A3 = --- = Ay, and by requiring s, = > s;, where s, is central
=2
x? distributed with N — 1 degrees of freedom. The parameter s; is a noncentral x> RV with

N
and noncentrality parameter m. By incorporating the power constraint > \; = 1
=1

variance o2

into (31)

Lop(ylh,) = log(1+ P (as; + G=Ps, ) (32)

where a € [%, 1], the requirement o > 1/N is a direct result of the optimality condition

that \; > \; for all « = 2,.., N. We are interested in the distribution of the random variable

(1—a)

t:ozsl—l—Nl

s,. Since s; and s, are statistically independent, the pdf of ¢ is given by a

convolution of the individual pdfs,

t/a
_ (N-1), (N-Da ) (N-1)
ft(t)—/dsfsl(s) fsu( T o t . s T o (33)
0
where the pdfs of s; and s, are as follows
fuls) = oghme 5 cosh (L7 (34)
Fo(s) = 1 s(N=1)/2-1,=33 (35)

O.N712(N—1)/2F(N2—1)

The SNR at a single receive antenna for the above power allocation is given by SNR,, =
P (a(m+0?) + (1 — a)o?) = P - (am + o2). From here the average outage rates can be

optimized like in the uniform power allocation case, using the fading gain distribution in (33).
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2) Broadcast Approach: We have seen that for an outage approach the optimal power
allocation strategy is to allocate the larger portion of the power in the beamforming direction,
and the rest is allocated to the null-space, uniformly among the eigen-modes. We will show here
that this strategy is also optimal for the broadcast approach as a per layer power allocation.

Consider a finite level code layering with n layers, and (scalar) power allocation Py, P, ..., P,
to each layer, such that )" | P, = P. The corresponding rates are denoted by Ry, Rs, ..., R,,.
In addition, let Q); be a power covariance matrix for layer k, such that tr{Q;} = 1. Then, the
channel realizations satisfying the rate and power allocation constraints may be successfully
decoded. That is, the probability of outage for layer k is specified by,

Pyh,Qyh!

n

1+ Y Ph,Q;h!
j=k+1

P,py=Pr|log |1+ <Ry |. (36)
The following proposition shows that the covariance matrix () for the broadcast approach has
the same properties as in the outage case.

Proposition 4.1: The optimal power allocation strategy for the broadcast approach requires
covariance matrices {Qy}7_,, with an SVD representation Qy = UALU t, where the matrices A,
and U have the following properties:

1) Ay = diag{A\14,..., A}, such that the largest eigenvalue is Ay (A > g, Vi, 2 <

J<N),and Aoy = A3 = ... = AN
2) The unitary matrix Uy includes, for any k, the following columns <\‘/“—7Ln, Uy, ..., uN> , where
{u;}Y, is an orthonormal set of arbitrary vectors, also orthonormal to \/m—%

Proof: See Appendix B.

C. Numerical Results

Two examples of uniform power allocation and beamforming only power allocation are

presented. The uniform power allocation average rate follows from (29). Beamforming only
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power allocation is a special case of the optimal power allocation strategy with o = 1 in (32).
In Figures 6-7, the channel uncertainty is 02 = 0.16, and o = 0.01, respectively. In both figures
m = 1.

Figure 6 demonstrates a rather high CSI uncertainty of ¢ = 0.16, uniform power allocation
is preferable. The broadcasting gain over the outage approach exceeds ~ 2 dB. Figure 7, shows
that for a lower CSI uncertainty such as 02 = 0.01, the outage and broadcast approach nearly
coincide, and the performance of beamforming and uniform power allocation is also very close.
Moreover, the proximity of performance to the ergodic capacity is also a direct result of low CSI
uncertainty. Clearly, by further increasing the certainty in CSI the beamforming power allocation

will be superior, and broadcasting will not be beneficial any longer.

V. CONCLUSION

We have studied several power allocation strategies for the broadcast approach with partial
TCSI, with focus on analytical solutions. Nevertheless, the principles set here can be used for
different nature of side information motivated by practical considerations to assess the benefits
from a multi-layer broadcast approach. The optimal power allocation and maximal achievable
broadcasting rate is derived for the case of a quantized fading gain feedback. It is demonstrated
via numerical results that for a Rayleigh fading channel with only one feedback bit, the broadcast
approach introduces roughly 1 dB gain over the outage approach. This gain diminishes when
increasing the resolution of the quantized information beyond one bit.

We have also considered the stochastic Gaussian TCSI model, where the transmitter possesses
only the mean and variance of the actual CSI. Optimal power allocation for the SISO channel
is derived similarly to the case where no TCSI is available. The MISO channel with the same
channel uncertainty model was also considered, and it was shown that optimal power allocation
for the broadcast approach is a linear combination of beamforming and uniform power allocation

on all eigen-modes of the null-space.
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Throughout the paper the power constraint is a short-term power constraint (per transmission
block). It is well known that with a long-term power constraint (over multiple blocks), a
water-filling like strategy for transmitter power control achieves the outage capacity. It may be
interesting to characterize the achievable rates with a broadcast approach, when power control

is allowed, as this is still an open problem, and may be considered in future work.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge constructive discussions with Ami Wiesel, and wish to
thank the associate editor and the anonymous reviewers for their valuable comments, which have

enhanced the technical quality and lucidity of the paper.

APPENDIX A

PROOF OF PROPOSITION 2.1

Optimizing (13) by solving the corresponding Euler-Lagrange equation for an extremum

condition [17] yields the following optimal power allocation [7],

P s < S
[P(s) =4 ot =1 s <s<s (A1)
0 s> 8

where s; = 1—W (e~ (1)), where again W (z) is the Lambert W-function, and s is determined
by requiring I?"(s,) = P. Hence, the maximal average rate is obtained by substituting (A.1)
into (13), which simplified into (15).

Similarly, for R,.42 (3), when v > sy, the broadcasting average rate is generally expressed as
in (14). Optimizing (14) by solving the corresponding Euler-Lagrange equation for an extremum

condition yields the following optimal power allocation, which strongly depends on the selection
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of sy,. For sy, < s,

P s < Sg
t
I;p (S’Sth < 80) = s% — % S0 < s <5 (A.Z)
0 s > 81

2 . .
where sy = AT and s; = 1. Note that in this case (sy < sg) the broadcast approach
matches the broadcasting power allocation with no side information. The side information here

is relevant only for the case the transmitter is informed that v < s4,. For sy < sy, < 51 we get,

P s < S,
t
L (s|so < s < 81) = siQ — % Sip < 8 < 81 (A.3)
0 s> S1

which means that for v = sy, a non-infinitesimal power is allocated. That is, for v = s, the
power allocation is P — -+ + L. That is, p3"(s|so < s < 51) = <P -1l 4 L) 5(s — s) +
Sth Sth Sih Sth

(% — 5)1(stn < s < s1), where (z) is the Dirac delta function, and 1(z) is the indicator

function. For sy, > s1, the optimal strategy is to perform single level coding, that is

P s<s
[;pt(s|sth > 81) = th (A.4)
0 s=>su,

Summarizing, the maximal average rate, resulting from the optimal power allocation (A.2)-(A.4)

as function of relative value of sy, is given by (16). B

APPENDIX B

PROOF OF PROPOSITION 4.1

The first step is to show that for the highest (n'") layer Q,, satisfies properties 1) and 2). Then

it will be shown that necessarily the same result for holds for @),,_;. For @), it is assumed that
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all previous n — 1 layers were successfully decoded and canceled from the receive signal. Then,

the outage probability minimization can be written as

_ . ;
on = S_tr_ntlrr(lQn):lPr (log (1 + a,hy@,hl) < R,) . (B.1)

where o; € [0,1], Vi =1,..,n, and > ; a; = 1. The minimization of P,,, in (B.1) is identical
to the outage case, since there is only one last layer, without residual interference. Thus, the
covariance matrix (J,,, which minimizes F,,, satisfies properties 1) and 2) [12]. The outage

probability minimization for layer n — 1 is given by

n— hs n— hT
Pon1= min Pr (log (1+ e L) ) < Rn_l), (B.2)
Qu-1, st r(Qn-1)=1 1 + a,h,Q,h!

which may be expressed in a simplified form as

P, = min Pr <h5~hT < >’ 53
e Qn-1, st. r(Qn-1)=1 Q s g ( )

where ¢ = ef'"-1 — 1, and @ = p_1Qn_1 — ap(ef=1 —1)Q,,. The minimization in (B.3)
can be solved similarly to the outage case. Hence we have that CNQ satisfies the properties 1)

and 2) of the proposition. Since (), ; is a linear combination of (), and @, ie. Q1 =
1

Qn—1

This can be repeated for (),,_», and for any layer. B

[@ + ozn(eR”*1 —1)Q,], it is straightforward to show that (),,_; also meets properties 1), 2).
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BS Client
RTS
 /> CTS
Data K-bit CSI
(Broadcast
approach)

// Broadcast-ACK
RTS
 > CTS

Data K-bit CSI

(Broadcast
approach)

Broadcast-ACK

Fig. 1.  An exemplary communication protocol for acquiring partial transmit CSI, namely a quantized feedback. Every

transmission is initiated with an RTS/CTS sequence, and the CTS includes additional K bits of CSI.
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o=l
Sth Sth
5 ) 83 Sy > t
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R, = [dR(s)
Broadcast Approach: ‘
Transmited:
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decoded:

Sk

R, (s,)= de(s) :> Ry = I f($)R, (s)ds

0

Outage Region

Fig. 2. A timing diagram illustrating the concept of the broadcast approach versus the conventional outage approach.
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SNR=20 dB
4.5 \ \

Rate [Nats per Channel-use]

ol —»— Ergodic Capacity | |
—+— Broadcast
—#— QOutage
15F —A— Broadcast no FB |
Outage no FB

1 | | | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Threshold Level

Fig. 3. Broadcasting maximal average rate compared to outage maximal average rate (SNR=20dB). The x-axis represents the

feedback information threshold value.
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Fig. 4. Broadcasting maximal average rate compared to outage maximal average rate. The case where 1 feedback bit is available

is compared to the case where no feedback is available.
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Maximal achievable average rates of the broadcast approach, outage approach, and the ergodic capacity upper bound.

Figure (a) demonstrates the case that o2 = 1, in which case v, is Rayleigh distributed. In Figure (b) o = 0.9. In Figure (c)

0% = 0.5. In Figure (d) 0% = 0.1.
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Outage (uniform)
8 | —w— Broadcasting (uniform)
= Qutage (beamforming)
71 | —@— Broadcasting (beamforming)
Ergodic Capacity

Rate [Nats per channel use]

0 5 10 15 20 25 30 35 40
SNR [dB]

Fig. 6. Maximal achievable average rates of the broadcast approach, outage approach, and the ergodic capacity upper bound.

Number of transmit antennas is N = 2. Partial CSI is characterized here by m = 1, o2 = 0.16.
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10
Outage (uniform)
N | —— Broadcasting (uniform)
sl =—4— Qutage (beamforming) |
—O— Broadcasting (beamforming)
Ergodic Capacity |

Rate [Nats per channel use]
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Fig. 7. Maximal achievable average rates of the broadcast approach, outage approach, and the ergodic capacity upper bound.

Number of transmit antennas is N = 2. Partial CSI is characterized here by m = 1, o2 = 0.01.

October 22, 2007 DRAFT



