
1

Achievable Rates with Imperfect Transmitter

Side Information Using a Broadcast

Transmission Strategy

Avi Steiner and Shlomo Shamai (Shitz)

Abstract

We investigate the performance of the broadcast approach for various fading distributions, which

correspond to different models of partial transmit channel state information (CSI). The first model

considered is the quantized limited feedback. In this model, the receiver can send as feedback only a

finite number of bits describing the fading gain. We derive the optimal power allocation for the broadcast

approach for the quantized feedback model. For a Rayleigh fading channel, numerical results here show

that if the feedback word can be longer than one bit, the broadcasting gain becomes negligible, due to

diminished channel uncertainty. The second partial transmit CSI model is a stochastic Gaussian model

with mean and variance information, which is commonly used for modeling the channel estimation

error. In a single-input single-output (SISO) channel, this model also corresponds to the Ricean fading

distribution, for which we derive maximal achievable broadcasting rates. We further consider a multiple-

input single-output (MISO) channel, and derive the optimal power allocation strategy in a broadcast

approach. Numerical results here show that uniform power allocation is preferable over beamforming

power allocation in the region where broadcasting gain over single level coding is non-negligible.

Index Terms

Broadcast approach, code layering, channel state information, quantized feedback.
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I. INTRODUCTION

Transmitter channel state information (CSI) can be useful for increasing achievable rates of

a wireless communication system. However, in a rapidly changing environment, transmit CSI

(TCSI) may be hard to acquire, as it requires availability of an uplink channel from receiver to

transmitter, and even then causal TCSI can be inaccurate in a rapidly varying channel, due to

the delay between the channel estimation and the transmission opportunities. In this paper, two

models of partial TCSI are considered, namely, a quantized feedback model, and a stochastic

Gaussian model.

A quantized feedback model can be found when there is a limited uplink bandwidth. For

example, in the UMTS standard there are two bits available for feedback. In [1], the authors

study the efficiency of using feedback bits, which determine the quadrant between relative phase

of the transmit channels. Power adaptation for applications with long-term power constraint with

a quantized feedback is studied in [2], based on the classical time-domain water-pouring approach

with perfect TCSI [3]. A generally quantized feedback is studied in [4], in the context of multi-

level coding. The authors in [4] use a finite code layering and optimize the quantized information

as to maximize the throughput. The broadcast approach [5] is intended for maximizing the

expected throughput over fading channels, and for channels with one degree of freedom it is

also the ultimate achievable upper bound [6]. In our work, we consider the same channel model

as in [4], and derive the maximal throughput achievable adhering to the continuous broadcast

approach. The broadcast approach for a single-user facilitates reliable transmission rates adapted

to the actual channel conditions, in presence of channel uncertainty at the transmitter [5], [7].

The single-user broadcast approach hinges on the broadcast channel, which was first explored by

Cover [8]. In a classical broadcast channel every transmission is composed of multiple messages,

each directed to another receiver, where different channel conditions may characterize each

receiver, which is reflected in their received SNR. In the broadcast approach [5] considered here,
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there is only one transmitter and one receiver, which communicate over a fading channel. For

channels with one degree of freedom, the multi-level codeword can be (optimally) successively

decoded up to highest layer associated with an instantaneous channel realization. The rest of the

layers cannot be decoded, and thus will be in outage. Numerical results demonstrate here that

with more than one feedback bit the broadcasting gains relative to the outage approach become

negligible, as the level of CSI uncertainty diminishes rapidly. The feedback scalar quantization

is motivated by [9], which showed that for causal source coding, a scalar quantizer followed by

entropy compression is optimal.

The stochastic Gaussian model includes a mean and variance side information of the fading

coefficients at the transmitter. This model is useful, for example, in a time-division duplex

(TDD) system, where the transmitter can perform channel estimation of inputs from the uplink

channel, and use it for transmission. Often, the channel estimation acquired independently by

the transmitter may suffer from channel estimation inaccuracy due to RF chain impairments,

which limit channel estimation reciprocity. Furthermore, causality requires acquiring CSI prior

to transmission, while the channel may change when actual transmission takes place. These give

rise to the practical stochastic Gaussian model with mean and variance. This model was used

in [10], where it was shown that in the cases of small CSI uncertainty simple beamforming in

the direction of the mean channel is quite close to the optimum strategy. Optimal transmission

strategies for this model, in terms of outage probability, were studied in [11], [12]. It was shown

in [13], that the beamforming is the optimal strategy maximizing the compound capacity of a

rank one Ricean channel. We show here that for the broadcast approach in a multi input single

output (MISO) channel the optimal power allocation is a linear combination of beamforming

and uniform power allocation to the null-space of the known channel.

The rest of the paper is organized as follows. The broadcast approach with quantized feedback

is discussed in section II, and for the stochastic Gaussian partial TCSI in section III. It is extended

to a MISO channel in section IV. Finally, we conclude with section V.
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II. BROADCASTING WITH QUANTIZED FEEDBACK

Consider a slowly fading channel, where a limited uplink channel sends only a predeter-

mined number of information bits as feedback. In a channel with one degree of freedom

(SISO/SIMO/MISO) this information can be a quantized version of the equivalent fading gain.

It may indicate a fading gain range, as observed by the receiver. Transmission is then optimally

adapted to the fading gain feedback via an outage strategy or a broadcast strategy.

Figure 1, illustrates an exemplary communication protocol, which enables transmit side infor-

mation via a quantized feedback. Every transmission is initiated with a request-to-send (RTS)

message. The receiver replies with a clear-to-send (CTS) indication, and adds to the CTS message

N bits describing the link quality. Then the transmitter adapts its transmission rate and broadcast

strategy to this feedback.

Consider the following SISO channel model,

y = hx + n , (1)

where y is a received vector of length L, corresponding to the number of channel uses per

transmission block. The channel input x is the transmitted vector of length L, which satisfies the

power constraint E 1
L

L∑
i=1

|xi|2 ≤ P , where xi is the ith transmitted symbol within a block. The

additive noise vector is denoted n and its elements are complex Gaussian i.i.d with zero mean and

unit variance, denoted by CN (0, 1). The channel fading coefficient h is assumed to remain fixed

during a transmission block. Over multiple transmission blocks h admits the normalized Gaussian

distribution CN (0, 1). Partial TCSI information modifies the fading coefficient distribution, with

implications on achievable rates.

Throughout this paper, only the short term power constraint P is imposed, that is E 1
L

L∑
i=1

|xi|2 ≤
P per block. We note here that under a long term power constraint (average power constraint

over multiple transmission blocks), higher average throughput may be achievable with a different
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optimal power allocation, since the quantized feedback indicates a coarse channel quality, and

a water-pouring like strategy is required to maximize throughput [2], [3].

Before the analysis of the broadcast approach with partial CSI, we formulate the perfect TCSI

upper bound. This is also the ergodic capacity, which is explicitly given for the Rayleigh fading

case,

CRayleigh
erg = Eν log(1 + Pν) = e1/P E1(1/P ) (2)

where ν is Rayleigh distributed, and E1(x) =
∫ ∞

x
e−t

t
dt is the exponent integral function.

A. Single Bit of Transmit Side Information

Consider first the case that only 1-bit of side information is available at the transmitter. The

feedback indicates whether the actual fading gain is above or below some threshold sth. The

average achievable rate is given, in general, by

Ravg = Pν(ν ≤ sth)Ravg,1 + Pν(ν > sth)Ravg,2 (3)

where ν is the channel fading gain random variable, and sth is the fading gain threshold. The

rates Ravg,1 and Ravg,2 are average achievable rates for ν ≤ sth, and ν > sth, respectively.

1) Outage Approach: In a single level coding scheme (outage approach), there is a single

fixed rate code per transmission block. Therefore, in case of severe channel conditions, nothing

is decoded, and an outage event occurs. When fading gain is above some level all transmitted

information is reliably decoded. The maximal achievable average throughput is known as the

outage capacity [14]. For a given threshold selection sth, the rates Ravg,1, and Ravg,2 are average

achievable rates of single level coding. The achievable rate, for a given feedback (k = 1, 2), is

Ravg,k = (1 − Po,k)Rk (4)

where Po,k is the outage probability on a kth fading gain interval, and Rk is the corresponding

single level code rate allocated, where k = 1, 2 for a single bit feedback. Each of the average
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rates Ravg,k may be optimized independently, for some sth, such that Ravg (3) is maximized.

The outage probability for ν ≤ sth, and a transmission in a fixed rate R1 = log(1 + u1P ), is

Po,1 = Pν(ν < u1|ν ≤ sth) =
1 − e−u1

1 − e−sth
. (5)

The corresponding maximal average rate is

Ravg,1 = max
u1∈[0,sth]

(1 − Po,1) log(1 + u1P ) = max
u1∈[0,sth]

e−u1 − e−sth

1 − e−sth
log(1 + u1P ). (6)

Similarly, for a given threshold u2, the probability of outage for ν > sth is

Po,2 = Pν(ν < u2|ν > sth) = e−(u2−sth). (7)

The maximal average rate is then

Ravg,2 = max
u2∈(sth,∞)

(1 − Po,2) log(1 + u2P ) = max
u2∈(sth,∞)

e−(u2−sth) log(1 + u2P ), (8)

where (8) is maximized for

uopt
2 = max

(
P − W (P )

P · W (P )
, sth

)
(9)

where W (x) is the Lambert W-function, also called the omega function. The selection of sth

can be numerically optimized, to maximize the total average rate Ravg in (3) for the outage

approach.

2) Broadcast Approach: The achievable outage average rates may be further enhanced by

using a broadcast approach [5] optimized for every channel state. We derive here the continuous

broadcast approach for Ravg,1 and Ravg,2 in (3). The broadcast approach for the SISO channel was

introduced in detail in [7]. For completeness of presentation, we quickly review the principles

of the broadcast approach. The concept of the broadcast approach is demonstrated in Figure 2.

As may be noticed, in the outage approach transmission is either reliably decoded or completely

fails (outage). Whereas in the broadcast approach the number of decoded layers varies w.r.t. the

channel fading gain. The undecoded layers induce an outage region. In the continuous broadcast
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approach, every layer is associated with a fading gain u = |h|2, and is allocated a fractional

power ρ(u)du. Thus the incremental rate associated with layer u is [7]

dR(u) = log

(
1 +

ρ(u)udu

1 + I(u)u

)
=

ρ(u)udu

1 + I(u)u
(10)

where I(u) is the residual interference function, such that I(0) = P , and ρ(u) = − d
du

I(u) is

the power allocation density function. The maximal average rate is expressed as follows

Rbs,avg = max
I(u)

∞∫

0

du(1 − Fν(u))
ρ(u)u

1 + I(u)u
(11)

where Fν(u) is the cumulative distribution function (cdf) of the fading gain random variable. It

may be shown [7] that the optimal residual interference distribution function is given by

Iopt(u) =





P u < u0

1−Fν(u)−u·fν(u)
u2fν(u)

u0 ≤ u ≤ u1

0 u > u1

(12)

where u0 and u1 are obtained from the boundary conditions Iopt(u0) = P , and Iopt(u1) = 0,

respectively. From I(u), the power density function is directly obtained by ρopt(u) = −I ′
opt(u),

which yields the optimal layering power distribution. In order to study the benefits of layering,

the broadcast approach is always compared to the single level coding under the same channel

uncertainty.

When a single feedback bit is available at the transmitter, two different broadcast approaches

are to be used, Ravg,1 corresponding to the first state described by ν ≤ sth, and Ravg,2, corre-

sponding to ν > sth. The average broadcasting rate for ν ≤ sth, is specified by

Ravg,1 =

sth∫

0

(1 − F1(u))
ρ1(u)u

1 + I1(u)u
du (13)

October 22, 2007 DRAFT



8

where F1(u) = 1−e−u

1−e−sth
. Similarly, for Ravg,2 in (3), when ν > sth, the broadcasting average rate

is specified by,

Ravg,2 =

∞∫

sth

(1 − F2(u))
ρ2(u)u

1 + I2(u)u
du (14)

where F2(u) = e−sth−e−u

e−sth
. The maximal achievable rate is specified by the following proposition.

Proposition 2.1: Maximal Achievable rates, in presence of a single bit feedback for TCSI, is

given for a Rayleigh fading channel by

Ravg,1,max = (1−e−sth)−1(2E1(s
(1)
0 )−2E1(s

(1)
1 )+e−s

(1)
1 −e−s

(1)
0 +e−sth(s

(1)
1 −s

(1)
0 −2 log

(
s
(1)
1

s
(1)
0

)
))

(15)

Ravg,2,max =





esth(2Ei(s
(2)
0 ) − 2Ei(s

(2)
1 )−

(e−s
(2)
0 − e−s

(2)
1 )) sth < s

(2)
0

2esth

(
Ei(sth) − Ei(s

(2)
1 )

)
− 1+

e−(s
(2)
1 −sth) + log[(1 + sthP )sth] s

(2)
0 ≤ sth ≤ s

(2)
1

log(1 + sthP ) sth > s
(2)
1

(16)

where s
(k)
0 , and s

(k)
1 are determined by requiring separately in (15)-(16) that Iopt

k (s
(k)
0 ) = P , and

Iopt
k (s

(k)
1 ) = 0, respectively, and k = 1, 2. The expected rate is then given by (3).

Proof: See Appendix A.

B. Multi-level Transmit Side Information

When the receiver is capable of sending as feedback a higher resolution quantized fading

gain, the transmitter can perform closer to the ergodic capacity upper bound (2). Consider a

K level feedback, which indicates that the fading gain belongs to one of K possible intervals,

represented by N = ⌈log2(K)⌉ bits. Let the intervals be denoted by

{Ik}K
k=1 = {[sth,0, sth,1), [sth,1, sth,2), ..., [sth,K−1, sth,K)} (17)
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where Ik = [sth,k−1, sth,k) with sth,0 = 0, and sth,K = ∞. The average achievable rate given

K-level transmitter side information is generally given by

Ravg =
K∑

k=1

Pν(ν ∈ Ik) · Ravg,k (18)

where ν is the channel fading gain random variable, Ravg,k is the average rate for the kth channel

state interval, and Pν(ν ∈ Ik) is the probability that the channel state is within an interval Ik.

1) Outage Approach: Consider first the single level coding (outage) approach. For some

interval Ik, the rate Ravg,k may be optimized for maximizing the overall throughput Ravg (18). Let

uk determine the kth fading gain threshold by fixing the kth transmit rate to Rk = log(1+ukP ).

Then the outage probability with side information Ik is

Po,k = Pν(ν < uk|ν ∈ Ik) =
exp(−sth,k−1) − exp(−uk)

exp(−sth,k−1) − exp(−sth,k)
(19)

where it is implicitly assumed that uk ∈ Ik. The maximal average outage rate is then

Ravg,k = max
uk∈Ik

(1−Po,k) log(1+ukP ) = max
uk∈Ik

exp(−uk) − exp(−sth,k)

exp(−sth,k−1) − exp(−sth,k)
log(1+ukP ). (20)

2) Broadcast Approach: The optimal continuous broadcast approach can be computed for

every fading gain interval Ik. This is summarized in the following proposition.

Proposition 2.2: The kth maximal achievable rates, in presence of a K-level feedback, is

given by

Ravg,k,bs =

sth,k∫

sth,k−1

(1 − Fk(u))
ρk(u)u

1 + Ik(u)u
du (21)

with optimal power allocation,

Iopt
k (s) =





P s < s
(k)
0

1−e
−(sth,k−s)

s2 − 1
s

s
(k)
0 ≤ s ≤ s

(k)
1

0 s > s
(k)
1

(22)
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where s
(k)
1 = 1 − W

(
e−(sth,k−1)

)
, and s

(k)
0 is determined by Iopt

k (s
(k)
0 ) = P .

Proof: The derivation of the optimal power distribution Iopt
k (s) follows the same guidelines of

the proof of Proposition 2.1.

Notice that when s0 ≤ sth,k−1, there is no point in power allocation for fading gains smaller

than the minimal possible fading gain. Therefore, all power intended for lower layers is unified

into the first layer, denoted by sth,k−1. Thus the power for sth,k−1, when s0 ≤ sth,k−1 < s1 is

P (sth,k−1) = P − 1−e
−(sth,k−sth,k−1)

s2
th,k−1

+ 1
sth,k−1

. In case sth,k−1 ≥ s1, then no layering is required,

and single level coding is optimal, in a rate corresponding to Ravg,k = log(1 + sth,k−1P ).

A common assumption in literature is that the transmitter knows the fading gain pdf, denoted

f(s). Our results can be adapted for any given fading distribution f(s), and thus the thresholds

sth,k are optimized once, during system configuration, which means the transmitter does not need

any additional feedback to determine sth,k.

C. Numerical Results

Numerical results for a SISO Rayleigh fading channel are presented in the following. Figure

3 demonstrates the outage and broadcast approaches maximal achievable rates as function of

the threshold sth, for a single bit feedback. The receive SNR is 20 dB in this example. As may

be noticed, the broadcasting gain over the outage approach strongly depends on the selection of

the feedback threshold. This gain is minimized at the point of optimal selection of the feedback

threshold (sth = 0.7).

Figure 4 demonstrates the broadcasting gain over outage approach with K = 2, and K = 3

transmit intervals side information. In high SNRs, and K = 2, the broadcasting gain over outage

is reduced to ∼1 dB in presence of a single bit feedback, relative to a ∼3.5 dB broadcasting

gain without feedback. For K = 3, the broadcasting gain practically diminishes. Note also that

when K = 3 the feedback has to include N = 2 bits.
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III. BROADCASTING WITH PARTIAL CSI ADHERING TO THE GAUSSIAN MODEL

The case of quantized feedback is not always a valid model for imperfect transmitter side

information. In a TDD system, for example, the transmitter may perform uplink channel esti-

mation and use it for downlink transmission. However, the channel estimation may be limited

due to many reasons, e.g. the channel estimation acquired independently by the transmitter may

suffer from inherent inaccuracy due to RF chain impairments, which limit channel reciprocity.

Therefore, we consider now a SISO channel, as defined in (1), with a stochastic TCSI model

[10], [15]. The transmitter performs broadcasting, in order to maximize the average throughput

under this Gaussian channel model. The average throughput is compared with the outage capacity

lower bound, and the ergodic capacity upper bounds.

A. SISO Broadcasting over a Ricean Fading Channel

The channel fading coefficient is described by

h = ĥt + hr (23)

where ĥt represents the estimated fading coefficient, and hr ∼ CN (0, σ2) is the estimation error

random variable. The transmitter knows ĥt and σ2. This channel model corresponds also to

the line-of sight model, where ĥt represents the channel fading coefficient on the line-of-sight

path. Clearly, the square norm of the fading random variable ν = |h|2 is Ricean distributed.

Ricean distribution is a particular case of the noncentral Chi-square (χ2) distribution, with a

noncentrality parameter |ĥt|2.

The perfect TCSI ergodic capacity upper bound for the this channel model is given by

CRice
erg = Eν log(1 + Pν) (24)

where ν = |h|2, and for the Gaussian channel model (23), we have h ∼ CN (ĥt, σ
2), and ν has

a Ricean distribution, which is a noncentral χ2 distribution with two degrees of freedom. Its
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probability density function (pdf) is [16]

fν(u) =
1

σ2
e−

|ĥt|
2+u

σ2 B0

(
2|ĥt|

√
u

σ2

)
, (25)

where B0(x) is the 0th order modified Bessel function of the first kind.

For single level coding, the outage capacity can be expressed as function of the fading cdf,

CRice
outage = max

νth

(1 − Fν(νth)) · log(1 + Pνth) (26)

where Fν(x) is the cdf of ν, and is also an outage probability. The optimizing fading threshold

satisfies νth,max = arg max
νth

(1 − Fν(νth)) · log(1 + Pνth). Hence an outage event occurs for

channel realizations which satisfy ν < νth,max, otherwise a rate R1 = log(1 + Pνth,max) is

reliably decoded. The broadcast approach [7] throughput can be derived in the same lines of the

SISO channel, which was introduced in the previous section. The broadcast approach throughput

is specified in (11), and its optimizing power distribution is maximized using Eq. (12), where

the fading gain distribution used in (11)-(12) is the Ricean distribution given in (25).

B. Numerical Results

We present here numerical results for the maximal average throughput of the broadcast

approach RRice
bs,avg (11), outage approach CRice

outage (26), and the ergodic upper bound CRice
erg (24).

Figures 5.(a)-5.(d) demonstrate the potential gains of broadcasting for different values of σ2.

For σ2 = 1, the channel estimation is ĥt = 0 (or alternatively there is no line of sight), and

thus νs is Rayleigh distributed. In all other cases σ2 < 1, and the gains of broadcasting over the

outage approach are lower. The smaller σ2 the lower the broadcasting gain. For σ2 = 1, in high

SNRs the broadcasting gain over the outage approach reaches ∼ 3.5 dB, and for σ2 = 0.1, the

broadcasting gain is approximately 1.8 dB.
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IV. BROADCASTING OVER THE MISO CHANNEL WITH PARTIAL CSI

When transmitter has more than one antenna, it may utilize both phase and amplitude of

the TCSI for maximizing throughput, by using beamforming like strategies. This is unlike the

case of one transmit antenna, where only the channel magnitude is helpful. We consider here

the MISO channel with partial TCSI under the stochastic Gaussian TCSI model. It was shown

in [12] that with such TCSI, and an outage approach, the optimal power allocation is a linear

combination of beamforming and uniform power distribution over the null-space. We extend this

result for the broadcast approach. Consider the following MISO channel,

y = hsX + n, (27)

where y is a received vector of length L, corresponding to the number of channel uses per

transmission block. The channel input X is the transmitted [N × L] matrix, which satisfies the

power constraint E 1
L

L∑
i=1

x(i)†x(i) ≤ P , where x(i) is the ith, [N × 1], transmitted column of X.

The [1×L] additive noise vector is denoted n and its elements are complex Gaussian i.i.d with

zero mean and unit variance, denoted by CN (0, 1). The fading channel vector hs is a [1 × N ]

vector, its elements hs(i) are Ricean distributed as in (23). It is assumed that the {hs(i)}N
i=1

are independently distributed each with a specific line-of sight parameter Ehs(i) = mi, and mt

is the N element vector of the channel mean available to transmitter. The channel uncertainty

random variables hr(i) are i.i.d hr(i) ∼ N (0, σ2), i = 1, .., N . The average mutual information

is give by

I(x; y|hs) = log(1 + PhsQh†
s) (28)

where Q is an [N × N ] covariance matrix of the power distribution, such that tr(Q) = 1.
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A. Uniform Power Allocation

For uniform power allocation, Q = 1
N

IN , where IN is an N ×N identity matrix. The mutual

information for this power allocation is

Iuni(x; y|hs) = log(1 +
P

N
νu), (29)

where νu =
N∑

i=1

si, with si , |hs(i)|2. The random variable νu has a noncentral χ2 distribution

with N degrees of freedom, and noncentrality parameter m =
N∑

i=0

|mi|2, and variance σ2 to each

element in the sum. The pdf of νu is given by

fνu(x) =
1

2σ2

( x

m

)(N−2)/4

e−
x+m
2σ2 BN/2−1

(√
xm

σ2

)
(30)

where Bn(x) is the nth order modified Bessel function of the first kind. Note that the average

receive SNR here is SNRuni = P
N

(m+Nσ2). Given the mutual information expression (29), and

the distribution of the equivalent fading νu (30), broadcasting and outage rates may be derived

straightforwardly, following same guidelines as in the scalar Ricean fading case, Section III.

However, the uniform power allocation for a MISO channel in case of TCSI is sub-optimal. It is

therefore interesting to characterize the optimal power distribution for MISO broadcasting with

partial TCSI.

B. Optimal Power Allocation

We refer here to the optimal power allocation strategy. The known result for the outage

approach strategy [12] is derived first, which is then extended to the broadcast approach.

1) Outage Approach: Consider the power covariance matrix Q in its SVD representation

Q = UΛU †. Let ν = U †hs, it was shown in [12] that for minimal outage probability the

independent elements of ν satisfy ν1 ∼ N (
√

m,σ2), and ν2, .., νN ∼ N (0, σ2), where λ1 > λi

for all i = 2, .., N without loss of generality. The columns of the unitary matrix U are composed
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of
(

mt√
m

, u2, ..., uN

)
, where {ui} (i = 2, .., N ) is an orthonormal set of arbitrary vectors, which

are also orthonormal to mt√
m

. This means that λ1 is the power assignment in the beamforming

direction. The other singular values represent power allocation in the null-space, to random

variables (RV) ν2, .., νN ∼ N (0, σ2), since these are i.i.d. Gaussian RVs equal power allocation

is optimal here [12], hence λ2 = λ3 = · · · = λN is optimal. The mutual information is then

Iopt(x; y|hs) = log(1 + P (λ1s1 + βsu)), (31)

which results from β , λ2 = λ3 = · · · = λN , and by requiring su =
N∑

i=2

si, where su is central

χ2 distributed with N − 1 degrees of freedom. The parameter s1 is a noncentral χ2 RV with

variance σ2 and noncentrality parameter m. By incorporating the power constraint
N∑

i=1

λi = 1

into (31)

Iopt(x; y|hs) = log(1 + P
(
αs1 + (1−α)

N−1
su

)
) (32)

where α ∈ [ 1
N

, 1], the requirement α ≥ 1/N is a direct result of the optimality condition

that λ1 ≥ λi for all i = 2, .., N . We are interested in the distribution of the random variable

t = αs1 + (1−α)
N−1

su. Since s1 and su are statistically independent, the pdf of t is given by a

convolution of the individual pdfs,

ft(t) =

t/α∫

0

dsfs1(s) · fsu

(
(N − 1)

1 − α
t − (N − 1)α

1 − α
s

)
· (N − 1)

1 − α
(33)

where the pdfs of s1 and su are as follows

fs1(s) = 1
σ
√

2πs
e−

s+m
2σ2 cosh

(√
sm
σ2

)
(34)

fsu(s) = 1
σN−12(N−1)/2Γ(N−1

2
)
s(N−1)/2−1e−

s
2σ2 (35)

The SNR at a single receive antenna for the above power allocation is given by SNRopt =

P · (α(m + σ2) + (1 − α)σ2) = P · (αm + σ2). From here the average outage rates can be

optimized like in the uniform power allocation case, using the fading gain distribution in (33).
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2) Broadcast Approach: We have seen that for an outage approach the optimal power

allocation strategy is to allocate the larger portion of the power in the beamforming direction,

and the rest is allocated to the null-space, uniformly among the eigen-modes. We will show here

that this strategy is also optimal for the broadcast approach as a per layer power allocation.

Consider a finite level code layering with n layers, and (scalar) power allocation P1, P2, ..., Pn

to each layer, such that
∑n

i=1 Pi = P . The corresponding rates are denoted by R1, R2, ..., Rn.

In addition, let Qk be a power covariance matrix for layer k, such that tr{Qk} = 1. Then, the

channel realizations satisfying the rate and power allocation constraints may be successfully

decoded. That is, the probability of outage for layer k is specified by,

Po,k = Pr


log


1 +

PkhsQkh†
s

1 +
n∑

j=k+1

PjhsQjh
†
s


 < Rk


 . (36)

The following proposition shows that the covariance matrix Qk for the broadcast approach has

the same properties as in the outage case.

Proposition 4.1: The optimal power allocation strategy for the broadcast approach requires

covariance matrices {Qk}n
k=1, with an SVD representation Qk = UΛkU

†, where the matrices Λk

and U have the following properties:

1) Λk = diag{λ1,k, ..., λN,k}, such that the largest eigenvalue is λ1,k (λ1,k > λj,k, ∀j, 2 ≤
j ≤ N ), and λ2,k = λ3,k = ... = λN,k.

2) The unitary matrix Uk includes, for any k, the following columns
(

mt√
m

, u2, ..., uN

)
, where

{ui}N
i=2 is an orthonormal set of arbitrary vectors, also orthonormal to mt√

m
.

Proof: See Appendix B.

C. Numerical Results

Two examples of uniform power allocation and beamforming only power allocation are

presented. The uniform power allocation average rate follows from (29). Beamforming only
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power allocation is a special case of the optimal power allocation strategy with α = 1 in (32).

In Figures 6-7, the channel uncertainty is σ2 = 0.16, and σ2 = 0.01, respectively. In both figures

m = 1.

Figure 6 demonstrates a rather high CSI uncertainty of σ2 = 0.16, uniform power allocation

is preferable. The broadcasting gain over the outage approach exceeds ∼ 2 dB. Figure 7, shows

that for a lower CSI uncertainty such as σ2 = 0.01, the outage and broadcast approach nearly

coincide, and the performance of beamforming and uniform power allocation is also very close.

Moreover, the proximity of performance to the ergodic capacity is also a direct result of low CSI

uncertainty. Clearly, by further increasing the certainty in CSI the beamforming power allocation

will be superior, and broadcasting will not be beneficial any longer.

V. CONCLUSION

We have studied several power allocation strategies for the broadcast approach with partial

TCSI, with focus on analytical solutions. Nevertheless, the principles set here can be used for

different nature of side information motivated by practical considerations to assess the benefits

from a multi-layer broadcast approach. The optimal power allocation and maximal achievable

broadcasting rate is derived for the case of a quantized fading gain feedback. It is demonstrated

via numerical results that for a Rayleigh fading channel with only one feedback bit, the broadcast

approach introduces roughly 1 dB gain over the outage approach. This gain diminishes when

increasing the resolution of the quantized information beyond one bit.

We have also considered the stochastic Gaussian TCSI model, where the transmitter possesses

only the mean and variance of the actual CSI. Optimal power allocation for the SISO channel

is derived similarly to the case where no TCSI is available. The MISO channel with the same

channel uncertainty model was also considered, and it was shown that optimal power allocation

for the broadcast approach is a linear combination of beamforming and uniform power allocation

on all eigen-modes of the null-space.
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Throughout the paper the power constraint is a short-term power constraint (per transmission

block). It is well known that with a long-term power constraint (over multiple blocks), a

water-filling like strategy for transmitter power control achieves the outage capacity. It may be

interesting to characterize the achievable rates with a broadcast approach, when power control

is allowed, as this is still an open problem, and may be considered in future work.
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APPENDIX A

PROOF OF PROPOSITION 2.1

Optimizing (13) by solving the corresponding Euler-Lagrange equation for an extremum

condition [17] yields the following optimal power allocation [7],

Iopt
1 (s) =





P s < s0

1−e−(sth−s)

s2 − 1
s

s0 ≤ s ≤ s1

0 s > s1

(A.1)

where s1 = 1−W
(
e−(sth−1)

)
, where again W (x) is the Lambert W-function, and s0 is determined

by requiring Iopt
1 (s0) = P . Hence, the maximal average rate is obtained by substituting (A.1)

into (13), which simplified into (15).

Similarly, for Ravg,2 (3), when ν > sth, the broadcasting average rate is generally expressed as

in (14). Optimizing (14) by solving the corresponding Euler-Lagrange equation for an extremum

condition yields the following optimal power allocation, which strongly depends on the selection
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of sth. For sth < s0,

Iopt
2 (s|sth < s0) =





P s < s0

1
s2 − 1

s
s0 ≤ s ≤ s1

0 s > s1

(A.2)

where s0 = 2
1+

√
1+4P

, and s1 = 1. Note that in this case (sth < s0) the broadcast approach

matches the broadcasting power allocation with no side information. The side information here

is relevant only for the case the transmitter is informed that ν ≤ sth. For s0 ≤ sth ≤ s1 we get,

Iopt
2 (s|s0 ≤ sth ≤ s1) =





P s < sth

1
s2 − 1

s
sth < s ≤ s1

0 s > s1

(A.3)

which means that for ν = sth a non-infinitesimal power is allocated. That is, for ν = sth the

power allocation is P − 1
s2
th

+ 1
sth

. That is, ρopt
2 (s|s0 ≤ sth ≤ s1) =

(
P − 1

s2
th

+ 1
sth

)
δ(s− sth) +

( 2
s3 − 1

s2 )1(sth < s ≤ s1), where δ(x) is the Dirac delta function, and 1(x) is the indicator

function. For sth > s1, the optimal strategy is to perform single level coding, that is

Iopt
2 (s|sth > s1) =





P s < sth

0 s ≥ sth

(A.4)

Summarizing, the maximal average rate, resulting from the optimal power allocation (A.2)-(A.4)

as function of relative value of sth, is given by (16). ¥

APPENDIX B

PROOF OF PROPOSITION 4.1

The first step is to show that for the highest (nth) layer Qn satisfies properties 1) and 2). Then

it will be shown that necessarily the same result for holds for Qn−1. For Qn, it is assumed that
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all previous n− 1 layers were successfully decoded and canceled from the receive signal. Then,

the outage probability minimization can be written as

Po,n = min
Qn, s.t. tr(Qn)=1

Pr
(
log

(
1 + αnhsQnh†

s

)
< Rn

)
. (B.1)

where αi ∈ [0, 1], ∀i = 1, .., n, and
∑n

i=1 αi = 1. The minimization of Po,n in (B.1) is identical

to the outage case, since there is only one last layer, without residual interference. Thus, the

covariance matrix Qn, which minimizes Po,n, satisfies properties 1) and 2) [12]. The outage

probability minimization for layer n − 1 is given by

Po,n−1 = min
Qn−1, s.t. tr(Qn−1)=1

Pr

(
log

(
1 +

αn−1hsQn−1h†
s

1 + αnhsQnh†
s

)
< Rn−1

)
, (B.2)

which may be expressed in a simplified form as

Po,n−1 = min
Qn−1, s.t. tr(Qn−1)=1

Pr
(

hsQ̃h†
s < g

)
, (B.3)

where g = eRn−1 − 1, and Q̃ = αn−1Qn−1 − αn(eRn−1 − 1)Qn. The minimization in (B.3)

can be solved similarly to the outage case. Hence we have that Q̃ satisfies the properties 1)

and 2) of the proposition. Since Qn−1 is a linear combination of Qn and Q̃, i.e. Qn−1 =

1
αn−1

[Q̃+αn(eRn−1 − 1)Qn], it is straightforward to show that Qn−1 also meets properties 1), 2).

This can be repeated for Qn−2, and for any layer. ¥
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Data 

(Broadcast 
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Broadcast-ACK

RTS

CTS
K-bit CSI

Data 

(Broadcast 
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Fig. 1. An exemplary communication protocol for acquiring partial transmit CSI, namely a quantized feedback. Every

transmission is initiated with an RTS/CTS sequence, and the CTS includes additional K bits of CSI.
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Fig. 5. Maximal achievable average rates of the broadcast approach, outage approach, and the ergodic capacity upper bound.

Figure (a) demonstrates the case that σ
2

= 1, in which case νs is Rayleigh distributed. In Figure (b) σ
2

= 0.9. In Figure (c)

σ
2

= 0.5. In Figure (d) σ
2

= 0.1.
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