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Abstract

The problem of a nomadic terminal sending information to a remote destination via agents with lossless connec-

tions to the destination is investigated. Such a setting suits, e.g. access points of a wireless network where each access

point is connected by a wire to a wireline-based network. The Gaussian codebook capacity for the case where the

agents do not have any decoding ability is characterized for the Gaussian channel. This restriction is demonstrated

to be severe, where allowing the nomadic transmitter to use other signaling improves the rate. For both general and

degraded discrete memoryless channels, lower and upper bounds on the capacity are derived. An achievable rate with

unrestricted agents, which are capable of decoding, is also given and then used to characterize the capacity for the

deterministic channel.

Index Terms

Cooperative reception, decentralized detection, relay channel, wireless networks

I. INTRODUCTION

Information theory for networks and especially wireless networks is in the focus of an extensive research activity.

This interest is partly due to many recent results on multiple antenna channels, which demonstrate significant gains,

especially for fading channels.

Many papers propose and analyze ad-hoc wireless networks in information theoretic terms. Among these, coding

schemes which achieve O(n) transport capacity were given in [1]. Multi-hop relaying makes use of several

intermediate wireless nodes to assist the communication between two nodes that are far apart. An information

theoretic framework for the relay channel was given by Cover and El Gamal in [3] for a single relay node and

extended by [4] to several relaying nodes. Relaying techniques can be coarsely divided into compress-and-forward

and decode-and-forward, depending on whether the relays attempt to decode the transmitted message or just forward

the processed received signal to the destination. By using cooperation, relaying schemes can take advantage of

the inherent dependencies for efficient forwarding to the final destination. Such cooperation is commonly used

and selected examples are [5],[6], while cooperation between receiving nodes in a degraded broadcast channel is

described in [7]. We conclude with an upper bound derived by [8], that suggests that as the number of users in an

ad-hoc network goes to infinity, the total rate per user tends to zero. This bound motivates the use of networks that

are not solely ad-hoc, but are composed of base stations or access points as well.
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The problems of conveying a source which is observed by remote agents to a single destination are built around

similar settings, where the source is modelled as an i.i.d. random variable. Several aspects of these problems are

analyzed in information theoretic frameworks such as distributed source coding, lossless CEO (Chief Executive

Officer) [9], CEO [10] and sensor networks. A small sample from the extensive work that is relevant to our

distributed detection setting includes [11],[12] and [9] for distributed source coding. Allowing lossy source encoding,

in a distributed scheme, as opposed to non-distributed [13] is still essentially an unsolved problem. An exception is

the Gaussian CEO problem [14],[15] which was recently solved using the entropy power inequality by [16],[17].

Multi-terminal lattice approaches are described in [18]. These rate-distortion problems are linked to network models

in [19],[20] and [21]. The use of other measures, instead of the plain distortion, is addressed, for example in [22]

and [23]. The dissertation of Schein [24] focuses on the characteristics of the problem of communicating via two

agents, and several achievable rates are demonstrated there.

Here we consider the problem of reliable communication from a nomadic transmitter to a remote destination,

through non-decoding agents which are connected to the final destination via lossless links. The agents have the

noisy version (via their respective channels) of the transmitted message, and are able to transmit a predetermined

number of bits to the destination without any errors. The destination is reached only via the agents which serve

as the noisy channel access points. By nomadic transmitter we mean that the receiving devices can not and will

not decode the transmitted signal. Only the remote final destination will decode the transmitted message. Such a

setting is of interest to numerous applications. The main motivation, however, is for systems where the agents can

not decode because of added noise or interference. We also consider the less restrictive case, where the agents are

informed about the transmitter’s code, and give several achievable rates, which turn up to be capacity achieving for

the deterministic channel.

The rest of the paper is organized as follows: in section II the setting of the problem is given. An achievable rate

and an upper bound for the nomadic transmitter are presented in sections III and IV respectively. An achievable

rate for the case of cognizant agents is given for both degraded and non-degraded channels in section V, where the

capacity is fully characterized for the deterministic channel. The Gaussian channel is presented as an example in

section VI which for the case where the agents are unaware of the code used, and where the codebook is Gaussian,

also includes a characterization of the rate-region.

In this paper we use capital letters X for random variables, lower case letters x for the realization of these

variables, and calligraphic letters X for their alphabets. Vectors are denoted by bold face letters X , x, or vector

spaces by X , and are of length n, unless otherwise specified. A calligraphic letter denotes a set, e.g. T , {1, . . . , T}.

A complement (denoted by the superscript C) of some subset S of a set T refers to the subset SC which fulfills:

S ∪ SC = T and S ∩ SC = φ. Cardinality of any set T is written as |T |. A subscript, e.g. Xi, denotes the i-th

element in the vector X and a superscript Xn denotes the vector (X1, . . . , Xn). The notation Xm
k refers to the

vector (Xk, . . . , Xm), and XS refers to {Xi}i∈S . Let PA1,A2,...,AL
(a1, a2, . . . , aL) be the probability function of

the random variables A1, . . . , AL which take values in A1, . . . ,AL, respectively.



2

II. PROBLEM SETTINGS

We consider the problem of a single transmission from the transmitter S through T agents, playing the role of

decentralized processors, to the final destination D, seen in Fig. 1 for T = 2. Our model consists of a nomadic

transmitter S, which uses random coding, where the agents do not know the codebook used. An example for

this setting is the case where the transmitter uses one code out of a group of possible channel codes, where the

receiving agents are not equipped with the corresponding decoder. However, the agents are still needed to allow

communication with the destination. What the agents do know, is some characteristics of the group of codes, which

include their rate, and that they are capacity achieving over a standard single user Gaussian channel. An example can

be a group of codes (Turbo, Convolution, Reed-Solomon etc.), a group of interleavers, code-polynomials, puncturing

patterns within a specific code, and also a group of modulation techniques. Such random coding is also used in

[25] for a mis-match scenario, while the advantages of random coding were demonstrated in [26] for unknown

channels.

The following properties and definitions hold, unless stated otherwise:

1) The channel input is X ∈ X for every channel use (output of the transmitter S).

2) The T agents A1, . . . , AT receive the outputs of a memoryless broadcast channel without feedback, defined

by

PY 1,...,Y T |X(y1, . . . ,yT |x) =

n∏

i=1

PY1,...,YT |X(y1,i, . . . , yT,i|xi), (1)

where yt,i ∈ Yt. Denote T , {1, . . . , T}. The agents have full knowledge of the distribution PX , induced

by the nomadic transmission, and thus also of PY 1,...,Y T
(y1, . . . ,yT ).

3) The bandwidth Ct, in bits per channel use, characterizes the lossless link that connects the agent At to the

final destination D.

4) The communication rate is denoted by R. The message M to be sent is encoded by a random encoding

function X = φS,F (M) such that for all messages M , the outputs of the encoding function are randomly and

independently chosen according to probability PX(x). We index the random encoding function by the random

variable F . We define the range of F to be [1, 2, . . . , |X |n2nR

], which is the number of ways of mapping

2nR messages to the |X |n possible codewords. Then let every f correspond to a unique such mapping, i.e.

F = f corresponds to one such mapping. That is, we choose

φS,F : [1, . . . , 2nR] → Xn, (2)

and the probability of selecting f is:

PF (f) =

2nR

∏

m=1

PX(φS,f (m)), (3)

where PX(x) =
∏n

i=1 PX(xi), for some single letter probability PX . The agents are not informed about the

selected encoding F , but are fully aware of PX .
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Fig. 1. A system with two agents between the transmitter and the destination.

5) Every agent t, t = 1, 2, . . . , T , encodes its n channel outputs with an encoding function

φAt : Yt → [1, . . . , 2nCt ] (4)

so that

Vt = φAt (Y t) . (5)

Vt is sent through a lossless link to the final destination.

6) The destination decodes the message M from VT , i.e. we have

M̂ = φD,F (VT ), (6)

where φD,F : [1, . . . , 2
∑ T nCt ] → [1, . . . , 2nR].

7) The rate R is said to be achievable if for every ǫ > 0, there exists n sufficiently large such that:

1

2nR

2nR

∑

m=1

Pr(M̂ 6= m|M = m) ≤ ǫ, (7)

where Pr(M̂ 6= m|M = m) includes averaging over the channel and the random coding.

Notice that with the knowledge of F , with high probability, X is uniformly distributed over 2nR codewords.

However, with knowledge of F we have the following simple lemma

Lemma 1: Without the knowledge of the selected encoding F , the vector X is distributed according to PX(x) =
∏n

i=1 PX(xi), and therefore Y t is distributed as

PY t
(yt) =

n∏

i=1

∑

x

PYt|X(yt,i|x)PX(x). (8)

Proof: See Appendix II.

The above setting models the problem where the final destination decodes the message from the transmitter via

simple agents, which are not able to decode the transmitted message and use compression of the received signals.

When the agents are allowed to decode, as is the case in section V, then obviously randomized encoding is

superfluous. However, in order to allow combined approaches, and for the sake of consistency, we use the same

settings also for when the agents are informed about the coding used.

III. AN ACHIEVABLE RATE FOR NOMADIC TRANSMITTER

We denote the setting of section II as nomadic transmitter. The following theorem is a special case of Theorem

3 (proved in Appendix III) applied to the nomadic setting. In fact, by proper modeling, Theorem 3 is also a special
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case of [31]. But here we give cardinality constraints and the proof is simpler because there is no need for the

block Markov superposition encoding.

Theorem 1: Define a positive rate R and a set of auxiliary random variables UT , with bounded cardinalities

of |Ut| ≤ |Yt| + 2T−1 such that

R < I(X; UT ) (9)

with the constraints

∀S ⊆ T :
∑

t∈S

Ct > I(US ; YS |USC ) (10)

and the joint distribution

PX,UT ,YT (x, uT , yT ) = PX(x)PyT |X(yT |x)

T∏

t=1

PUt|Yt
(ut|yt). (11)

Then R is achievable for nomadic transmitter.

Proof: See Appendix III and Remark 1.

We remark that (11) means that

Ut − Yt − {X, UT \t, YT \t}. (12)

forms a Markov chain. The auxiliary random variables UT are used to compress YT , and are forwarded to the final

destination. The constraints (10) are required so that the final destination can reliably recover UT from VT .

Corollary 1: The achievable rate of Theorem 1 can be improved by taking into account only errors that involve

incorrect X , where the destination is allowed to make errors in UT . Such approach gives an achievable rate which

is written with no constraints, albeit we feel is less intuitive. Rate R is achievable if:

R < min
S⊆T

{
∑

t∈S

[Ct − I(Ut; Yt|X)] + I(USC ; X)

}

, (13)

where the cardinality and the probability space of the random variables are the same as in Theorem 1.

Proof: See Appendix IV.

IV. AN UPPER BOUND FOR NOMADIC TRANSMITTER

An upper bound for capacity of the communication problem described in section II is given by the following

theorem, which is based on the fact that the agents do not know the selected encoding F . The problem is thus

similar to the general CEO problem in the sense that the transmitter source sequence should be reproduced. Meaning

that the transmitter is a source which should be reproduced at the destination with a modified distortion. Since the

agents are ignorant of the codebook used, there is an inherent gap compared with the case where the agents know

the codebook used. The achievable rate when the agents are unrestricted can be upper bounded by the cut-set upper

bound [27]. This gap between the achievable rate and the cut-set bound will be demonstrated for the Gaussian

channel, in section VI.

Theorem 2: Any reliable communication rate R for the nomadic setting (section II) must satisfy

R ≤ max I(X;UT ), (14)
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where UT must fulfill the constraints:

∀S ⊆ T :
∑

t∈S

Ct ≥ I(US ; YT |USC ). (15)

The maximization in (14) is over (X, YT , UT ,W ) which are distributed according to:






PX,YT ,W (x, yT , w) = PX(x)PYT |X(yT |x)PW (w)

∀ 0 < t ≤ T : ut = ft(w, yt)

(16)

for some random variable W and for some deterministic functions {ft}t∈T . The cardinality of W is |W|, where

it suffices to use |W| ≤ |YT | + 2T−1.

Proof: The theorem is proved in Appendix V.

We remark that (16) means that

Ut − Yt − {X,YT \t} (17)

forms a Markov chain. At first look, it seems that the right-hand side of (10) is lower than the r.h.s. of (15), which

would result in a contradiction between the necessary conditions of Theorem 2 and the sufficient conditions of

Theorem 1. This apparent conflict is resolved by observing the different Markov relations the variables UT fulfill,

where (11) is more restrictive than (16).

Furthermore, when taking the variables UT in the upper bound such that they fulfill (11), the r.h.s. of (15) is

identical to the r.h.s. of (10). This is since

I(YT ; US |USC ) = I(YS ;US |USC ) + I(YSC ; US |USC , YS) = I(YS ; US |USC ) (18)

where I(YSC ;US |USC , YS) = I(YSC ; US |YS) = 0 because of the Markov relations (12).

Corollary 2: Similarly to Corollary 1, we can give an expression with no constraints also for the upper bound.

This upper bound is

R < max
PW ,{ft}

{

min
S⊆T

{
∑

t∈S

[Ct − I(Ut; Yt|X)] + I(USC ; X)

}}

, (19)

where again, the random variables have the same cardinalities and the same Markov chains as in Theorem 2.

Proof: See Appendix VI.

V. AGENTS WITH CODE KNOWLEDGE

In this section we diverge from the nomadic model described in section II. Suppose the agents know the codebook

so that the agents and the transmitter can be jointly optimized. This enables to transmit a broadcast message that

is decoded by the agents and forwarded to the destination, in addition to the compression operation. Denote this

model as decoding agents. Such an approach can increase the overall transmission rate.

Obviously, the use of randomized encoding is superfluous here, as the agents are fully informed about the selected

coding. Nonetheless, to remain consistent, the same setting as in the nomadic case is used, where the only difference

is with the knowledge of F also at the agents.
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In the following, we will denote all messages that are decoded at the agents as broadcast messages, although

eventually they are always intended for the same final destination.

The next theorem is based on Marton’s scheme [28] to the broadcast channel. Denote by Mt the message to be

decoded at agent t, and let M = (MT ,MCF ) (MCF is the message that is decoded only at the final destination).

Theorem 3: For the decoding agents case, any rate R satisfying

R < I(X; UT |WT ) +

T∑

t=1

Rt, (20)

with the constraints






∀ 0 < t ≤ T : 0 ≤ Rt

∀ S ⊆ T :
∑

t∈S Rt <
∑

t∈S [I(Wt;Yt) − I(Wt; WT̃ (S,t))]

∑

t∈S [Ct − Rt] > I(US ; YS |USC , WT )

(21)

on RT , UT ,WT (W0 is a constant). Where T̃ (S, t) , {i : i ∈ S and i < t}, with the joint distribution

PX,YT ,WT ,UT
(x, yT , wT , uT ) = PWT

(wT )PX|WT
(x|wT )PYT |X(yT |x) ·

T∏

t=1

PUt|Yt,Wt
(ut|yt, wt), (22)

is achievable.

The agent At decodes nRt bits and forwards them to the destination along with n(Ct − Rt) bits used for the

compression. This compression is done considering the decoded signal wt. The final destination then decides on the

transmitted MCF by using joint typicality for the compressed signals, taking into account wT . The above scheme

uses the auxiliary random variables WT for the messages that will be decoded at the agents, and Ut which depends

on Wt, for the compression outcomes that will be decoded at the final destination.

This achievable rate may be further increased by using a convex hull over the rate region which indicated by

Theorem 3.

Proof: The proof appears in Appendix III and uses compression in addition to Marton’s broadcast (not including

common messages).

Remark 1: The scheme described in Theorem 1 is obtained as a special case of the above scheme, by taking all

WT to be constants. The cardinality limits in Theorem 1 can be calculated from the limits in Appendix III-F.

Remark 2: The achievable rate in Theorem 3 can be written without {Rt} by solving the following linear

programming problem: given PX,YT ,WT ,UT
which satisfies (22), maximize R from (20), over RT . Using this

approach we get that any rate R is achievable if it satisfies:

R < I(X; UT |WT ) + min
S⊆T

{
∑

t∈S

Ct − I(US ; YS |USC ,WT ) +
∑

t∈SC

[I(Wt; Yt) − I(Wt; WT̃ (SC ,t))]

}

, (23)

Provided that:

1) ∀ S ⊆ T :
∑

t∈S

Ct ≥ I(US ; YS |USC ,WT ) (24)
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2) ∀ S ⊆ T :

0 ≤
∑

t∈S

[I(Wt; Yt) − I(Wt; WT̃ (S,t))]. (25)

See the proof in Appendix VIII.

Remark 3: Another improvement upon (20) is done by sending common broadcast messages in addition to the

individual broadcast messages to the agents, so that they could divide the bandwidth required for forwarding decoded

messages between their links. This is done by extending Theorem 2 in [28] to more than two users and adding

compression. Notice that such construction contains Theorem 3 and Theorem 4 (to follow) as special cases. Such

scheme is given in Appendix VII for two agents.

Corollary 3: For the case of deterministic channel, where Yt = gt(X), for some deterministic functions gt, the

cut-set upper bound is:

R ≤ min
S⊆T

{

H(YSC ) +
∑

t∈S

Ct

}

. (26)

This rate is achievable from (23) by taking ∀ t : Ut = Const,Wt = Yt, which fulfills the conditions (24) and

(25). So the capacity region is fully characterized for the deterministic channel (This is a special case of the main

result in [32]).

For the case where the channels PYt|X are either stochastically or physically degraded (see [27] subsection

14.6.2), that is Yt is better than Yt−1 (without loss of generality), we can use superposition coding, which is known

to achieve capacity over degraded broadcast channels.

The received signal Y2 is physically degraded compared to Y1 if the following Markov chain

X − Y1 − Y2 (27)

is satisfied. Notice that this relation leaves I(X;Y1, Y2) = I(X; Y1). On the other hand, stochastically degraded Y2

means that the marginal probability PY2|X(y2|x) can be calculated from PY1|X(y1|x) through some PY2|Y1
(y2|y1)

(See equation (28)). Since (27) is not necessarily true for stochastic degradedness, we have that I(X; Y1, Y2) ≥
I(X;Y1). So although superposition coding is optimal for the degraded broadcast channel, it is not necessarily

optimal for our model.

Theorem 4: For decoding agents with a channel PYT |X(yT |x) that satisfies

∀ 0 < t ≤ T : PYt−1|X(yt−1|x) =
∑

yt

PYt|X(yt|x)PYt−1|Yt
(yt−1|yt), (28)

any rate R satisfying (20) with the constraints






∀ 0 < t ≤ T : 0 ≤ Rt ≤ I(Wt; Yt|W t−1)

∀ S ⊆ T :
∑

t∈S [Ct − Rt] > I(US ; YS |US ,WT ).

(29)

and the joint distribution

PX|WT
(x|wT )PYT |X(yT |x)

T∏

t=1

PUt|Yt,W t(ut|yt, w
t) ·

T∏

t=1

PWt|W t−1(wt|wt−1), (30)
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is achievable, and

|Wt| ≤ |X |T−t+1 +

T∑

i=t

|X |T−i(2T + i − t) (31)

|Ut| ≤ |Yt||Wt| + 2T−1. (32)

Theorem 3 does not seem to include Theorem 4 as a special case, as it does not account for a common rate (see

Remark 3).

Proof: See Appendix IX.

Corollary 4: The rate from Theorem 4 can be expressed with no constraints and no parameters Rt, by solving

a linear programming maximization problem, as in Remark 2 which is built along the lines of Corollary 1. This

gives the rate

R = min
S

{
∑

t∈S

[Ct − I(Yt;Ut|X)] + I(USC ; X) +
∑

t∈SC

I(Yt;Wt|W t−1)

}

. (33)

VI. THE GAUSSIAN CHANNEL

In this section we investigate the Gaussian channel under two cases, where the agents are ignorant of the

code (sections III and IV) and where they are cognizant of the codebook used by the transmitter (section V).

Using the latest results of Oohama for the Gaussian CEO rate-distortion problem [17], a converse for the reliable

communication rate is shown for the former case.

We use Corollary 1 with continuous alphabets instead of discrete, where this extension relies on standard

arguments (See [15] for example). The Generalized Markov Lemma, for Gaussian variables appears in [17].

The Gaussian channel is defined by Yt = X +Nt, where {Nt}T
t=1 are independent Gaussian random variables with

EN2
t = PNt

1 and ENt = 0. Let X be zero mean Gaussian with variance EX2 = PX . Here we abuse notation

and use PX , PNt
to denote also the variance of the Gaussian random variables X, Nt, in addition to the probability

itself, where the meaning will become obvious from the context.

A. Non-decoding agents

We prove the following result in Appendix X.

Theorem 5: The capacity of the nomadic transmitter, for the Gaussian channel, with Gaussian PX (described

above), is

R = max
{rt≥0}

{

min
S⊆T

{

1

2
log2

(

1 + PX

∑

t∈SC

1 − 2−2rt

PNt

)

+
∑

t∈S

[Ct − rt]

}}

. (34)

Note that the nomadic assumption here is extended by limiting the transmitter to use Gaussian codebooks. The

Theorem is proved using Corollary 1 for the direct part and the upper bound from (113) along with results from

[15] for the converse part.

The parameters {rt}T
t=1 in (34) indicate the bandwidth wasted for quantizing the additive noise, which can not

be avoided because of the nomadic transmitter. This bandwidth reduces the available bandwidth that is left for

1
E stands for statistical expectation
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forwarding the actual transmission to (Ct − rt), and on the other hand, indicates the expected signal to noise ratio

at the destination 1
2 log2

(

1 + PX

∑

t∈T
1−2−2rt

PNt

)

. Notice that (34) is concave in rt, so that it can be efficiently

solved numerically. In addition, when the problem is symmetric (Ct, Nt are equal among agents), then also the

optimal rt = r∗ are identical for all the agents, and an explicit expression can be obtained, provided the roots to a

polynomial of degree T are found.

Corollary 5: For the case of two equivalent agents, that is C1 = C2 = C and γ = PX

PN1
= PX

PN2
, the rate (34)

can be written as the following explicit expression:

R =
1

2
log

(

1 + 2γ

(

1 −
√

γ2 + 24C(1 + 2γ) − γ

24C

))

. (35)

Notice that R in (35) equals 1
2 log(1 + 2γ) when C → ∞ and 2C when γ → ∞.

B. Example: sub-optimality of Gaussian signalling

The previous section described the capacity of the nomadic transmitter, in the Gaussian setting when the transmitter

used a Gaussian code book. It is important to note that the Gaussian signalling is not necessarily optimal, where

sub-optimality can be due to the limited lossless links between the agents and the final destination. For example,

we show that for when C1 = C2 = 1, using binary phase shift keying (BPSK) at the transmitter surpasses using

Gaussian signalling, when the agents are still ignorant of the codebook used.

The agents know that BPSK signal was used, and can demodulate every received channel output into one bit

(j = 1, . . . , n):

Vt(k) =







1 yt(k) > 0

0 yt(k) ≤ 0.

(36)

This scheme is in fact a special case of Theorem 1, where PX(X) represents the two equiprobable BPSK symbols,

and Ut is a deterministic function of Yt. Notice that this Vt contains n bits, so that C1 = C2 = 1 suffices to

forward it over to the final destination. The final destination can reliably decode the received message provided the

transmission rate is no more than (for all 1 ≤ k ≤ n):

Rbpsk ≤ 1

n
I(X; V1, V2) = I(X(k);V1(k), V2(k)) = G(Q(

√
2P )) (37)

where

G(x) , (1 − x)2 log2

(
(1 − x)2

)
+ x2 log2

(
x2

)
− (1 − 2x(1 − x)) log2

(
1

2
(1 − 2x(1 − x))

)

, (38)

and Q(x) = (2π)−0.5
∫ ∞

x
exp

(
− 1

2z2
)
dz. We compare this rate to (35) in figure 2. We indeed see that BPSK

signalling outperforms Gaussian signalling. This is because demodulation is some form of primitive decoding, so that

it improves upon the Gaussian signalling, which does not allow any decoding (including any sort of demodulation).
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Fig. 2. The achievable rate of a system with two agents, with link bandwidths of C1 = C2 = 1 and signal to noise ratio of P. The dotted

line designates the use of Gaussian signalling at the transmitter and the solid line designates the use of BPSK.

C. Example: agents with decoding capabilities

Consider the symmetric case of a Gaussian channel with statistically equivalent agents (both suffering from an

additive Gaussian noise with variance PN ). In addition, both agents are connected via lossless links with equal

bandwidth C, to the final destination. The combined approach of broadcast and compression for the degraded

channel (theorem 4) is employed, although the optimization considers only Gaussian distributions. The rate R is

achievable provided that:

R <

2∑

t=1

Rt +
1

2
log2

(

1 + α
PX

PN

2∑

t=1

(1 − 2−2rt)

)

(39)

where {rt, Rt, α} satisfy:






0 ≤ α ≤ 1

t = 1, 2 : 0 ≤ Rt ≤ C

∑2
t=1 Rt < 1

2 log2(
PN+PX

PN+αPX
)

∀S ⊆ {1, 2} :

∑

S [C − Rt] >
∑

S rt+

1
2 log2

(

1 + αPX

∑2
t=1

1−2−2rt

PN

)

+

− 1
2 log2

(

1 + αPX

PN

∑

SC (1 − 2−2rt)
)

.

(40)

The convex hull is found to improve rates for this example. The achievable rate as a function of the bandwidth

C, for signal to noise ratio PX

PN
= 10, is presented in Fig. 3. In this figure, the left most dashed line R = 2C, and

the upper flat dashed line R = 1
2 log2(1 + 2PX

PN
) are the two cut-set bounds [27], and the lower flat dashed line is

the rate of a system without compression R = 1
2 log2(1 + PX

PN
). The dotted line represents time-sharing, which is
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Fig. 3. The achievable rate of a system with two agents, each with link bandwidth of C and signal to noise ratio of 10 dB. The dotted line

designates time sharing, and the dashed lines represent the cut-set bounds [27]. The lower flat dashed line is the achievable rate for a system

without compression.

useful here. This figure illustrates that if the sum of capacities of the corresponding broadcast channel, (calculated

by the signal to noise ratios at the agents) is smaller than the sum of the bandwidths of the links, a compression

scheme can significantly improve the performance. A rate of up to 0.2 bits from the cut-set bound is observed

with C = R = 2, which means 50% excess bandwidth compared to the achievable rate. It also demonstrates that

when the bandwidths of the links are smaller then the sum of capacities of the corresponding broadcast channel

C1 + C2 < 1
2 log2(1 + PX

PN
), the achievable rate in the nomadic setting using Gaussian codebook (equation (35)) is

strictly smaller than in the fixed transmitter setting (the cut-set bound, R = C1 + C2).

VII. CONCLUSION

Communication via separated agents is considered, focusing on two cases: (1) the agents do not possess any

knowledge about the codebook used by the transmitter, and (2) the agents do possess decoding capability. For the

first case, the nomadic model was defined and a suitable information theoretic framework, which included random

coding, was presented. For this nomadic case, a suitable direct coding theorem based on decentralized compression

and the corresponding upper bound were derived. Considering the Gaussian channel, a converse was proved by the

entropy power inequality invoking the techniques of [17]. An achievable rate was derived also for the case where the

agents are cognizant of the codebook used by the transmitter. These sufficient conditions combined either Marton’s

or the superposition approaches, with the decentralized compression. For the case of the deterministic channel, the

capacity was fully characterized.
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APPENDIX I

DEFINITIONS AND LEMMAS

As commonly done (see [27], section 13.6), define the ǫ-typical (strongly typical) set Tǫ of aL as the set for

which N(aS |aS) = 0 for any aS ∈ AS such that PAS
(aS) = 0, and also

Tǫ ,

{

aL : ∀S ⊆ L, ∀aS ∈ AS ,

∣
∣
∣
∣

1

n
N(aS |aS) − PAS

(aS)

∣
∣
∣
∣
<

ǫ

|AS |

}

, (41)

where N(aS |aS) denotes the number of occurrences of the symbol aS in the vector aS .

Lemma 2: For any ǫ > 0, there exist n∗ such that for all n > n∗ and aL ∼ ∏
PAL

P (aL ∈ Tǫ) ≥ 1 − ǫ. (42)

Lemma 3: Define the jointly ǫ-typical set Tǫ, as before, by the joint probability

PAL,WL
(aL, wL) (43)

For some S ⊆ L let an
L be generated according to

aL ∼
n∏

i=1

{

PASC |WL
(aSC ,i|wL,i)

∏

l∈S

PAl|Wl
(al,i|wl,i)

}

, (44)

where wL is a vector that belongs to Tǫ. Then the probability that the pair (aL,wL) is in Tǫ is bounded by

Pr((a1,...,L, wL) ∈ Tǫ) ≥ 2−n[H(ASC |WL)−H(AL|WL)+
∑

l∈S H(Al|Wl)+ǫ1] (45)

Pr((a1,...,L,wL) ∈ Tǫ) ≤ 2−n[H(ASC |WL)−H(AL|WL)+
∑

l∈S H(Al|Wl)−ǫ1] (46)

where ǫ1 → 0 as ǫ → 0.

Lemma 4: Generalized Markov Lemma

Let

PAS ,WS ,YS (aS , wS , yS) = PWS ,YS (wS , yS)
∏

t∈S

PAt|Wt,Yt
(at|wt, yt). (47)

Given randomly generated wSyS according to PWS ,YS
, for every t ∈ S , randomly and independently generate

Nt ≥ 2nI(At;Yt|Wt) vectors ãt according to
∏n

i=1 PAt|Wt
(ãt,i|wt,i), and index them by ã

(k)
t . Then there exist |S|

functions k∗
t = φt(yt, wt, ã

(1)
t , . . . , ã

(Nt)
t ) taking values in [1 . . . Nt], such that for sufficiently large n,

Pr(({a(k∗
t )

t }t∈S , wS , yS) ∈ Tǫ) ≥ 1 − ǫ. (48)

Proof: See [27] and [29] for the proofs of Lemmas 2-3, while Lemma 4 is a simple extension of Lemma 3.4

(Generalized Markov Lemma) in [30].

In the following, we use only ǫ and remove the distinction between ǫ and ǫ1, for the sake of brevity.
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APPENDIX II

PROOF OF LEMMA 1

In this Appendix we show that when the selected encoding F is unknown, the transmission Xn is a memoryless

random process, distributed according to: PXt1 ,...,XtL
(xt1 , . . . , xtL

) =
∏tL

t=t1
PX(xt) for all tL , t1 < · · · < tL

and all xtL , xt1 , . . . , xtL
. We have that

PXt1
,...,XtL

(xt1 , . . . , xtL
) =

∑

f,m:(φS,f (m))tL
=xtL

PF,M (f,m) =

2nR

∑

m=1

∑

f :(φS,f (m))tL
=xtL

PF (f)PM (m) =

∑

f :(φS,f (1))tL
=xtL

PF (f) ==

tL∏

t=t1

PX(xt)
∑

xt
LC

,x(m=2),...,x(m=2nR)

∏

j∈tLC

PX(xj)

n∏

i=1

2nR

∏

l=2

PX(x(m = l)i) =

tL∏

t=t1

PX(xt)

(49)

This concluds the proof.

APPENDIX III

PROOF OF THEOREM 3

For the proof we use ideas from [31], which presents an achievable rate region using the compress and forward

technique for the multiple relays problem. The difference being that here the agents benefit from a fixed non-

interfering links to the destination, thus the multiple access communication and the interferences from simultaneously

transmitting relays are avoided. In addition to compress-and-forward, broadcast messages are sent to the agents to

be passed on noiselessly to the destination. Notice that the agents do not require any knowledge of the codebook

used by the transmitter. As before, the network is composed of T agents t ∈ T = {1, . . . , T}, a source transmitter

and a final destination. Apposed to [31], we do not need the block Markov encoding technique here, because there

is no direct link between the transmitter and the final destination.

The transmission goes as follows, the transmitter is sending X(M) where M ∈ [1, 2nR]. Divide M into MT

and MCF , where MT , (M1, . . . ,MT ) ∈ [1, 2nR1 ]× · · ·× [1, 2nRT ] and MCF ∈ [1, 2nRCF ] are the messages that

are decoded at the agents and the message that is decoded only at the final destination D, respectively. The t-agent

decodes M̂t and forwards it to D with nRt bits. It then compresses the received signal Y t given the broadcast

message that was decoded. The t agent uses compression rate of R̂t to compress Y t into U t, indexed by zt,

where zt ∈ [1, 2nR̂t ]. Since the compressed signals {U t} are dependent with each other and with M̂T , bandwidth

from the agents to D can be saved by using the Wyner-Ziv lossy distributed source coding, that is partition the

output of the compression into bins, and send only the bin index. Each agent then uses the remaining bandwidth

after sending the broadcast message (Ct − Rt) to send the corresponding bin {st ∈ [1, 2n(Ct−Rt)]}. The final

destination receives M̂T from all the agents and then uses it with s1, . . . , sT to decode ẑ1, . . . , ẑT and then to

decode M̂CF ∈ [1, 2nRCF ]. The detailed proof goes as follows: we first describe the code construction. Next, the

processing at transmitter, agents and the decoding at the final destination are given. The conditions (21) result from

the described construction so that when n → ∞ the error probability is arbitrary small.
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A. Code construction:

Fix δ > 0 and then for every t = (1, . . . , T ):

1) For the broadcast transmissions:

• Randomly generate 2n(I(Wt;Yt)−Rt−δ) vectors wt, of length n, according to PW t
(wt) =

∏n
i=1 PWt

(wt,i).

• Repeat the last step for 2nRt times, label the resulting 2n(I(Wt;Yt)−Rt−δ) vectors of each repetition by

Mt, where Mt ∈ [1, 2nRt ]. Define MMt
as the set labelled by Mt.

• Define the bin MMT , MM1 × · · · ×MMT
as the product union of the sets {MMt

}.

2) For compress and forward transmission: at the agents

For all {wt} generated in the previous step,

• Randomly generate 2n[R̂t−(Ct−Rt)] vectors ut of length n according to
∏

i PUt|Wt
(ut,i|wt,i).

• Repeat the last step for st = 1, . . . , 2n(Ct−Rt), define the resulting set of ut of each repetition by Sst
.

• Index all the generated ut with zt ∈ [1, 2nR̂t ]. We will interchangeably use the notation Sst
for the set

of vectors ut as well as for the set of the corresponding zt.

• Notice that the mapping between the indices zt and the vectors ut depends on wt. So we will write

ut(zt, wt) to denote ut which is indexed by zt for some specific wt from the previous stage.

3) For compress and forward transmission: at the transmitter

For every codebook realization f , and every wT generated in the first step:

• Randomly choose 2nRCF vectors x, of length n, with probability PX|W T
(x|wT ) =

∏

i PX|WT
(xi|wT ,i).

• Index these vectors by MCF where MCF ∈ [1, 2nRCF ].

• So we have 2n[
∑

T I(Wt;Yt)−δ] different mappings between indices MCF and vectors x, where the one

used is determined by wT . We will therefore denote x(MCF , wT ) as the vector indexed by MCF for

some wT out of the ones chosen on the first step. We leave out the notation of f in the sequel, for the

sake of brevity, since for decoding agents, the chosen f is known at the agents, so the achievable rate is

valid for every realization of f , with high probability.

B. Encoding:

Let M = (MT , MCF ) be the message to be sent (MT is defined at the beginning of this section).

• Define T
BC
ǫ as:

T
BC
ǫ ,

{

wT : ∀S ⊆ T , ∀aS ∈ WS ,

∣
∣
∣
∣

1

n
N(aS |wS) − PWS (aS)

∣
∣
∣
∣
<

ǫ

|WS |
}

. (50)

• Find a T -tuple (w1, . . . , wT ) in the bin MMT such that

(w1, . . . ,wT ) ∈ T
BC
ǫ . (51)

If no such T -tuple is found, declare error event E1.

• Define the n functions wT (MT ), as the mapping of MT into the typical wT that was chosen in the last step.
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• Transmit to the channel the vector x which is indexed by MCF when distributed by
∏

i PX|WT
(xi|wT ,i(MT )).

Denote x(M) , x(MCF ,wT (MT )).

C. Processing at the agents:

In the following, T
t,1
ǫ and T

t,2
ǫ are defined in the standard way, as (41).

1) Decoding: The t agent receives yt and looks for ŵt so that

(yt, ŵt) ∈ T
t,1
ǫ . (52)

If no such ŵt exists, declare error event E2. If there is more than one such ŵt, declare error event E3. Denote by

E4 the error event where the chosen vector ŵt 6= wt(MT ).

2) Compression: The t agent chooses any of the zt such that

(
ut(zt, ŵt),yt, ŵt

)
∈ T

t,2
ǫ . (53)

The event where no such zt is found is defined as the error event E5.

After deciding on zt the agent transmits st, which fulfills zt ∈ Sst
, and M̂t to the final destination through the

lossless link, where M̂t corresponds to ŵt.

D. Decoding (at the destination):

The destination retrieves M̂T and sT , (s1, . . . , sT ) from the lossless links.

As long as

Rt < Ct, (54)

the transmitted sT and M̂T are properly received, with no errors, since the link is lossless. The destination then

finds the set of indices ẑT , {ẑ1, . . . , ẑT } of the compressed vectors ûn
T and the decoded vectors ŵT which satisfy







(
û1(ẑ1, ŵ1(M̂T )), . . . , ûT (ẑT , ŵT (M̂T )), ŵT (M̂T )

)
∈ T

3
ǫ

ẑT ∈ Ss1 × · · · × SsT
.

(55)

Where T
3
ǫ is defined in the standard way, as (41). If there is no such ẑT , the destination declares error E6 and

if there is more than one such ẑT the destination declares error E7. The event where ẑT 6= zT is defined as E8.

Finally the destination decides that M̂CF was sent if

(
x(M̂T , M̂CF ), ûT (ẑT , ŵT (M̂T )), ŵT (M̂T )

)
∈ T

4
ǫ . (56)

If no such M̂CF is found, declare error E9, if more than one such M̂CF is found, declare error E10. Further define

error E11 as the event where M̂CF 6= MCF .

Correct decoding means that the destination decides M̂ = M . An achievable rate R was defined as when the final

destination receives the transmitted message with an error probability which is made arbitrarily small for sufficiently

large block length n.
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E. Error analysis

The error probability is upper bounded by:

P (error) = P
(
∪11

i=1Ei

)
≤

11∑

i=1

P (Ei). (57)

Where:

1) E1: No T -tuple wT jointly typical is found.

2) E2: No ŵt which is jointly typical with yt exists.

3) E3: More than one ŵt is jointly typical with yt.

4) E4: A different ŵt 6= wt is jointly typical with yt.

5) E5: No ut(zt, ŵt) is jointly typical with (yt, ŵt).

6) E6: There is no
(

ûT (ẑT , M̂T ), ŵT (M̂T )
)

jointly typical.

7) E7: There is more than one
(

ûT (ẑT , M̂T ), ŵT (M̂T )
)

jointly typical.

8) E8: There is another
(

ûT (ẑT , M̂T ), ŵT (M̂T )
)

jointly typical.

9) E9: There is no x jointly typical with ûT , ŵT .

10) E10: There is more than one x jointly typical with ûT , ŵT .

11) E11: The jointly typical x(M̂CF , M̂T ) 6= x(M).

The error events E3, E7, E10 are added since they are declared by the system as errors. We will upper bound the

probabilities of the individual error events by arbitrarily small ǫ.

1) E1: Notice that in order for the number of generated vectors to be larger than zero,

∀ 1 ≤ t ≤ T : Rt ≤ I(Wt;Yt) − δ. (58)

For any subset S ⊆ T , the probability that a randomly generated t-tuple wS is not jointly typical (so wT /∈ T
BC
ǫ )

is upper bounded by

PwT /∈TBC
ǫ

≤ 1 − 2n[H(WS)−
∑

t∈S H(Wt)−2|S|ǫ], (59)

and the probability P that some bin MMS
does not contain any jointly typical S-tuple is upper bounded by

P ≤
(

PW n
T /∈TBC

ǫ

)2n[
∑

S I(Yt;Wt)−Rt−δ]

. (60)

It is easy to see that this probability is small as desired for any n sufficiently large when

∑

t∈S

Rt <
∑

t∈S

[I(Yt; Wt) − H(Wt) − δ] + H(WS) − 2|S|ǫ

=
∑

t∈S

I(Yt; Wt) − I(Wt; WT̃ (S,t)) − |S|δ − 2|S|ǫ. (61)

Where T̃ (S, t) , {i : i ∈ S and i < t}. Define for the sequel ǫ′ = δ + 2ǫ.

2) E2, E6, E9: By Lemmas 2 and 4, the probability of jointly distributed variables not to be ǫ-typical is as

small as desired for n sufficiently large.
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3) E3 and E4: We have that according to Lemma 3, the probability that another ŵt belongs to T
t,1
ǫ is upper

bounded by 2−n[I(Wt;Yt)−ǫ]. Since there are no more than 2n[I(Wt;Yt)−δ] such ŵt, the probability of E3 and E4

can be made arbitrarily small as n goes to infinity as long as δ > ǫ.

4) E5: From Lemma 4, there is no zt such that ut(zt, wt) is in T
t,2
ǫ with probability P (E5), which can be

made arbitrary small for sufficiently large n as long as

R̂t > I(Ut; Yt|Wt). (62)

5) E7 and E8: Assume that for some S ⊆ T :

ẑS 6= zS , (63)

and

ẑSC = zSC . (64)

This means that the compression vectors ût for t ∈ S, are jointly typical with the corresponding ŵt, with high

probability (Lemma 2) as they are generated that way. But they are not necessarily jointly typical with the other

{ûj , ŵj}j 6=t. On the other hand, since ût = ut for t ∈ SC , they are jointly typical together with ŵT with high

probability, due to Lemma 4. So ûT (ẑT , ŵT (M̂T )), ŵT (M̂T ) with high probability, belongs to a typical set of

the distribution:

n∏

i=1

{

PWT
(ŵT ,i)PUSC |WT

(ûSC ,i|ŵT ,i)
∏

t∈S

PUt|Wt
(ût,i|ŵt,i)

}

.

Thus according to Lemma 3, the probability that such vector belongs to T
3
ǫ is upper bounded by

2n[H(WT ,UT )−H(WT )−H(USC |WT )−
∑

t∈S H(Ut|Wt)+ǫ]. (65)

Overall there are

2n[
∑

S [R̂t−Ct+Rt]] − 1

such vectors in the set Ss1 × · · · × SsT
and the probability of errors E7 and E8 is upper bounded by:

2n[
∑

t∈S [R̂t−Ct+Rt−H(Ut|Wt)]] × 2n[H(US |WT ,USC )+ǫ+|SC |ǫ′]. (66)

Which means that as long as

∑

t∈S

[Ct − Rt] >
∑

t∈S

[

R̂t − H(Ut|Wt)
]

+ H(US |USC ,WT ) (67)

the destination will be able to reliably decode MT , zT for sufficiently large n.
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6) E10, E11: The probability that M̂CF 6= MCF satisfies (56) is upper bounded by (again Lemma 3)

2−n[I(X;UT |WT )−ǫ]. (68)

Now summing over the 2nRCF − 1 possible M̂CF and upper bounding, we find that reliable detection of MCF

given MT is possible if

RCF < I(X; UT |WT ). (69)

Taking (62) and (67) and noticing that {Ut}t∈T are independent given (Yt,Wt) we can write the constraints as:

∀S ∈ T :
∑

t∈S

[Ct − Rt] > I(US ; YS |USC , WT ). (70)

Notice that (58) is surplus given (61) and (54) is surplus given (70). Now (61) and (70) constitutes (21). The

achievable rate (20) is through (69).

F. Cardinality Bounds

In this subsection we show the bounds on the cardinality of the auxiliary variables UT . For that, we use the

support Lemma, as was done in subsection V-A.

Consider the functionals over generic QYt,Wt
. Note that there are 2T−1 such functionals from (21), one from

(20) and |Yt||Wt| − 1 from the given probability PYt,Wt
. This proves that

|Ut| ≤ |Yt||Wt| + 2T−1. (71)

When trying to apply the support Lemma for the cardinalities of WT , the structure of the constraints in (61),

specifically the right-most elements, prevents isolating a single auxiliary variable from the others, and thus also

prevents the application of the support Lemma. The difficulty is faced also when trying to limit the cardinalities

of the auxiliary variables of Marton’s broadcast approach [28], which to the best of our knowledge have not been

done. The auxiliaries entanglement is resolved for the degraded channel, considered in Theorem 4 which is proved

in Appendix IX.

APPENDIX IV

PROOF OF COROLLARY 1

The scheme which achieves the rate (13) is basically identical to the one used for Theorem 3, with the following

differences:

1) In section III-D, now the decoding is done in a single stage, in which the destination looks for M̂CF , ẑT ,

such that (56) is fulfilled and

ẑT ∈ Ss1 × · · · × SsT
. (72)

If there are no such indices, declare error E′
7, and if either more than one, or an erroneous M̂CF are found,

is denoted by error E′
8. Otherwise declare the received message to be M̂CF , M̂T .
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2) Error analysis: E7-E12 are irrelevant anymore, and instead we have E′
7,E′

8. So we consider less error events,

and the achievable rate is larger (either strictly or not).

P (E′
7) → 0 according to Lemma 4.

As for E′
8: Consider the case where M̂CF 6= MCF and ẑS 6= zS . There are 2n[R+

∑

t∈S [R̂t−Ct+Rt]] such

vectors, and the probability of (x(M̂), uS(ẑS), uSC (ẑSC )) to be jointly typical is upper bounded by (Lemma

3) 2n[H(X,UT |WT )−H(X|WT )−H(USC |WT )−
∑

t∈S H(Ut|Wt)+ǫ]. Thus the rate RCF is achievable if:

RCF <
∑

t∈S

[Ct − Rt − R̂t + H(Ut|Wt)] − H(US |X, WT ) − H(USC |X,US ,WT )

<
∑

t∈S

[Ct − Rt − I(Yt;Ut|X, Wt)] + I(USC ;X|WT ),

where the second inequality is due to (62) and because of the Markov chain Ut − (WT , X) − UT \t. Notice

that for t∗ such that R̂t∗ ≤ Ct∗ −Rt∗ , which means I(Ut∗ ; Yt∗ |Wt∗) ≤ Ct∗ −Rt∗ , we get full reconstruction

of ut∗ , with no need for binning. In that case, we get that the constraints S : t∗ ∈ S are superfluous. This

is since:

Ct∗−Rt∗−I(Ut∗ ; Yt∗ |X, Wt∗)+I(USC ;X|WT ) ≥ I(Ut∗ ;Yt∗ |Wt∗)−I(Ut∗ ; Yt∗ |X, Wt∗)+I(USC ;X|WT ) =

I(Ut∗ ; X|Wt∗) + I(USC ; X|WT ) ≥ I(Ut∗ ; X|USC ,Wt∗) + I(USC ;X|WT ) ≥ I(USC∪t∗ ;X|WT ). (73)

APPENDIX V

PROOF OF THE OUTER BOUND OF THEOREM 2

Using Fano’s inequality, we get that reliable decoding at the destination is possible only if:

H(M |VT , F ) ≤ nǫn, (74)

where nǫn → 0 as n → ∞.

Now we have:

nR ≤ H(M) = I(M ; VT , F ) + H(M |VT , F ) (75)

≤ H(VT ) + H(F |VT ) − H(F |M) (76)

−H(VT |M, F ) + nǫn (77)

= I(VT ; M,F ) − I(F ;VT ) + nǫn (78)

≤ I(VT ; M,F ) + nǫn (79)

≤ I(VT ; X(M, F )) + nǫn (80)

where (78) is since F is independent with M so H(F |M) = H(F ), (80) stems from the Markov chain MF −
X − VT .

Turning to the agents, we upper bound
1

n
I(VT ; X) (81)
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over the encoding functions of the agents, when the agents do not know F :

I(VT ; X) = H(X) − H(X|VT ) (82)

≤
n∑

i=1

H(Xi) − H(Xi|VT , Xi−1) (83)

≤
n∑

i=1

H(Xi) − H(Xi|VT , Y i−1
T , Xi−1) (84)

=

n∑

i=1

H(Xi) − H(Xi|UT ,i) (85)

=

n∑

i=1

I(Xi; UT ,i). (86)

When US,i , (VS , Y i−1
T , Xi−1) for any S ⊆ T .

Following the definition, the random variables US must fulfill the following constraints:

n∑

i=1

I(US,i; YT ,i|USC ,i) (87)

=

n∑

i=1

I(VS , Y i−1
T , Xi−1; YT ,i|VSC , Y i−1

T , Xi−1) (88)

=

n∑

i=1

I(VS ;YT ,i|VSC , Y i−1
T , Xi−1) (89)

≤
n∑

i=1

I(VS ;YT ,i, Xi|VSC , Y i−1
T , Xi−1) (90)

= I(VS ; Y T ,X|VSC ) (91)

≤ H(VS |VSC ) ≤ H(VS) ≤ n
∑

t∈S

Ct. (92)

Next, following [14] define U∗
t , (Ut,s, s), X∗ , Xs, Y ∗ , Ys where s is a random variable, uniformly distributed

over [1, n]. So we have that

R ≤ 1

n

n∑

i=1

I(Xi;UT ,i) (93)

=

[
n∑

i=1

P (s = i)I(Xi; UT ,i|s = i)

]

+ I(X∗; s) (94)

= I(X∗; UT ,s|s) + I(X∗; s) (95)

= I(X∗; U∗
T ) (96)

where (94) follows from Lemma 1: it is known that X∗ and s are independent without the key F (X is memoryless).

We further have

∑

t∈S

Ct ≥
n∑

i=1

1

n
I(US,i; YT ,i|USC ,i) (97)

=

n∑

i=1

1

n
I(U∗

S ;Y ∗
T |U∗

SC , s = i) (98)
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= I(U∗
S ; Y ∗

T |U∗
SC ). (99)

Define W ∗ , (Y T ,s+1, Y
s−1
T , Xs−1, s), so that by considering Lemma 1, X∗ and Y ∗

T are independent with W ∗

when not conditioned on F . The auxiliary variables U∗
t can then be represented as:

U∗
t = (Vt, Y

s−1
T , Xs−1, s) = (gt(W

∗, Y ∗
t ), g(W ∗)) (100)

ft(W
∗, Y ∗

t ) , (gt(W
∗, Y ∗

t ), g(W ∗)) (101)

where gt(W
∗, Y ∗

t ) = (Vt, Y
s−1
T ) and g(W ∗) = (Xs−1, s). This shows that the probability space is indeed (16).

This is possible only because of the nomadic transmitter. In the case when F is known to the agents, the probability

space (16) no longer holds, so that the upper bound in theorem 2 isn’t applicable when the agents are cognizant of

the codebook used.

A. Cardinality Bounds

In this subsection we show the bounds on the cardinality of the auxiliary variable W , through bounds on the

variables UT , which fulfill the Markov chain, as in eq. (17). For that, we use the support Lemma, (see for example

[29] pp. 310, and [19]). According to this Lemma, if there are K functionals {qk}K
k=1 on a set P(X ) of probability

distributions over the alphabet X , and given any probability measure µ on the Borel σ-algebra of P(X ), there exist

K elements Qk ∈ P(X ) and K non-negative reals αk that sum to unity, such that for every 1 ≤ j ≤ K:

∫

P(X )

qj(Q)µ(dQ) =

K∑

k=1

αkqj(Qk). (102)

In order to use the Lemma, we define a generic distribution QYT ,UT \t
(yT , uT \t) over YT × UT \t, which fulfills

(16). First write the following functionals as a function of QYT ,UT \t
. Notice that the cardinalities of UT \t are

intact:

q1(Q) =−
∑

x,yT ,uT \t

PX|YT
(x|yT )QYT ,UT \t

(yT , uT \t) ·

log

(∑

y′
T

PX|YT
(x|y′

T )QYT ,UT \t
(y′

T , uT \t)
∑

y′
T

QYT ,UT \t
(y′

T , uT \t)

)

qc
SC (Q) =−

∑

yT ,uT \t

QYT ,UT \t
(yT , uT \t) ·

log

( ∑

u′
S

QYT ,UT \t
(yT , u′

SuSC\t)
∑

y′
T ,u′

S
QYT ,UT \t

(y′
T , u′

SuSC\t)

)

qyT (Q) =
∑

u′
T \t

QYT ,UT \t
(yT , uT \t).

Where PX|YT
(x|yT ) is given by (16), and SC is such that SC ⊆ T and t ∈ SC .
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Now applying the support Lemma, we find that there exist a random variable U ′
t , such that

∑

ut

PU ′
t
(ut)q1(P (•|U ′

t = ut)) = H(X) − I(X; UT ) (103)

∑

ut

PU ′
t
(ut)q

c
SC (P (•|U ′

t = ut)) = H(YT |USC ) (104)

∑

ut

PU ′
t
(ut)qyT

(P (•|U ′
t = ut)) = PYT

(yT ), (105)

are fulfilled and U ′
t has cardinality of:

|Ut| ≤ |YT | + 2T−1. (106)

This is since (103) is one equation, (104) is 2T−1 equations, and (105) is |YT | − 1 equations. Note that this is also

the cardinality of W :

|W| ≤ |YT | + 2T−1. (107)

Concluding the proof.

APPENDIX VI

PROOF OF THE UPPER BOUND IN COROLLARY 2

Notice that the following holds:

∑

t∈S

Ct ≥
1

n
I(Y T ; VS |VSC ) (108)

=
1

n
I(Y T ; VT ) − 1

n
I(Y T ; VSC ) (109)

=
1

n
I(Y T , X; VT ) − 1

n
I(Y T , X;VSC ) (110)

=
1

n
I(X; VT ) − 1

n
I(X;VSC )

+
1

n
I(Y T ;VT |X) − 1

n
I(Y SC ; VSC |X) (111)

=
1

n
I(X; VT ) − 1

n
I(X;VSC )

+
∑

t∈S

1

n
I(Y t; Vt|X). (112)

where (110) and (112) are since Vt is a deterministic function of Y n
t . Again, we use (??), so that

R ≤ min
S⊆T

{
∑

t∈S

[Ct −
1

n
I(Y t; Vt|X)] +

1

n
I(X; VSC )

}

(113)

Next, from (86) we know that I(X; VSC ) ≤ ∑n
i=1 I(Xi; USC ,i), and I(Y t; Vt|X) ≤ ∑n

i=1 I(Yt,i;Ut,i|Xi).

Repeating the usage of s here, we get to the desired upper bound (19).
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APPENDIX VII

USING COMMON MESSAGE WITH TWO AGENTS

The use of a common message which is decoded by several agents (as outlined by Marton [28]) is exemplified

here for two users T = 2. The achievable rate in this case is:

R ≤ I(X;U1, U2|W1W2WC) + R1 + R2. (114)

Where 





0 ≤ R1 ≤ I(W1,WC ; Y1)

0 ≤ R2 ≤ I(W2,WC ; Y2)

R1 + R2 ≤ min{I(WC ;Y1), I(WC ; Y2)} + I(W1; Y1|WC)

+I(W2;Y2|WC) − I(W1; W2|WC)

I(U1;Y1|U2,W1,W2,WC) ≤ C1 − R1

I(U2;Y2|U1,W1,W2,WC) ≤ C2 − R2

I(U1, U2; Y1, Y2|W1,W2,WC) ≤ C1 + C2 − R1 − R2.

(115)

and where PWC ,W1,W2,X,Y1,Y2,U1,U2(wC , w1, w2, x, y1, y2, u1, u2) is the product

PWC ,W1,W2,X,Y1,Y2,U1,U2(wC , w1, w2, x, y1, y2, u1, u2) = PWC ,W1,W2(wC , w1, w2)PX|WC ,W1,W2
(x|wC , w1, w2)

· PY1,Y2|X(y1, y2|x)PU1|Y1,W1,WC
(u1|y1, w1, wC) · PU2|Y2,W2,WC

(u2|y2, w2, wC). (116)

Proof outline: The proof involves generating three vectors w1,w1, wC i.i.d. according to PWC ,W1,W2 , where w1 and

w2 are distributed according to
∏n

i=1 PW1|WC
(w1,i|wC,i) and

∏n
i=1 PW2|WC

(w2,i|wC,i), respectively. The vector

wC is decoded at both agents, using typicality considerations. The random variables W1,W2 may be dependent

given WC , so for the transmitted signal to be typical for sufficiently large n, these vectors should be further

quantized. This way, the agents receive both common and individual messages. After decoding the messages, the

agents compress the received signals y1, y2 conditioned on the decoded w1, w1, wC . Then they forward the decoded

messages and the compression information to the final destination. Notice that an extension to more than T = 2

follows the same line, however since it includes tedious notations, such as common messages to any subset of the

agents, it is not included here.

APPENDIX VIII

SOLVING THE LINEAR PROGRAMMING PRESENTED IN REMARK 2

The solution of the dual of the linear programming problem is presented next.

Define the raw vector x = RT , where bold symbols represent vectors or matrices. We have the following problem:

maxx(1, . . . , 1
︸ ︷︷ ︸

T

)H (117)
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(where H is for the transpose operation) under the constraints:

Ax ≤








0

bBC

bq








. (118)

Where: 0 is a column vector of T zeros,

bBC =

















I(Y1; W1)
...

I(YT ; WT )
∑

t=1,2 I(Yt;Wt) − I(Wt; Wt−1)
...

∑T
t=1 I(Yt;Wt) − I(Wt; W

t−1)

















(119)

and

bq =

















C1 − I(Y1; U1|U2,...,T ,WT )
...

CT − I(YT ;UT |U1,...,T−1,WT )

C1 + C2 − I(Y1,2; U1,2|U3,...,T ,WT )
...

∑T
t=1 Ct − I(YT ; UT |WT )

















. (120)

Where these correspond to the first, second and third sets, respectively, of constraints on RT in (21). Then A is:

A =














































−1 . . . 0

. . .

0 . . . −1

1 . . . 0

. . .

0 . . . 1

11 . . . 0
...

11 . . . 11

1 . . . 0

. . .

0 . . . 1

11 . . . 00
...

11 . . . 11














































. (121)
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Since there is at least one feasible x, which is
∑

t∈T Rt = 0, the maximization of (117) is equal to the solution of

the following dual problem:

minλ(0HbH
BCbH

q ), (122)

such that 





λA = (1, . . . , 1)H

∀ 0 < k : (λ)k ≥ 0.

(123)

Now since:

∀ S1,S2 ⊆ T :

∑

t∈S1∪S2

[I(Wt; Yt)−I(Wt; WT̃ (S1∪S2, t))] ≤
∑

t∈S1

[I(Wt;Yt)−I(Wt;WT̃ (S1, t))]+
∑

t∈S2

[I(Wt;Yt)−I(Wt; WT̃ (S2, t))],

(124)

and

∀ S1,S2 ⊆ T ,S1 ∩ S2 = φ :

∑

t∈S1∪S2

[Ct]−I(US1∪S2 ;YS1∪S2 |USC
1 ∩SC

2
,WT ) ≤

∑

t∈S1

[Ct]−I(US1 ; YS1 |USC
1

,WT )+
∑

t∈S2

[Ct]−I(US2
; YS2

|USC
2

,WT )

(125)

we get to (23), where the constraints (24) and (25) stem from the requirement that there will be at least one feasible

x.

APPENDIX IX

PROOF OF THEOREM 4

The proof for Theorem 4 is very similar to the one used for the general channel from Theorem 3, which appears

in Appendix III. In fact, both theorems 3 and 4 are special cases of a generalization of Theorem 3, which includes

the transmission of common messages to the agents, so that some subset of them can decode the same information

([28] Theorem 2). Such generalization appears in Appendix VII, considering T = 2.

In this Appendix we prove the achievable rate for the case when the channels are known to be degraded. In this case,

it is beneficiary to use many common messages, which enables savings of link bandwidth. We use superposition

coding for the messages to the agents, since it is known to be optimal for that case (degraded broadcast channel

[27]).

Since the proof is very similar to the one provided in Appendix III, we outline only the differences:

1) On III-A, item 1), for the broadcast transmission, we now repeat the following step for t = 1, . . . , T :

• For every wt−1 (total of 2n
∑ t−1

i=1 Ri ) generated in the previous step, generate 2nRt vectors wt according

to
∏n

i=1 PWt|W t−1(wt,i|wt−1
i ).
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• Label the resulting vectors of each step by Mt, where Mt ∈ [1, 2nRt ]. Define MMt
as the set labelled

by Mt.

• Define the bin MMT
, MM1 × · · · ×MMT

as the product union of the sets {MMt
}.

2) On III-A, item 2), we now generate 2n[R̂t−Ct+Rt] vectors ut according to
∏n

i=1 PUt|W t(ut,i|wt
i) (instead of

∏n
i=1 PUt|Wt

(ut,i|wt,i) in Appendix III). So here, the mapping of zt to ut depends on wt (not just on wt)

and is denoted by ut(zt, w
t), and we have 2n

∑ t
i=1 Ri different mappings. Notice that M t is in one-to-one

correspondence with wt, so that we can write ut(zt,M
t).

3) On III-B, the transmitter sends x(M) to the channel. Here there is no need to find typical wT before

transmitting to the channel.

4) On subsection III-C.1 (decoding at the agents), the t agent finds M t such that

(wt(M t), yt) ∈ T
t,4
ǫ , (126)

instead of Mt in Appendix III. The typical set T
t,4
ǫ is defined in the usual way.

5) On subsection III-C.2, for the compression, the agent looks for zt such that

(
ut(zt,M

t),yt, w
t
)
∈ T

t,5
ǫ . (127)

Where T
t,5
ǫ is defined in the usual way.

6) On subsection III-D: Considering the change of labeling, the destination here performs the same as the

destination presented in Appendix III.

7) In subsection III-E, the error analysis, there are several differences in the definitions and the calculation of

the probability of some error events:

• E1 is no longer declared by the transmitter.

E2-E4 Consider the typicality of (wt, yt) instead of (wt,yt).

E5-E8 are changed by the dependence of ut in wt instead of wt. This means a change in the variables

which are included in the definition of the typical set.

• Error probabilities for E2, E6, E9: As in Appendix III, the probabilities of these events are bounded by

ǫ due to Lemma 2 and Lemma 4, (generalized Markov Lemma, Lemma 3.4 in [30]).

• Error probabilities for E3, E4: According to Lemma 3, the probability of another typical vector ŵt is

upper bounded by 2−n[I(W t;Yt)−ǫ]. Since there are 2n
∑ t

i=1 Ri − 1 such vectors, the error probability can

be made arbitrarily small conditioned that

∀ 1 ≤ t ≤ T :

t∑

i=1

Ri < I(W t; Yt) =

t∑

i=1

I(Wi; Yi|W i−1). (128)

This condition is fulfilled if:

∀ 1 ≤ t ≤ T : Rt < I(Wt;Yt|W t−1). (129)
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• Error probability for event E5: repeating what was done in Appendix III and considering that ut was

generated according to PUt|W t,Yt
and not PUt|Wt,Yt

, the probability of E5 is as small as desired as long

as:

R̂t > I(Ut; Yt|W t). (130)

8) Unlike section III-F, which tries to bound the cardinality of the auxiliary variables, we can now use the

support Lemma ([29] p. 310), as in [19], to limit the cardinalities of both Wt and Ut. We start by rewriting

the rate equation (22) and the constraints (29) as functionals of some generic QX,UT ,W T−1 . This way, we

get 2 + 2T − 1 functionals on QX,UT ,W T−1 , calculated from I(X; UT |WT ) from (22), H(YT |WT ) from

the first set of (29) and finally I(YS ; US |USC ,WT ) for all S 6= φ (2T − 1 such sets) from the second set

of (29). In addition, the marginal of Q, with respect to X must be equal to the given PX . So in total,

there are |X | − 1 + 2 + 2T − 1 functionals on Q, and as a result, the cardinality of WT can be limited by

|WT | ≤ |X | + 2T . We can apply this technique repeatedly, for the other Wt, where t < T . For any such

t < T , there are T − t functionals as a consequence of limiting {Ri}T
i=t, in (29) in addition to the marginal

distributions with respect to ({Wi}T
t+1, X). Over all, the cardinality of Wt can be limited by:

|Wt| ≤ |X |
T∏

i=t+1

|Wi| − 1 + 2T − 1 + T − t + 2 = |X |T−t+1 +

T∑

i=t

|X |T−i(2T + i − t). (131)

Next, we limit the cardinality of UT , when provided with the auxiliaries WT (which have bounded cardinality).

For this, we can repeat what was done in III-F, with the difference that here we look at PYt,W t|Ut
. So we

can limit the cardinality of the auxiliary variables UT by:

|Ut| ≤ |Yt||Wt| + 2T . (132)

Considering these differences, the constrains on {Rt}, and thus also the cardinality limits, are the main changes

between Theorem 3 and 4. So by replacing (61) with (129), one gets to (29).

APPENDIX X

PROOF OF THEOREM 5

First recall the definitions of the Gaussian channel (Yt, Xt, Nt) from subsection VI-A.

Proof:

A. Direct part

Define the auxiliary random variables Ut as

Ut = Yt + Wt, (133)

where {Wt} are Gaussian i.i.d. random variables, independent of Yt (no connection with W in the previous

appendices), with zero mean and variance

PWt
=

2−2I(Ut;Yt|X)PNt

1 − 2−2I(Ut;Yt|X)
. (134)
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Equation (133) can also be written as

Ut = X + Dt, (135)

where Dt = Wt + Nt, and therefore also

PDt
, ED2

t = PNt
+ PWt

. (136)

Define rt , I(Yt; Ut|X), so that PDt
can be expressed as

1

PDt

=
1 − 2−2rt

PNt

. (137)

The terms {rt} can take any positive value, and then {PDt
} are determined accordingly (this space rT ∈ {R+}T is

limited, as seen in the next lines, by the available bandwidths). The last equality can be used to explicitly express

the maximum mutual information (through maximal ratio combining) in terms of {rt} between X and some subset

US ,

I(X; US) =
1

2
log2

(

1 +
PX

(
∑

t∈S PDt
)−1

)

(138)

=
1

2
log2

(

1 + PX

∑

t∈S

PDt

)

(139)

=
1

2
log2

(

1 + PX

∑

t∈S

1 − 2−2rt

PNt

)

. (140)

Now we can apply Corollary 1 and then prove the direct part of Theorem 5. Although Corollary 1 considered

only discrete channels, and the Gaussian channel is not discrete, the extension is based on standard techniques also

used in Oohama [15], who showed the validity of a generalized Markov Lemma for continuous random variables.

B. Upper bound for Gaussian PX

The upper bound is based on (113), rather than on the single letter expression from Corollary 2, which is too

loose for this case. We redefine

rt ,
1

n
I(Y n

t ; Vt|Xn), (141)

and then use the following lemma, which is due to Oohama [15] to upper bound 1
nI(VS ;X).

Lemma 5:

1

n
I(VS ; X) ≤ 1

2
log2

(

1 + PX

∑

t∈S

1 − 2−2rt

PNt

)

. (142)

Lemma 5 together with (113) and (141) completes the proof.

Next we give also the proof of Lemma 5, from [15], which is based on the entropy power inequality.

Proof:

Define the minimum mean square error estimator of X from Y S by X̂ =
∑

t∈S

P
N̂t

PNt

Y t. Then we have:

X = X̂ + N̂ (143)
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where N̂ is independent with the estimator X̂ or with Y S and is distributed i.i.d. Gaussian with zero mean and

variance PN̂ = ( 1
PX

+
∑

t∈S
1

PNt

)−1. We can use the entropy power inequality:

2
2
n

h(X|VS) ≥ 2
2
n

h(X̂|VS) + 2πPN̂ . (144)

Define λ , 1
nI(X; VS) and notice that h(X|X̂, VS) = h(X|X̂), since X̂ is best estimator of X out of Y S and

the Markov chain: X − Y S − VS . Then we can rewrite (144) as

2−2λ+ 2
n

h(X) ≥ 2
2
n

[h(X̂|X,VS)+I(X;X̂)]−2λ + 2πPN̂ . (145)

Next, we can apply the entropy power inequality again, to lower bound h(X̂|X, VS):

2
2
n

h(X̂|X,VS) ≥
∑

t∈S

2
2
n

h

(
P

N̂t
PNt

Y t|X,VS

)

=

∑

t∈S

(
PN̂t

PNt

)2

2
2
n

h(Y t|X,VS) =
∑

t∈S

(
PN̂t

PNt

)2

2−2rt+
2
n

h(Y t|X)

=
∑

t∈S

(
PN̂t

PNt

)2

PNt
2−2rt . (146)

So that overall we have:

2−2λPX ≥
(

∑

t∈S

(
PN̂t

PNt

)2

PNt
2−2rt

)

PX

PN̂

2−2λ + PN̂ . (147)

Or put differently:

22λ ≤ PX

PN̂

− PX

∑

t∈S

2−2rt

PN̂t

. (148)

Which concludes the proof.

Notice that the proof considered nomadic transmitter with PX which is restricted to be Gaussian. As noticed in

subsection VI-B, removing this limitation can improve the achievable rate.
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