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Abstract

For a multiple-input single-output (MISO) downlink channel with M transmit antennas, it has been

recently proved that zero-forcing beamforming (ZFBF) to a subset of (at most)M “semi-orthogonal”

users is optimal in terms of sum-rate, asymptotically with the number of users. However, determining

the subset of users for transmission is a complex optimization problem. Adopting the ZFBF scheme in

a cooperative multi-cell scenario renders the selection process even more difficult since more users are

likely to be involved. In this paper, we consider a multi-cell cooperative ZFBF scheme combined with a

simple sub-optimal users selection procedure for the Wynerdownlink channel setup. According to this

sub-optimal procedure, the user with the “best” local channel is selected for transmission in each cell.

The performance of this sub-optimal scheme is investigatedin terms of both, the conventional scaling

law of the sum-rate with the number of users, and a sum-rate offset. We term this characterization of

the sum-rate for large number of users ashigh-load regimecharacterization, and point out the similarity

of this approach with the standard affine approximation usedin the high-SNR regime. It is shown

that under an overall power constraint, the sub-optimal cooperative multi-cell ZFBF scheme achieves

the same sum-rate growth rate and slightly degraded offset law, when compared to an optimal scheme

deploying joint multi-cell dirty-paper coding (DPC) techniques, asymptotically with the number of users
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per cell. Moreover, the overall power constraint is shown toensure in probability equal per-cell power

constraints when the number of users per-cell increases.

I. INTRODUCTION

The growing demand for ubiquitous access to high-data rate services, has produced a huge

amount of research analyzing the performance of wireless communications systems. Cellular

systems are of major interest as the most common method for providing continuous services to

mobile users, in both indoor and outdoor environments. In particular, the use of joint multi-cell

processing has been identified as a key tool for enhancing system performance (see [1][2] and

references therein for surveys of recent results on multi-cell processing).

Most of the works on the downlink channel of cellular systemsdeal with a single-cell setup.

References that consider multi-cell scenarios (e.g. [3]-[5]) tend to adopt complex multi-cell

system models which render analytical treatment extremelyhard (if not, impossible). Indeed,

most of the results reported in these works are derived via intensive numerical calculations

which provide little insight into the behavior of the systemperformance as a function of various

key parameters. The main goal of this paper is to present and analyze efficient, sub-optimal

scheduling schemes for the downlink channel of multi-cell systems. An emphasis is put on

deriving analytical results which provide insight into therole of key parameters on system

performance. To achieve this goal a simple cellular model based on a model presented by Wyner

in [6] is considered. According to this model (depicted in Fig. 1 with four cells) the cells are

placed on a circle and each users “sees” only three cell-siteantennas. In addition, the path loss is

modelled by a single parameterα ∈ [0, 1]. Although this model is hardly realistic it encompasses

the essence of real-life system parameters such as fading and inter-cell interference.

The downlink channel of a similar model was first adopted in [7] were LQ factorization

(forcing an arbitrary sub-optimal encoding order) combined with joint multi-cell dirty-paper

coding (DPC) is deployed. The attainable per-cell sum-rates under anoverall power constraint

and in the presence of Rayleigh flat fading, are shown via numerical calculations to approach

those of the optimal DPC scheme (with optimal encoding order) in the high-SNR region.

Recently, bounds on the per-cell sum-rate capacity supported by the downlink of this model

have been reported in [8] underequal per-cell power constraintsin the presence of Rayleigh

flat fading. To achieve theses rates, DPC techniques are deployed [9]. Unfortunately, DPC is
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difficult to implement in practical systems due to the high computational burden of the successive

encoding involved, in particular when the number of users islarge. It is evident that for multi-

cell processing, where more users are typically involved, this problem aggravates. Therefore,

a search for sub-optimal broadcast schemes is the focal point of many works. In particular,

linear precoding schemes which offer a tradeoff between complexity and performance have

been intensively investigated in recent years [10]-[12]. Asimple linear precoding scheme which

projects the multi-user channel into multiple independentsingle-user channels, and reduces

the design into scheduling and power allocation problem, isthe zero-forcing beamforming

(ZFBF) scheme [13]-[15]. The ZFBF scheme is asymptoticallyoptimal with increasing SNR,

and it is easily generalized to incorporate DPC techniques [13][16]. Recently, ZFBF scheme

has been considered in [17] for a single cellM antennas MISO downlink setup under sum

power constraint. In this sub-optimal scheme, a set of (at most) M “semi-orthogonal” users to

be served is selected, so as to maximize the sum-rate, and independent coding is employed for

each selected user. This strategy is proved to provide optimal rates (as DPC) asymptotically with

the number of usersK. However, determining the subset of users scheduled for transmission is

a complex optimization problem especially whenK is large.

Most works dealing with asymptotic analysis of channels with increasing number of users

(referred to as thehigh-load regime), are focused on the scaling law. In recent work [18], the

authors also considered the rate offset in addition to the rate scaling law of a MIMO broadcast

channel with random beamforming. In this work, we formalizethis approach by defining the

high-load regime characterization. In particular, following the methodology of [19] regarding

the high-SNR regime, we define the high-load regime slope andoffset. The definitions are then

used for asymptotic analysis of the various schemes of interest.

In this paper, we consider cooperative multi-cell ZFBF for the downlink of a Wyner circular

setup, with simple scheduling. According to this scheme, ineach cell the user with the “best”

local channel (the channel from the local cell-site) is scheduled for transmission by means of

cooperative multi-cell beamforming. The main results reported in this work include a closed form

expression for the per-cell sum-rate of the proposed schemein the absence of fading. It is proved

that this rate is achieved under both overall, and equal per-cell power constraints. In addition, it is

shown that ZFBF scheme is superior to a simple inter-cell time sharing (ICTS) scheme when the

SNR is above a certain threshold, which increases with the inter-cell interferenceα. Introducing
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Rayleigh fading, the per-cell sum-rate of ZFBF is proved to experience the same growth rate and

slightly degraded offset law, when compared to an optimal DPC scheme asymptotically with the

number of users per-cellK under sum-power constraint. Moreover, it is verified that the scheme

satisfies in probability the more suitableequal per-cell power constraintsasymptotically with

increasingK. Numerical results show that the asymptotic expression derived for this setup

already hold for a modest number of users per-cell. Next, we consider a different procedure

according to which the user with the “best” total receive power from the three base-stations in

sight, is selected for transmission. It is shown that this user selection scheme does not provide

higher rates in the high-load regime.

The system model and the ZFBF scheme are described in SectionII. Additional background

and previous results are elaborated in Section III. The high-load regime characterization is defined

in Section IV. Sum-rate analysis for the non-fading and Rayleigh fading setups is presented in

Section V. In Section VI an alternative user selection procedure is discussed. Numerical results

and concluding remarks are presented in Sections VII and VIII respectively. Various proofs and

derivations are included in the Appendix.

II. SYSTEM MODEL

Consider a circular variant of the infinite linear Wyner model [6] depicted in Fig. 1, in which

M > 2 cells with K users each, are arranged on a circle. Assuming a synchronousintra-cell

TDMA scheme, according to which only one user is selected fortransmission per-cell, the

M × 1 vector baseband representation of the signals received by the selectedusers is given for

an arbitrary time index by

y = HBu + z , (1)

whereu is theM×1 complex Gaussian symbols vectoru ∼ CN (0, IM), B is the beamforming

M × M matrix, z is theM × 1 complex Gaussian additive noise vectorz ∼ CN (0, IM), and
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H is theM × M channel transfer matrix, given by

H =
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, (2)

whereα ∈ [0, 1] is the inter-cell interference factor, representing the geometrical path losses.

In addition, am, bm and cm are the flat fading coefficients of the signals transmitted bythe

m’th, ̂(m − 1)’th1 and ̂(m + 1)’th cell-sites respectively, and received by theselecteduser of

the m’th cell. It is noted that the fading coefficient might be statistically dependent, depending

on the users selection procedure. In addition, ergodic block fading processes are assumed where

the fade values remain constant during the TDMA slot duration. Each of theMK users,

perfectly measures itsownfade coefficients{am,k, bm,k, cm,k}, which are fed back to the multi-cell

transmitter via an ideal delayless feedback channel. Moreover, no user cooperation is allowed.

A joint multi-cell ZFBF scheme is utilized, whose beamforming matrix for an arbitrary TDMA

slot is given by

B =

√

MP

tr
(

(HH†)−1
) H−1 , (3)

whereMP is the overall average transmit power constraint, which is ensured by definition2.

Substituting (3) into (1), the received signal vector reduces to

y =

√

MP

tr
(

(HH†)−1
) u + z , (4)

and single user encoding-decoding schemes with long code words lasting over many symbols

(and many fading blocks) are used. Since (4) can be interpreted as a set ofM identical

independent parallel single user channels, its achievableper-channel ergodic sum-rate (or cell)

1
bn , [n mod M ].

2Later on it is argued that under certain conditions this scheme satisfies an equal per-cell average power constraints as well.
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is given by3

Rzfbf = E

{

log

(

1 +
MP

tr
(

(HH†)−1
)

)}

, (5)

where the expectation is taken over the entries ofH. In the sequel the following Proposition is

helpful.

Proposition 1 The achievable per-cell ergodic sum-rate of the ZFBF schemewith an arbitrary

user selection procedure and total sum power constraintMP , is upper bounded by

Rzfbf ≤ log

(

1 +
P

M
E{tr

(

HH†
)

}
)

. (6)

Proof: See Appendix A.

Although a sum-power constraint is assumed, a more natural choice for a cellular system is

to maintain per-cell power constraints. Hence, we are interested in the transmitted power of an

arbitrary cell, which is averaged over the TDMA time slot duration (many symbols) and is a

function of the realization ofH,

Pm = [BB†]m,m =
MP

[

(HH†)−1
]

m,m

tr
(

(HH†)−1
) , m = 0, 1, . . . , M − 1 . (7)

The following Proposition will be useful latter on.

Proposition 2 The average transmitted power per-cellPm of the ZFBF scheme with an arbitrary

user selection procedure (expression(7)), satisfies the following inequality

P
minn λn(HH†)

maxn λn(HH†)
≤ Pm ≤ P

maxn λn(HH†)

minn λn(HH†)
, ∀m , (8)

where{λn(HH†)}M−1
n=0 are the eigenvalues ofHH†.

Proof: See Appendix B.

The above discussion holds for any ZFBF scheme with: sum-power constraint, no further power

allocation via “waterfilling”, and an arbitrary selection of M users (one in each cell). In Section

V, simple scheduling for both non-fading and Rayleigh fading setups are presented and analyzed.

The next section provides some additional background and related results derived for the Wyner

downlink channel. Theses results are used as a reference forevaluating the performance of the

proposed ZFBF scheme.

3A natural logarithmic base is used throughout this work.
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III. B ACKGROUND

For a similar model but with capacity achieving joint multi-cell DPC scheme, the downlink

per-cell ergodic sum-rate capacity with an equal per-cell power constraintP , was recently

considered in [8] (see also [20]) for the thesoft-handoff modelin which each user “sees” only

two cell sites. These results can be extended to include the current circular Wyner model in

a straightforward manner. Accordingly, the per-cell ergodic sum-rate capacity with an equal

per-cell power constraint, for a non fading setup, is given by

Copt−nf =
M→∞

∫ 1

0

log
(

1 + P (1 + 2α cos(2πθ))2
)

dθ , (9)

and for a Rayleigh fading setup with many users per-cell (K ≫ 1), to be bounded by

log
(

1 + P
(

(1 − ǫ) log K + 1 + 2α2
))

≤ Copt ≤ log
(

1 + (1 + 2α2)P log K
)

, (10)

for someǫ →
K→∞

0.

As a reference, and assuming the system includes an even number of cells, an inter-cell time

sharing (ICTS) scheduling, according to which odd and even cells are transmitting alternately

in time, is used. This simple scheme (presented in [21] for the uplink channel) requires only

limited cooperation between cells, and deploys single-user encoding decoding schemes. Since

for each time slot only odd or even indexed cells are transmitting, and the model assumes

interference from the two adjacent cells only, inter-cell interference is avoided and the scheme

demonstrates a non interference limited behavior. It is easily verified that the achievable per-cell

ergodic sum-rate for a non-fading setup is given by

Ricts−nf =
1

2
log(1 + 2P ) . (11)

and for a Raleigh fading setup is well approximated (for a large number of users per cellK ≫ 1)

by

Ricts
∼= 1

2
log(1 + 2P log K) . (12)

The latter rate is achieved by scheduling in each active cell, the user with the “best” channel

for transmission.
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IV. H IGH-LOAD REGIME CHARACTERIZATION DEFINITION

Most of the works dealing with asymptotic analysis of downlink channels with large number

of users, are focused on the sum-rate scaling law. This traditional characterization is unable to

assess the impact of other channel features since many considered channels demonstrate the same

scaling law. Moreover, a characterization based only on thescaling law, dose not reveal much

of the actual number of users and power required to achieve a finite rate. Here, we present a

more refine characterization whereby as function oflog log K the rate in a scenario where large

number of users are involved (referred to as thehigh-load regime), is expanded as an affine

function. The resulting zero-order term orhigh-load offsetcaptures the impact of other channel

features such as scheduling and coding.

The high-load refinement is inspired by the seminal works of Shamai et-al [22] and Lozano

et-al [19], dealing (among other things) with the power offset in the high-SNR regime. In fact,

the definitions of the high-load slope and offset are similarto the respective high-SNR slope

and offset where the termlog P in the latter is played by the termlog log K.

In the the high-load regime the sum-rate per receive elementof “good” scheduling schemes

in the presence of Rayleigh fading behaves as

R = S∞ (log log K + L∞) + o(1) , (13)

while S∞ denotes the high-load slope in bits/sec/Hz,

S∞ , lim
K→∞

R

log log K
, (14)

andL∞ defined by

L∞ , lim
K→∞

(

R

S∞

− log log K

)

, (15)

represent the high-load offset, with respect to some reference channel having the same high-load

slope. It is noted that since we are interested in the asymptotic behavior of the rate in terms of

the number of users a natural logarithm is used instead of the10 base logarithm used for the

high-SNR regime resulting the use of3[dB] units for the power offset.

Applying these definitions, we get that the high-load characterization of the optimal joint

multi-cell DPC scheme in the presence of Rayleigh fading (expression (10)) is given by

Sopt
∞ = 1 ; log P ≤ Lopt

∞ ≤ log P + log(1 + 2α2) , (16)
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While the high-load characterization of the ICTS scheme in the presence of Rayleigh fading

(expression (12)) is given by

Sicts
∞ =

1

2
; Licts

∞ = log P . (17)

To conclude this section we note that the baseline scaling law of log log K is matched

to Rayleigh fading channels and is motivated from the fact that the maximum ofK i.i.d.

χ2
2n distributed r.v.’s roughly behaves likelog K [23] (Example 1, Appendix A). Other fading

distribution might lead to other baseline scaling laws (seefor example [24] where a law of
√

log K is demonstrated for lognormal fading). It is also noted thatalthough the high-load

characterization is similar to the high-SNR characterization (wherelog log K takes the role of

log P ) there is a main difference between the two asymptotic regimes. The difference lie in the

fact that while the SNR is related to the input signals and additive noise vector statistics, the

number of users is related to the resulting fading statistics via the user selection scheme. This

fact makes the high-load parameters hard to calculate and much more setting-dependent than

the general expression derived for the high-SNR parameters[19].

V. SUM-RATE ANALYSIS

In this section the achievable per-cell ergodic sum-rate ofthe ZFBF is analyzed for Gaussian

and Rayleigh block flat-fading channels for specific user scheduling procedures. For the fading

setup we also address the high-load characterization, and the implications of increasing number

of users per-cell over the transmitted power of an arbitrarycell-site.

A. Non-Fading Setup

For non-fading channels, around-robinscheduling is deployed and there is no need to feed

back the channel coefficients sinceam,k = bm,k = cm,k = 1 , ∀m, k. Hence, for each time slot,

the channel transfer matrix (2) becomes circulant with(1, α, 0, . . . 0, α) as first row, and the

following proposition holds.

Proposition 3 The per-cell average sum-rate of the ZFBF scheme is given for, α < 1/2, by

Rzfbf−nf =
M→∞

log
(

1 +
(

1 − 4α2
)

3

2 P
)

. (18)
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This rate holds for an overall power constraintMP , and for an equal per-cell power constraints

P .

Proof: See Appendix C.

Evidently, Rzfbf−nf is a decreasing function of the interference factorα. Comparing (11) to

(18), it is clear that the ZFBF scheme is superior to the ICTS scheme when the SNRP is above

a certain threshold

Pt(α) =
2
(

1 − (1 − 4α2)
3

2

)

(1 − 4α2)3 , (19)

which is an increasing function ofα. It is noted that forα = 1/2 the circulant channel transfer

matrix H is singular and channel inversion methods such as ZFBF are not applicable. Moreover,

H is not guaranteed to be non-singular forα > 0.5 and any finite number of cellsM .

B. Rayleigh Fading Setup

For the Rayleigh fading setup, for each fading block (or TDMAslot) the multi-cell processor

selects the user with the“best” local received power(BLP) for transmission in each cell. In

other words, the selected user in them’th cell is

k̃(m) = argmax
k

{|am,k|2} , (20)

where {am,k}K
k=1 are the fading coefficients of them’th cell transmitted signals as they are

received by them’th cell users.

The resulting channel transfer matrix of this sub-optimal schedulingH defined in (1), consists

of diagonal entriesam = am,k̃(m) whose amplitudes are themaximumof K i.i.d. chi-square

distributed random variables with two degrees of freedom. The other two diagonals entries of

H are chi-square distributed random variables with two degrees of freedom timesα.

In caseH is ill conditioned, the joint beamformer can start replacing the “best” users by their

second “best” users until the resultingH is well behaved. Since we assume thatK ≫ 1, the

overall statistics is not expected to change by this user replacing procedure.

The special structure of the channel transfer matrixH resulting from the setup topology and

the scheduling procedure, plays a key role in understandingthe asymptotic high-load character-

ization of the scheme’s per-cell sum-rateRzfbf (expression (5)), which is stated in the following

proposition.
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Proposition 4 The high-load characterization of the ZFBF-BLP scheme is given by

Sblp
∞ = 1 ; Lblp

∞ = log P . (21)

Proof: See Appendix D.

This results, can be intuitively explained by the fact that due to the scheduling process,(HH†)

“becomes” diagonal(log KIM) when K increases. Accordingly, for largeK, (HH†)−1 “be-

haves” like(IM/ log K), andRzfbf (expression (5)) is well approximated for the BLP selecting

scheme by

Rblp
∼=

K≫1
log(1 + P log K) . (22)

It is concluded that the per-cell sum-rate of the ZFBF-BLP scheme scales aslog log K which is

the same scaling law of the optimal multi-cell joint DPC scheme. However, it offers a smaller

high-load offset than that of the offset predicted by the upper bound of (10)

0 ≤ Lopt
∞ − Lblp

∞ ≤ log(1 + 2α2) . (23)

It is also concluded that the ZFBF-BLP scheme provides a two fold scaling law than that of the

ICTS scheme (12), in the presence of Rayleigh fading. Moreover, by definition, the sum-rate of

the ZFBF scheme ensures a non-interference limited behavior for any number of usersK (not

necessarily large).

Finally, we consider the power constraint issue asymptotically with increasing number of users

per-cell.

Proposition 5 The considered ZFBF-BLP scheme, that maintains an overall power constraint

of MP , ensures in probability an equal per-cell power constraintof P , asymptotically with

increasing number of users per-cell. Hence,

Pm

p−→
K→∞

P ; m = 0, 1, . . . , M − 1 . (24)

Proof: See Appendix E.

As mentioned earlier, for cellular systems an individual per-cell power constraint is a more

reasonable choice than a sum-power constraint which is moresuitable for compact antenna

arrays.
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VI. D ISCUSSION

In this section we consider a more intuitive scheduling scheme for the multi-cell setup and

show that it provides no better rates than the BLP scheme in the high-load regime.

One of the reasons the BLP user selection scheme was chosen tobe the focal point of this

work is that it enables analytical treatment, especially inderiving a lower bound to the per-cell

sum-rate in the presence of Rayleigh fading. In this sectionwe present a more intuitive user

selection procedure referred to asbest total received power(BRP), and we show that it does not

provide higher rates in the high-load regime.

According to this scheme, for each fading block (or TDMA slot) the multi-cell processor

selects the user with the best over-all received power, for transmission in each cell. In other

words, the selected user in them’th cell is

k̃(m) = argmax
k

{

|am,k|2 + α2(|bm,k|2 + |cm,k|2)
}

, (25)

where{am,k}K
k=1, {bm,k}K

k=1, and {cm,k}K
k=1 are the fading coefficients of them’th, m̂ − 1’th,

and m̂ + 1’th cell transmitted signals respectively, as they are received by them’th cell users.

In caseH is ill conditioned, the same procedure of replacing “best” users with second “best”

users id deployed.

Proposition 6 The per-cell sum-rate of the ZFBF-BRP scheme is upper bounded for any number

of users per-cellK by

Rbrp ≤ Rbrp−ub , log

(

1 + P
log(2K + 1) + 3 log log K

1 − 1
log K

)

. (26)

Proof: See Appendix H.

Applying the definitions of the high-load slope and offset (expressions (14) and (15)) directly

to the upper bound of (26) yields the following

Sbrp−ub
∞ = 1 ; Lbrp−ub

∞ = log P . (27)

Since the high-load slope and offset predicted by the upper bound equals to ones of the ZFBF-

BPL scheme, it is concluded that the ZFBF-BRP scheme does notprovide higher rates in the

high-load regime, than the ZFBF-BLP scheme. Although it is conjectured that Proposition 5

also hold for the ZFBF-BRP scheme, the issue of the individual cells transmitted power does

not change the latter conclusion.
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VII. N UMERICAL RESULTS

First, the non-fading setup is considered under the assumption that the number of cells is large

M ≫ 1 andα < 1/2. In Fig. 2 the spectral efficiencies4 per-cell of the optimal, ICTS, and ZFBF

schemes (expressions (9), (11), and (18) respectively) areplotted as a function of the transmitted

Eb/N0, for α = 0.4 . It is observed that the ZFBF scheme outperforms the ICTS scheme above

a certain SNR threshold. The thresholdPt(α) (expression (19)) is shown in Fig. 3 as a function

of the inter-cell interference factorα ; the ICTS scheme is superior in the region below this

curve (which is a monotonically increasing function of theα), while the ZFBF scheme prevails

in the region above the curve.

Turning to the Rayleigh fading setup, the spectral efficiencies per-cell (calculated by Monte-

Carlo simulations) of the ICTS and ZFBF-BLP (expression (5)) schemes, and the asymptotic

upper bound of the optimal scheme (expression (10)) are plotted in Fig. 4 as a function of the

transmittedEb/N0, for α = 0.4, K = 100, and finite dimensional system ofM = 30 cells5.

It is observed that for this set of parameters the ZFBF-BLP scheme loses only a fraction of

a bit/sec/Hz when compared to the upper bound of the optimal scheme already for a modest

number of users per-cell (it is noted that the upper bound is valid for K ≫ 1 and it might

not be accurate for small values ofK). The gap between the ZFBF-BLP curve and the per-cell

sum-rate capacity upper bound is clearly explained by the fact that the ZFBF-BLP scheme does

not use the distributed antenna array to enhance the reception power, but to eliminate inter-cell

interferences. Hence, the additional array power gain of(1+2α2) predicted by the upper bound

cannot be achieved. Moreover, for large values ofEb/N0, the ZFBF provides approximately

twice bits/sec/Hz than the ICTS scheme, which can be explained by the0.5 high-load slope of

the ICTS per-cell sum-rate expression (17).

In Fig. 5 the sum-rates per-cell of the ICTS and ZFBF-BLP schemes (Monte-Carlo simulations,

and asymptotic expressions (22) and (12)), the ZFBF-BRP (Monte-Carlo simulation) and the

upper bound of the optimal scheme, are plotted as a function of the number of users per-cell

for P = 10 [dB], α = 0.4 andM = 30. Examining the curves, the observations made for Fig.

4The spectral efficiencyC(Eb/N0) is defined through the following relations:C(Eb/N0) = C(SNR) and SNR =

C(SNR)Eb/N0.

5It is noted that a circular setup ofM = 30, may be considered for any practical purpose as an infinite array [8].
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4 are strengthened, since the small loss suffered by the ZFBFscheme when compared to the

upper bound is demonstrated to hold over a wide range ofK values. A good match between the

ZFBF-BLP Monte-Carlo simulation results to its asymptoticcurve is observed as well, already

for a modest number of users per cell. Another observation isthat the BRP scheduling does not

provide higher rates than the BLP scheduling, demonstrating that claim of Proposition 4 is also

valid for a modest number of users per-cell.

In Figure 6 the empiric cumulative distribution function (CDF) of of an arbitrary cell normal-

ized transmit powerPm/P is plotted for several values of the number of users per-cellK and

P = 10 [dB]. The curves, derived by Monte-Carlo simulation, demonstrate the convergence of

Pm to P as predicted by Proposition 5 ; the probability ofPm to be in the rage ofP ± 1 [dB]

increases from 0.4 to 0.84, while the number of users increases fromK = 10 to K = 1000.

VIII. C ONCLUDING REMARKS

In this work a cooperative multi-cell ZFBF scheme for the downlink of the circular Wyner

model is considered for Gaussian and flat Rayleigh fading channels. For the non fading setup and

round-robin scheduling, a closed form expression for the per-cell sum-rate (under both, overall

and equal per-cell power constraints), is derived. The latter demonstrates superior performance

over the ICTS scheme when the SNR crosses a certain threshold, which increases with the

inter-cell interference power level (increasingα).

To address the asymptotic analysis for the Rayleigh fading setup, we introduce the high-load

characterization through the slope and offset parameters which accompanied thelog log K law.

Next, the per-cell sum-rate of the ZFBF-BLP scheme is provedto demonstrate the same growth

rate of log log K and a slightly degraded offset when compared to the optimal DPC scheme,

asymptotically with increasing number of users per-cellK, while satisfying (in probability)

equal per-cell power constraints. We also show that the alternative ZFBF-BRP scheme does not

provide better rates in the high-load regime. Furthermore,numerical results derived by Monte-

Carlo simulation show a good match to the results predicted by the various analyses included,

already for a modest number of users. It is noted that since ZFBF is utilized, non-interference

behavior is guaranteed for any number of users per-cellK (not necessarily large). Moreover,

extending the results presented here to a two dimensional planner Wyner model can be done in

a straightforward (though tedious) manner.
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It is concluded that the simple cooperative multi-cell ZFBF-BLP scheme presented here

provides near optimal performance already for a moderate number of users per-cell. Moreover,

the scheduling mechanism facilitates one active user per-cell on one hand (a natural choice for

cellular systems), while treating the whole system as a distributed antenna array for inter-cell

interference cancellation by ZFBF (allowing the use of single-user encoding-decoding schemes),

on the other. Combined with the inherent non-interference limited behavior, the ZFBF-BLP

scheme provides a fair alternative to the optimal complex joint multi-cell DPC scheme.
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APPENDIX

A. Proof of Proposition 1

The claim is proved by the following set of inequalities

Rzfbf = E

{

log

(

1 +
MP

tr
(

(HH†)−1
)

)}

= E

{

log

(

1 +
P

1
M

∑

m
1

λm(HH
†)

)}

(a)

≤ E

{

log

(

1 +
P

M

∑

m

λm(HH†)

)}

≤ E

{

log

(

1 +
P

M
tr
(

HH†
)

)}

(b)

≤ log

(

1 +
P

M
E
{

tr
(

HH†
)}

)

,

(28)

where (a) is achieved since the arithmetic mean of a non-negative set is larger than its harmonic

mean, and (b) is achieved by Jensen’s inequality.

B. Proof of Proposition 2

To prove the RHS of (8) we note thatPm (expression (7)) satisfies the following set of

inequalities

Pm =
MP

[

(HH†)−1
]

m,m

tr
(

(HH†)−1
)

≤ P
(

max
n

[

(HH†)−1
]

n,n

)(

max
n

λn(HH†)
)

(a)

≤ P
(

max
n

λn((HH†)−1)
)(

max
n

λn(HH†)
)

= P
maxn λn(HH†)

minn λn(HH†)
,

(29)

where (a) is achieved by recalling that the eigenvalues of anHermitian matrix majorize its

diagonal entries (Horn’s Theorem [25]).

Next, we denote the non-increasing ordered eigenvalues andnon-increasing ordered diagonal

entries of a semi-positive definite (SPD) HermitianM × M matrix A by {λo
n(A)}M−1

n=0 and

{do
n(A)}M−1

n=0 respectively. Now to complete the proof, the RHS of (8) is justified by the following
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set of inequalities

Pm =
MP

[

(HH†)−1
]

m,m

tr
(

(HH†)−1
)

≥
(

min
n

[

(HH†)−1
]

n,n

)(

min
n

λn(HH†)
)

= P

(

λo
M−1((HH†)−1) +

M−2
∑

n=0

(

λo
n((HH†)−1) − do

n((HH†)−1)
)

)

(

min
n

λn(HH†)
)

(a)

≥ P
(

λo
M−1((HH†)−1)

)

(

min
n

λn(HH†)
)

= P
minn λn(HH†)

maxn λn(HH†)
,

(30)

where (a) is achieved by recalling that the eigenvalues of anHermitian matrix majorize its

diagonal entries (Horn’s Theorem [25]), hence the summation portion is non-negative.

C. Proof of Proposition 3

Since for the non-fading setupH is deterministic and (5) reduces to

Rzfbf−nf = log

(

1 +
MP

tr
(

(HH†)−1
)

)

. (31)

To evaluate the inner log term of (31), the following set of equalities are useful

1

M
tr
(

(HH†)−1
) (a)

=
1

M

M−1
∑

m=0

1

λm

(

HH†
)

(b)
=

1

M

M−1
∑

m=0

1

λ2
m(H)

=
1

M

M−1
∑

m=0

(

1

1 + 2α cos
(

2πm
M

)

)2

,

(32)

where (a) and (b) are achieved sinceH is an Hermitian non-singularM × M matrix for 0 ≤
α < 1/2, and the last equality is due to the fact thatH is also circulant [26]. TakingM to

infinity yields
1

M
tr
(

(HH†)−1
)

=
M→∞

∫ 1

0

(1 + 2α cos(2πθ))−2 dθ

=
(

1 − 4α2
)

3

2 ,

(33)
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where the last equality is achieved by settinga = 1, b = 2α, n = 2 in equation 3.661.4 of [27,

pp. 399] and some algebra. Substituting (33) into (31) yields (18).

Since, for the non-fading setup,H is a circulant matrix, then according to [26],(HH†)−1

is also circulant, and by definition its diagonal entries areequal. Hence, the average transmit

power of them’th cell site antenna is given by

Pm = [BB†]m,m =
MP

[

(HH†)−1
]

m,m

tr
(

(HH†)−1
) = P , (34)

where B is the beamforming matrix defined in (3). It is concluded thatthe overall power

constraint ofMP ensures an equal per-cell power constraints ofP .

D. Proof of Proposition 4

In order to prove the claim we need to provide a lower bound to the the sum-rate. Towards

this end we start by showing that the channel transfer matrixH, resulting from the “best” local

channel selection procedure, satisfies the following Propositions.

Proposition 7 The Frobenius norm of the matrix(HH†/ log K −IM) converges in probability

to 0. Hence,
∥

∥HH†/ log K − IM

∥

∥

F

p−→
K→∞

0 , (35)

where‖ · ‖F is the Frobenius norm of a matrix.

Proof: See Appendix F.

Proposition 8 The eigenvalues of the matrix(HH†/ log K) converge in probability to 1. Hence,

λm(HH†)/ log K
p−→

K→∞
1 , ∀m . (36)

Proof: See Appendix G.

Now, let us define the following event

A = {|λm/ log K − 1| < ǫ , ∀m} , (37)
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whereλm is them’th eigenvalue of(HH†). Next, we apply the high-load slope definition (14)

to the per-cell sum-rate (5) and write the following set of inequalities

Rblp

log log K
= E

{

log

(

1 +
MP
∑

m
1

λm

)}

/ log log K

≥ E

{

1A log

(

1 +
MP
∑

m
1

λm

)}

/ log log K

(a)

≥ Pr(A)
log (1 + (1 − ǫ)P log K)

log log K

(b)

≥
(

∑

m

Pr

(∣

∣

∣

∣

λm

log K
− 1

∣

∣

∣

∣

< ǫ

)

− (M − 1)

)

log (1 + (1 − ǫ)P log K)

log log K
−→

K→∞
1 ,

(38)

where1A is an indicator function,ǫ > 0 is an arbitrary small constant, (a) is achieved by noting

that the definition ofA implies thatλm > (1 − ǫ) log K, and (b) is achieved by using the

following inequality

Pr

(

N
⋂

n=1

Bn

)

≥
N
∑

n=1

Pr(Bn) − (N − 1) , (39)

where{Bn}N
n=1 is a set of arbitrary events. In addition, the final limit of (38) is achieved by

invoking Proposition 8 and takingK to infinity.

Since the scheme achieves the optimal high-load slopeSblp
∞ ≥ 1 it is evident thatSblp

∞ = 1.

Nevertheless, we show thatSblp
∞ ≤ 1 for the sake of completeness. Towards this end, and for

the later calculation of the high-load offsetLblp
∞ , the following bound is useful

Rblp = E

{

log

(

1 +
MP

tr
(

(HH†)−1
)

)}

(a)

≤ log

(

1 +
P

M
E
{

tr
(

HH†
)}

)

= log

(

1 +
P

M

∑

m

E
{

|am|2 + α2(|bm|2 + |cm|2)
}

)

(b)
= log

(

1 +
P

M

∑

m

(

E{|am|2} + 2α2
)

)

(c)

≤ log
(

1 + P
(

log(2K + 1) + 2α2
))

,

(40)
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where (a) is due to Proposition 1, (b) is achieved due to the fact that according to the BLP

selection procedure|bm|2 , |cm|2 ∼ χ2
2 with E{|bm|2} = E{|cm|2} = 1, and (c) is achieved by

utilizing a known result regarding the mean value of ther’th order statistic ofn independent

exponential (or centralχ2
2 with σ2 = 1/2) distributed r.v’s (see [28, pp. 62]) stating that

E{Xr:n} ≤ log
n + 1

2

n − r + 1
2

. (41)

Applying the upper bound of (40), it is easily verified that the high-load slope of the ZFBF-BLP

scheme is upper bounded by

Sblp
∞ ≤ lim

K→∞

log (1 + P (log(2K + 1) + 2α2))

log log K
= 1 . (42)

Turning to the high-load offset we apply the high-load slopedefinition (15) to the per-cell

sum-rate (5) and write the following set of inequalities

Rblp

Sblp
∞

− log log K = E

{

log

(

1

log K
+

MP
∑

m
log K

λm

)}

≥ E

{

1A log

(

1

log K
+

MP
∑

m
log K

λm

)}

(a)

≥ Pr(A) log

(

1

log K
+ (1 − ǫ)P

)

(b)

≥
(

∑

m

Pr

(∣

∣

∣

∣

λm

log K
− 1

∣

∣

∣

∣

< ǫ

)

− (M − 1)

)

log

(

1

log K
+ (1 − ǫ)P

)

−→
K→∞

log ((1 − ǫ)P ) ,

(43)

where (a) is achieved due to the definition ofA which implies thatλm > (1 − ǫ) log K, and

(b) is due to 39. The final limit of (43) is achieved by invokingProposition 8 and takingK to

infinity.

Since the high-load lower bound of (43) holds for arbitrary small ǫ it is concluded that

Lblp
∞ ≥ log P . (44)

On the other hand, applying the upper bound of (40) we get that

Lblp
∞ ≤ lim

K→∞
log

(

1

log K
+ P

(log(2K + 1) + 2α2)

log K

)

= log P . (45)

Combining (44) and (45) the proof is completed.
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E. Proof of Proposition 5

To prove the claim, it is enough to show that the random variable Pm satisfies

Pr (|Pm − P | ≤ ǫ) −→
K→∞

1 , (46)

for any arbitrarily smallǫ > 0.

Now, Let us definēλ , maxn λn(HH†)/ log K, λ , minn λn(HH†)/ log K, and rewrite

(46) as follows

Pr (|Pm − P | ≤ ǫ) = Pr

(

Pm

P
≤ 1 +

ǫ

P

⋂ Pm

P
≥ 1 − ǫ

P

)

(a)

≥ Pr

(

λ̄

λ
≤ 1 +

ǫ

P

⋂ λ

λ̄
≤ 1 +

ǫ

P

)

(b)

≥ Pr

(

λ̄

λ
≤ 1 +

ǫ

P

⋂ λ

λ̄
≥ 1 − ǫ

P

⋂
∣

∣λ̄ − 1
∣

∣ < ǫ1

⋂

|λ − 1| < ǫ2

)

(c)

≥ Pr

(

1 + ǫ1

1 − ǫ1

≤ 1 +
ǫ

P

⋂ 1 − ǫ2

1 + ǫ2

≥ 1 − ǫ

P

⋂
∣

∣λ̄ − 1
∣

∣ < ǫ1

⋂

|λ − 1| < ǫ2

)

(d)
= Pr

(

∣

∣λ̄ − 1
∣

∣ < ǫ1

⋂

|λ − 1| < ǫ2

)

(e)

≥ Pr
(∣

∣λ̄ − 1
∣

∣ < ǫ1

)

+ Pr (|λ − 1| < ǫ2) − 1 −→
K→∞

1 ,

(47)

where, (a) is due to (8), (b) is due to the fact thatPr(A) ≥ Pr(A ∩ B) whereA, B are

arbitrary events, (c) is achieved by increasingλ̄/λ and decreasingλ/λ̄, (d) is achieved by

setting ǫ1 < ǫ/(2P + ǫ) and ǫ2 < ǫ/(2P − ǫ), hence, ensuring that the first two events have

probability 1, and (e) is achieved by invoking (39) (settingN = 2). Finally, the last limit is due

to Proposition 8.

F. Proof of Proposition 7

To prove the claim we have to show that

Pr
(∥

∥HH†/ log K − IM

∥

∥

F
> ǫ
)

−→
K→∞

0 . (48)

Using the definition of the Frobenius norm [26], the LHS of (48) is rewritten as

Pr

(

M−1
∑

m=0

M−1
∑

n=0

∣

∣

∣

[

HH†/ log K − IM

]

m,n

∣

∣

∣

2

> ǫ2

)

≤
M−1
∑

m=0

M−1
∑

n=0

Pr

(

∣

∣

∣

[

HH†/ log K − IM

]

m,n

∣

∣

∣

2

>
ǫ2

5M

)

, (49)
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where the last inequality is achieved by recalling that for any set of non-negative r.v.’s,{xn}N
n=1,

the following inequality holds

Pr

(

N
∑

n=1

xn > δ

)

≤
N
∑

n=1

Pr(xn > δ/N) . (50)

and that the matrixHH† has5M non-zero entries.

Examining the five-diagonal matrixHH†, resulting from the BLP scheduling, reveals that its

non-zero entries can be divided into three groups of identical distributed r.v.’s: (1) main diagonal

entries indexed(m, m), (2) the entries of the first diagonals below and above the main diagonal,

indexed (m, m̂ ± 1), and (3) the entries of the second diagonals below and above the main

diagonal, indexed(m, m̂ ± 2). Hence, the RHS of (49) boils down, for an arbitrarym, to

MPr





∣

∣

∣

∣

∣

|am|2 + α2 |bm|2 + α2 |cm|2
log K

− 1

∣

∣

∣

∣

∣

2

>
ǫ2

5M



+

2MPr





∣

∣

∣

∣

∣

αbma∗

m̂−1
+ αamc∗

m̂−1

log K

∣

∣

∣

∣

∣

2

>
ǫ2

5M



+

2MPr





∣

∣

∣

∣

∣

α2bmc∗
m̂−2

log K

∣

∣

∣

∣

∣

2

>
ǫ2

5M



 ,

(51)

where for Rayleigh fadingbm, cm, c
m̂−2, cm̂−1 ∼ CN (0, 1), andam, a

m̂−1 each has the maximum

amplitude ofK i.i.d. χ2
2 distributed r.v.’s.

In the sequel the following order statistic result is useful. According to [23] (Example 1,

Appendix A), the maximum ofN χ2
2 distributed r.v.’s,x, behaves likelog N with high probability.

In particular, while neglecting little orders oflog log N , x satisfies

Pr (|x − log N | ≤ log log N) > 1 − O

(

1

log N

)

. (52)
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Next, we denoted , α2(|bm|2 + |cm|2) and rewrite the first summand of (51) as follows

Pr





∣

∣

∣

∣

∣

|am|2 + d

log K
− 1

∣

∣

∣

∣

∣

2

>
ǫ2

5M





(a)

≤ Pr

(

∣

∣|am|2 − log K
∣

∣+ d >
ǫ log K√

5M

)

(b)

≤ Pr

(

(∣

∣|am|2 − log K
∣

∣+ d
)

>
ǫ log K√

5M

⋂
∣

∣|am|2 − log K
∣

∣ ≤ log log K

)

+ O

(

1

log K

)

≤ Pr

(

log log K + d >
ǫ log K√

5M

)

+ O

(

1

log K

)

(c)
= e−g1(ǫ,K,M,α)(1 + g1(ǫ, K, M, α)) + O

(

1

log K

)

−→
K→∞

0 ,

(53)

where

g1(ǫ, K, M, α) ,
1

α2

(

ǫ log K√
5M

− log log K

)

−→
K→∞

∞ , (54)

(a) is achieved by algebraic manipulation and by invoking the triangular inequality, (b) is due to

the fact thatPr(A) ≤ Pr(A∩B)+Pr(Bc) for any eventsA,B, and by noting that (52) implies

that Pr(| |am|2 − log K| > log log K) < O(1/ logK), and (c) is due to the fact thatd/α2 is a

χ2
4 distributed r.v. .

Turning to the second summand of (51) we have

Pr





∣

∣

∣

∣

∣

αbma∗

m̂−1
+ αamc∗

m̂−1

log K

∣

∣

∣

∣

∣

2

>
ǫ2

5M





≤ Pr

(

max(|a
m̂−1|2, |am|2)

(|bm| + |c
m̂−1|)2

(log K)2
>

ǫ2

5Mα2

)

, (55)

where the last inequality is achieved by invoking the triangular inequality and some algebraic

manipulations. Let us defined , max(|a
m̂−1|2, |am|2) andf , (|bm| + |c

m̂−1|)2 and rewrite the
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RHS of (55) as follows

Pr

(

d f >
ǫ2(log K)2

5Mα2

)

(a)

≤ Pr

(

d f >
ǫ2(log K)2

5Mα2

⋂

|d − log(2K)| < log log(2K)

)

+ O

(

1

log(2K)

)

≤ Pr

(

f >
ǫ2(log K)2

5Mα2(log(2K) + log log(2K))

)

+ O

(

1

log(2K)

)

(c)

≤ Pr
(

|c
m̂−1|2 > g2(ǫ, K, M, α)

)

+ Pr
(

|bm|2 > g2(ǫ, K, M, α)
)

+ O

(

1

log(2K)

)

(d)
= 2e−g2(ǫ,K,M,α) + O

(

1

log(2K)

)

−→
K→∞

0 ,

(56)

where

g2(ǫ, K, M, α) ,
ǫ2(log K)2

20Mα2(log(2K) + log log(2K))
−→
K→∞

∞ , (57)

(a) is achieved by noting thatd is the maximum of2K i.i.d. χ2
2 distributed r.v.’s, and adhering to

similar argumentation used in step (b) of (53), (c) is achieved by using (50) and some algebra,

and (d) is due to the fact that|c
m̂−1|2 and |bm|2 areχ2

2 distributed r.v.’s.

Considering the third summand of (51) we get

Pr





∣

∣

∣

∣

∣

α2bmc∗
m̂−2

log K

∣

∣

∣

∣

∣

2

>
ǫ2

5M





(a)

≤ Pr

(

|bm|2 + |c
m̂−2|2 >

2ǫ log K√
5Mα2

)

(b)

≤ e−g3(ǫ,K,M,α)(1 + g3(ǫ, K, M, α)) −→
K→∞

0 ,

(58)

where

g3(ǫ, K, M, α) ,
2ǫ log K√

5Mα2
−→
K→∞

∞ , (59)

(a) is achieved by recalling that for any two non-negative r.v.’s x, y, the following inequality

holdsPr(x y > δ) ≤ Pr(x + y > 2
√

δ), and (b) is due to the fact that|bm|2 + |c
m̂−2|2 is a χ2

4

distributed r.v. .

Remark: Examining (51), (53), (56), and (58) it is evident that in order for the Frobenius norm

to converge we need thatM = o(log K). This requirement that connects the number of cellsM

to the the number of users per-cellK is most unwanted, since it means that a huge number of

users per-cell is needed already for a small number of cells.Fortunately, this requirement evolves

from the lower bounding technique being used, and it is not aninherent genuine requirement.
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In fact numerical results derived by Monte-Carlo simulation, reveal that the per-cell sum-rate

demonstrates almost perfect match to its asymptotic expression and also a weak dependency on

the number of cellsM , already for a modest number of users per-cellK.

G. Proof of Proposition 8

Since the Frobenius norm of an arbitrary rectangularM × M Hermitian matrixA may be

expressed as

‖A‖F =

√

tr (A†A) =

√

√

√

√

M−1
∑

m=0

λ2
m(A) , (60)

then according to Proposition 7, for any finiteM we get

∥

∥

∥

∥

HH†

log K
− IM

∥

∥

∥

∥

F

=

√

√

√

√

M−1
∑

m=0

λ2
m

(

HH†

log K
− IM

)

=

√

√

√

√

M−1
∑

m=0

(

λm(HH†)

log K
− 1

)2
p−→

K→∞
0 ,

(61)

and the proof is completed by noting that the last equality of(61) holds if and only if (36) holds.

H. Proof of Proposition 6

To assess the high-load characterization parameters of theZFBF-BRP scheme, the following

bound is useful

Rbrp = E

{

log

(

1 +
MP

tr
(

(HH†)−1
)

)}

(a)

≤ log

(

1 +
P

M
E{tr

(

HH†
)

}
)

≤ log

(

1 +
P

M

∑

m

E
{

[

HH†
]

m,m

∣

∣

∣

α=1

}

)

= log

(

1 +
P

M

∑

m

E
{

|dm|2
}

)

,

(62)

where (a) is due to Proposition 1, and|dm|2 , |am|2 + |bm|2 + |cm|2. It is noted that|dm|2 is

the maximum ofK i.i.d. χ2
6 distributed r.v’s withσ2 = 1/2. Next we upper boundE

{

|dm|2
}

,

utilizing order statistics argumentations.
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Proposition 9 The mean value of ther’th (1 ≤ r ≤ n) order statistics of a centralχ2
2l

distribution satisfies

E{Xr:n} ≤ 2σ2

(

log
(

2n+1
2n−2r+1

)

+ l log 1
β

+ log l − l

1 − lβ

)

, (63)

where0 < β < 1/l.

Proof: See Appendix I.

For the current case of interest i.e.l = 3, σ2 = 1/2, r = n, n = K, andβ = 1/(3 logK), we

get that (63) boils down to

E
{

|dm|2
}

≤ log(2K + 1) + 3 log log K + log 3 + 3 log log 3 − 3

1 − 1
log K

; ∀m. (64)

Finally, substituting (64) in (62), noting thatlog 3+3 log log 3−3 < 0, and applying the definitions

of the high-load slope and offset, the proof is completed.

I. Proof of Proposition 9

In [28, pp. 62], it is shown that the average of ther’th order statistics̄x = E{Xr:n} of an

arbitrary distributionP (x) satisfies the following

P (x̄) ≤ r

n + 1
2

, (65)

if its hazard rate, defined as

h(x) ,

dP (x)
dx

1 − P (x)
, (66)

is an increasing function.

It is easily verified that the hazard rate of a centralχ2
2l distribution is an increasing function.

Hence, the average of itsr’th order statistics satisfies (65). On the other hand, it is easy to verify

that for theχ2
2l distribution function also satisfies

P (x) ≥ 1 − le−
x

2σ2

( x

2σ2

)l

, x ≥ 0. (67)

Combining (65) and (67) and some algebra we get the followinginequality

x̄

2σ2
≤ log

2n + 1

2n − 2r + 1
+ l log

x̄

2σ2
+ log l . (68)

Finally, by invoking the following inequality

log y ≤ log
1

β
− 1 + βy , y ≥ 0, β > 0 , (69)

to the second summand of the LHS of (68) and some algebra the proof is completed.
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Fig. 1. Wyner’s circular array system modelM = 4.
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