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Abstract

For a multiple-input single-output (MISO) downlink chahméth M transmit antennas, it has been
recently proved that zero-forcing beamforming (ZFBF) toubset of (at most)/ “semi-orthogonal”
users is optimal in terms of sum-rate, asymptotically with humber of users. However, determining
the subset of users for transmission is a complex optinuagtroblem. Adopting the ZFBF scheme in
a cooperative multi-cell scenario renders the selectiacgss even more difficult since more users are
likely to be involved. In this paper, we consider a multifaagoperative ZFBF scheme combined with a
simple sub-optimal users selection procedure for the Wgioamlink channel setup. According to this
sub-optimal procedure, the user with the “best” local cledis selected for transmission in each cell.
The performance of this sub-optimal scheme is investigateddrms of both, the conventional scaling
law of the sum-rate with the number of users, and a sum-rdsetofWe term this characterization of
the sum-rate for large number of usershégh-load regimecharacterization, and point out the similarity
of this approach with the standard affine approximation usethe high-SNR regime. It is shown
that under an overall power constraint, the sub-optimapeoative multi-cell ZFBF scheme achieves
the same sum-rate growth rate and slightly degraded offsetwhen compared to an optimal scheme

deploying joint multi-cell dirty-paper coding (DPC) tedhnes, asymptotically with the number of users
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per cell. Moreover, the overall power constraint is showrngure in probability equal per-cell power

constraints when the number of users per-cell increases.

. INTRODUCTION

The growing demand for ubiquitous access to high-data meéces, has produced a huge
amount of research analyzing the performance of wirelessnumications systems. Cellular
systems are of major interest as the most common method derdomg continuous services to
mobile users, in both indoor and outdoor environments. hiqadar, the use of joint multi-cell
processing has been identified as a key tool for enhancirtgraygerformance (see [1][2] and
references therein for surveys of recent results on maltigrocessing).

Most of the works on the downlink channel of cellular systadeal with a single-cell setup.
References that consider multi-cell scenarios (e.g. 38]-fend to adopt complex multi-cell
system models which render analytical treatment extrerhalyl (if not, impossible). Indeed,
most of the results reported in these works are derived wi@ngive numerical calculations
which provide little insight into the behavior of the syst@erformance as a function of various
key parameters. The main goal of this paper is to present aatyze efficient, sub-optimal
scheduling schemes for the downlink channel of multi-cgtems. An emphasis is put on
deriving analytical results which provide insight into thele of key parameters on system
performance. To achieve this goal a simple cellular modséfan a model presented by Wyner
in [6] is considered. According to this model (depicted ig.FL with four cells) the cells are
placed on a circle and each users “sees” only three celhsitennas. In addition, the path loss is
modelled by a single parameterc [0, 1]. Although this model is hardly realistic it encompasses
the essence of real-life system parameters such as fadthinsen-cell interference.

The downlink channel of a similar model was first adopted ih Wére LQ factorization
(forcing an arbitrary sub-optimal encoding order) combdineith joint multi-cell dirty-paper
coding (DPC) is deployed. The attainable per-cell sumsrateder aroverall power constraint
and in the presence of Rayleigh flat fading, are shown via migalecalculations to approach
those of the optimal DPC scheme (with optimal encoding Qrderthe high-SNR region.
Recently, bounds on the per-cell sum-rate capacity suppdry the downlink of this model
have been reported in [8] undegual per-cell power constraint® the presence of Rayleigh

flat fading. To achieve theses rates, DPC techniques ar®ypl[9]. Unfortunately, DPC is
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difficult to implement in practical systems due to the higinpaitational burden of the successive
encoding involved, in particular when the number of usersiige. It is evident that for multi-
cell processing, where more users are typically involvads problem aggravates. Therefore,
a search for sub-optimal broadcast schemes is the focat pbimany works. In particular,
linear precoding schemes which offer a tradeoff betweenpbexity and performance have
been intensively investigated in recent years [10]-[12Eisple linear precoding scheme which
projects the multi-user channel into multiple independsinigle-user channels, and reduces
the design into scheduling and power allocation problemthes zero-forcing beamforming
(ZFBF) scheme [13]-[15]. The ZFBF scheme is asymptoticalpyimal with increasing SNR,
and it is easily generalized to incorporate DPC techniqu&3[16]. Recently, ZFBF scheme
has been considered in [17] for a single c&ll antennas MISO downlink setup under sum
power constraint. In this sub-optimal scheme, a set of (adtjfd “semi-orthogonal” users to
be served is selected, so as to maximize the sum-rate, asdendent coding is employed for
each selected user. This strategy is proved to provide aptiates (as DPC) asymptotically with
the number of user&’. However, determining the subset of users scheduled fosmmasion is

a complex optimization problem especially whénis large.

Most works dealing with asymptotic analysis of channelshwitcreasing number of users
(referred to as thdigh-load regimg are focused on the scaling law. In recent work [18], the
authors also considered the rate offset in addition to ttee s@aling law of a MIMO broadcast
channel with random beamforming. In this work, we formalihes approach by defining the
high-load regime characterization. In particular, foliogr the methodology of [19] regarding
the high-SNR regime, we define the high-load regime slopeddisét. The definitions are then
used for asymptotic analysis of the various schemes ofaster

In this paper, we consider cooperative multi-cell ZFBF foe downlink of a Wyner circular
setup, with simple scheduling. According to this schemegach cell the user with the “best”
local channel (the channel from the local cell-site) is skied for transmission by means of
cooperative multi-cell beamforming. The main results rggubin this work include a closed form
expression for the per-cell sum-rate of the proposed schethe absence of fading. It is proved
that this rate is achieved under both overall, and equatekpower constraints. In addition, it is
shown that ZFBF scheme is superior to a simple inter-cek tamaring (ICTS) scheme when the

SNR is above a certain threshold, which increases with ttes-oell interferencev. Introducing
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Rayleigh fading, the per-cell sum-rate of ZFBF is provedxpegience the same growth rate and
slightly degraded offset law, when compared to an optimaCBBheme asymptotically with the
number of users per-cell” under sum-power constraint. Moreover, it is verified that $hheme
satisfies in probability the more suitabégual per-cell power constraintgsymptotically with
increasing K. Numerical results show that the asymptotic expressioivelrfor this setup
already hold for a modest number of users per-cell. Next, wmsicder a different procedure
according to which the user with the “best” total receive poftom the three base-stations in
sight, is selected for transmission. It is shown that thier selection scheme does not provide
higher rates in the high-load regime.

The system model and the ZFBF scheme are described in Séictiddditional background
and previous results are elaborated in Section Ill. The-togk regime characterization is defined
in Section IV. Sum-rate analysis for the non-fading and Rigyl fading setups is presented in
Section V. In Section VI an alternative user selection pdoce is discussed. Numerical results
and concluding remarks are presented in Sections VII antrgépectively. Various proofs and

derivations are included in the Appendix.

II. SYSTEM MODEL

Consider a circular variant of the infinite linear Wyner mboj@ depicted in Fig. 1, in which
M > 2 cells with K users each, are arranged on a circle. Assuming a synchramascell
TDMA scheme, according to which only one user is selectedtfansmission per-cell, the
M x 1 vector baseband representation of the signals receivetldsetectedusers is given for
an arbitrary time index by

y=HBu+z , (1)

wherew is the M x 1 complex Gaussian symbols vecter~ CN (0, I;), B is the beamforming

M x M matrix, z is the M x 1 complex Gaussian additive noise vector CN (0, I,), and
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H is the M x M channel transfer matrix, given by

ao acg 0 - 0 aby
aby ap acy 0 . 0
0 aby as ey
H = : 0 aby - . 0 ; (2)
0 C T T apm—2  acy—a
acy—1 0 oo 0 aby_1 ap_1

wherea € [0, 1] is the inter-cell interference factor, representing thengetrical path losses.
In addition, a,,, b, andc,, are the flat fading coefficients of the signals transmittedthoy
m'th, (m/—\l)'th1 and (n7+\1)'th cell-sites respectively, and received by tbelecteduser of
the m’th cell. 1t is noted that the fading coefficient might be satally dependent, depending
on the users selection procedure. In addition, ergodickbiading processes are assumed where
the fade values remain constant during the TDMA slot duratiBach of theM K users,
perfectly measures itavnfade coefficient§ a,, k., by k., cm x }, Which are fed back to the multi-cell
transmitter via an ideal delayless feedback channel. M@memo user cooperation is allowed.

A joint multi-cell ZFBF scheme is utilized, whose beamfongpimatrix for an arbitrary TDMA

MP B
B= \/tr((HHT)—l) H )

slot is given by

where M P is the overall average transmit power constraint, whichrisueed by definitioh
Substituting (3) into (1), the received signal vector reshito

MP

and single user encoding-decoding schemes with long coddswasting over many symbols

(and many fading blocks) are used. Since (4) can be integbras a set of\/ identical

independent parallel single user channels, its achieyadiehannel ergodic sum-rate (or cell)

Y7 2 [n mod M].

2Later on it is argued that under certain conditions this seheatisfies an equal per-cell average power constraintss w
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is given by

MP
R = F {log <1 + o ((HHT)_1)> } , (5)

where the expectation is taken over the entrieddofin the sequel the following Proposition is

helpful.

Proposition 1 The achievable per-cell ergodic sum-rate of the ZFBF schefttean arbitrary

user selection procedure and total sum power constraiif®, is upper bounded by

R,me < log (1 + %E{tr (HH' )}) . (6)

Proof: See Appendix A. [ |
Although a sum-power constraint is assumed, a more nathate for a cellular system is
to maintain per-cell power constraints. Hence, we are ésted in the transmitted power of an
arbitrary cell, which is averaged over the TDMA time slot aisn (many symbols) and is a

function of the realization off,
MP[(HH")™]
P, = [BB,.. = o (TH ) M =0, 1,..., M—1. 7)
The following Proposition will be useful latter on.

Proposition 2 The average transmitted power per-cgl}, of the ZFBF scheme with an arbitrary
user selection procedure (expressi@f)), satisfies the following inequality

: t t

min, \,(HH") < p < p Wax, M (HH)

<P,< : , Vm, (8)
max, \,(HH?') min, \,(HH")
where {\,(HH")}M ! are the eigenvalues dff H'.
Proof: See Appendix B. [ |

The above discussion holds for any ZFBF scheme with: sumepoanstraint, no further power
allocation via “waterfilling”, and an arbitrary selectiof &/ users (one in each cell). In Section
V, simple scheduling for both non-fading and Rayleigh fadsetups are presented and analyzed.
The next section provides some additional background dateceresults derived for the Wyner
downlink channel. Theses results are used as a referenevdbrating the performance of the

proposed ZFBF scheme.

3A natural logarithmic base is used throughout this work.
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[1l. BACKGROUND

For a similar model but with capacity achieving joint muel DPC scheme, the downlink
per-cell ergodic sum-rate capacity with an equal per-cellvgr constraintP, was recently
considered in [8] (see also [20]) for the tBeft-handoff modein which each user “sees” only
two cell sites. These results can be extended to include uhrert circular Wyner model in
a straightforward manner. Accordingly, the per-cell eigosum-rate capacity with an equal

per-cell power constraint, for a non fading setup, is givgn b

1
Copt—nt = / log (1 + P(1+ 2« cos(27r9))2) do , (9)
0

M—o0

and for a Rayleigh fading setup with many users per-dg€ll>{ 1), to be bounded by

log(1+P((1—e)logK+1+2a2)) < Copr < log(1+(1+2a2)PlogK) , (10)

for somee il 0.

As a reference, and assuming the system includes an everenwintells, an inter-cell time
sharing (ICTS) scheduling, according to which odd and ewddls @are transmitting alternately
in time, is used. This simple scheme (presented in [21] fer uplink channel) requires only
limited cooperation between cells, and deploys single-eseoding decoding schemes. Since
for each time slot only odd or even indexed cells are trarigigit and the model assumes
interference from the two adjacent cells only, inter-ceterference is avoided and the scheme
demonstrates a non interference limited behavior. It idyeasrified that the achievable per-cell

ergodic sum-rate for a non-fading setup is given by

1
Ricts—nf = 5 log(l + QP) . (11)

and for a Raleigh fading setup is well approximated (for géamumber of users per cell > 1)

by
1
Ricts = 3 log(1+2PlogK) . (12)

The latter rate is achieved by scheduling in each active tal user with the “best” channel

for transmission.
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IV. HIGH-LOAD REGIME CHARACTERIZATION DEFINITION

Most of the works dealing with asymptotic analysis of dowklchannels with large number
of users, are focused on the sum-rate scaling law. Thistiwadi characterization is unable to
assess the impact of other channel features since manydeoedichannels demonstrate the same
scaling law. Moreover, a characterization based only onsttading law, dose not reveal much
of the actual number of users and power required to achieveita fiate. Here, we present a
more refine characterization whereby as functioogflog K the rate in a scenario where large
number of users are involved (referred to as kiigh-load regimg is expanded as an affine
function. The resulting zero-order term loigh-load offsetcaptures the impact of other channel
features such as scheduling and coding.

The high-load refinement is inspired by the seminal works fdrai et-al [22] and Lozano
et-al [19], dealing (among other things) with the power eiffsx the high-SNR regime. In fact,
the definitions of the high-load slope and offset are simitathe respective high-SNR slope
and offset where the teriiog P in the latter is played by the teringlog K.

In the the high-load regime the sum-rate per receive elemktfgood” scheduling schemes

in the presence of Rayleigh fading behaves as
R =S, (loglog K + L) +o(1) (13)

while S, denotes the high-load slope in bits/sec/Hz,

Seo £ lim ———— 14
Koo loglog K’ (14)

andL., defined by
Lo £ lim (Sﬂ — loglog K) , (15)

represent the high-load offset, with respect to some reéerehannel having the same high-load
slope. It is noted that since we are interested in the asyingdiehavior of the rate in terms of
the number of users a natural logarithm is used instead ofléhbase logarithm used for the
high-SNR regime resulting the use jf/B] units for the power offset.

Applying these definitions, we get that the high-load chi@@zation of the optimal joint
multi-cell DPC scheme in the presence of Rayleigh fadingi@ssion (10)) is given by

Sx'=1 ; logP <LX' <logP +log(1+2a%) , (16)
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While the high-load characterization of the ICTS schemehim presence of Rayleigh fading

(expression (12)) is given by

Sicts — 1

5 L' = Jog P . (17)
To conclude this section we note that the baseline scalimg d& loglog K is matched
to Rayleigh fading channels and is motivated from the faett tfhe maximum ofK i.i.d.
x5, distributed r.v.'s roughly behaves likeg K [23] (Example 1, Appendix A). Other fading
distribution might lead to other baseline scaling laws (&meexample [24] where a law of
VIog K is demonstrated for lognormal fading). It is also noted thAkhough the high-load
characterization is similar to the high-SNR charactel@a{whereloglog K takes the role of
log P) there is a main difference between the two asymptotic reginihe difference lie in the
fact that while the SNR is related to the input signals andita@dnoise vector statistics, the
number of users is related to the resulting fading statistia the user selection scheme. This
fact makes the high-load parameters hard to calculate arch more setting-dependent than

the general expression derived for the high-SNR paramgl8is

V. SUM-RATE ANALYSIS

In this section the achievable per-cell ergodic sum-ratthefZFBF is analyzed for Gaussian
and Rayleigh block flat-fading channels for specific useedating procedures. For the fading
setup we also address the high-load characterization,renarplications of increasing number

of users per-cell over the transmitted power of an arbitatj-site.

A. Non-Fading Setup

For non-fading channels, mund-robinscheduling is deployed and there is no need to feed
back the channel coefficients sineg , = b, = ¢ = 1 ,Vm, k. Hence, for each time slot,
the channel transfer matrix (2) becomes circulant witha, 0, ... 0, «) as first row, and the

following proposition holds.

Proposition 3 The per-cell average sum-rate of the ZFBF scheme is givemfar1/2, by

Bt = log (1+(1-4a%)* P) . (18)

— 00

January 22, 2007 DRAFT



10

This rate holds for an overall power constraiif P, and for an equal per-cell power constraints
P.

Proof: See Appendix C. [ |
Evidently, R,q¢_.¢ IS @ decreasing function of the interference factorComparing (11) to
(18), it is clear that the ZFBF scheme is superior to the IC3t®me when the SNR is above
a certain threshold ,
2 <1 (- 4a2)5>
(1—4a2)®

which is an increasing function ef. It is noted that fora = 1/2 the circulant channel transfer

Pia) = : (19)

matrix H is singular and channel inversion methods such as ZFBF drappiicable. Moreover,

H is not guaranteed to be non-singular fer- 0.5 and any finite number of cell8/.

B. Rayleigh Fading Setup

For the Rayleigh fading setup, for each fading block (or TDKIAt) the multi-cell processor
selects the user with ththest” local received power(BLP) for transmission in each cell. In

other words, the selected user in thth cell is
k(m) = argmax{|am 1|’} (20)
k

where {a,,;} X, are the fading coefficients of thei'th cell transmitted signals as they are
received by then'th cell users.
The resulting channel transfer matrix of this sub-optintilexiulingH defined in (1), consists

of diagonal entries:,,, = a ) whose amplitudes are thaximumof K i.i.d. chi-square

m,k(m
distributed random variables with two degrees of freedofre Gther two diagonals entries of
H are chi-square distributed random variables with two deg@ freedom times:.

In caseH is ill conditioned, the joint beamformer can start replacihe “best” users by their
second “best” users until the resulticd is well behaved. Since we assume that> 1, the
overall statistics is not expected to change by this usdaceym procedure.

The special structure of the channel transfer makflixesulting from the setup topology and
the scheduling procedure, plays a key role in understanti@@symptotic high-load character-
ization of the scheme’s per-cell sum-ratgy,; (expression (5)), which is stated in the following

proposition.
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Proposition 4 The high-load characterization of the ZFBF-BLP scheme v&igiby
Sth—1 ; LPP—logP. (21)

Proof: See Appendix D. [ |
This results, can be intuitively explained by the fact thaé do the scheduling process H')
“becomes” diagonallog KI,;) when K increases. Accordingly, for largs’, (HH')~' “be-
haves” like(I,,/log K), and R,n,¢ (expression (5)) is well approximated for the BLP selecting
scheme by

Ryip K%>1 log(1+ Plog K) . (22)

It is concluded that the per-cell sum-rate of the ZFBF-BLResue scales dsglog K which is
the same scaling law of the optimal multi-cell joint DPC stiee However, it offers a smaller
high-load offset than that of the offset predicted by theargmpound of (10)

0 <LP —L2P < log(l +2a%) . (23)

It is also concluded that the ZFBF-BLP scheme provides a tab $caling law than that of the
ICTS scheme (12), in the presence of Rayleigh fading. Maedw definition, the sum-rate of
the ZFBF scheme ensures a non-interference limited behfiany number of user&” (not
necessarily large).

Finally, we consider the power constraint issue asymmbyievith increasing number of users

per-cell.

Proposition 5 The considered ZFBF-BLP scheme, that maintains an ovewllep constraint
of M P, ensures in probability an equal per-cell power constramiit?, asymptotically with

increasing number of users per-cell. Hence,

P, P : m=01,..., M—1. (24)

K—oo
Proof: See Appendix E. [ |
As mentioned earlier, for cellular systems an individual-gal power constraint is a more
reasonable choice than a sum-power constraint which is reoiteable for compact antenna

arrays.
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VI. DISCUSSION

In this section we consider a more intuitive scheduling saldor the multi-cell setup and
show that it provides no better rates than the BLP schemeeimhigih-load regime.

One of the reasons the BLP user selection scheme was chosentbe focal point of this
work is that it enables analytical treatment, especiallgéniving a lower bound to the per-cell
sum-rate in the presence of Rayleigh fading. In this sectenpresent a more intuitive user
selection procedure referred to laest total received powdBRP), and we show that it does not
provide higher rates in the high-load regime.

According to this scheme, for each fading block (or TDMA ¥ltdte multi-cell processor
selects the user with the best over-all received power, raorsimission in each cell. In other

words, the selected user in thé&th cell is

k(m) = arginax {\amk\Q + 042(|bm,k|2 + \cmk\z)} , (25)

where {a, <, {bmitE ,, and {c,..}1, are the fading coefficients of the'th, m — 1'th,
andm + 1'th cell transmitted signals respectively, as they are iveceby them'th cell users.
In caseH is ill conditioned, the same procedure of replacing “best&ns with second “best”

users id deployed.

Proposition 6 The per-cell sum-rate of the ZFBF-BRP scheme is upper balfwieny number
of users per-cellK’ by

(26)

1
1 log K

log(2K + 1 loglog K
RbrpSRbrp—ubélog <1+P Og( - )+3 o808 ) :

Proof: See Appendix H. [ |
Applying the definitions of the high-load slope and offsetpi@ssions (14) and (15)) directly
to the upper bound of (26) yields the following

St =1 ;LT =logP . (27)

Since the high-load slope and offset predicted by the uppeand equals to ones of the ZFBF-
BPL scheme, it is concluded that the ZFBF-BRP scheme doegrowide higher rates in the
high-load regime, than the ZFBF-BLP scheme. Although it asjectured that Proposition 5
also hold for the ZFBF-BRP scheme, the issue of the indilideds transmitted power does

not change the latter conclusion.
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VII. NUMERICAL RESULTS

First, the non-fading setup is considered under the assomibiat the number of cells is large
M > 1anda < 1/2. In Fig. 2 the spectral efficiencigéper-cell of the optimal, ICTS, and ZFBF
schemes (expressions (9), (11), and (18) respectivelylatied as a function of the transmitted
Ey/Ny, for a = 0.4 . It is observed that the ZFBF scheme outperforms the ICT8mehabove
a certain SNR threshold. The threshdtd«) (expression (19)) is shown in Fig. 3 as a function
of the inter-cell interference factar ; the ICTS scheme is superior in the region below this
curve (which is a monotonically increasing function of thg while the ZFBF scheme prevails
in the region above the curve.

Turning to the Rayleigh fading setup, the spectral effidemger-cell (calculated by Monte-
Carlo simulations) of the ICTS and ZFBF-BLP (expression) @&hemes, and the asymptotic
upper bound of the optimal scheme (expression (10)) areeplon Fig. 4 as a function of the
transmitted £, /Ny, for o = 0.4, K = 100, and finite dimensional system éff = 30 cells.

It is observed that for this set of parameters the ZFBF-BLRes® loses only a fraction of
a bit/sec/Hz when compared to the upper bound of the opticteérae already for a modest
number of users per-cell (it is noted that the upper boundaigivfor K > 1 and it might
not be accurate for small values &f). The gap between the ZFBF-BLP curve and the per-cell
sum-rate capacity upper bound is clearly explained by tbetfat the ZFBF-BLP scheme does
not use the distributed antenna array to enhance the rengpdwer, but to eliminate inter-cell
interferences. Hence, the additional array power gaifl ef 2a?) predicted by the upper bound
cannot be achieved. Moreover, for large valueskpfN,, the ZFBF provides approximately
twice bits/sec/Hz than the ICTS scheme, which can be exgdaby the0.5 high-load slope of
the ICTS per-cell sum-rate expression (17).

In Fig. 5 the sum-rates per-cell of the ICTS and ZFBF-BLP sué®(Monte-Carlo simulations,
and asymptotic expressions (22) and (12)), the ZFBF-BRPn{®st€arlo simulation) and the
upper bound of the optimal scheme, are plotted as a functidheonumber of users per-cell

for P =10 [dB], « = 0.4 and M = 30. Examining the curves, the observations made for Fig.
“The spectral efficiencyC(Ey/No) is defined through the following relation€(F,/No) = C(SNR) and SNR =

C(SNR)E}, /No.

%It is noted that a circular setup dff = 30, may be considered for any practical purpose as an infinitey 48].
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4 are strengthened, since the small loss suffered by the ZeéBEme when compared to the
upper bound is demonstrated to hold over a wide rang& @hlues. A good match between the
ZFBF-BLP Monte-Carlo simulation results to its asymptatiove is observed as well, already
for a modest number of users per cell. Another observatithasthe BRP scheduling does not
provide higher rates than the BLP scheduling, demonstrdtiat claim of Proposition 4 is also
valid for a modest number of users per-cell.
In Figure 6 the empiric cumulative distribution functionl¥€) of of an arbitrary cell normal-

ized transmit power’,, /P is plotted for several values of the number of users per&ednd

P =10 [dB]. The curves, derived by Monte-Carlo simulation, destoate the convergence of
P,, to P as predicted by Proposition 5 ; the probability 8f, to be in the rage o’ + 1 [dB]

increases from 0.4 to 0.84, while the number of users inesfiesm K = 10 to K = 1000.

VIIl. CONCLUDING REMARKS

In this work a cooperative multi-cell ZFBF scheme for the démk of the circular Wyner
model is considered for Gaussian and flat Rayleigh fadingméla. For the non fading setup and
round-robin scheduling, a closed form expression for threcp# sum-rate (under both, overall
and equal per-cell power constraints), is derived. Thedatemonstrates superior performance
over the ICTS scheme when the SNR crosses a certain threshkibich increases with the
inter-cell interference power level (increasing

To address the asymptotic analysis for the Rayleigh fadatgps we introduce the high-load
characterization through the slope and offset paramethishvaccompanied thig log K law.
Next, the per-cell sum-rate of the ZFBF-BLP scheme is prdeedemonstrate the same growth
rate ofloglog K and a slightly degraded offset when compared to the optinRC Bcheme,
asymptotically with increasing number of users per-d€ll while satisfying (in probability)
equal per-cell power constraints. We also show that thergltee ZFBF-BRP scheme does not
provide better rates in the high-load regime. Furthermotemerical results derived by Monte-
Carlo simulation show a good match to the results predictethe various analyses included,
already for a modest number of users. It is noted that sind®~ZB utilized, non-interference
behavior is guaranteed for any number of users per#elinot necessarily large). Moreover,
extending the results presented here to a two dimensioaahpl Wyner model can be done in

a straightforward (though tedious) manner.
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It is concluded that the simple cooperative multi-cell ZFBEP scheme presented here
provides near optimal performance already for a moderatebeu of users per-cell. Moreover,
the scheduling mechanism facilitates one active user gleen one hand (a natural choice for
cellular systems), while treating the whole system as aibiged antenna array for inter-cell
interference cancellation by ZFBF (allowing the use of Bnagser encoding-decoding schemes),
on the other. Combined with the inherent non-interferenoetéd behavior, the ZFBF-BLP

scheme provides a fair alternative to the optimal compléxt joulti-cell DPC scheme.
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APPENDIX

A. Proof of Proposition 1

The claim is proved by the following set of inequalities

Rt = E {108; (1 + - ((li_\f}];f)—l)> }
P
o <1 P )}
{ 3 2m X (HHT)
%) E {log (1 + % > Am(HHT)> } (28)
<F {log (1 + %tr (HHT))}

(®) p ;
< log (1 + 47 E {tr (HH")} ) |

where (a) is achieved since the arithmetic mean of a nontivegset is larger than its harmonic

mean, and (b) is achieved by Jensen’s inequality.

B. Proof of Proposition 2
To prove the RHS of (8) we note thd?, (expression (7)) satisfies the following set of

inequalities
MP[(HH" ']

" ((HH))

< P (max [(HH"™], ) (max)\,(HH")) (29)

(a)

<P (max)\n((HHT)_l)> (max An(HHT))

max,, \,(HH?)

min, \,(HHT) ’

where (a) is achieved by recalling that the eigenvalues oHammitian matrix majorize its

diagonal entries (Horn’s Theorem [25]).
Next, we denote the non-increasing ordered eigenvaluemandncreasing ordered diagonal
entries of a semi-positive definite (SPD) Hermitiah x M matrix A by {\°(A)}M ! and

{do(A) Y2 respectively. Now to complete the proof, the RHS of (8) idifiexl by the following
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set of inequalities

=1
b MP [(HH"]

m,m

tr (HH"))

(30)
where (a) is achieved by recalling that the eigenvalues oHammitian matrix majorize its

diagonal entries (Horn’s Theorem [25]), hence the summatiartion is non-negative.

C. Proof of Proposition 3

Since for the non-fading setufd is deterministic and (5) reduces to

MP
R pot—nt = log (1 + ) . (31)

tr (HH')™1)

To evaluate the inner log term of (31), the following set otiaifies are useful

1 @ 1 1
o (HHD) =55 A (HHY)

1 1
- > \2(H) (32)

1= 1 ’
:M Z <1+2acos(2]’rv—7”)> ’

m=0

where (a) and (b) are achieved sinEE is an Hermitian non-singulak/ x M matrix for 0 <
a < 1/2, and the last equality is due to the fact tHHt is also circulant [26]. TakingV/ to
infinity yields

M—o0

S tr ((HH")™) = /1 (14 20cos(2m6)) > db
M o (33)

= (1—40z2)§ ,
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where the last equality is achieved by setting: 1, b = 2«a, n = 2 in equation 3.661.4 of [27,
pp. 399] and some algebra. Substituting (33) into (31) wi€B).

Since, for the non-fading setu@f is a circulant matrix, then according to [2GJH H)~!
is also circulant, and by definition its diagonal entries agelial. Hence, the average transmit
power of them'th cell site antenna is given by

. MP [(HHT)‘l}mvm
P,, = [BB',m = o ((FTET)) =P, (34)

where B is the beamforming matrix defined in (3). It is concluded tha¢ overall power

constraint ofM P ensures an equal per-cell power constraintg’of

D. Proof of Proposition 4

In order to prove the claim we need to provide a lower bounchtothe sum-rate. Towards
this end we start by showing that the channel transfer md&rjxesulting from the “best” local

channel selection procedure, satisfies the following Psibjons.

Proposition 7 The Frobenius norm of the matri(¥f H'/log K — I ;) converges in probability
to 0. Hence,
|HH"/log K — Iy, = 0, (35)

where|| - ||r is the Frobenius norm of a matrix.

Proof: See Appendix F. [ |

Proposition 8 The eigenvalues of the matiil H/ log K') converge in probability to 1. Hence,
A (HH')/log K Ki> 1, Vm. (36)

Proof: See Appendix G. [ |

Now, let us define the following event

A={|A\n/logK —1| <€ ,Ym} , (37)
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where),, is them’'th eigenvalue of HH'). Next, we apply the high-load slope definition (14)

to the per-cell sum-rate (5) and write the following set aéquoalities
Rblp MP
—— = FXI 14+ —=—— loglog K
loglog K {og( +Zm;m>}/og o6

MP
>FESlglog |1+ =—F ] /loglogK
dom e

P (A) log (14 (1 —¢)Plog K) (38)

log log K
(b)
Z (

—1 — (M -1
logK ‘ ) ( )>
wherel 4 is an indicator function¢ > 0 is an arbitrary small constant, (a) is achieved by noting

log (14 (1 —¢)Plog K)
— 1,
loglog K K—00

that the definition of4 implies that),, > (1 — ¢)log K, and (b) is achieved by using the

following inequality

Pr (ﬁ Bn> > f:Pr(Bn) - (N-1), (39)

n=1
where {B,}_, is a set of arbitrary events. In addition, the final limit oBf3s achieved by
invoking Proposition 8 and taking’ to infinity.

Since the scheme achieves the optimal high-load s&lffe> 1 it is evident thatS"? = 1.
Nevertheless, we show th&® < 1 for the sake of completeness. Towards this end, and for

the later calculation of the high-load offsel”, the following bound is useful

MP
Ry, =FE {log (1 + o ((HHT)—1)> }

© log (1 + %E {tr (HHT)})

= log <1+§ZE{|am\2+a2(|bm|2+\cm|2)}> (40)
® log <1 + % Z (E{|am|*} + 2042)>

m

()
< log (1+ P (log(2K + 1) + 20%)) ,
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where (a) is due to Proposition 1, (b) is achieved due to tioe tfeaat according to the BLP
selection procedur®,,|”, [cm|® ~ x2 with E{|b,,|*} = E{|c.|’} = 1, and (c) is achieved by
utilizing a known result regarding the mean value of ifth order statistic ofn independent
exponential (or centra\? with o2 = 1/2) distributed r.v's (see [28, pp. 62]) stating that

n + %

E{X,n} <log——2—
{Xvn} L i——

(41)

Applying the upper bound of (40), it is easily verified that thigh-load slope of the ZFBF-BLP

scheme is upper bounded by

2
SPP < Jim log (1 + P (log(2K + 1) + 2a7))

=1. 42
K—o0 loglog K (42)

Turning to the high-load offset we apply the high-load sla@inition (15) to the per-cell

sum-rate (5) and write the following set of inequalities
Ry, 1 MP
Slgip —loglog K = F {log (logK + >N k)}\g_K> }
1 MP

> 1

= {1“4 ©8 <logK * S k’/{g_K> }

(a) 1

> Pr(A)log (— + (1 — e)P)

log K
%’(zpr( <e)—(M—1)>log(@+(1—e)P>

— log((1-)P) ,
where (a) is achieved due to the definition.dfwhich implies that\,, > (1 — €)log K, and
(b) is due to 39. The final limit of (43) is achieved by invokiRgoposition 8 and taking< to
infinity.

Since the high-load lower bound of (43) holds for arbitramnyadl ¢ it is concluded that

(43)

|
log K

LP > log P . (44)

On the other hand, applying the upper bound of (40) we get that

. 1 (log(2K + 1) + 2a?2)
LPP < Jim 1 P =logP . 45
o= Kl—r>noo 8 (logK + log K 8 (45)

Combining (44) and (45) the proof is completed.
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E. Proof of Proposition 5
To prove the claim, it is enough to show that the random végiah), satisfies

Pr(|P,—P|<e) — 1, (46)

K—oo
for any arbitrarily smalk > 0.

Now, Let us define\ £ max, \,(HH")/log K, A\ £ min, \,(HH")/log K, and rewrite
(46) as follows

Pr(|Pm—P|§e):Pr(%§1 % %z —%)
(@) A € A €
ZPT<zgl+ﬁmX§1+ﬁ)
(®) A
> Pr (XS + = ﬂ)\_l——ﬂ})\—l‘<61ﬂ|)\—1\<e2>
(© 1+e€ € — € € -
> Pr{— €1_1+ﬁﬂl+€221—5(]\A—1}<elﬂ|3—1|<e2
@P’F(‘ —1}<€1m|A—1|<62>

vz
)
<

‘ —1‘<61)+P7‘(\A—1|<62)—1K?001,

(47)
where, (a) is due to (8), (b) is due to the fact that(.A) > Pr(An B) where A, B are
arbitrary events, (c) is achieved by increasihg\ and decreasing\/), (d) is achieved by
settinge; < €¢/(2P +¢) andey, < €¢/(2P — ¢), hence, ensuring that the first two events have
probability 1, and (e) is achieved by invoking (39) (settiNg= 2). Finally, the last limit is due

to Proposition 8.

F. Proof of Proposition 7
To prove the claim we have to show that
f _
Pr(|[HH'/log K — L[, > €) — 0. (48)
Using the definition of the Frobenius norm [26], the LHS of (48 rewritten as

M—-1M-1 9
Pr (Z > ‘[HHT/logK ~ I, > e2>

m=0 n=0

M-1M-1

< Z S Pr (‘ [HH/log K — I./]

=0 n=0

2

€
>5—M> , (49)
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where the last inequality is achieved by recalling that foy aet of non-negative r.v.¢z, }_,,

the following inequality holds

N N
Pr (Z T, > 5) <> Pr(z, > 6/N) . (50)

and that the matrix H' has5M non-zero entries.

Examining the five-diagonal matrikl H', resulting from the BLP scheduling, reveals that its
non-zero entries can be divided into three groups of idehtistributed r.v.’s: (1) main diagonal
entries indexedm, m), (2) the entries of the first diagonals below and above themi@igonal,
indexed (m,m/i\l), and (3) the entries of the second diagonals below and alieveniin

diagonal, indexedm,@). Hence, the RHS of (49) boils down, for an arbitrary to

lam|* + 02 by > + a2 | €2
MP -1 —
" log K ~ SM *
VP abma*/\l + A C— 2 1
2 e | >
g log K s | (1)
a’bycti— 22
2MP T2 >
"I Tog K 5M |

where for Rayleigh fading,,, ¢, c—, c— ~ CN(0, 1), anda,,, a— each has the maximum
amplitude of K i.i.d. x3 distributed r.v.'s.

In the sequel the following order statistic result is usefdtcording to [23] (Example 1,
Appendix A), the maximum ofV x3 distributed r.v.s;, behaves likéog N with high probability.
In particular, while neglecting little orders &bglog IV, = satisfies

1
Pr(\x—log]\f\gloglogN)>1—O<logN) . (52)

January 22, 2007 DRAFT



23

Next, we denotel 2 a2 (|b,|* + |c.|”) and rewrite the first summand of (51) as follows
2
|am|” +d €2
pr| =2l 2] >
" ( log K Z M

< Pr }|am| —logK‘ +d >

elogK)
VoM

( (|lam|* = log K| + d) > E\l/of_KﬂHam\ —log K <loglogK) + 0 (1 glK)

logK) < 1 )
< Pr|loglog K + d > +0 | ——
( 8108 S5M log K

. 1 0
( ) —91(57K7M7 )(1 91(67 K, M7 )) <logK) K ’
e’ + (07 C —00

(53)

where

1 [elog K
e, K,M,a) & —
nl ) (m

a2
(a) is achieved by algebraic manipulation and by invokirgtiieangular inequality, (b) is due to
the fact thatPr(A) < Pr(ANB)+ Pr(B°) for any eventsA, B, and by noting that (52) implies
that Pr(| |a,,|° — log K| > loglog K) < O(1/log K), and (c) is due to the fact thal/a? is a
x3 distributed r.v. .

—loglogK) — 00, (54)

K—o0

Turning to the second summand of (51) we have
2 2
€
P
r(

b + [c71)? 2
< Pr (max(\am|2, \am|2)(| |+ lez=l) > ) , (55)
where the last inequality is achieved by invoking the tridlag inequality and some algebraic

ab,,a*— + aa,ct—
m—1 m

)
log K

(log K')? S5Ma?

manipulations. Let us definé 2 max(la——|?, |a,,|*) and f £ (|bn| + |c=—|)? and rewrite the
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RHS of (55) as follows

(a) 2 9
< Pr (d /> % () Id — log(2K)| < log log(2 K)) e (log(12 K))
e2(log K )? .
< Pr (f > 5Ma?(log(2K) + 1Og10g(2K))) + O <m) (56)

—
)
~

IA

Pr(le.—|* > g2(e, K, M, a)) + Pr (|bm|2 >gg(e,K,M,0z))+O< ! )

log(2K)
(d) o —go(e, K,M,a 1
P 2 92( s, VL, )
‘ +O<log(2K)) I{?oo()’

where
e?(log K)?
% m
20Ma?(log(2K) + loglog(2K)) K—oco '

(a) is achieved by noting thatis the maximum oK i.i.d. x2 distributed r.v.'s, and adhering to

g2(e, K, M, ) £ (57)

similar argumentation used in step (b) of (53), (c) is ackieby using (50) and some algebra,
and (d) is due to the fact thé¢—|? and|b,,|* are x2 distributed r.v.'s.

Considering the third summand of (51) we get

o2b, ¢ |? 2 (a) 2elog K
s . ) ) elog
Prvl~ogw | “aar) =17 ('b’”| Fle=l> ¢5_Moz2>
(58)
® kM
<e g3(&, K, ,a)(]_ —|—93(€7 K, M, a)) K_) 0,
where
2¢log K

6’ K, M,Of é — O y 59
gg( ) \/WQ2 K—oo ( )

(a) is achieved by recalling that for any two non-negativesrx, y, the following inequality
holds Pr(z y > 8) < Pr(z+y > 2V/4), and (b) is due to the fact théh,|” + [c—|? is ax3
distributed r.v. .

Remark: Examining (51), (53), (56), and (58) it is evident that in @rdor the Frobenius norm

to converge we need thaf = o(log K'). This requirement that connects the number of célls

to the the number of users per-céll is most unwanted, since it means that a huge number of
users per-cell is needed already for a small number of datidunately, this requirement evolves

from the lower bounding technique being used, and it is noinerent genuine requirement.
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In fact numerical results derived by Monte-Carlo simulatioeveal that the per-cell sum-rate
demonstrates almost perfect match to its asymptotic egjoresind also a weak dependency on

the number of cells\/, already for a modest number of users per-é€ll

G. Proof of Proposition 8

Since the Frobenius norm of an arbitrary rectangular< A Hermitian matrix A may be

expressed as

Al = y/tr (ATA) = (60)
then according to Proposition 7, for any finité we get
HH' ~—~ ., (HH'
-1 = A2 -1
log K M - mZ:() " (logK M)
(61)
M—-1 2
HH'
— Z (M — 1) 2,0,
— log K K—o00

and the proof is completed by noting that the last equalit{6@) holds if and only if (36) holds.

H. Proof of Proposition 6

To assess the high-load characterization parameters &RB&-BRP scheme, the following

MP
Homp = £ {log (1 T ((HHT)-1)> }

< log (1 + %E{tr (HH*)})

<log (1 + %ZE{ HH']

— log (1 - %ZE{|dm|2}> ’

where (a) is due to Proposition 1, ahd),|> £ |a,|* + |bm|” + |em*. It is noted thatld,,|” is

the maximum of K i.i.d. x2 distributed r.v's witha® = 1/2. Next we upper bound’ {|d,,|*},

bound is useful

(62)
)

utilizing order statistics argumentations.
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Proposition 9 The mean value of the'th (1 < r < n) order statistics of a centra?

distribution satisfies

(63)

log (525-) + llog £ + logl — 1
B Xr-n <9 2 2n—2r+1 B
{Xrn} < 20 ( 1-13 ’

where( < 5 < 1/1.

Proof: See Appendix I. [ |

For the current case of interest ile= 3, 0> =1/2,r =n,n = K, and3 = 1/(3log K), we
get that (63) boils down to

log(2K + 1) + 3loglog K +log 3 + 3loglog3 —3

1 - 1oglK ’

Finally, substituting (64) in (62), noting thatg 3+3 log log 3—3 < 0, and applying the definitions

E{|d.)*} < Ym. (64)

of the high-load slope and offset, the proof is completed.

|. Proof of Proposition 9

In [28, pp. 62], it is shown that the average of thth order statisticst = F{X,.,} of an

arbitrary distributionP(z) satisfies the following

P(z) < 65
CE (65)
if its hazard rate defined as
dP(z)
h é dz

is an increasing function.
It is easily verified that the hazard rate of a cenf3l distribution is an increasing function.
Hence, the average of it&h order statistics satisfies (65). On the other hand, iasydo verify

that for they3, distribution function also satisfies
N 1
P(z) >1—le 5 (i) ) (67)
207

Combining (65) and (67) and some algebra we get the followieguality

T 2n + 1 T

— < _ 1 1 .
202 — Oan—27’+1+lOg202+Ogl (68)
Finally, by invoking the following inequality
1
logyélogﬁ—lﬂtﬁy , y=20,3>0, (69)

to the second summand of the LHS of (68) and some algebra e jsr completed.
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Fig. 1. Wyner's circular array system modkl = 4.
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Fig. 2. Spectral efficiencies per-cell with no fading ¥& /Ny for o = 0.4.
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Fig. 3. The SNR threshol®; («) with no fading vs. the inter-cell interference facter
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Spectral Efficiencies Per—Cell (M = 30, a = 0.4, K = 100) - Rayleigh Fading
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Fig. 4. Spectral efficiencies per-cell in the presence ofl&gly fading vs.E} /N, for K = 100, o = 0.4 and M = 30.
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Fig. 5. Sum-rates per-cell in the presence of Rayleigh tadim the number of users per-céll for P = 10 [dB], « = 0.4,
and M = 30.
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Normalized Power CDF (M = 30, a = 0.4, P = 10 [dB]) - Rayleigh Fading
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Fig. 6. Normalized transmitted power CDF of an arbitraryesasation in the presence of Rayleigh fading fér= 10 [dB],
a = 0.4, M = 30, and several values df.
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