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Abstract

Multicell processing in the form of joint encoding for the downlink of a cellular system is studied

under the realistic assumption that the base stations (BSs) are connected to a central unit via finite-

capacity links (finite-capacity backhaul). Three scenarios are considered that present different trade-

offs between global processing at the central unit and local processing at the base stations and different

requirements in terms of codebook information (CI) at the BSs: 1) local encoding with CI limited to a

subset of nearby BSs; 2) mixed local and central encoding with only local CI; and 3) central encoding

with oblivious cells (no CI). Three transmission strategies are proposed that provide achievable rates

for the considered scenarios. Performance is evaluated in asymptotic regimes of interest (high backhaul

capacity and extreme signal-to-noise ratio, SNR) and further corroborated by numerical results. The

major finding of this work is that central encoding with oblivious cells is a very attractive option for

both ease of implementation and performance, unless the application of interest requires high data rate

(i.e., high SNR) and the backhaul capacity is not allowed to increase with the SNR, in which case some

form of CI at the BSs becomes necessary.

I. INTRODUCTION

Multicell processing, sometimes alternatively labeled as "distributed antenna systems" or

"base station cooperation", has by now become a very active area of research for both academia

and industry (see [1] for a recent review). The technology prescribes joint encoding or decoding

of different base stations’ (BSs) signals in an infrastructure (cellular or hybrid) network for

downlink or uplink, respectively. The rationale is that joint processing (encoding or decoding)

in such networks is feasible since, in general, a high-capacity backbone is available to connect

the BSs.

Traditionally, analysis of the performance of multicell processing has been carried out under

the assumption that all the BSs in the network are connected to a central processor via links

of unlimited capacity. In this case, the set of BSs effectively acts as a multiantenna transmitter

(downlink) or receiver (uplink) with the caveat that the antennas are geographically distributed

over a large area [1]. Since the assumption of unlimited-capacity links to a central processor

is quite unrealistic for large networks, more recently, there have been attempts to alleviate this
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condition by considering alternative models. In [2], [3], and [4] a model is studied in which only

a subset of neighboring cells is connected to the same central unit for joint processing. In [5]

[6] (uplink) and [7] (downlink) a topological constraint is imposed in that there exist links only

between adjacent cells, and message passing techniques are implemented in order to perform

joint decoding or encoding. Finally, reference [8] focuses on the uplink and assumes that the

links between all the BSs and a central processor have finite capacity (finite-capacity backhaul).

In this paper, we study a cellular system with finite-capacity backhaul as in [8]. In [8], the

uplink of this model was studied in two scenarios: (i) the BSs are oblivious to the codebooks

used by the mobile stations (MSs) so that decoding is exclusively performed at the central

processor; and (ii) the BSs are aware of the codebooks used by the local and the nearby MSs.

Here, we focus on the downlink and consider three scenarios that, similarly to [8], present

different requirements in terms of codebook information (CI) at the BSs and different trade-offs

between global processing at the central unit and local processing at the base stations:

1) Local encoding with cluster codebook information (CI): in this first scenario, encoding is

performed exclusively at the base stations, which are informed by the central processor

(over finite-capacity links) about the messages to be transmitted (and possibly about ad-

ditional information). In order to allow sophisticated encoding techniques such as dirty

paper coding (DPC) [15], in addition to the local codebook, every base station is assumed

to have available the encoding functions from a number of adjacent cells, similarly to case

(ii) of [8] (we refer to this situation as "cluster CI")1;

2) Mixed central and local encoding with local CI: here we assume that each BS is only

aware of its own codebook (local CI). Moreover, in order to enable a better handling of

inter-cell interference, we allow encoding to take place not only at the base stations, as in
1It should be remarked that, when employing DPC, encoding is performed with a more sophisticated encoding strategy than

simple look-up on a table of codewords on the basis of the transmitted message. The transmitted signal is in fact a function of

the interference sequence to be cancelled. Therefore, a more appropriate term for what we refer to as codebook information

(CI) would be encoding function information. We choose the first for simpliciy but this distinction should be kept in mind.
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the previous case, but also at the central unit;

3) Central encoding with no CI (oblivious BSs): here encoding takes place exclusively at the

central unit and base stations are oblivious to all the codebooks employed in the system,

as in case (i) studied in [8] for the uplink.

Achievable rates are derived for all three scenarios by proposing three basic transmission

schemes. It is noted that the third scenario (oblivious BSs) is a special case of the second (local

CI), so that any transmission scheme designed for oblivious CI (and corresponding achievable

rate) is also applicable to the local-CI scenario. Performance comparison is carried out in differ-

ent regimes of interest such as high-backhaul capacity and extreme signal-to-noise ratio (SNR).

The performance analysis, corroborated by numerical results, sheds light into the roles of cen-

tral/ local processing, on one hand, and CI, on the other, as a function of the system parameters.

II. SYSTEM MODEL

We study the downlink of a cellular system modelled as in Fig. 1, where M cells are arranged

in a linear geometry, and one terminal is active in each cell (as for intra-cell TDMA) and is

located at the border between successive cells. In this case, each active terminal, say the mth,

receives signals from the local mth BS and the previous, (m − 1)th, BS. This framework is a

variation of the Wyner model [9] and has been studied in [2] and later [10] in terms of sum-rate

for the case where there are no restrictions on the backbone connecting the BSs. Deviating from

this ideal condition, here we assume that each BS is connected to a central processor via a finite-

capacity link of capacity C (bits/ channel use), as in [8]. The model is further characterized by

a single parameter to account for intercell interference, namely the power gain α2 ≤ 1 (in [2] it

was α2 = 1). Accordingly, the signal received at the mth MS is given by

Ym = Xm + αXm−1 + Zm, (1)

where Xm is the symbol transmitted at a given discrete time by the mth BS with power con-

straint E[|Xm|2] = P and the noise Zm is a white proper complex Gaussian process with unit
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power. We remark that we will be interested in asymptotic results where the number M of cells

is large, and we refer to [1] for a thorough discussion on the validity of this assumption. More-

over, we focus on Gaussian (nonfaded) channels for simplicity. Finally, we assume that each

MS has available CI of the local transmission only, thus ruling out sophisticated joint decoding

techniques at the MSs (see, e.g., [12]).

Messages {Wm}Mm=1 to be delivered to the respective mth MS are generated randomly and

uniformly in the set {1, 2, ..., 2nR} at the central processor (see Fig. 1), where R (bits/ channel

use) is the common rate of all the messages (per-cell rate). Using standard definitions, we will

say that a per-cell rate R is achievable if there exists a sequence of codes (i.e., encoders and

decoders) with codewords of length n such that the probability of having at least one decoding

error in the system vanishes as n → ∞, i.e., Pr[∪m{Ŵm 6= Wm}] → 0, where Ŵm is the

estimated message at the mth MS.

III. REFERENCE RESULTS

In this section, we review an upper bound on the per-cell rate that can be easily derived from

a result presented in [2] for α = 1, and later extended by [10] to any α ≤ 12.

Proposition 1 (upper bound): The per-cell capacity of the system is upper bounded by

Rub = min

(
C, log2

Ã
1 + (1 + α2)P +

p
1 + 2(1 + α2)P + (1− α2)2P 2

2

!)
. (2)

Proof: This result follows by considering a cut-set bound for two cuts, one dividing the

central processor from the BSs and one the BSs from the MSs. For the second cut, it is noted that

the system is equivalent to the infinite-capacity backbone case for which the per-cell capacity

has been derived in [2] and [10].

It is relevant to notice that upper bound (2) remains valid even if we allow multiple MSs

to be simultaneously active in each cell (and P is the per-cell power constraint), as it follows
2Notice that this result was not given in this form in [10] but can be easily derived from Lemma 3.5 therein.
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easily from [9] and duality arguments [2]. Therefore, whenever achievable rates will be shown

in the following to attain (2) in specific regimes, optimality should be intended not only under

the restriction of intra-cell TDMA strategies but also for the general case where more MSs can

be scheduled at the same time (with a total per-cell power constraint).

For future reference, two further observations on the upper bound (2) are in order. First, it

is interesting to study the low-SNR behavior, in the sense of [13]. Accordingly, the minimum

energy per bit for reliable communication Eb/N0min, and the corresponding slope of the spectral

efficiency [13] are easily shown to be given by

Eb

N0min,ub

=
loge 2

1 + α2
, S0,ub =

2(1 + α2)2

1 + 4α2 + α4
. (3)

This result shows that the power gain with respect to a single-link (interference-free) Gaussian

channel (for which Eb/N0min = loge 2) due to multicell processing can be quantified in the

low-SNR regime by the factor (1 + α2) ≥ 1 (and the slope S0,ub is a decreasing functions

of α2). A second observation concerns the following question: how fast need the backhaul

capacity C grow with increasing P in order to guarantee the optimal multiplexing gain of a

system with unlimited backhaul capacity? Recalling that the maximum multiplexing gain of

a multiantenna broadcast channel with channel state information at the transmitter equals the

number of transmit antennas (assuming there is at least one user per cell) [11], it easily follows

that the optimal multiplexing gain of the per-cell rate (2) rate is one and that, in order to achieve

it, the capacity C needs to grow as C ∼ log2 P. In the following, this requirement in terms of

capacity C will be compared with that of practical transmission schemes.

IV. LOCAL ENCODING AND CLUSTER CI

As anticipated in Sec. I, we will consider different scenarios with respect to the encoding

capability of each BS. In this section, we investigate the case in which encoding is performed

locally at each BS. In other words, no encoding is carried out at the central unit, whose only
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function is to deliver different subsets of messages {Wm}Mm=1 to each BS. Under this assump-

tion, we derive achievable rates based on a transmission scheme first proposed in [14]. More-

over, we comment on the performance in the asymptotic regimes of large backhaul capacity,

and extreme SNR, with respect to the upper bound (2).

The considered transmission scheme is inspired by the sequential DPC scheme of [14] and

works as follows. Every mth BS knows its encoding function and the encoding functions of the

J BSs preceding it (i.e., BSs m − i with i = 1, ..., J). At the beginning of the transmission

block, each BS receives from the central processor J + 1 messages {Wm−i}Jm=0, that is, the

local message and the messages of the J preceding BSs. The basic idea is now that, based on

these J additional messages and the knowledge of the corresponding encoding functions, the

mth BS can perform DPC over these messages and cancel the inter-cell interference achieving

the single-user (interference-free) rate log2(1 + P ).

As pointed out in [14], in order to implement the sequential DPC scheme correctly, we need

to "turn off" every (J + 2)th BS (e.g., BSs J + 2, 2(J + 2), ...) and consider the clusters of

J + 1 BSs in between silent BSs. Let us focus on any cluster and index the participating BSs

as m0 = 0, 1, ..., J + 1, where m0 = 0 corresponds to a silent BS, m0 = 1 is the leftmost BS

in a cluster and so on. Due to the inter-cell interference structure in the model at hand (recall

Fig. 1), the BS with m0 = 1 in each cluster can achieve single-user rate without performing

any DPC. The second BS (m0 = 2) instead needs to perform DPC on the signal transmitted

by m0 = 1, which can be done, since the second BS can reconstruct this signal knowing the

encoding function and the corresponding message of the BS with m0 = 1. Proceeding, the

third BS (m0 = 3) will need to DP-code over the signal transmitted by the second, which

requires, according to the discussion above, to reconstruct both the signal transmitted by the

first and that transmitted by the second. From this brief description, it is clear that clustering is

necessary because the signal transmitted by the m0th BS in each cluster depends in fact on the

signals transmitted by all the preceding m0−1 BSs within the cluster due to the successive DPC
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encodings. It follows then from our assumptions that the maximal cluster size is exactly J + 1.

Finally, it should be noted that since we are interested in equal per-cell rates, it is necessary to

perform equal-time time-sharing between J + 2 cluster configurations so that each BS is silent

in one and only one configuration (see details in the proof below). The following proposition

states the rate achievable with this strategy.

Proposition 1 (scheme 1): Assuming that every mth BS knows its own encoding function

and the encoding function of the J BSs preceding it (cluster CI), the following rate is achievable

with local encoding:

R1 = min

½
2C

J + 2
,

µ
1− 1

J + 2

¶
log2(1 + P )

¾
. (4)

Proof: We consider equal-time time-sharing among J + 2 cluster configurations so that

in the jth configuration (j = 1, ..., J +2), we silence cells (J +2)+ j− 1, 2(J +2)+ j− 1, ...
This way, each BS occupies all the J +2 positions m0 = 0, 1, ..., J +1 in a cluster, one for each

configuration. Rate splitting is then performed so that a given message Wm is split into J + 1

messages with equal rate R0 (R = R0(J +1)) to be transmitted during the J +1 configurations

where the mth BS is not silent. It is easy to see that, since each BS occupies all the J + 2

positions in a cluster and that m0 messages need to be delivered by the central processor when

the BS occupies position m0 (see discussion above), the backhaul links to all the BSs are equally

utilized and the constraint on the backhaul capacity becomes

C ≥ R0
J+1X
m=0

m =
R

2

0
(J + 1)(J + 2) =

R

2
(J + 2). (5)

Moreover, from the fact that each BS is active in J + 1 out of the overall J + 2 configurations,

we have the following further constraint on the rate:

R ≤ J + 1

J + 2
log2(1 + P ). (6)

From (5) and (6), rate (4) easily follows.

October 9, 2007 DRAFT



9

Remark 1: An alternative scheme could be devised that exploits the transmission power of

the "silent" cell (m0 = 0) in each cluster. This could be done by sending the message of the

first BS (m0 = 1) to the "silent" BS (m0 = 0) on the corresponding finite-capacity link in order

to allow the latter to cooperate via coherent power combining with the first BS. Notice that the

transmission of the "silent" cell does not affect the feasibility of the transmission scheme since

this transmission depends only on the message of the next BS. Following the same steps as in

the proof above, the rate achievable by this scheme is easily derived to be

min

½
2C(J + 1)

(J2 + 3J + 4)
,

J

(J + 2)
log2(1 + P ) +

1

(J + 2)
log2(1 + (1 + α)2P )

¾
. (7)

Performance comparison of this rate with (4) depends on the operating regime of interest, and

will not be further considered here since it would not alter meaningfully the main conclusions.

A. Performance in asymptotic regimes

In the limit of a large backhaul capacity C → ∞, for fixed cluster size J + 1, scheme 1

at hand achieves rate R1 → (1− 1/(J + 2)) log(1 + P ) and is therefore limited by the loss

in multiplexing gain (see also below) that follows from the need to silence a fraction 1/(J +

2) of the BSs [14]. However, assuming that parameter J can be optimized, then using an

asymptotically large cluster size J →∞ so that 2C/J > log(1 + P ), we see that for C →∞,

scheme 1 is able to achieve the single-link capacity: R1 → log2(1 + P ), which is noted to

be smaller than the upper bound Rub in (2). We will see in the remark below that this is not a

limit of local processing per se, since a transmission scheme based on local processing can be

devised that achieves the upper bound Rub when C →∞.

Consider now the regime of large power P → ∞. In this case, the performance is limited

by the backhaul capacity and we have R1 → 2C/(J + 2), which, if we allow optimization of

the cluster size, becomes R1 → Rub = C (for J = 0, that is each cluster consists of only one

active cell3). Letting C increase with power P, we can then ask as in Sec. III how fast capacity
3This corresponds to the Inter-Cell-Time-Sharing (ICTS) strategy [1]; see also discussion in the next section.
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C should grow in order to be able to achieve the maximal multiplexing gain. As pointed out

above, for any finite J, the maximal multiplexing gain of scheme 1 is 1 − 1/(J + 2) < 1,

and, from (4), achieving this rate scaling requires the backhaul capacity C to grow as C ∼
(J+1)/2 · log2 P . Comparing this result with the optimal multiplexing gain of the upper bound

(see Sec. III), we see that local encoding entails here a loss in terms of multiplexing gain that

can be made arbitrarily small by increasing the cluster size J at the expense of a proportionally

stricter requirement on the scaling of backhaul capacity C.

Finally, we obtain the low-SNR characterization for R1 as

Eb

N0min

=
loge 2

1− 1
2+J

, S0 = 2

µ
1− 1

2 + J

¶
. (8)

Comparing this result with (3), we see that in the low-SNR regime the proposed local

processing-based scheme falls short of achieving the performance of the upper bound since

it fails to take advantage of the inter-cell channel gains α2, being designed to cancel inter-cell

interference. However, by selecting a sufficiently large J it is clear that the single-user perfor-

mance Eb/N0min = loge 2, and S0 = 2, can be achieved.

Remark 2 (joint cluster-DPC): Here, we describe briefly a transmission scheme based on

local processing that, unlike scheme 1, is able to achieve the upper bound Rub in the regime

of unlimited backhaul capacity (C → ∞). The idea is to cluster the BSs as in the previously

discussed scheme by silencing one every (J + 2)th BS, send all the messages to be delivered

within the cluster to all the participating BSs, and then perform joint DPC for the messages in the

cluster at each BS. This contrasts with the previous scheme where sequential DPC was carried

out. Notice that this scheme requires a modification with respect to the previous framework in

that every BS within a cluster needs to be informed about the encoding functions of all the J+1

BSs within the same cluster (instead of the preceding BSs). This implies, once time-sharing is

taken into account as explained above, that knowledge of 2J + 1 encoding function is required

at each node (instead of J +1 as in the case of sequential DPC). As can be easily inferred from

the results in [2] which leverage the uplink-downlink duality of [16], the rate achievable by this
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scheme is

R̃1 = min

(
C

J + 1
,

1

J + 2
min

tr(Υ)≤1/P
max

tr(P)≤1
log2

¯̄
Υ+HPHH

¯̄
|Υ|

)
, (9)

with the (J + 1)× (J + 1) channel matrix defined as

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

α 1 0
. . .

0 α
. . . 0

...
... 0

. . . 0

0
. . . α 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

and P =diag([P1 · · ·PJ+1])º 0 and Υ =diag([γ1 · · · γJ+1])Â 0 being diagonal matrices. As

can be concluded from (9) and the results in [2], for C →∞, J →∞ and C/J →∞, we have

R̃1 → Rub. However, it will be shown in Sec. VII, that for relatively small values of C, rate (9)

is generally smaller than (4). Finally, it is easy to see that this scheme has the same limitations

in terms of multiplexing gains as scheme 1 above and that its requirement in terms of scaling

of capacity C is more demanding (C ∼ (J + 1)2/(J + 2) · log2 P ). The results discussed in

this section suggest that this limitation in the multiplexing gain is due to local processing and

could be overcome by global processing at the central unit. This is indeed confirmed in the next

sections.

V. MIXED LOCAL AND CENTRAL ENCODING WITH LOCAL CI

In this section, we consider a second scenario that alleviates two main practical problems of

the local-encoding scenario studied in the previous section, namely: (i) the large computational

complexity associated with the multiple DPC encodings to be carried out at each BS (it is noted

that each BS needs to calculate a number of DPC encodings on the order of the cluster size J);

and (ii) the need for each BS to be aware of the codebooks of J other BSs. Towards this goal,

here we assume that the central unit has encoding capabilities and that each BS is aware only
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of its own codebook (local CI). As in the previous section, we derive an achievable rate under

the said assumption and then study its characterization in asymptotic regimes of interest with

respect to the upper bound (2).

It should be mentioned right away that rate

RICTS = min{C, 1/2 log2(1 + P )} (11)

can be straightforwardly achieved under the assumption of local CI by turning off one of ev-

ery two BSs and using single-user codes for the active BSs (which now see interference-free

channels). Notice that this corresponds to the scheme presented in the previous section with

J = 0, and that it follows the Inter Cell Time Sharing (ICTS) approach of [1]. Moreover, in

this case, no encoding is carried out at the central processor. It should also be noted that any

rate achievable under the assumptions of oblivious cells, studied in the next section, can also be

achieved in the less restrictive case of local CI studied here (recall discussion in Sec. I).

In order to improve on RICTS, we consider the following transmission scheme (to be referred

to as scheme 2). As far as the first BS is concerned, the central processor simply sends message

W1 and the BS uses a regular Gaussian codebook transmitting the sequences of n symbols

X1. The central unit then quantizes X1 using a proper Gaussian quantization codebook with

2nRq codewords, producing the sequence of n symbols X̂1. This is delivered, along with the

local message W2, on the limited-capacity link towards the second BS. The latter transmits its

message W2 by performing DPC over the quantized signal X̂1. The procedure is repeated in

the same way for the successive BSs (notice that the central unit must reproduce the transmitted

signalXm, which is possible given that the central unit knows messages, encoding functions and

quantization codebooks). Notice that in order to satisfy the capacity constraint on the backhaul

links, the quantization rate must satisfy Rq + R ≤ C. The following proposition quantifies the

rate achievable with this scheme.

Proposition 3 (scheme 2): Assuming that every mth BS knows only its own encoding func-

October 9, 2007 DRAFT



13

tion (local CI), the following rate is achievable with mixed local and central encoding:

R2 =

⎧⎨⎩ C if C ≤ log2
¡
1 + P

1+α2P

¢
R02 otherwise

(12)

where

R02 = log2

Ã
1− 2C

α2P
+

s
1 +

2C+1

α2

µ
2 +

1

P

¶
+
22C

α4P 2

!
− 1 (13)

for α > 0 and log2 (1 + P ) for α = 0.

Proof : See Appendix-A.

It is noted that condition C ≤ log2 (1 + P/(1 + α2P )) in (12) corresponds to the case where

a rate C, which upper bounds the performance as per (2), can be achieved by simple single-user

encoding and decoding in each cell, whereby inter-cell signals are treated as interference. Also

notice that it can be easily proved that rate R02 (13) is a continuous function of α for α ≥ 0.

A. Performance in asymptotic regimes

From (12), we can derive the asymptotic performance of the proposed scheme. For C →
∞, we have R2 → log2 (1 + P ) < Rub (as for R1 and R̃1), which corresponds to perfect

interference pre-cancellation via DPC.

For P →∞, we have

lim
P→∞

R2 = min

Ã
C, log2

Ã
1 +

r
1 +

2C+2

α2

!
− 1
!

, (14)

which is a non-increasing function of α and reduces toC when α = 0. It is noted that the second

term of (14) is dominant for α2 ≥ 1/(2C − 1), in which case R2, unlike R1, is asymptotically

(with P ) smaller that the upper bound C. In particular, with α2 = 1 and increasing C, the rate

R2 → C/2 for P →∞.

We now turn to the analysis of the multiplexing gain when the capacity C is allowed to

increase with the power P . By substituting C = r log2 P in (4), it can be seen that the mul-

tiplexing gain with this choice is given by min(r/2, 1) so that the optimal multiplexing gain
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of 1 can be achieved by having C ∼ 2 log2 P. This contrasts with the case of local processing

studied in the previous section where the optimal multiplexing gain was not achievable.

Finally, the low-SNR characterization is given by

Eb

N0min

= loge 2 , S0 =
2

1 + 2α22−C
. (15)

where we see that single-user performance in terms of Eb/N0min is achieved, similarly to the

case treated in the previous section, whereas the same can be said for the slope only as C →∞
(see also the discussion above).

VI. CENTRAL ENCODING WITH NO CI

Here, we study the case of oblivious BSs (no CI) investigated in [8] for the uplink of the

channel at hand. In particular, we assume that encoding is exclusively performed at the central

unit and that the BSs are not aware of any codebook in the system. We consider the following

transmission scheme. The central unit performs joint DPC as in the previous case with the

caveat that it assumes a smaller signal-to-noise ratio P̃ (see the sketch of the proof for details):

P̃ =
P

1+(1+α2)P
2C−1 + 1

, (16)

and a power constraint

E[|X̃m|2] = P

1 + 1
2C−1

, (17)

producing the sequences of n symbols {X̃m}Mm=1. Similarly to the previous section, each X̃m is

quantized using a proper Gaussian quantization codebook with 2nC codewords, producing the

sequence of n symbol X̂m. Finally, each sequence X̂m is communicated to the mth BS on the

limited-capacity link and transmitted by the BS (i.e., Xm = X̂m). As shown in the proof, this

choice satisfies the power constraint E[|Xm|2] = P.
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Proposition 4 (scheme 3): Assuming that the BSs are oblivious (no CI), the following rate is

achievable with central encoding:

R3 = log2

⎛⎝1 + (1 + α2)P̃ +
q
1 + 2(1 + α2)P̃ + (1− α2)2P̃ 2

2

⎞⎠ . (18)

Proof : See Appendix-B.

A. Performance in asymptotic regimes

In absence of constraints on the backhaul, C →∞, unlike R1 and R2, the scheme proposed

above achieves the upper bound (2) R3 → Rub (since P̃ → P ).

Moreover, for P →∞ we have

lim
P→∞

R3 = C − 1 + log2
Ã
1 +

s
1− 4α2

(1 + α2)2
(1− 2−C)2

!
, (19)

which is larger than C − 1 but generally smaller than the upper bound Rub = C (for P →∞)
unless α = 0.

As far as the multiplexing gain (with capacity C scaling with P ) is concerned, substituting

C = r log2 P in (18), it can be seen that the multiplexing gain with this choice is given by

min(r, 1), so that the optimal multiplexing gain of 1 can be achieved by having C ∼ log2 P.
This shows again that central encoding is instrumental in achieving the optimal multiplexing

and, compared with scheme 2, presents a reduction by a factor 2 in the required scaling for

capacity C.

Finally, the low-SNR characterization is given by
Eb

N0min

=
Eb

N0min,ub

· 1

(1− 2−C) , S0 = S0,ub · 1

1 + S0,ub
2−C
1−2−C

. (20)

This result shows that the power loss due to finite capacity backhaul can be quantified in a

simple way in the low-SNR regime by (1− 2−C), which, accordingly to the discussion above,

tends to zero for C → ∞. It is remarked that, interestingly, the low-SNR performance (20) of

the scheme at hand coincides with the uplink transmission strategy of [8].
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VII. NUMERICAL RESULTS AND DISCUSSION

In the previous sections, we discussed the asymptotic behavior of the proposed techniques,

which has shed some light on the performance trade-offs of different assumptions in terms

of local/ central processing and CI. In this section, we further investigate the regime of finite

capacity C and power P.

Dependence on the backhaul capacity C: Fig. 2 shows the rates achievable by local process-

ing and cluster CI (R1 and R̃1 with optimized J, and RICTS), by mixed processing and local

CI (RICTS, R2 and R3) and by central processing and no CI (R3) versus the backhaul capacity

C for P = 10dB and α = 14. The optimal cluster-size J is, as expected from the discussion

in Sec. IV-A, increasing with the capacity C (not shown). It is seen that if C is large enough,

and for relatively small to moderate values of P (see next figure), scheme 3, which performs

central processing with oblivious cells, is to be preferred. Moreover, if central processing is

not feasible for limitations at the central unit, it is seen that for sufficiently small values of C

(C < 30), scheme 1 (R1) is generally advantageous over R̃1, even though the latter is asymp-

totically (C → ∞) optimal. For this reason in the following we shall not consider R̃1. Also

notice that while scheme 2 and scheme 3 attain the respective asymptotic values for C ' 10,

convergence is much slower for schemes based on no central processing.

Dependence on the power P : Fig. 3 shows the same achievable rate discussed above versus

the power P for C = 6 and α = 1. Here, the optimal cluster-size J for scheme 1 (R1) is,

as expected from the discussion in Sec. IV-A, decreasing with the power P . For small-to-

moderate power P, as discussed in the previous example, the preferred scheme is scheme 3 for
4What we report is actually an upper bound on R̃1 obtained by setting Υ =1/(P (J + 1))I in (9):

R̃1 ≤ min C

J + 1
,

1

J + 1
max

tr(P)≤1
log I+ P (J + 1)HPHH , (21)

which can be easily solved by numerical tools for convex optimization. This choice has no consequences in our discussion

since it is enough to give evidence to the negative conclusion about the performance of R̃1 discussed in the text. Notice that in

order to solve the original problem (9), one could employ the numerical technique in [16].
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its capability of performing joint DPC via central processing. However, as the power increases,

we know from the asymptotic analysis that CI, either local (as in ICTS) or cluster (as in scheme

1), plays the leading role. This is confirmed by Fig. 3, where it is clearly shown that R1 and

RICTS become advantageous over R3 for P > 30dB.

Dependence on the inter-cell power gain α: The impact of the inter-cell power gain α2

is shown in Fig. 4. Scheme 1 is designed to cancel the inter-cell interference and thus its

performance does not depend on α (see also discussion in Sec. IV-A on the low-SNR regime).

Moreover, while scheme 2 suffers from increasing α2 due to the enhanced noise level caused

by quantization of the adjacent-cell transmission signal, scheme 3, similarly to the upper bound

Rub, is able to exploit the extra signal path due to a larger α2.

A. Discussion

Our analysis and the numerical results above have shown that by appropriately selecting the

encoding schemes and corresponding system parameters (e.g., the cluster size J for scheme 1):

(i) the upper bound Rub can be achieved in all the three considered scenarios listed in Sec. I in

the regime of large backhaul capacity (C → ∞)5; (ii) in the regime of large power (P → ∞)

with fixed capacity C, achieving the upper bound Rub = C is only possible if some form of

CI is available at the BSs (as for the scenarios in Sec. V and VI); (iii) allowing the capacity

C to increase with power P, the optimal multiplexing gain of 1 is achieved only by schemes

2 and 3 that employ central encoding, and, moreover, in order to attain this, the capacity C

needs to scale as 2 log2 P for scheme 2 and log2 P for scheme 3; and (iv) for finite C and P ,

low-SNR analysis and numerical results have shown that all the considered schemes fall short

of achieving the upper bound. Moreover, for relatively small to moderate values of P , scheme

3, which performs central processing with oblivious cells, is to be preferred, whereas for higher

values of P (and finite capacity C), transmission schemes that can leverage CI generally allow
5It is noted that R2 → log(1 + P ) for C →∞, but, as explained in Sec. V, R3 is achievable also under the less restrictive

assumptions of local CI and R3 → Rub for C →∞.
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the system to achieve better performance.

Remark 3 (extension to regular Wyner model): As a final remark, we would like to comment

on the extension of this work to the regular linear Wyner model (where every MS receives from

the local cell and two adjacent cells) [9]. It is readily noted that schemes 1 (R1) and 2, that

employ the causal structure of the channel to enable DPC, are not directly applicable, whereas

scheme 3 (and also R̃1) can be applied not only to a regular Wyner model but, more generally,

to any vector broadcast channel with limited backhaul.

VIII. CONCLUSIONS

This paper has studied the performance of multicell processing for the downlink of a cellular

system under the realistic assumption that the base stations are connected to a central processor

via finite-capacity (typically wired) links. We have studied three scenarios characterized by

different trade-offs between central and local encoding, and codebook information (CI) at the

BSs. The main conclusion is that central processing, even with BSs oblivious to all the code-

books used in the system (i.e., no CI), is the preferred choice for small-to-moderate SNRs, or

when the backhaul capacity is allowed to increase with the SNR. On the other hand, for high

SNR and fixed backhaul capacity, a system with oblivious cells is limited by the quantization

noise, and knowledge of the codebooks at the BSs becomes the factor dominating the perfor-

mance. Therefore, in this scenario, transmission schemes characterized by local CI or cluster

CI coupled with local processing allow to achieve better performance than central processing

with oblivious cells.

An interesting issue is the assessment of possible duality results between uplink and down-

link channels with limited-capacity backhaul under different assumptions concerning CI and

central/ local processing. In this paper, we have provided a downlink transmission scheme that

offers the same low-SNR performance as the uplink strategy of [8] for oblivious base stations

and the Wyner model, but the general problem remains open (see [17] for a recent duality result

concerning relay-enhanced uplink and downlink channels).
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IX. APPENDIX

A. Appendix-A: Proof of Proposition 3

Following the discussion in Sec. V, the signalXm−1 is quantized asXm−1 = X̂m−1+Zq,m−1,

where Zq,m−1 is a sequence of i.i.d. complex Gaussian random variables with zero mean and

variance σ2q, independent of X̂m−1, which models the quantization error. In order to send the

quantized signal X̂m−1 to the mth BS, the following condition must be satisfied (subscript "2"

is dropped from the rate for simplicity of notation):

Rq = C −R ≥ I(X̂m−1;Xm−1) = log2

µ
P

σ2q

¶
, (22)

where C − R ≥ 0 is the excess capacity on the mth link (recall that message Wm must be

transmitted as well). From the previous equation, we can conclude that the variance of the

quantization error is

σ2q =
P

2C−R
. (23)

The mth BS performs DPC over the quantized codeword X̂m−1. In order to derive the rate

achieved by DPC, we can write the received signal at the mth MS (1) as

Ym = Xm + αXm−1 + Zm =

= Xm + αX̂m−1 + Z̃m, (24)

where Z̃m is proper Gaussian with power 1+α2σ2q and is independent of Xm and X̂m−1. There-

fore, we have that the achievable rate with the scheme at hand satisfies

R ≤ log2
µ
1 +

P

1 + α2σ2q

¶
= log2

Ã
1 +

P

1 + α2P
2C−R

!
. (25)

From (25), if C ≤ log2 (1 + P/(1 + α2P )), rate R = C, which corresponds to the upper

bound (2) is clearly achievable. Otherwise, we can consider (25) with equality and solve the

corresponding fixed-point equation. This leads to (12)-(13).
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B. Appendix-B: Proof of Proposition 4

Quantization is performed at the central unit as X̂m = X̃m + Zq,m, where X̃m and Zq,m

are independent sequences of i.i.d. complex Gaussian random variables with zero mean and

variances P/
¡
1 + 1/(2C − 1)¢ (due to the power constraint (17)) and σ2q, respectively (Zq,m

models the quantization error). In order to send the quantized signal X̂m to the mth BS, the

following condition must be satisfied:

C ≥ I(X̂m; X̃m) = log2

Ã
1 +

P

σ2q
¡
1 + 1

2C−1
¢! , (26)

so that, taking (26) with equality, we have

σ2q =
P

2C
. (27)

The signal transmitted by each BS is the quantized sequence Xm = X̂m, which satisfies the

power constraint E[|Xm|2] = P/(1 + 1/(2C − 1)) + P/2C = P. The signal received at each

MS reads

Ym = X̃m + αX̃m−1 + Z̃m, (28)

with Z̃m = Zm + αZq,m + αZq,m−1 ∼ CN (0, 1 + (1 + α2)σ2q), independent of X̃m and X̃m−1.

From the previous equation we see that the system can be seen as a modified Wyner model in

the sense of (1) with enhanced noise due to quantization. The corresponding SNR is

P̃ =
E[|X̃m|2]

1 + (1 + α2)σ2q
=

P
1+(1+α2)P
2C−1 + 1

(29)

The result then follows from application of the upper bound (2).
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Fig. 1. Linear cellular model of interest characterized by users on the borders between successive cells and finite-capacity

links between a central unit processor (that generates the messages to be delivered to each user) and the base stations.
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Fig. 2. Rates achievable with local processing and cluster CI (R1, R̃1 and RICTS), with mixed processing and local CI

(RICTS , R2 and R3) and with central processing and no CI (R3) versus C for P = 10dB and α = 1.
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Fig. 3. Rates achievable with local processing and cluster CI (R1 and RICTS), with mixed processing and local CI (RICTS ,

R2 and R3) and with central processing and no CI (R3) versus P for C = 6 and α = 1.
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Fig. 4. Rates achievable with local processing and cluster CI (R1), with mixed processing and local CI (R2 and R3) and with

central processing and no CI (R3) versus α2 for C = 6 and P = 10dB.
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