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Abstract

We consider an uplink power control problem where each mobile wishes
to maximize its throughput (which depends on the transmission powers of all
mobiles) but has a constraint on the average power consumption. A finite
number of power levels are available to each mobile. The decision of a mobile
to select a particular power level may depend on its channel state. We consider
two frameworks concerning the state information of the channels of other
mobiles: (i) the case of full state information and (ii) the case of local state
information. In each of the two frameworks, we consider both cooperative
as well as non-cooperative power control. We manage to characterize the
structure of equilibria policies and, more generally, of best-response policies
in the non-cooperative case. We present an algorithm to compute equilibria
policies in the case of two non-cooperative players. Finally, we study the case
where a malicious mobile, which also has average power constraints, tries to
jam the communication of another mobile. Our results are illustrated and
validated through various numerical examples.
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1 Introduction

The multiple access nature of wireless networks represents a fundamentally
different resource allocation problem as compared to wired networks which
provide a dedicated channel for each user. The shared nature of the wireless
channel implies that the rate obtained by a user depends not only on its own
transmit power level but also on the transmit power levels of the other users.
A user who transmits at a relatively high power level, though may increase its
own rate, will interfere with the transmissions of the other users and prompt
them to increase their own transmission power. Such a situation is undesirable
in wireless networks where mobile devices are usually equipped with limited-
lifetime batteries which require judicious utilization. It is, therefore, in the
interests of the users to control their transmit powers levels so as to increase
the information transfer rate and the lifetime of the devices. Power control also
has the added benefit of allowing the spatial reuse of channels, i.e., the same
channel can be concurrently used by mobiles at locations where interference
is sufficiently low.

In this paper, we consider dynamic uplink power control in cellular net-
works: mobiles choose their transmission power level from a discrete set in a
dynamic way, i.e., the transmission power level is chosen based on the avail-
able channel state information. By controlling the power one can improve
connectivity and coverage, spend less battery energy of terminals, increase
device lifetime, and maximize the throughput. In terms of decision making,
we consider two cases:

• Decentralized case: Each mobile chooses its own power level based
on the condition of its own radio channel to the base station.

• Centralized case: The transmission power levels for all the mobiles
are chosen by the base station that has full information on all channel
states.

We assume that there are upper bound constraints on the average power that
a mobile can use. Thus in very bad channel conditions, one can expect a
mobile to avoid transmission and save its power for more favorable channel
conditions.

Applications that can mostly benefit from our proposed decentralized power
control are ad-hoc and sensor networks with no predefined base stations. In
such networks, mobiles may have to act temporarily as base stations [1–3],
which can involve a heavy burden in terms of energy. The limited process-
ing capacity and battery lifetime of devices precludes the use of centralised
schemes, thereby making decentralized approaches for power control more ap-
propriate in such networks. We note that the design of decentralized power
control has for long interested the networking community even before ad-hoc
and sensors networks have been introduced (see [4,5] and references therein).

We obtain results for both the cooperative setting in which the mobiles’
objective is to maximize the global throughput, as well as the non-cooperative
case in which the objective of each mobile is to maximize its own transmission
rate.

We identify the structure of equilibria policies for the decentralized non-
cooperative case. We show that the following structure holds for any mobile
i, given any set of policies u−i chosen by mobiles other than i. Any best
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response policy (i.e. an optimal policy for player i for a given policy u−i other
mobiles) has the following properties:

(i) It needs randomization between at most two adjacent power levels,

(ii) the optimal power levels are non-decreasing functions of the channel
state, and

(iii) if two power levels are both optimal at a given channel state then they
cannot be jointly optimal for another channel state.

We present an algorithm to compute equilibria policies in the case of two
non-cooperative players.

For the cooperative centralized problem with two mobiles, we obtain in-
sight on the structure of optimal policies through a numerical study. An
interesting property that we obtain is the fact that the optimal policy has a
TDMA structure: in each combined state (x1, x2) there is only one mobile
that will transmit information. This will of course eliminate the interference.
We also show that unlike the decentralized case, the average power level con-
straints may hold with strict inequality when using the optimal policy.

We finally study the case where a malicious mobile, which also has average
power constraints, tries to jam the communications of another mobile. Our
results are illustrated and validated through various numerical examples.

1.1 Related work

There has been an intensive research effort on non-cooperative power control
in cellular networks [4, 6–13]. In all these work, however, the set of available
transmission powers has been assumed to be a whole interval or the whole set
of nonnegative real numbers. In this paper we consider the case of a discrete
set of available power levels, which is in line with standardized cellular tech-
nologies. Very little work on power control has been done on discrete power
control. Some examples are [14] who considered the problem of minimizing
the sum of powers subject to constraints on the signal to noise ratio, [15] who
studied joint power and rate control, and [8] (which we describe in more detail
below).

The mathematical formulation of the power control problem shows much
similarity with a well studied problem of assigning transmission powers to
parallel channels between a mobile and a base station with a constraint on
the sum of assigned powers, see e.g. [16, p. 161]. This problem is often known
as the “water filling” (which is in fact the structure of the optimal policy).
The difference between the models is that in our case we split powers over
time, whereas in the water filling problem the powers are split over space.
Our results are therefore quite relevant to the water filling problem as well.
Some work on water filling games can be found in [9] where not only mobiles
take decisions, but also the base station does, with the goal of maximizing a
weighted sum of the individual rates. In [17], the non-cooperative water filling
game is studied in the context of the interference channel; two mobiles and
two corresponding base stations.

Game theoretic formulations for non cooperative power control with finite
actions (power levels) and states (channel attenuations) have been proposed
in [8]. An ǫ equilibrium is obtained there for the case of a large number of
players. The cost to be minimized by a player i in [8] is the quadratic difference
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between the desired and the actual SINR (Signal to Interference plus Noise
Ratio) of that player. In contrast, in the model we introduce in this paper, the
choice of the transmission power is done in the purpose of maximizing its own
throughput subject to a limit on the average power. Our setting is different
also in the following. In our model, in a given channel state, each mobile can
either choose a fixed power level or can make randomized decisions, i.e. it can
make the choice of power levels in a state based on some (state dependent)
randomization.

1.2 Organization of the paper

The structure of the paper is as follows. We first present the model (Section
2) as well as the mathematical formulation of both the case of centralized
information (Section 3) as well as the one of decentralized information (Section
4). In Section 5 we identify the structure of best-response policies and thus
of equilibria for the decentralized case. Power control in the presence of a
malicious mobile is studied in Section 6. In Section 7 we present numerical
examples. The examples illustrate the theoretical results that we had obtained
and provide some additional insights. After a concluding section we present a
computation methodology for computing equilibria in the game of two players.

2 The model

2.1 Preliminaries

Consider a set of N mobiles and a single base station. As in several standard
wireless networks (e.g., UMTS and IEEE 802.11), we assume that time is
slotted. In each time slot t, each mobile i transmits data with power level
Ai(t) chosen from a finite set Ai = (1, 2, 3, . . . , αi) containing αi power levels.
Denote by hi(a) the actual power corresponding to the ath power level where
a ∈ Ai. Denote A =

∏N
i=1 Ai.

The channel state model: We assume that the channel between mobile
i and the base station can be modelled as an ergodic finite Markov chain
Xi(t) taking values in a set Xi = (1, 2, . . . ,mi) of mi states with transition
probabilities Pi

xy. The Markov chains Xi(t), i = 1 . . . N , are assumed to be
independent. Let πi be the row vector of steady state probabilities of Markov
chain Xi(t); let πi(x) be its entry corresponding to the state x ∈ Xi. It is the
unique solution of

πiP
i = πi, πi(x) ≥ 0, ∀x ∈ Xi,

∑

x∈Xi

πi(x) = 1.

We also denote by π(x) the probability of state x = (x1, . . . , xN ). Since
the Markov chains that describe the channel states are independent, π(x) =∏N

i=1 πi(xi).
The power received at the base station from mobile i is given by gi(t)hi(Ai(t))

where hi(Ai(t)) is the power emitted by mobile i and gi(t) = gi(Xi(t)) is the
attenuation factor, which is a function of the channel state Xi(t). We shall
denote the global state space of the system by X =

∏N
i=1 Xi.

Performance measures: The signal to interference plus noise ratio
SINRi at the base station related to mobile i when the power level choices of
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the mobiles are a = (a1, . . . , aN ) and the channel states are x = (x1, . . . , xN )
is given by

SINRi(x,a) =
gi(xi)hi(ai)

No +
∑
j 6=i

gj(xj)hj(aj)
.

We consider the following instantaneous utility of mobile i:

ri(x,a) = log2 (1 + SINRi(x,a)) . (1)

ri(x,a) is known as the Shannon capacity and can thus be interpreted as
the throughput that mobile i can achieve at the uplink when the channel
conditions are given by x and the power levels used by all mobiles are a.

Notation: In the rest of the paper, we shall use the following notation.
We shall denote an element of the set X by x. The ith component of x will
be denoted by xi, i.e., x = (x1, x2, . . . , xN ), where xi ∈ Xi for i = 1, 2, . . . , N .
We define a and ai in a similar manner. Let X−i and A−i denote the set of
channel states and the set of actions, respectively, corresponding to all the
players other than player i. For an element x−i ∈ X−i, let x−i

j denote the jth

component of x−i. We define a−i and a−i
j in a similar way.

2.2 Policy types

A mobile’s choice of successive transmission power levels is made based on
the information it has. The latter could be local, in which case the policy is
said to be distributed. We shall also consider centralized policies in which all
decisions are taken at the base station. We have the following definitions.

• A Centralized policy, u(a |x), is the probability that the base station
assigns the transmission power levels a = (a1, . . . , aN ) to the mobiles if
the current channel’s states are given by the vector x = (x1, . . . , xN ).
This is equivalent to the situation where all system information is avail-
able to all mobiles, and moreover, all mobiles can coordinate their ac-
tions. This situation describes central decision making by the base sta-
tion. The class of centralized policies is denoted by Uce.

• A Decentralized policy, ui(a |x), is the probability that player i

chooses the transmission power level a ∈ Ai if its channel state is x ∈ Xi.
Thus, only local information is available to each mobile, and there is no
coordination in the random actions. This situation describes individual
decision making by each mobile without any involvement of the base
station. The class of decentralized policies for player i is denoted by
U i

dc. Define Udc =
∏N

i=1 U i
dc.

Along with policies we shall use also the occupation measures. For a given
x ∈ X and a ∈ A, the global occupation measure, ρu(x,a), will be used in
the context of a centralized policy, u ∈ Uce, it is defined as

ρu(x,a) =

N∏

i=1

πi(xi)u(a |x).

Note that given a global occupation measure, ρu, the corresponding u can be
obtained by

u(a |x) =
ρu(x,a)∑

b∈A

ρu(x,b)
(2)
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(it is chosen arbitrarily if the denominator is zero). For a given x ∈ Xi and
a ∈ Ai, the local occupation measure, ρui

i (x, a), is defined with respect to a
decentralized policy, ui ∈ U i

dc, and is given by

ρui

i (x, a) = πi(x)ui(a|x).

For a given local occupation measure, ρui

i , the corresponding ui can be ob-
tained by

ui(a |x) =
ρui

i (x, a)∑

b∈Ai

ρui

i (x, b)
(3)

(it is chosen arbitrarily if the denominator is zero). In case of decentralized
decision making, we define ρu(x,a) as

ρu(x,a) =
N∏

i=1

ρui

i (xi, ai), (4)

for a given (u1, u2, . . . , uN ).

2.3 Problem formulation: objectives and constraints

For any given policy1, u, and the corresponding occupation measure, ρu(x,a)2,
we now define the utility function, the constraints, and the optimization prob-
lem.
The utility functions: We define the utility for player i as

Ri(u) :=
∑

x∈X

∑

a∈A

ri(x,a)ρu(x,a). (5)

Power constraints: In the centralized case, player i is assumed to have the
following average power constraint

∑

x∈X

∑

a∈A

ρu(x,a)hi(ai) ≤ Vi, (6)

whereas in the decentralized case the corresponding constraint is

∑

x∈Xi

∑

a∈Ai

ρui

i (x, a)hi(a) ≤ Vi. (7)

Note that in the decentralized case the state-action frequencies of a par-
ticular mobile are independent of decisions of the other mobiles (see equation
(4)). Consequently, in the decentralized case, the average power constraint
of a mobile does not depend on the decision of the others. However, in the
centralized case, the decisions of all the mobiles are interdependent.

1With slight abuse of notation, we shall denote both centralized and decentralized policies by
u. In the centralized case, u(a|x) will denote a probability measure over a for a given x. In the
decentralized case, u will denote the vector u = (u1, u2, . . . , uN), where ui is the decentralized
policy for player i, for i = 1, 2, . . . , N .

2For the decentralized case, we note that ρu(x,a) is given by (4).
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2.3.1 Cooperative optimization

We consider here the problem of maximizing a common objective subject to
individual side constraints. Namely, we define for any policy u

Rγ(u) :=

N∑

i=1

γiRi(u), (8)

where γi are some nonnegative constants. For an arbitrary set of policies U

we consider the problem:

COOP(U) : max
u∈U

Rγ(u), s.t. (6) or (7), ∀i = 1, . . . , N. (9)

2.3.2 Non-cooperative optimization

Here each mobile is considered as a selfish individual non-cooperative decision
maker, which we then call “player”. It is interested in maximizing its own
average throughput (5). In the non-cooperative it is natural to consider only
decentralized policies Udc.

For a policy u = (u1, . . . , uN ) ∈ Udc we define u−i to be the set of com-
ponents of u other than the ith component. For a policy vi ∈ U i

dc we then
define the policy [vi, u

−i] as one in which player j 6= i uses the element uj of
u whereas player i uses vi.

Definition 1 We say that u∗ ∈ Udc is a constrained Nash equilibrium [18] if
it satisfies (7) for all players, and if

Ri(u
∗) ≥ Ri([vi, (u

∗)−i])

for any i and any vi ∈ Udc such that (7) holds for the policy [vi, (u
∗)−i].

3 Centralized cooperative optimization

When the cooperative optimization is considered over the set of centralized
policies, then the problem is in fact of a single controller (the base station)
which has all the information. Let rγ(x,a) :=

∑N
i=1 γiri(x,a), γi ≥ 0, i =

1, 2, . . . , N , denote the common instantaneous utility when power level a is
chosen in channel state x. The next Theorem states the existence of an
optimal strategy if the constraint set is not empty. The optimal strategy can
be obtained by means of provided Linear Program.

Theorem 1 Consider the cooperative optimization problem COOP(Uce) over
the set of centralized policies. Assume that there exists a policy u under which
the power constraints (7) hold for all the mobiles. Then,

(i) there exists an optimal centralized policy u∗ ∈ Uce. The policy u∗ can
be obtained from the solution of the following Linear Program by for-
mula (2)

maximize over ρ Rγ(u) :=
∑

x∈X

∑

a∈A

ρ(x,a)rγ(x,a) (10)
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s.t.
∑
x∈X

∑
a∈A

ρ(x,a)hi(ai) ≤ Vi, i = 1, . . . , N ;

∑
a∈A

ρ(x,a) = π(x) =
N∏

i=1
πi(xi), ∀x ∈ X;

ρ(x,a) ≥ 0, ∀x ∈ X, ∀a ∈ A;∑
x∈X

∑
a∈A

ρ(x,a) = 1.

(11)

(ii) An optimal policy u∗ can be chosen with no more than N randomizations.

Proof. The problem is a special case of constrained MDPs (Markov De-
cision Processes). Indeed, there is only one decision maker, the base station,
which assigns power levels a ∈ A to mobiles. It has all the information
about the state of the system x ∈ X, which is combined state of all channels.
Since the Markov chains Xi(t) are independent, the steady state probabil-
ities of Markov chain corresponding to a global system state are equal to
π(x) =

∏N
i=1 πi(xi). Thus, we have a constrained MDP with states x ∈ X,

actions a ∈ A, steady state probabilities π(x), and constraints (7)–(14). Now
we can apply the classical results on constrained Markov Decision Processes:
statements in (i) follow from Theorem 4.3 of [19]. Statement (ii) follows from
the fact, that the Linear Program (10)–(11) has

∏N
i=1 mi + N + 1 constraints.

At the same time the number of independent constraints is upper-bounded by∏N
i=1 mi+N , because the first

∏N
i=1 mi equality constraints of (11) are depen-

dent. The latter means that the optimal solution can be chosen with no more
than

∏N
i=1 mi + N non-zero elements. For each particular x there should be

at least one nonzero ρ(x,a), if π(x) > 0. Consequently we are left only with
other N possible nonzero ρ(x,a), which corresponds to N randomizations of
the strategy. If π(x) = 0 for some x we can simply reduce the state space.

Remark 1 We note that there could be several optimal solutions to the Lin-
ear Program (10). Some of these solutions could correspond to policies with
randomization at more than N points. However, one can always select an
optimal solution of (10) which corresponds to a policy with no more than N

randomizations. See also the discussion and numerical example in subsection
7.2.

Note that in the centralized framework it does not make sense to speak
about a non-cooperative game, since there is a single decision maker.

4 Decentralized Information

4.1 Non-cooperative equilibrium

Here we consider the case when the players optimize their own objective (5)
subject to the constraints (7) given the local information only. For this case
we show the existence of the constrained Nash equilibrium.

Theorem 2 Under the assumptions on the objective functions Ri(u), con-
straints (7), and the set of decentralized policies Udc made above, there exists
a policy u∗ ∈ Udc satisfying Definition 1.
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Proof. The set of policies for a player i can be identified by a set of
mi probability measures over the Ai. The subset of policies of mobile i that
furthermore meet the power constraints can thus be identified by the set(
ui(a|x)

)
, x ∈ Xi, a ∈ Ai, satisfying

∑
x∈Xi

∑
a∈Ai

πi(x)ui(a|x)hi(a) ≤ Vi,

ui(a|x) ≥ 0, ∀a ∈ Ai, ∀x ∈ Xi,∑
a∈Ai

ui(a|x) = 1, ∀x ∈ Xi.

This is a closed convex set for each player. Moreover, for each mobile i, the
utility Ri(u) is concave in ui and continuous in uj , j 6= i. We conclude from
Theorem 1 of [18] that a constrained Nash equilibrium exists.

4.2 The cooperative case

Here we discuss the situation where, even though there is a common goal that
is optimized, the power level choices are not done by the base station but by
the mobiles themselves who have only their local information available to take
decisions. Coordination is thus not possible.

Considering the decentralized framework, we make the following observa-
tion concerning the relation between the cooperative and the non-cooperative
cases.

Theorem 3 Any policy u that maximizes the common objective Rγ(u) while
satisfying the constraints is necessarily a constrained Nash equilibrium in the
game where each mobile maximizes the common objective Rγ(u).

Proof. Let v be a globally-optimal policy among the decentralized poli-
cies. Assume that it is not an equilibrium. Then there is some mobile, say i,
that can deviate from vi to some ui such that (7) holds and such that its utility,
which coincides with the other mobile’s utility, satisfies Rγ((v−i, ui)) > Rγ(v).
Moreover, for all other players j 6= i as well, the constraint (7) still holds since
it does not depend on mobile i’s policy. But this implies that v is not a glob-
ally optimal policy which is a contradiction. So we conclude that v is indeed
a constrained Nash equilibrium.

Now we show in Theorem 4 that there exists an optimal decentralized
policy.

Theorem 4 Let all the players have the common objective function Rγ(u)
defined by (8). Under the assumptions on constraints (7) and the set of de-
centralized policies Udc made above, there exists a solution u∗ ∈ Udc to the
problem COOP(Udc) (9).

Proof. Consider the non-cooperative setting but with the common ob-
jective Rγ(u) to all mobiles. There exists at least one such equilibrium due to
Theorem 2. If there is a dominating constrained equilibrium (which is the case
when there are finitely many constrained equilibria) then it is a globally opti-
mal policy due to Theorem 3. Assume next that there is a set U∗ of infinitely
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many constrained equilibria. Let R∗
γ = supu∈U∗ Rγ(u) and let un ∈ U∗ be a

sequence of constrained equilibria such that limn→∞ Rγ(un) = R∗
γ . Then it

follows (from an adaptation of [20] and [21]) that there exists a constrained
equilibrium u∗ such that Rγ(u∗) = R∗

γ . It is thus a dominating equilibrium
and hence a globally optimal policy.

5 Structure of non-cooperative equilibrium

In this section we identify the structure of equilibria policies for the decen-
tralized non-cooperative case. To that end we first study the structure of best
response policies of any given user when the policies of the other users are
fixed. Using the results on the structure of the best response we then establish
the structure of the equilibrium policies.

We fix throughout the policy v−i of players other than player i, where

v−i(a−i |x−i) =
∏

j 6=i

vj(a
−i
j |x−i

j )

is the probability that each mobile j 6= i chooses aj when its local state is xj.
The product form here is due to the decentralized nature of the problem and
to the fact that there is no coordination between the mobiles is possible.

Before we state our main result, we present two definitions and state the
assumption necessary to derive our main result.

Definition 2 (Increasing Differences) Let X,T ⊂ R. A function f : X×
T → R has (strict) increasing differences in (x, t) if for every x′ > x, t′ > t

f(x′, t′) − f(x, t′) > f(x′, t) − f(x, t). (12)

This property implies that the maximizer with respect to a variable is increas-
ing in the other variables. There has been much research on supermodular
functions due to the above appealing property (see [22] and references therein).

Definition 3 (Single-randomization allocation) A single-randomization
allocation is an allocation in which at most a single power level is used for
each state, except for some state i, for which two power levels are used, i.e.,
q
j
i > 0,qk

i > 0 for some adjacent power levels Qj and Qk.

Assumption 1 The rate function for the ith mobile, ri

(
(x−i, x), (a−i, a)

)
,

has

(i) a concave and strictly increasing interpolation in g(x), and

(ii) a strict increasing differences in (g(x), h(a)).

Proposition 1 The rate function defined in (1) obeys Assumption 1.

Proof. We first assume that the function gi (resp., hi) has an increasing
interpolation in x (resp., in a). These assumptions non-restrictive as we can
enumerate the states so that the quality of the associated channel state (resp.,
power level) increases with the index of the state.
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Assumption 1.(i) is met by the concavity of the logarithm function and
the fact that gi has an increasing interpolation in x.

Now, Consider the continuous and twice differentiable function r̃(x̃, ã) =

log
(
1+g(x̃)h(ã)

)
. It is well known (e.g., from [22]) that a function f : Rn →

R in C2 has strictly increasing differences if ∂2f(x)
∂xi∂xj

> 0, where xi 6= xj are

two components of the vector x ∈ Rn. We have ∂2r̃(x̃,ã)
∂g(x̃)∂h(ã) = ∂2r̃(x̃,ã)

∂g(x̃)∂h(ã) =
1

(1+g(x̃)h(ã))2 . Hence r̃ has increasing (strict) increasing differences. Since the

function in (1) is a restriction of r̃ to the points (g(x), h(a)), this functions
has increasing differences as well and thus obeys Assumption 1.(ii).

Hence, the class of functions defined in Assumption 1 contains the specific
rate function considered in this paper. We now establish the following main
result on the structure of any best response policy:

Theorem 5 Consider the decentralized non-cooperative case. Under Assump-
tion 1, the following holds:

(i) For a given channel state, the best response policy consists of either the
choice of a single action, or in a randomized choice between at most two
adjacent power levels.

(ii) There exists an optimal allocation with a single randomization. An op-
timal allocation with more than one randomization is not generic.

(iii) The optimal power levels are non-decreasing functions of the channel
state.

(iv) If two power levels are jointly optimal for a given channel state then they
cannot be jointly optimal for another channel state.

The proof of this result follows the following steps. We first formulate the
problem of obtaining a best response as a linear program. Using Lagrange
relaxation we are able to decouple the problem to several simpler ones: in each
one of the latter, the channel state is fixed. Then we prove the statement (i)
and (ii) by establishing the concavity of the best response value function
corresponding to a fixed channel state. Statements (iii) and (iv) will follow
from the supermodularity of the value function.

First we formulate the problem of obtaining a best response as a linear
program. With ri(x,a) as defined in (1), denote

rv
i (x, a) =

∑

x−i∈X−i

∑

a−i∈A−i

∏
j 6=i

πj(x
−i
j )v(a−i

j |x−i
j )ri

(
(x−i, x), (a−i, a)

)
.

For the fixed v−i, player i is faced with the problem

maximize over ui ∈ Ui Rv
i (ui) := Ri(v

−i, ui) =
=

∑
x∈Xi

∑
a∈Ai

πi(x)ui(a |x)rv
i (x, a) (13)

s.t. Di(ui) :=
∑

x∈Xi

∑

a∈Ai

πi(x)ui(a |x)hi(a) ≤ Vi. (14)
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Consider the following relaxed problem parameterized by some finite real
λi ≤ 0:

maximize over ui ∈ Ui Jv
i (λi, ui) = Rv

i (ui) + λi(Di(ui) − Vi) =

=
∑

x ∈ Xi

a ∈ Ai

πi(x)ui(a |x)
(
rv
i (x, a) + λihi(a)

)
− λiVi,

(15)
J∗

i (λi, v) = max
ui

Jv
i (λi, ui).

Lemma 1 The best response policy of player i can be obtained by solving the
relaxed problem corresponding to each channel state x ∈ Xi.

Proof.

Problem (13) faced by player i can be viewed as a special degenerate case
of constrained Markov decision processes (it is degenerate since the transition
probabilities of the radio channel of mobile i are not influenced by the actions.
The latter only have an impact on the immediate payoff rv

i and on hi). We
know from [19] that a policy u∗

i is optimal for (13) only if it is optimal for the
relaxed problem (15) for some finite λi. By characterizing the structure of
the policies that are optimal for (15) we shall obtain the structure of optimal
policies for (13). In the sequel, we shall omit the constant −λiVi from the
objective function in (15) since it has no influence on the structure of the
optimal policies .
Observation. We now make the following key observation on (15). The relaxed
problem can be solved separately for each channel state x ∈ Xi. A policy
ui = {ui(a |x)}a∈Ai, x∈Xi

is optimal for (15) if and only if for each fixed
x ∈ Xi, ui(· |x) maximizes

Jv
i (x, λi, ui) :=

∑

a∈Ai

πi(x)ui(a |x)
(
rv
i (x, a) + λihi(a)

)
. (16)

Due to linearity, for each x ∈ Xi there is a non-randomized decision a ∈ Ai

such that
J∗

i (v, x, λi) = max
ui

Jv
i (x, λi, ui) = max

a∈Ai

ν(x, a),

where ν(x, a) := πi(x)(rv
i (x, a) + λihi(a)).

We now prove each of the four statements in Theorem 5.

Proof of Theorem 5.(i). From Assumption 1, for a fixed x, ri has a
concave interpolation in h(a). Thus, ν(x, a) has a concave interpolation in
h(a) for a fixed x. This means that the maximum is achieved at either

1. a single action which has a non-zero probability to be used by any opti-
mal policy, or

2. two adjacent actions, say a and a + 1 for which ν(x, a) = ν(x, a + 1).

The above structure holds not only for the relaxed problem (15) but also
for the original problem (13). This follows since any optimal policy for (13)
is necessarily optimal for the relaxed problem (15) for some λi, and since we
just saw that any optimal policy for the relaxed problem has this structure.
The statement (i) is proved.
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Proof of Theorem 5.(ii). We prove this by contradiction. Assume that
u∗

i is an optimal allocation that uses randomization for more than a single
state. Taking u∗

i as a starting point, we next construct a single-randomization
allocation which is no worse than u∗

i . Moreover, we show that it is strictly
better than u∗

i w.p. 1. Let j and k be two states for which two power
levels are used under u∗

i (more than two power levels would not be used by
Theorem 5.(i)). Denote by hi(lj) and hi(mj) the power levels used for state
j (hi(lj) > hi(mj)) and by hi(lk) and hi(mk) the power levels used for state
k (hi(lk) > hi(mk)). For each state in which two power levels are used define
an index

ηj =
ri(gi(j), hi(lj)) − ri(gi(j), hi(mj))

hi(lj) − hi(mj)
.

We construct a no-worse allocation as follows. If ηj > ηk we augment u∗
i (l|j)

(thus reduce u∗
i (m|j) and reduce u∗

i (l|k) (thus augment u∗
i (m|k)). More pre-

cisely, assume that ηj > ηk. Consider the modified allocation

ũi(l|j) = u∗
i (l|j) +

ǫ

πi(j)(hi(lj) − hi(mj))
,

ũi(m|j) = u∗
i (m|j) −

ǫ

πi(j)(hi(lj) − hi(mj))
,

ũi(l|k) = u∗
i (l|k) −

ǫ

πi(k)(hi(lk) − hi(mk))
,

ũi(m|k) = u∗
i (m|k) +

ǫ

πi(k)(hi(lk) − hi(mk))
,

for some small ǫ > 0. Note that the modified allocation raises the power
investment at state j by ǫ while reducing the power investment at state k by
the same quantity, thus preserving the total power constraint. The rate at
state j is consequently improved by ǫηj while the rate at state k is reduced by
ǫηk. The overall rate is obviously higher. We carry on with this procedure until
reaching a probability of zero in one of the pairs (state,power) above. If ηk >

ηj we construct a better allocation in an analogous way. If ηk = ηj the overall
rate remains constant by the above procedure. Carrying the procedure for all
states in which two power are used would eventually leave us with a single-
randomization allocation, proving part (i). As to the second statement of part
(ii), we note that essentially ηj = ηk with zero probability assuming that gi

takes real values according to some continuous density function. Hence, the
rate is strictly improved by transforming the policy to a single-randomization
one.

Proof of Theorem 5.(iii) and 5.(iv). We prove these statement by con-
tradiction. Assume there exists two channel states j and k with gi(j) > gi(k)
and two power levels hi(l) > hi(m) such that u∗

i (m|j) > 0 and u∗
i (l|m) > 0.

To prove our claim, we next construct a modified allocation with the same
energy investment which obtains a strictly higher rate. For ǫ > 0 small, let
ũi(m|j) = u∗

i (m|j)− ǫ
πi(j)

, ũi(l|j) = u∗
i (l|j)+ ǫ

πi(j)
, ũi(m|k) = u∗

i (m|k)+ ǫ
πi(k) ,

and ũi(l|k) = u∗
i (l|k) − ǫ

πi(k) , be the modified policy, where all other proba-
bilities are left unchanged. Note that the modified policy uses the same total
energy. The change in throughput (divided by ǫ for the sake of exposition) is
given by
[
ri(gi(j), hi(l))− ri(gi(k), hi(l))

]
−

[
ri(gi(j), hi(m))− ri(gi(k), hi(m))

]
. (17)
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The expression (17) is strictly positive by Assumption 1; hence, the allocation
can be strictly improved which is a contradiction to its optimality.

Now, using Theorem 5 we can establish the structure of the constrained
Nash equilibria.

Corollary 1 Consider the decentralized non-cooperative case. For each mo-
bile i, assume that hi, gi, and πi satisfy Assumption 1. Then there exists at
least one equilibrium. Moreover, at any equilibrium u∗

i the following hold for
each mobile i:

(i) In each channel state x ∈ Xi, u∗
i (·|x) consists of either a choice of

a single power level, or in a randomized choice between at most two
adjacent power levels.

(ii) There exists a single-randomization allocation that is optimal. Moreover,
any optimal policy is a single randomization policy w.p.1.

(iii) The power levels used in u∗
i are non-decreasing functions of the channel

state.

(iv) If two power levels are used at a state x by mobile i with positive prob-
ability (i.e. u∗

i (aj |x) > 0 and u∗
i (ak|x) > 0 for ak 6= aj) then under u∗

i ,
not more than one of them is used with positive probability at any other
channel state.

Proof. The structure of best response policies characterizes in particular
the structure of the constrained Nash equilibria policies since at equilibrium,
each mobile uses a best response policy. Therefore, the structure we derived
for the best response policies holds for any Nash equilibrium u∗

i for any of the
mobiles.

6 Power control in the presence of a mali-

cious mobile

In recent years, there has been a growing interest in identifying and studying
the behavior of potential intruders to networks or of malicious users, and in
studying how to best detect these or to best protect the network from their
actions (see e.g. [23–25] and references therein).

We consider in this section a scenario where a malicious player attempts
to jam the communications of a mobile to the base station. We consider the
distributed case and restrict for simplicity to two mobiles and a base station.

The first mobile (player 1) seeks to maximize the rate of information that
it transmits to the base station. In other words it wishes to maximize R1(u)
defined in (5) where r1 is given in (1).

The second mobile (player 2) has an antagonistic objective: to prevent or
to jam the transmissions of the first mobile, with the objective of minimizing
the throughput of information that mobile 1 transmits to the base station. It
thus seeks to minimize R1(u). We assume that the interference of the second
mobile is presented as a Gaussian white noise.
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Except for the objective of the jamming mobile, the model, including the
average power constraints, defined in Section 2 holds. In particular, we con-
clude that Theorem 5 applies to player 1 at equilibrium.

We now specify the objective of the players and some properties of the
equilibrium. Denote U i

c the set of policies for player i, (where i takes the
values 1 and 2) that satisfy player i’s power constraints, i.e., ui ∈ U i

c if it
satisfies Di(ui) ≤ Vi. Player 1 seeks to obtain an optimal policy, i.e. a policy
u∗

1 ∈ U1
c such that for any other u1 ∈ U1

c ,

inf
u2∈U2

c

R1(u
∗
1, u2) ≥ inf

u2∈U2
c

R1(u1, u2).

We call this the jamming problem. It consists of identifying a policy for player
1 that guarantees the largest throughput under the worst possible strategy of
player 2. In fact, we shall be able not only to identify the optimal policy for
player 1 but also the “optimal” policy for player 2 (which is the worst for
player 1).

A policy u∗ = (u∗
1, u

∗
2) is said to be a saddle point if

sup
u1∈Uc

1

inf
u2∈Uc

2

R1(u1, u2)

= inf
u2∈Uc

2

R1(u
∗
1, u2) = R1(u

∗
1, u

∗
2)

= sup
u1∈Uc

1

R1(u1, u
∗
2) = inf

u2∈Uc
2

sup
u1∈Uc

1

R1(u1, u2),

and u∗
1 and u∗

2 are called saddle point policies or optimal policies.
Unlike all the decentralized problems we considered previously, deriving

both u∗
1 as well as u∗

2 is possible using a linear program. The computation is
not included here, but it can be found in [26]. Below we derive the properties
of the optimal policies.

Theorem 6 (i) There exists a saddle point policy u∗ in the above game.

(ii) Under Assumption 1, any optimal policy for player 1 (the transmitter)
has the structure identified in Theorem 5.

For the proof of (i) we refer to [26]. Part (ii) is a direct result of Theorem 5.
For player 1, from Theorem 6 we can infer that the relaxed objective

function has a structure similar to that of (15).
We now identify a structural property of the optimal policy of player 2,

i.e., of the jammer. Let h2 have a convex interpolation in a, and g2 have an
increasing interpolation in x. Therefore, for a given x, the relaxed objective
function would have a convex interpolation in a. This means that

(i) there is only one action, say a, which has a non-zero probability to be
used by any optimal policy, or

(ii) except for two adjacent actions, say a and a + 1, all other actions are
not used by any policy which is optimal.

Using arguments similar to those in Theorem 5 proof, we can conclude that
the above structure holds not only for the relaxed problem but also for the
original problem.

We finally note that the monotonicity property enjoyed by the saddle
point policy of mobile 1, need not hold for mobile 2. This will be illustrated
in Section 7.3 (see Figure 6).
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7 Numerical Examples

In this section we provide examples of power control problem for two mo-
biles that interact with the same base station. The decentralized policies are
provided both for the cooperative and non-cooperative cases. Moreover, the
single controller problem for centralized cooperative framework is also solved.
All three problems are considered in the same settings, so one has an oppor-
tunity to compare the obtained strategies and the objective value functions
for different approaches.

Let us discuss the numerical procedures for all the cases (decentralized
cooperative/noncooperative, centralized cooperative and jamming).

For the decentralized cooperative case we need to solve the problem of
maximization of the polynomial objective subject to linear constraints. There
are special methods to solve this kind of problems [27,28], and in two player
case this problem reduces to a well known quadratic program.

For the decentralized non-cooperative equilibrium computation we propose
to use the iterative best response policy computation. We fix the policy of
all mobiles except one given and compute its optimal response. Then we
iterate according to a round robin order. Whenever this method converges to
some u∗, then u∗ is indeed an equilibrium strategy since u∗ is an equilibrium
if and only if for each mobile i, the policy u∗

i is a best response against
the other policies (u∗)−i. Unfortunately, we do not have any proof of the
convergence of this method. Nevertheless, for the case of two mobiles this
algorithm worked extremely well in different parameter settings (convergence
in about three iterations). Furthermore, for the case of two mobiles we propose
the adaptation of Lemke method for Linear Complementarity Problem [29].
In Appendix 9.1 we show that this algorithm converges for the considered
class of problems.

The centralized cooperative optimization is equivalent to a classical MDP
formulation which leads to a Linear Programming formulation. The LP can
be solved for example by efficient interior point method in polynomial time.

The jamming case also leads to Linear Programming formulations, for
details see [26].

We assume, that the radio channel between mobile i = 1, 2 and the
base station is characterized by a Markov chain Xi with states xi ∈ Xi =
{1, . . . ,M}, M = 11, and a uniform vector of steady state probabilities. One
of the transition probability matrices which has a uniform steady state prob-
ability vector is given by Pi

xy = 1
M

.
The power attenuation for each state of the Markov chain Xi is defined by

the following:

xi 1 2 3 . . . 11
gi(xi) 0.0 0.1 0.2 . . . 1.0.

Let mobile i’s action set Ai be given by Ai = (0, . . . , 11). The actual
power corresponding to the aith power level, where ai ∈ Ai, is

ai 0 1 2 . . . 11
hi(ai) 0 0 dB 1 dB . . . 10 dB

where the level of 0 dB corresponds to some base value of power W0. We
assume that the background noise power at the base station, N0, is equal to
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0 dB. Since (1) depends only on the ratio between the power of signal received
from a certain mobile and the total power received from other mobiles and
the thermal noise power at the receiver, we do not specify the exact value of
the base power W0.

We note that, with the above definitions, gi, hi and πi satisfy the properties
in Assumption 1.

The power consumption constraints for players are the following:

D1(u1) ≤ 2.7W0,

D2(u2) ≤ 5.1W0.

where Di(ui) is defined by (14). Note, that both right and left hand sides of
these constraints have the multiplier W0, which can be cancelled.

The proposed model is quite simple, we chose it so as to avoid techni-
cal difficulties related to Markov chains with infinite state space. Thus we
assume that a finite Markov chain can approximate well randomness due to
fading, shadowing, mobility, as well as time correlation phenomena which are
often ignored. Nevertheless, the main goal of the example is to validate the
structure that we obtain rather than to propose a reliable model that could
include mobility, handovers, shadowing, fading, interference from other cells
etc. Further research including these features is planned.

7.1 Decentralized policies

First we consider the decentralized problems that arise in cooperative and
non-cooperative case. Both problems are formulated in terms of occupation
measures ρi(xi, ai). In order to compute the strategies one can use (3).

7.1.1 Cooperative optimization

Let x = (x1, x2) and a = (a1, a2). Here we consider the following cost function

r(x,a) = r1(x,a) + r2(x,a), (18)

where ri(x,a) are defined by (1).
Consider the following bilinear problem

maximize over ρ1, ρ2
∑

x1 ∈ X1

a1 ∈ A1

∑

x2 ∈ X2

a2 ∈ A2

ρ1(x1, a1)r(x,a)ρ2(x2, a2),
(19)

where ∑

xi ∈ Xi

ai ∈ Ai

ρi(xi, ai)hi(ai) ≤ Vi, (20)

and ∑

xi ∈ Xi

ai ∈ Ai

ρi(xi, ai)(δ(xi, yi) − Pi
xiyi

) = 0, ∀yi ∈ Xi,

∑

xi ∈ Xi

ai ∈ Ai

ρi(xi, ai) = 1,

ρi(xi, ai) ≥ 0, ∀xi ∈ Xi, ai ∈ Ai.

(21)
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Here Pi is the transition matrix of the Markov chain, which describes the
radio channel between the mobile i and the base station, and δ(x, y) is equal
to one if x = y and is zero otherwise.

The problem (19) could be solved using the quadratic programming tech-
nique.

In Fig. 1, the supports of the optimal policies for both players are shown
as a function of the channel state.
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Figure 1: Supports of the optimal policies in cooperative case.

As one can see, the mobile 1 has a pure strategy at all the points but
one, where g1(x1) = 0.8. The mobile 2 also has only one randomization point
g2(x2) = 0.6. The exact values of the policies ui(hi(ai) | gi(xi)) at those points
are as follows:

u1(0 | 0.8) = 0.0293, u1(9 dB | 0.8) = 0.0036, u1(10 dB | 0.8) = 0.9671,

u2(8 dB | 0.6) = 0.5596, u2(9 dB | 0.6) = 0.4404.

The value of the objective function in this problem is R(u∗) = 1.9225.

7.1.2 Non-cooperative equilibrium

Now, in the same setting as in the cooperative case, we consider an example
of non-cooperative optimization. Each mobile needs to maximize its own
objective function:

max
ρ1,ρ2

∑

x1 ∈ X1

a1 ∈ A1

∑

x2 ∈ X2

a2 ∈ A2

ρ1(x1, a1)r1(x,a)ρ2(x2, a2),

max
ρ1,ρ2

∑

x1 ∈ X1

a1 ∈ A1

∑

x2 ∈ X2

a2 ∈ A2

ρ1(x1, a1)r2(x,a)ρ2(x2, a2),
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subject to the constraints (26)-(29) (in the Appendix 9.1).
By means of the linear complementarity problem (34) one can obtain the

optimal strategies depicted on Fig. 2. The exact values of the policies at the
randomization points are as follows:

u1(7 dB | 1.0) = 0.5803, u1(8 dB | 1.0) = 0.4197,

u2(8 dB | 0.6) = 0.1089, u2(9 dB | 0.6) = 0.8911.

We note that the structure obtained in Theorem 5 holds for both the players.
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Figure 2: Supports of the optimal policies in non-cooperative case.

The values of the objective functions in this problem are R1(u
∗) = 0.6484,

R2(u
∗) = 1.1584. As it was expected, the total throughput value R(u∗) =

R1(u
∗) + R2(u

∗) = 1.8067 is smaller than in cooperative case.

7.2 Centralized optimization

Now let us consider the single controller problem, that arises in the case of
centralized optimization. As in the decentralized framework, we operate here
in terms of occupation measures. Thus, the problem (10) for the case of two
players can be rewritten as follows:

max
ρ

∑

x∈X

∑

a∈A

ρ(x,a)r(x,a), (22)

where r(x,a) is defined by (18). The maximization is performed subject to
the following constraints:

∑

x∈X

∑

a∈A

ρ(x,a)hi(ai) ≤ Vi, i = 1, 2; (23)
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∑

a∈A

ρ(x,a) = π(x) = π1(x1)π2(x2);

ρ(x,a) ≥ 0, ∀x ∈ X, ∀a ∈ A;
∑

x∈X

∑

a∈A

ρ(x,a) = 1.

Once the occupation measures are obtained, the strategies can be computed
by means of (2).
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Figure 3: The sets Ψ1 and Ψ2.

Define the following sets:

• Ψ1: pairs (x1, x2): ∃a∗1 such that h1(a
∗
1) > 0 and u(a∗1, a2 |x1, x2) > 0 for

some a2 ∈ A2;

• Ψ2: pairs (x1, x2): ∃a∗2 such that h2(a
∗
2) > 0 and u(a1, a

∗
2 |x1, x2) > 0 for

some a1 ∈ A1.

Note, that the set Ψi is the set of states in which ith player should transmit
with nonzero probability according to the optimal strategy.

In Fig. 3 these sets are provided for the centralized optimization problem
(22). The set Ψ1 is depicted by circles, and the set Ψ2 — by stars. One can
see, that the sets have no mutual points. It means, that the mobiles never
transmit at the same time.

In Fig. 4 one can see the supports of the optimal strategies.
A circle on the place (g1(x

∗
1), h1(a

∗
1)) means that the first mobile should

transmit with the power level h1(a
∗
1) with nonzero probability in all states

(x∗
1, x2) ∈ Ψ1.
A star on the place (g2(x

∗
2), h2(a

∗
2)) means that the second mobile should

transmit with the power level h2(a
∗
2) with nonzero probability in all states

(x1, x
∗
2) ∈ Ψ2.
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Figure 4: Supports of the optimal policies in cooperative case.

If there are two or more power levels hi(a
∗
i ) for some particular state gi(x

∗
i ),

then the player should randomize. In other case (single power level hi(a
∗
i ) for

the state gi(x
∗
i )), the player should always transmit with power level hi(a

∗
i ).

One can see that for both players there are states of randomization. We
provide here the strategies u(h1(a1), h1(a2) | g1(x1), g2(x2)) for these states:

u(8 dB, 0 | 0.8, 0.6) = 0.3694 u(9 dB, 0 | 0.8, 0.6) = 0.6306
u(8 dB, 0 | 0.8, 0.5) = 0.6098 u(9 dB, 0 | 0.8, 0.5) = 0.3902
u(8 dB, 0 | 0.8, 0.4) = 0.4475 u(9 dB, 0 | 0.8, 0.4) = 0.5525
u(8 dB, 0 | 0.8, 0.3) = 0.4595 u(9 dB, 0 | 0.8, 0.3) = 0.5405
u(8 dB, 0 | 0.8, 0.2) = 0.4369 u(9 dB, 0 | 0.8, 0.2) = 0.5631
u(8 dB, 0 | 0.8, 0.1) = 0.4312 u(9 dB, 0 | 0.8, 0.1) = 0.5688
u(8 dB, 0 | 0.8, 0.0) = 0.4169 u(9 dB, 0 | 0.8, 0.0) = 0.5831

u(0, 8 dB | 0.3, 0.3) = 0.9982 u(0, 9 dB | 0.3, 0.3) = 0.0018
u(0, 8 dB | 0.2, 0.3) = 0.9946 u(0, 9 dB | 0.2, 0.3) = 0.0054
u(0, 8 dB | 0.1, 0.3) = 0.9983 u(0, 9 dB | 0.1, 0.3) = 0.0017
u(0, 8 dB | 0.0, 0.3) = 0.9984 u(0, 9 dB | 0.0, 0.3) = 0.0016

As one can see, the number of randomizations in the obtained policy ex-
ceeds the number of constraints N = 2. Nevertheless, due to Theorem 1 the
optimal policy can be chosen with no more then N randomization points. It is
easy to check, that the policy with the same sets Ψ1 and Ψ2 (Fig. 3), supports
depicted on Fig. 5, and one randomization point (24) delivers the same value
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to the cost function.

u(8 dB, 0 | 0.8, 0.6) = 1 u(9 dB, 0 | 0.8, 0.6) = 0
u(8 dB, 0 | 0.8, 0.5) = 1 u(9 dB, 0 | 0.8, 0.5) = 0
u(8 dB, 0 | 0.8, 0.4) = 1 u(9 dB, 0 | 0.8, 0.4) = 0
u(8 dB, 0 | 0.8, 0.3) = 0.1622 u(9 dB, 0 | 0.8, 0.3) = 0.8378
u(8 dB, 0 | 0.8, 0.2) = 0 u(9 dB, 0 | 0.8, 0.2) = 1
u(8 dB, 0 | 0.8, 0.1) = 0 u(9 dB, 0 | 0.8, 0.1) = 1
u(8 dB, 0 | 0.8, 0.0) = 0 u(9 dB, 0 | 0.8, 0.0) = 1
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Figure 5: Supports of the optimal policies in cooperative case (one randomization
point).

Note, that the centralized power management provides better throughput
in comparison with other considered controls, the value of the cost function
is R(u∗) = 2.5614.

Another interesting point that we want to discuss is the attainability of
the power constraints.

Consider the problem (22) without power constraints. The optimal policies
for this problem are as follows:

• Player 1 should transmit at the top power level if g1(x1) ≥ g2(x2);

• Player 2 should transmit at the top power level if g2(x2) ≥ g1(x1).

The value of the objective function for this policy is R(u∗) = 2.8560. The
experiments show, that at the optimal point for problem with constraints
(23), where the bounds Vi are both greater then 7 dB, the power constraints
are not attained, and the optimal strategy and the value of the objective
function are the same as in unconstrained case.
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7.3 Jamming

The average power bounds are the same as in all previous examples: for the
transmitter V1 = 2.9, and for the jammer V2 = 5.2.

The supports of the optimal strategies in this problem are depicted in
Fig. 6. We note that the structure obtained in Theorem 5 holds for player 1,
whereas the structure obtained in Section 6 holds for player 2. Both players
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Figure 6: Supports of the optimal policies in case of jamming.

have optimal strategies that are randomized only at one point:

u1(6 dB | 0.7) = 0.3623, u1(7 dB | 0.7) = 0.6377,

u2(7 dB | 0.8) = 0.9656, u2(8 dB | 0.8) = 0.0344.

The value of the objective function is R1(u
∗) = 0.6237 which is less then

the same value for the decentralized non-cooperative case.

8 Conclusion and further work

We have studied power control in both cooperative and non-cooperative set-
ting. Both centralized and decentralized information patterns have been con-
sidered. We have derived the structure of optimal decentralized policies of
selfish mobiles having discrete power levels. We further studied the structure
of power control policies when a malicious mobiles tries to jam the com-
munication of another mobile. We have illustrated these results via several
numerical examples, which also allowed us to get insight into the structure in
the cooperative framework.

The modelling and results open many exciting research problems. Our
setting, which could be viewed as a temporal scheduling problem, is quite
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similar to the “space scheduling” (i.e. the water-filling) problems discussed
in Introduction, for which the context of discrete power levels along with the
non-cooperative setting have not yet been explored. It is interesting not only
to study the water-filling problem in the discrete noncooperative context but
also to study the combined space and temporal scheduling problem, where we
can split the transmission power both in time and in space (different parallel
channels).

From both a game theoretic point of view as well as from the wireless
engineering point of view, it is interesting to study possibilities for coordina-
tion between mobiles in the decentralized case (in both cooperative as well as
non-cooperative contexts). This can be done using the concepts from corre-
lated equilibria [30–33], which is known to allow for better performance even
in the selfish non-cooperative cases. We note however, that existing litera-
ture on correlated equilibria do not include side constraints, which makes the
investigation novel also in terms of fundamentals of game theory.

9 Appendix

9.1 Linear complementarity approach for the de-

centralized case

In this section we show how the non-cooperative equilibrium can be obtained
in the case of two players by means of linear complementarity problem (LCP).
Consider the following problem, where each player wants to maximize his own
payoff Ri:

maximize over ρ1, ρ2 Ri(u) :=∑

x1 ∈ X1

a1 ∈ A1

∑

x2 ∈ X2

a2 ∈ A2

ρ1(x1, a1)ri(x1, a1, x2, a2)ρ2(x2, a2), (25)

where i = 1, 2 and

ρi(xi, ai) ≥ 0, ∀xi ∈ Xi, ai ∈ Ai, (26)

∑

xi ∈ Xi

ai ∈ Ai

ρi(xi, ai) = 1, (27)

∑

ai∈Ai

ρi(xi, ai) = πi, ∀xi ∈ Xi, (28)

∑

xi ∈ Xi

ai ∈ Ai

ρi(xi, ai)hi(ai) ≤ Vi, i = 1, 2. (29)

Here ρi: Xi × Ai −→ [0, 1] is the occupation measure for player i = 1, 2.
First, assume, that at the equilibrium point the power consumption con-

straints (29) are active:

∑

xi ∈ Xi

ai ∈ Ai

ρi(xi, ai)hi(ai) = Vi, i = 1, 2. (30)
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This assumption is not restrictive, because if one or both of these constraints
are not active, they can be omitted.

Indeed, let ûi be the policy for player i that transmits at all states with
maximum power. Then the following statements are easily seen to be equiv-
alent (since the constraints of a player do not depend of the strategies of the
other players):

1. at equilibrium, the power constraint of player i is met with strict in-
equality;

2. when using ûi, the power constraint of player i is met with strict in-
equality (independently of the policy of other players).

Any of the statements imply that at equilibrium, ûi is the equilibrium policy
of user i. So we can first check for which player i, the constraints are violated
when using policy ûi. For these players, the constraints can be replaced with
equality constraints and for the rest, the power constraints can be omitted.

Now let ξ be the vector, containing all the ρ1(x1, a1), ∀x1 ∈ X1, a1 ∈ A1,
and ζ — the same vector for ρ2(x2, a2).

Indeed, the problem (25) with constraints (26), (27), (28) and (30) can be
represented in the form of the bimatrix game with linear constraints:

max
ξ,ζ

ξ∗Aζ,

max
ξ,ζ

ξ∗Bζ,
(31)

s.t.
ξ ≥ 0, ζ ≥ 0; (32)

and
C∗ξ = c,

D∗ζ = d.
(33)

Following [34] we introduce the linear complementarity problem whose
solution characterizes the equilibrium point of (31), (32), (33):

z = (ξ, ζ, z1, z2, z3, z4)
∗ ≥ 0,

q + Mz ≥ 0,
z∗(q + Mz) = 0,

(34)

where

M =





−A C∗ −C∗

−B∗ D∗ −D∗

−C

C

−D

D




,

q = (0, 0, c∗,−c∗, d∗,−d∗)∗ .

It is also shown in [34], that under the conditions A ≤ 0 and B ≤ 0
Lemke’s algorithm [35] computes a solution of the LCP (34).

It should be noted, that in order to satisfy the conditions A ≤ 0, B ≤ 0
we can always replace cost matrices A and B with A−kE and B−kE, where
E is a matrix of unities, and k is the maximal positive entry of A and B.
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Once the solution of LCP (34) (ξo, ζo) is found, the equilibrium point (ξ′, ζ ′)
of the bimatrix game (31) could be computed using the following formulas:

ξ′ =
ξo

e∗1ξo
,

ζ ′ = ζo

e∗2ζo
,

(35)

where e1 and e2 are vectors of appropriate dimension, whose components are
all ones.
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