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Abstract

In an earlier work, the statistical physics associated with finite–temperature decoding of
code ensembles, along with the relation to their random coding error exponents, were explored
in a framework that is analogous to Derrida’s random energy model (REM) of spin glasses,
according to which the energy levels of the various spin configurations are independent random
variables. The generalized REM (GREM) extends the REM in that it introduces correlations
between energy levels in an hierarchical structure. In this paper, we explore some analogies
between the behavior of the GREM and that of code ensembles which have parallel hierarchical
structures. In particular, in analogy to the fact that the GREM may have different types of
phase transition effects, depending on the parameters of the model, then the above–mentioned
hierarchical code ensembles behave substantially differently in the various domains of the design
parameters of these codes. We make an attempt to explore the insights that can be imported
from the statistical mechanics of the GREM and be harnessed to serve for code design consid-
erations and guidelines.

Index Terms: Spin glasses, GREM, phase transitions, random coding, error exponents.

1 Introduction

In the last few decades it has become apparent that many problems in Information Theory have

analogies to certain problems in the area of statistical physics of disordered systems. Such analogies

are useful because physical insights, as well as statistical mechanical tools and analysis techniques

can be harnessed in order to advance the knowledge and the understanding with regard to the

information–theoretic problem under discussion.
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One important example of such an analogy is between the statistical physics of disordered

magnetic materials, a.k.a. spin glasses, and the behavior of certain ensembles of random codes for

source coding (see, e.g., [1], [2], [3], [4]) and for channel coding (see, e.g., [5] and references therein,

[6], [7], [8], [9], [10], [11] [12], [13], [14], [15], [16], [17], [18], [19], [20]).

Among the various models of interaction disorder in spin glasses, one of the most fascinating

models is the random energy model (REM), invented by Derrida in the early eighties [21], [22], [23]

(see also, e.g., [20], [24], [25], for later developments). The REM is on the one hand, extremely

simple and easy to analyze, and on the other hand, rich enough to exhibit phase transitions.

According to the REM, the different spin configurations are distributed according to the Boltzmann

distribution, namely, their probabilities are proportional to an exponential function of their negative

energies, but the configuration energies themselves are i.i.d. random variables, hence the name

random energy model.1

In [5, Chap. 6], Mézard and Montanari draw an interesting analogy between the REM and the

statistical physics pertaining to finite temperature decoding [18] of ensembles of random block codes.

The relevance of the REM here is due to the fact that in this context, the partition function that

naturally arises has the log–likelihood function (of the channel output given the input codeword)

as its energy function (Hamiltonian), and since the codewords are selected at random, then the

induced energy levels are random variables. Consequently, the phase transitions of the REM are

‘inherited’ by ensembles of random block codes, as is shown in [5]. In [26], this subject was further

studied and the free energies corresponding to the various phases were related to random coding

exponents of the probability of error at rates below capacity and to the probability of correct

decoding at rates above capacity.

While the REM is a very simple and interesting model for capturing disorder, as described

above, it is not quite faithful for the description of a real physical system. The reason is that

according to the REM, any two distinct spin configurations, no matter how similar and close to

each other, have independent, and hence unrelated, energies. A more realistic model must take

into account the geometry and the structure of the physical system and thus allow dependencies

between energies associated with closely related configurations.

1More details on this and other terminology described in the remaining part of this Introduction, will be given in
the Section 3.
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This observation has motivated Derrida to develop the generalized random energy model (GREM)

[27] (see also, e.g., [28], [29], [30], [31], [32], [33], for later related work). The GREM extends the

REM in that it introduces an hierarchical structure in the form of a tree, by grouping subsets of

(neighboring) spin configurations in several levels, where the leaves of this tree correspond to the

various configurations. According to the GREM, for every branch in this tree, there is an associated

independent randomly chosen energy component. The total energy of each configuration is then

the sum of these energy components along the branches that form the path from the root of the

tree to the leaf corresponding to this configuration. This way, the degree of dependency between

the energies of two different configurations depends on the ‘distance’ between them on the tree:

More precisely, it depends on the number of common branches shared by their paths from the root

up to the node at which their paths split. The GREM is somewhat more complicated to analyze

than the REM, but not substantially so. It turns out that the number of phase transitions in the

GREM depends on the parameters of the model. If the tree has k levels, there can be up to k

phase transitions, but there can also be a smaller number. For example, in the case k = 2, under

a certain condition, there is only one phase transition and the behavior of the free energy in both

phases is just like in the ordinary REM.

In analogy to the above described relationship between the REM and the statistical physics

of random block codes, the natural question that now arises is whether the GREM and its phase

transitions can give us some insights about the behavior of code ensembles with some hierarchical

structure (e.g., tree–structured codes, successive refinement codes, etc.). In particular, in what way

do these phase transitions guide us in the choice of the design parameters of these codes? It is the

purpose of this paper to explore these questions and to give at least some partial answers.

We demonstrate that there is indeed an intimate relationship between the GREM and certain

ensembles of hierarchical codes. Consider, for example, a two–stage rate–distortion code of block

length n = n1 + n2, where the first n1 components of the reproduction vector, at rate R1, depend

only on the first n1R1 bits of the compressed bitstream, and the last n2 symbols of the reproduction

codeword, at rate R2, depend on the entire bitstream of length n1R1 + n2R2. The overall rate of

this code is, of course, the weighted average of R1 and R2 with weights proportional to n1 and n2,

respectively. An ensemble of codes with this structure is defined as follows: First, we randomly

draw a rate R1 codebook of block length n1 according to some distribution. Then, for each resulting
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codeword of length n1, we randomly draw a rate R2 codebook of block length n2.
2 Thus, the code

has a tree structure with two levels, like a two–level GREM. The overall distortion of the code

along the entire n symbols is the sum of partial distortions along the two segments, in analogy to

the above described additivity of the partial energies along the branches of the tree pertaining to

the GREM, and since the codewords are random, then so are the distortions they induce.

The motivation for this class of codes, especially when the idea is generalized from two parts

to a larger number of k parts, say, of equal length (n1 = n2 = . . . = nk = n/k), is that the delay,

at least at the decoder, is reduced from n to n/k, because the decoder is causal in the level of

segments of length n/k. The following questions now arise: Is there any inherent penalty, in terms

of performance, for this ensemble of reduced delay decoding codes? If so, how can we minimize

this penalty? If not, how should we choose the design parameters (i.e., ni and Ri, i = 1, . . . , k, for

a given overall average rate R) such that this code will ‘behave’ like a full block code of length n?

For simplicity, let us return to the case k = 2. For a given R and n, we have two degrees of

freedom: the choices of R1 and n1 (which will then dictate R2 and n2). Is it better to choose

R1 > R2 or R1 ≤ R2, if at all it makes any difference? A similar question can be asked concerning

n1 and n2. The answer depends, of course, on our figure of merit. Obviously, if one is interested

only in the asymptotic distortion, the question becomes uninteresting, because then by choosing

two independent codes3 for the two parts, both at rate R, the overall distortion will be given by

the distortion–rate function, D(R), just like that of the full unstructured code. For a given n,

of course, the redundancies will correspond to the shorter blocks n1 and n2, but this is a second

order effect. Here, we choose to examine performance in terms of the characteristic function of the

overall distortion, E[exp{−s · distortion}]. This is, of course, a much more informative figure of

merit than the average distortion, because in principle, it gives information on the entire probability

distribution of the distortion. In particular, it generates all the moments of the distortion by taking

derivatives, and it is useful in deriving Chernoff bounds on probabilities of large deviations events

concerning the distortion. In the context of the analogy with statistical physics and the GREM,

this characteristic function can easily be related to the partition function whose Hamiltonian is

given by the distortion.

2Note that this is different from using the same second–stage codebook for all first–part codewords, in which case,
this is just a combination two codebooks of length n1 and n2, operating independently.

3c.f. footnote no. 2.
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It turns out that the characteristic function of the distortion behaves in a rather surprisingly

interesting manner and with a direct relation to the GREM. For R1 < R2, when the corresponding

GREM has k = 2 phase transitions, the characteristic function of the distortion behaves like that

of two independent block codes of lengths n1 and n2 and rates R1 and R2, thus the dependency

between the two parts of the code is not exploited in terms of performance. For R1 > R2, which

is the case where the analogous GREM has only one phase transition (and behaves exactly like

the ordinary REM, which is parallel to an ordinary random block code with no structure), the

characteristic function behaves like that of a full unstructured optimum block code at rate R across

a certain interval of small s, but beyond a certain point, it becomes inferior to that of a full code.

For R1 = R2 = R, it behaves like the unstructured code for the entire range of s ≥ 0, but then one

might as well use two independent block codes (and reduce the search complexity at the encoder

from enR to 2enR/2). The choices of n1 and n2 are immaterial in that sense, as long as they both

grow linearly with n. Thus, the conclusion is that it is best to use R1 = R2, but if communication

protocol constraints dictate different rates at different segments,4 then performance is better when

R1 > R2 than when R1 < R2. These results can be extended to the case of k stages.

A parallel analysis can be applied to analogous ensembles of (reduced delay) channel encoders

of block length n = n1 +n2 (for the case k = 2), which have a similar tree structure: Here, the first

n1 channel letters of each block depend only on the first n1R1 information bits, whereas the other

n2 channel symbols depend on the entire information vector of length n1R1 + n2R2. The random

codebook is again drawn hierarchically in the same manner as before. If the code performance is

judged in terms of the error exponent, then once again, the choice R1 ≥ R2 is always better than

the choice R1 < R2. Here, unlike the source coding problem, there is an additional consideration:

There are two types of incorrect codewords that are competing with the correct one in the decoding

process: those for which the first n1 channel inputs agree with those of the correct codeword (the

first segment is the same) and those for which this is not the case. In this case, R2 has to be chosen

sufficiently small so that the error term contributed by erroneous codewords of the first kind would

not dominate the probability of error. Considering the case n1 = n2 = n/2, if the overall average

rate is not too small, it is possible to choose R1 and R2 so that the error exponent of this ensemble

4For example, this can be the case if there are additional users in the system and the bandwidth allocation for each
user changes in a dynamical manner, or if different parts of the encoded information are transmitted via separate
links with different capacities.
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of codes is not worse than that of an ordinary random code with no structure. This idea can be

extended to k stages in a straightforward manner. In fact, we propose a systematic procedure to

allocate rates to the different stages in a way that guarantees that the error exponent would be

at least as good as that of the classical random coding error exponent pertaining to an ordinary

random code at rate R.

The outline of this paper is as follows. In Section 2, a few notation conventions are described.

In Section 3, we provide some more detailed background in statistical physics, with emphasis on

the REM and the GREM. Finally, in Section 4, we present our main results on hierarchical code

ensembles of the type described above, along with their relationship to the GREM. Readers who are

not interested in the relationship with statistical physics (although this is one of the main points in

the paper) may skip Section 3 and ignore, in Section 4, the comments on the statistical mechanical

aspects, all this without essential loss of continuity.

2 Notation Conventions

Throughout this paper, scalar random variables (RV’s) will be denoted by capital letters, like X

and Y , their sample values will be denoted by the respective lower case letters, and their alphabets

will be denoted by the respective calligraphic letters. A similar convention will apply to random

vectors and their sample values, which will be denoted with the same symbols in the boldface font.

Thus, for example, X will denote a random n-vector (X1, . . . ,Xn), and x = (x1, ..., xn) is a specific

vector value in X n, the n-th Cartesian power of X .

Sources and channels will be denoted generically by the letters P and Q. Specific letter prob-

abilities corresponding to a source Q will be denoted by the corresponding lower case letters, e.g.,

q(x) is the probability of a letter x ∈ X . A similar convention will be applied to the channel P and

the corresponding transition probabilities, p(y|x), x ∈ X , y ∈ Y. The expectation operator will be

denoted by E{·}.

The cardinality of a finite set A will be denoted by |A|. For two positive sequences {an} and

{bn}, the notation an
·
= bn means that an and bn are asymptotically of the same exponential

order, that is, limn→∞
1
n ln an

bn
= 0. Similarly, an

·
≤ bn means that lim supn→∞

1
n ln an

bn
≤ 0, etc.

Information theoretic quantities like entropies and mutual informations will be denoted following
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the usual conventions of the Information Theory literature.

3 Background

In this section, we provide some basic background in statistical physics, focusing primarily on the

REM, along with its relevance to ordinary ensembles of source and channel block codes, and then

we extend the scope to the GREM.

3.1 General

Consider a physical system with a large number n of particles, which can be in a variety of ‘mi-

crostates’ pertaining to the various combinations of the microscopic physical states (characterized

by position, momentum, spin, etc.) that these particles may have. For each such microstate of the

system, which we shall designate by a vector x, there is an associated energy, given by an energy

function (Hamiltonian) E(x). One of the most fundamental results in statistical physics (based on

the law of energy conservation and the basic postulate that all microstates of the same energy level

are equiprobable) is that when the system is in equilibrium, the probability of a microstate x is

given by the Boltzmann distribution

P (x) =
e−βE(x)

Z(β)
(1)

where β is the inverse temperature, that is, β = 1/T , T being temperature,5 and Z(β) is the

normalization constant, called the partition function, which is given by

Z(β) =
∑

x

e−βE(x)

or

Z(β) =

∫

dxe−βE(x),

depending on whether x is discrete or continuous. The role of the partition function is by far

deeper than just being a normalization factor, as it is actually the key quantity from which many

macroscopic physical quantities can be derived, for example, the free energy is F = − 1
β lnZ(β),

5More precisely, β = 1/(kT ), where k is Boltzmann’s constant, but following the common abuse of the notation,
we redefine T ← kT as temperature (in units of energy).
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the average internal energy (i.e., the expectation of E(x) where x drawn is according (1)) is given

by the negative derivative of lnZ(β), the heat capacity is obtained from the second derivative, etc.

One of the important examples of such a multi–particle physical system is that of a magnetic

material, in which each molecule has a magnetic moment, a three–dimensional vector which tends

to align with the magnetic field felt by that molecule. In addition to the influence of a possible

external magnetic field, there is also an effect of mutual interactions between the magnetic moments

of various (neighboring) molecules. Quantum mechanical considerations dictate that the set of

possible configurations of each magnetic moment (spin) is discrete: in the simplest case, it has

only two possible values, which we shall designate by +1 (spin up) and −1 (spin down). Thus,

a spin configuration, i.e., the vector of spins of n molecules, is designated by a binary vector

x = (x1, . . . , xn), where each component xi takes values in {−1,+1} according to the spin of the

i–th molecule, i = 1, 2, . . . , n. When the spins of a certain magnetic material tend to align in the

same direction, the material is called ferromagnetic, and a customary model of the Hamiltonian,

the Ising model, is given by

E(x) = −J
∑

i,j

xixj −B

n
∑

i=1

xi (2)

where the in first term, pertaining to the interaction, J > 0 describes the intensity of the interaction

with the summation being defined over pairs of neighboring spins (depending on the geometry of

the problem), and the second term is associated with an external magnetic field (proportional to) B.

When J < 0, the material is antiferromagnetic, namely, neighboring spins ‘prefer’ to be antiparallel.

More general models allow interactions not only with immediate neighbors, but also more distant

ones, and then there are different strengths of interaction, depending on the distance between the

two spins. In this case, the first term is replaced, by the more general form −∑

i,j Jijxixj, where

now the sum can be defined over all possible pairs {(i, j)}.6 Here, in addition to the ferromagnetic

case, where all Jij > 0, and the antiferromagnetic case, where all Jij < 0, there is also a situation

where some Jij are positive and others are negative, which is the case if a spin glass. Here, not all

spin pairs can be in their preferred mutual position (parallel/antiparallel), thus the system may be

frustrated.

To model situations of disorder, it is common to model Jij as random variables (RV’s) with,

6Moreover, the interaction term may be generalized to include also summations over triples of spins, quadruples,
etc., but we will limit the discussion to pairs.
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say, equal probabilities of being positive or negative. For example, in the Edwards–Anderson (EA)

model [34], Jij are taken to be i.i.d. zero–mean Gaussian RV’s when i and j are neighbors and zero

otherwise. In the Sherrington–Kirkpatrick (SK) model [35], all {Jij} are i.i.d. zero–mean Gaussian

RV’s. Thus, the system has two levels of randomness: the randomness of the interaction coefficients

and the randomness of the spin configuration given the interaction coefficients, according to the

Boltzmann distribution. However, the two sets of RV’s are normally treated differently. The

random coefficients are considered quenched RV’s in the terminology of physicists, namely, they

are considered fixed in the time scale at which the spin configuration may vary. This is analogous

to the situation of coded communication in a random coding paradigm: A randomly drawn code

should normally be thought of as a quenched entity, as opposed to the randomness of the source

and/or the channel.

3.2 The REM

In [21],[22],[23], Derrida took the above described idea of randomizing the (parameters of the)

Hamiltonian to an extreme, and suggested a model of spin glass with disorder under which the

energy levels {E(x)} are simply i.i.d. RV’s, without any structure in the form of (2) or its above–

described extensions. In particular, in the absence of a magnetic field, the 2n RV’s {E(x)} are taken

to be zero–mean Gaussian RV’s, all with variance nJ2/2, where J is a parameter.7 The beauty of

the REM is in that on the one hand, it is very easy to analyze, and on the other hand, it consists

of sufficient richness to exhibit phase transitions.

The basic observation about the REM is that for a typical realization of the configurational

energies {E(x)}, the number of configurations with energy about E (i.e., between E and E + dE),

N(E), is proportional (up to sub–exponential terms in n) to 2n · e−E2/(nJ2), as long as |E| ≤ E0
∆
=

nJ
√

ln 2, whereas energy levels outside this range are typically not populated by spin configurations

(N(E) = 0), as the probability of having at least one configuration with such an energy decays

exponentially with n. Thus, the asymptotic (thermodynamical) entropy per spin, which is defined

by

S(E) = lim
n→∞

lnN(E)

n
7The variance scales linearly with n to match the behavior of the Hamiltonian (2) with a limited number of

interacting neighbors and random interaction parameters, which has a number of independent terms that is linear in
n.
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is given by

S(E) =







ln 2 −
(

E
nJ

)2 |E| < E0

0 |E| = E0

−∞ |E| > E0

The partition function of a typical realization of a REM spin glass is then

Z(β)
·
=

∫ E0

−E0

dE ·N(E) · e−βE

·
=

∫ E0

−E0

dE · enS(E) · e−βE (3)

whose exponential growth rate,

φ(β)
∆
= lim

n→∞

lnZ(β)

n
,

behaves according to

φ(β) = max
|E|≤E0

[

S(E) − β · E
n

]

= max
|E|≤E0

[

ln 2 −
(

E

nJ

)2

− βJ ·
(

E

nJ

)

]

. (4)

Solving this simple optimization problem, we find that φ(β) is given by

φ(β) =

{

ln 2 + β2J2

4 β ≤ 2
J

√
ln 2

βJ
√

ln 2 β > 2
J

√
ln 2

which means that the asymptotic free energy per spin, a.k.a. the free energy density, which is

obtained by

F (β) = −φ(β)

β
,

is given by (cf. [5, Proposition 5.2]):

F (β) =

{

− ln 2
β − βJ2

4 β ≤ 2
J

√
ln 2

−J
√

ln 2 β > 2
J

√
ln 2

Thus, the free energy density is subjected to a phase transition at the inverse temperature β0
∆
=

2
J

√
ln 2. At high temperatures (β < β0), which is referred to as the paramagnetic phase, the partition

function is dominated by an exponential number of configurations with energy E = −nβJ2/2 and

the entropy grows linearly with n. When the system is cooled to β = β0 and beyond, which is

the glassy phase, the system freezes but it is still in disorder – the partition function is dominated

by a subexponential number of configurations of minimum energy E = −E0. The entropy, in this
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case, grows sublinearly with n, namely the entropy per spin vanishes, and the free energy density

no longer depends on β. Further details about the REM can be found in [5] and the references

mentioned in the Introduction.

3.3 The REM and Random Code Ensembles

As described in [5], there is an interesting analogy between the REM and the partition function

pertaining to finite temperature decoding [18] of ensembles of channel block codes (see also [26]).

In particular, consider a codebook C of M = enR binary codewords of length n, x1, . . . ,xM ,

to be used across a binary symmetric channel (BSC) with crossover probability p. Given a binary

vector y at the channel output, consider the generalized posterior parametrized by β:

Pβ(x|y) =
P β(y|x)

∑

x′∈C P
β(y|x′)

=
e−βBdH (x,y)

∑

x′∈C e
−βBdH (x′,y)

∆
=

e−βBdH (x,y)

Z(β|y)
, (5)

where B
∆
= ln 1−p

p , dH(x,y) is the Hamming distance between x and y, and where the real posterior

is obtained, of course, for β = 1. This is identified as a Boltzmann distribution whose energy

function (which depends on the given y) is E(x) = BdH(x,y). As described in [5] and [26], there

are a few motivations for introducing the temperature parameter β here. First, it allows a degree

of freedom in case there is some uncertainty regarding the channel noise level (small β corresponds

to high noise level). Second, it is inspired by the ideas behind simulated annealing techniques:

by sampling from Pβ while gradually increasing β (cooling the system), the minima of the energy

function (ground states) can be found. Third, by applying symbolwise MAP decoding, i.e., decoding

the `–th symbol of x as argmaxa Pβ(x` = a|y), where

Pβ(x` = a|y) =
∑

x∈C: x`=a

Pβ(x|y),

we obtain a family of finite–temperature decoders parametrized by β, where β = 1 corresponds

to minimum symbol error probability (with respect to the true channel) and β → ∞ corresponds

to minimum block error probability. As in [5], we will distinguish between two contributions of
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Z(β|y): One is Zc(β|y) = e−βBdH(x0,y), where x0 is the actual codeword transmitted, and the

other is Ze(β|y) =
∑

x′∈C\x0
e−βBdH (x′,y), pertaining to all incorrect codewords. The former is

typically about e−βBnp since dH(x0,y) concentrates about np. We next focus on the behavior of

Ze(β|y).

To this end, consider a random selection of the code C, where every bit of every codeword is

drawn by an independent fair coin tossing. For a given y, the energy levels {BdH(x,y)} pertaining

to all incorrect codewords are RV’s (exactly like in the REM) because of the random selection of

these codewords. Now, the total number of correct codewords is about enR, and the probability

that a randomly chosen x would fall at distance d = nδ from y is exponentially en[h(δ)−ln 2], where

h(δ) = −δ ln δ − (1 − δ) ln(1 − δ),

then the typical number of codewords at normalized distance δ is about

N(δ) = en[R+h(δ)−ln 2]

as long as R + h(δ) − ln 2 ≥ 0 and N(δ) = 0 when R+ h(δ) − ln 2 < 0. Thus, letting δ(R) denote

the small solution to the equation R + h(δ) − ln 2 = 0 (the Gilbert–Varshamov distance), we find

that, with a clear analogy to the REM, the corresponding thermodynamical entropy is given by

S(δ) =







R+ h(δ) − ln 2 δ(R) < δ < 1 − δ(R)
0 δ = δ(R) or δ = 1 − δ(R)
−∞ δ < δ(R) or δ > 1 − δ(R)

(6)

Accordingly, the partition function Ze(β|y) of a typical code is given by

Ze(β|y)
·
=

1−δ(R)
∑

δ=δ(R)

en[R+h(δ)−ln 2] · e−βBnδ ·
= exp{n[R − ln 2 + max

δ(R)≤δ≤1−δ(R)
(h(δ) − βBδ)]}, (7)

and the free energy density pertaining to Ze behaves according to

Fe(β) =

{

ln 2−R−h(pβ)
β +Bpβ β ≤ β0

Bδ(R) β > β0

(8)

where

pβ =
pβ

pβ + (1 − p)β

and

β0 =
ln[(1 − δ(R))/δ(R)]

B
,
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and where, again, the first line of Fe(β) corresponds to the paramagnetic phase with exponentially

many codewords at distance (energy) npβ from y, and the second line is the glassy phase with

subexponentially many codewords at distance nδ(R). In [26], these free energies are related to

random coding exponents as mentioned in the Introduction.

By the same token, in rate–distortion source coding, if one defines the partition function as

Z(β) =
∑

x̂∈C

e−βdH(x,x̂)

with x being the source vector, {x̂} being the reproduction codevectors, and dH(x,y) being the

Hamming distortion measure, then the same analysis takes place. In the sequel, we will motivate

this definition of the partition function of rate–distortion coding and use it.

3.4 The GREM

As we have seen, the REM is an extremely simple model to analyze, but its simplicity is also

recognized as a drawback from the aspect of faithfully modeling a spin glass. The reason for

this is the lack of structure which is needed to allow dependencies between energy levels of spin

configurations that are closely related: For example, if x and x′ differ only in a single component,

it is conceivable that the respective energies would be close, as suggested by (2). To this end, as

described in the Introduction, Derrida proposed a generalized version of the REM – the GREM,

which introduces dependencies between configurational energies in an hierarchical fashion. We next

briefly review the GREM.

A GREM with k levels can best be thought of as a tree with 2n leaves and depth k, where each

leaf represents one spin configuration. This tree is defined by k positive parameters, α1, . . . , αk,

which are all in the interval (1, 2), and whose product,
∏k

i=1 αi, equals 2. The construction of this

tree is as follows: The root of the tree is connected to αn
1 distinct nodes,8 which will be referred to

as first–level nodes. Each first–level node is in turn connected to αn
2 distinct second–level nodes,

thus a total of (α1α2)
n second–level nodes. In the case k = 2, these second–level nodes are the

leaves of the tree and α1α2 = 2. If k > 2, the process continues, and each second–level node is

connected to αn
3 third–level nodes, and so on. At the last step, each one of the

∏k−1
i=1 α

n
i nodes

8We are approximating αn
1 , αn

2 , . . . αn
k by integers.
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at level k − 1 is connected to αn
k distinct leaves, thus a total of

∏k
i=1 α

n
i = 2n leaves. The REM

corresponds to the degenerate special case where k = 1.

The random selection of energy levels for the GREM is defined by another set of k parameters,

a1, a2, . . . , ak, which are all positive reals that sum to unity. The random selection is carried out

in the following manner: For each one of the
∏i

j=1 α
n
j branches emanating from (i − 1)–th level

nodes and connecting them to i–th level nodes (i = 1, 2, . . . , k) in the tree, we randomly choose an

independent RV, henceforth referred to as a branch energy, which is a zero mean, Gaussian RV with

variance nJ2ai/2, where J is like in the REM and where {ai}k
i=1 are as described above. Finally,

the energy level of a given configuration is given by the sum of branch energies along the path

from the root to the leaf that represents this configuration. Thus, the total energy, is the sum of k

independent zero–mean Gaussian RV’s with variances nJ2ai/2, and so, it is zero–mean Gaussian

RV with variance nJ2/2, exactly like in the REM. However, now the energy levels of different

configurations may be clearly correlated if the paths from the root to their corresponding leaves

share some common branches before they split. The degree of statistical dependence is according

to their distance along the tree. For example, if two configurations are first–degree siblings, i.e.,

they share the same parent node at level k − 1, then all their energy components are the same

except their last branch energies, which are independent. On the other extreme, if their paths are

completely distinct, then their energies are independent.

The GREM for k = 2 is analyzed in [27]. We next present the derivation for this case (with a

few more details than in [27]). Let α1 and α2 be positive numbers whose product equals 2, and let

a1 and a2 be positive numbers whose sum equals 1. Now, every configuration with energy E has

some first–level branch energy ε and second–level branch energy E − ε. For a typical realization of

this GREM, the number of first–level branches with energy about ε is exponentially

N1(ε)
·
= αn

1 · exp

{

− ε2

nJ2a1

}

= exp

{

n

[

lnα1 −
1

a1

( ε

nJ

)2
]}

,

provided that the expression in the square brackets is non–negative, i.e., |ε| ≤ ε0
∆
= nJ

√
a1 lnα1,

and N1(ε) = 0 otherwise. Therefore, the number of configurations with total energy about E is

exponentially

N2(E)
·
=

∫ ε0

−ε0

dε ·N1(ε) · exp

{

n

[

lnα2 −
1

a2

(

E − ε

nJ

)2
]}

,
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whose exponential rate (the entropy per spin) is given by

S(E) = lim
n→∞

lnN2(E)

n
= max

|ε|≤ε0

[

lnα1 −
1

a1

( ε

nJ

)2
+ lnα2 −

1

a2

(

E − ε

nJ

)2
]

.

Note that S(E) is an even function, non–increasing in |E|, and it should be kept in mind that

beyond the value of |E| at which S(E) vanishes, denote it by Ê, we have S(E) = −∞ since N2(E)

is typically zero (as was the case with the REM). We shall get back to this point shortly, but for

a moment, let us ignore it and solve the maximization problem pertaining to the above expression

of S(E), as is. Denoting the resulting maximum by S̃(E) (to distinguish from S(E), where Ê and

the jump to ∞ are taken into account), we get:

S̃(E) =

{

ln 2 −
(

E
nJ

)2 |E| ≤ E1

lnα2 − 1
a2

(

E
nJ −

√
a1 lnα1

)2 |E| > E1

(9)

where E1
∆
= nJ

√

(lnα1)/a1. Taking now into account the above mentioned observation concerning

the criticality of the point |E| = Ê, we have to distinguish between two cases. The first is the

case where Ê < E1, namely, the first line of the above expression of S̃(E) vanishes for |E| smaller

than E1. The first line vanishes for |E| = E0 = nJ
√

ln 2, so the condition for this case to hold is

E0 ≤ E1, or equivalently, (lnα1)/a1 ≥ ln 2. In this case, we then have:

S(E) =







ln 2 −
(

E
nJ

)2 |E| ≤ E0

0 |E| = E0

−∞ |E| > E0

which is exactly the same behavior as in the ordinary REM (k = 1). Consequently, the exponential

rate of the partition function, which is given by

φ(β) = lim
n→∞

lnZ(β)

n
= max

E

[

S(E) − β
E

n

]

,

is also the same as in the REM, namely,

φ(β) =

{

ln 2 + β2J2

4 β < β0

βJ
√

ln 2 β ≥ β0

where β0 is the above defined critical inverse temperature of the REM (see Subsection 3.2).

We next consider the complementary case where (lnα1)/a1 < ln 2. In this case, the expression

of S(E) should take into account the fact that it vanishes (and then becomes −∞) according to
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the second line of (9). This amounts to:

S(E) =



















ln 2 −
(

E
nJ

)2 |E| ≤ E1

lnα2 − 1
a2

(

E
nJ −

√
a1 lnα1

)2
E1 ≤ |E| < E2

0 |E| = E2

−∞ |E| > E2

(10)

where E2
∆
= nJ(

√
a1 lnα1 +

√
a2 lnα2). Before we compute the corresponding partition function,

we make the following observation:

ln 2 =
lnα1 + lnα2

a1 + a2
≤ max

i=1,2

lnαi

ai
,

where the inequality follows from the well–known inequality [
∑m

i=1 ai]/[
∑m

i=1 bi] ≤ max1≤i≤m ai/bi

for positive {ai} and {bi} [36, Lemma 1]. In the same manner, using the similar inequality

[
∑m

i=1 ai]/[
∑m

i=1 bi] ≥ min1≤i≤m ai/bi, we get

ln 2 ≥ min
i=1,2

lnαi

ai
.

It follows then that the condition (lnα1)/a1 < ln 2 is equivalent to the condition (lnα1)/a1 < ln 2 <

(lnα2)/a2. Defining

βi =
2

J

√

lnαi

ai
, i = 1, 2

we then have β1 < β0 < β2. Let us examine how φ(β) behaves as β grows from zero to infinity. For

small enough β, the achiever of φ(β), call it E∗, is still smaller in absolute value than E0, and then

it is obtained from equating to zero the derivative of [S(E)−βE/n], with S(E) being according to

first line of (10), thus E∗ = −n
2βJ

2. This remains true as long as n
2βJ

2 ≤ E1, which means β ≤ β1.

In this case, the partition function is dominated by exp{n[lnα1 − a1β
2J2/4]} first–level branches

with energy ε∗ = −a1

2 nβJ
2, each followed by exp{n[lnα1 − a1β

2J2/4]} second–level branches with

energy E∗− ε∗ = −a2

2 nβJ
2, and this is a pure paramagnetic phase. As β continues to grow beyond

β1, but is still below β2, the partition function is dominated by a subexponential number of first–

level branches of energy −nJ
√
a1 lnα1 followed by exp{n[lnα1 − a1β

2J2/4]} second–level branches

with energy E∗ + nJ
√
a1 lnα1. This is a “semi–glassy” phase, where the first–level branches are

already glassy but the second–level ones are still paramagnetic. As β exceeds β2, this becomes a

pure glassy phase where the partition function is dominated by a subexponential number of first–

level branches with energy −nJ
√
a1 lnα1 and a subexponential number of second–level branches
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with energy −nJ
√
a2 lnα2. Accordingly, the function φ(β) exhibits two phase transitions at inverse

temperatures β1 and β2:

φ(β) =











ln 2 + β2J2

4 β < β1

βJ
√
a1 lnα1 + lnα2 + a2β2J2

4 β1 ≤ β < β2

βJ(
√
a1 lnα1 +

√
a2 lnα2) β ≥ β2

Again, the free energy density is obtained by F (β) = −φ(β)/β.

This different behavior of the GREM for the two different cases will be pivotal to our later

discussion on the parallel behavior of ensembles of codes. When there is a general number k of

levels, the above analysis of the GREM becomes, of course, more complicated and there are more

cases to consider, but the concepts remain the same. There can be up to k phase transitions, but

there can be less, depending on the parameters of the model {ai, αi}k
i=1. For details, the reader is

referred to [28],[29].

4 Relations Between GREM and Hierarchical Code Ensembles

In analogy to the relationship between the REM and ordinary ensembles of block codes, as was

described in Subsection 3.3, it is natural to wonder about the possibility of similar relationships

between the GREM and more general ensembles of block codes, and to ask whether the fact that

the GREM exhibits different types of behavior (as we have seen in Subsection 3.4), has implications

on the behavior of these ensembles of codes. Since the GREM is defined by an hierarchical (tree)

structure, it is plausible to expect that if a relationship to coding exists, it will be in the context of

ensembles of codes which have hierarchical structures as well. Hierarchically structured ensembles

of codes are encountered in numerous applications in Information Theory, including block–causal

tree–structured source codes and channel codes of the type described informally in the Introduction,

successive refinement source codes [37],[38],[39], codes for the broadcast channel [40, Chap. 15.6]

and codes based on binning techniques (see, e.g., [41],[42],[43]), just to name a few. In this paper,

we confine our attention to the first above–mentioned class of codes.

The fact that the GREM behaves, in some situations, like the REM, and the REM is analogous

to an ordinary block code without any hierarchical structure (cf. 3.3), may hint that in the parallel

situations in the realm of our coding problem, a typical code from the hierarchical ensemble will

perform essentially as well as a typical (good) code without the hierarchical structure. In these
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situations then (which can be imposed by a clever choice of certain design parameters), it would be

interesting to explore the question whether we may enjoy the benefit that the hierarchical structure

buys us (in our case, reduced delay) without essentially paying in terms of performance. As we

show in this section, the answer to this question turns out to be affirmative to a large extent, both

in the source coding setting and in the channel coding setting.

Finally, in closing this introductory part of Section 4, a more technical comment is in order: As

in Subsection 3.3, throughout the sequel, we confine ourselves to the memoryless binary symmetric

source (BSS) with the Hamming distortion measure, in the context of source coding, and to the

binary symmetric channel (BSC) in the context of channel coding. The random coding distribution

in both problems will be i.i.d. and uniform, i.e., each bit of each codeword will be drawn by

independent fair coin tossing. Also, we will focus mostly on the case k = 2. The reason for this is

that our purpose is this paper is more to demonstrate certain concepts, and so, we prefer to slightly

sacrifice generality at the benefit of simplicity, and so, better readability, and a smaller amount of

space. Having said that, all the derivations can be extended to apply to more general memoryless

sources, channels, and random coding distributions (as was done in [26]), as well as to a general

number k of stages.

4.1 Lossy Source Coding

Consider the BSSX1,X2, . . ., Xi ∈ {0, 1} (i – positive integer) and the Hamming distortion measure

between two binary n–vectors x and x̂:

dH(x, x̂) =

n
∑

i=1

dH(xi, x̂i),

where dH(a, b) = 1 if a 6= b and dH(a, b) = 0 if a = b, a, b ∈ {0, 1}. Before discussing ensembles

of codes with hierarchical structures, let us first confine attention to an ordinary ensemble with no

structure.

Consider a random selection of a codebook of size M = enR (R being the coding rate in nats

per source bit), C = {x̂1, . . . , x̂M}, x̂i ∈ {0, 1}n, i = 1, 2, . . . ,M , where each component of each

codeword is drawn randomly by an independent fair coin tossing. For a given source vector x and

for a given such randomly drawn codebook C, let ∆(x) = minx̂∈C dH(x, x̂) denote the distortion

associated with encoding x.
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Instead of examining the expected distortion, E{∆(X)}, w.r.t. both the source and the random

codebook selection, as is traditionally done, we will concern ourselves with a more refined and more

informative objective function, which is the characteristic function of ∆(X), namely,

Ψn(s,R) = E{exp[−s∆(X)]},

or in particular, its exponential rate

ψ(s,R) = − lim
n→∞

ln Ψn(s,R)

n

focusing on the range s ≥ 0. As is well known, the characteristic function provides information

not only on the expected distortion, E{∆(X)}, but also on every moment of ∆(X) (by taking

derivatives of Ψn(s,R) at s = 0). It is also intimately related to the tail behavior (i.e., large

deviations probabilities) of the distribution of ∆(X) via Chernoff bounds.

In order to analyze Ψn(s,R) and then ψ(s,R), first, for an ordinary ensemble, and later for

an hierarchical structured ensemble, it is convenient to define, for given x and C, the partition

function9

Z(β|x) =
∑

x̂∈C

e−βdH (x,x̂). (11)

The function Ψn(s,R) is obtained from the partition function by

Ψn(s,R) = E{ lim
θ→∞

Z1/θ(s · θ|X)} = lim
θ→∞

E{Z1/θ(s · θ|X)}.

In the definition of the ensemble behavior of ψ(s,R), there are now two options. The first is to think

of the above defined expectation of Z1/θ(sθ|X) as being taken w.r.t. both the source X and the

code ensemble {C}, and then to define ψ(s,R) as above. The second option is to define the above

expectation of Z1/θ(sθ|X) w.r.t. the source only, while keeping C fixed, and then to define ψ(s,R)

as − limn→∞ E{ln Ψn(s,R)}/n, where the latter expectation is across the ensemble of codebooks

{C}. The difference between meanings of the two approaches is in the point of view: In the former

approach the randomness of both X and C are treated on equal grounds, and this makes sense

if X and C vary on the same time scale (e.g., when the codebook varies frequently according to

some secret key). In the parallel discussion on spin glasses (cf. Section 3.1), this is analogous to

9For a given x, the partition function Z(β|x) induced by a typical codebook is exactly the same as in (7), with
the minor modification that here β is not scaled by B as in (7).
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the double randomness of both the spin configuration and the interaction parameters, and in the

language of statistical physicists, this is called annealed averaging. The second approach, which

physicists refer to as quenched averaging, fits better the paradigm where the code C is held fixed

over many realizations of the source X. In the Information Theory literature, it is more customary

to adopt an approach analogous to annealed averaging10 and so, we shall do the same here.

4.1.1 The Ordinary Ensemble

Let us begin the with the calculation of the annealed version of ψ(s,R), first, for a an ordinary

non–hierarchical code:

E{Z1/θ(sθ|X)} = E















∑

x̂∈C

exp(−sθdH(X, x̂))





1/θ










= E







[

n
∑

d=0

N(d) · e−sθd

]1/θ






·
= E

{

n
∑

d=0

N1/θ(d) · e−sd

}

=

n
∑

d=0

E{N1/θ(d)} · e−sd (12)

where N(δ) is the number of codewords whose normalized Hamming distance from X is exactly δ,

and where the third (exponential) equality holds, even before taking the expectation, because the

summation over d consists of a subexponential number of terms, and so, both [
∑

dN(d)e−sθd]1/θ

and
∑

dN
1/θ(d)e−sd are of the same exponential order as maxdN

1/θ(d)e−sd = [maxdN(d)e−sθd]1/θ.

This is different from the original summation over C which contains an exponential number of terms.

Now, as is shown in Subsection A.1 of the Appendix (see also [44]),

E{N1/θ(nδ)} ·
=

{

en[R+h(δ)−ln 2] δ < δ(R) or δ > 1 − δ(R)

en[R+h(δ)−ln 2]/θ δ(R) ≤ δ ≤ 1 − δ(R)
(13)

10In particular, source and channel random coding exponents are normally defined as exponential rates of ensemble–
average error probabilities, and not as ensemble–average exponents of error probabilities.

20



where δ(R) is defined (cf. Subsection 3.3) as the small solution to the equation R+h(δ)− ln 2 = 0,

which is also the distortion–rate function of the BSS. This gives

E{Z1/θ(sθ|X)} ·
=

∑

δ<δ(R)

en[R+h(δ)−ln 2] · e−sδn +
∑

δ≥δ(R)

en[R+h(δ)−ln 2]/θ · e−sδn

∆
= A+B (14)

Now, as θ → ∞, the term B tends to
∑

δ≥δ(R) e
−sδn, which is of the exponential order of e−nsδ(R).

The term A, which is independent of θ, is of the exponential order of e−nu(s,R), where

u(s,R)
∆
= ln 2 −R− max

δ≤δ(R)
[h(δ) − sδ] =

{

sδ(R) s ≤ sR

v(s,R) s > sR

where

sR
∆
= ln

[

1 − δ(R)

δ(R)

]

.

and

v(s,R)
∆
= ln 2 −R+ s− ln(1 + es).

Since v(s,R) never exceeds sδ(R) for s > sR, the dominant term is A, and therefore, for the

ordinary block code ensemble, we have:

ψ(s,R) = u(s,R).

It is not difficult to show also, using sphere covering considerations, that u(s,R) is the best achiev-

able performance in terms of the exponential rate of the characteristic function of the distortion.

The function u(s,R) is depicted qualitatively in Fig. 1.

4.1.2 The Hierarchical Ensemble

We proceed to define the ensemble of hierarchical codes and to analyze its performance with relation

to the GREM. Let n = n1 + n2, where n, n1 and n2 are positive integers. For a given R1,

consider a random selection of a codebook of size M1 = en1R1 , C1 = {x̂1, . . . , x̂M1
}, x̂i ∈ {0, 1}n1 ,

i = 1, 2, . . . ,M1, where each component of each codeword is drawn randomly by an independent

fair coin tossing. Next, given R2, for each i = 1, 2, . . . ,M1, consider a similar random selection of

a codebook of size M2 = en2R2 , C2(i) = {x̃i,1, . . . , x̃i,M2
}, x̃i,j ∈ {0, 1}n2 , j = 1, 2, . . . ,M2.
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s

slope δ(R)

ln 2 − R

u(s, R)

Figure 1: u(s,R) as a function of s for fixed R.

The encoder works as follows: Given a source vector x ∈ {0, 1}n, it finds a pair of indices (i, j),

i = 1, 2, . . . ,M1, j = 1, 2, . . . ,M2, such that the distortion between x and the concatenation of the

codewords (x̂i, x̃i,j) is minimum. The index i is encoded by n1R1 nats and the index j (given i) is

encoded by n2R2 nats, thus a total of nR
∆
= n1R1 + n2R2 nats, where R is the overall rate, given

by

R = λR1 + (1 − λ)R2, λ =
n1

n
.

The decoder can, of course, generate the first–stage reproduction x̂i based on the first n1R1 nats

received, without having to wait for the n2R2 following ones. The extension of this hierarchical

structure to a larger number of stages k should be obvious. In particular, as mentioned in the

Introduction, if k divides n and the n–block is divided to k sub–blocks of length n/k each, then

the decoder can generate chunks of the reproduction at a reduced delay of n/k instead of n.

The analogy of this structure with the GREM should also be obvious. The code has a tree

structure and the configurational energies of the GREM play the same role as the distortion here,

as the overall distortion is the cumulative sum of the per–stage distortions. Also, the coding rate

Ri here plays the same role as lnαi of the GREM (i = 1, 2). Thus, it is natural to expect that the

partition function Z(β|x) of this code ensemble would behave analogously to that of the GREM,

22



as we shall see next.

For the sake of simplicity, we return to the case k = 2, with the understanding that our

derivations can be extended without any essential difficulties to a general k. Before analyzing the

characteristic function of the distortion along with its exponential rate, it is instructive to examine

the partition function Z(β|x) for a given x and address the analogy with that of the GREM.

For a given x and a typical code in the ensemble, there are N1(δ1)
·
= en1[R1+h(δ1)−ln 2] first-stage

codewords {x̂} at distance n1δ1 from the vector formed by the first n1 components of x, provided

that δ1 ≥ δ(R1) and N1(δ1) = 0 otherwise. For each one of these first–stage codewords, there are

en2[R2+h(δ2)−ln 2] second–stage codewords {x̃} at distance n2δ2 from the vector formed by the last

n2 components of x, provided that δ2 ≥ δ(R2). Thus, the total number of concatenated codewords

{(x̂, x̃)} at distance nδ = n1δ1 + n2δ2 (that is, δ = λδ1 + (1 − λ)δ2) from x is given by

N2(δ)
·
=

1−δ(R1)
∑

δ1=δ(R1)

en1[R1+h(δ1)−ln 2] · en2[R2+h((δ−λδ1)/(1−λ))−ln 2]

·
= exp

{

n max
δ(R1)≤δ1≤1−δ(R1)

[

R+ λh(δ1) + (1 − λ)h

(

δ − λδ1
1 − λ

)

− ln 2

]}

. (15)

Consequently, the exponential growth rate of N2(δ) is given by

S(δ) = max
δ(R1)≤δ1≤1−δ(R1)

[

R+ λh(δ1) + (1 − λ)h

(

δ − λδ1
1 − λ

)

− ln 2

]

.

For large δ, the constraint δ(R1) ≤ δ1 ≤ 1 − δ(R1) is inactive and the achiever of S(δ) is δ1 = δ,

and then

S(δ) = R+ λh(δ) + (1 − λ)h(δ) − ln 2 = R+ h(δ) − ln 2.

If we now gradually reduce δ, the behavior depends on whether we first encounter the value δ =

δ(R1), below which δ1 = δ no longer satisfies the constraint, or the the value δ = δ(R), below which

S(δ) = R + h(δ) − ln 2 vanishes. This in turn depends on whether δ(R1) is larger or smaller than

δ(R), or equivalently, if R1 < R < R2 or R1 ≥ R ≥ R2.

Consider the case R1 ≥ R ≥ R2 first. In this case, δ(R1) ≤ δ(R) ≤ δ(R2), and we have:

S(δ) =







R+ h(δ) − ln 2 δ(R) < δ < 1 − δ(R)
0 δ = δ(R) or δ = 1 − δ(R)
−∞ δ < δ(R) or δ > 1 − δ(R)

(16)
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exactly like in the ordinary, non–hierarchical ensemble (cf. eq. (6)), and then the corresponding

exponential rate of the partition function is as in Subsection 3.3, except that here β is not scaled

by B, i.e., φ(β) = −u(β,R).

The other case is R1 < R < R2, which is equivalent to δ(R1) > δ(R) > δ(R2). Here, in analogy

to the GREM with two phase transitions, we have:

φ(β) =







−v(β,R) β < β(R1)
−λβδ(R1) − (1 − λ)v(β,R2) β(R1) ≤ β < β(R2)
−β[λδ(R1) + (1 − λ)δ(R2)] β > β(R2)

We now identify the first line as the purely paramagnetic phase, the second line – as the “semi–

glassy” phase (where {x̂} are glassy but {x̃} are paramagnetic), and the third line – as the purely

glassy phase. Note that the glassy phase here behaves as if the two parts of the code, at rates R1

and R2, were operating independently, namely, as if {C2(i)}M1

i=1 were all identical, in which case, the

distortion would have been minimized separately over the two segments. We will get back to this

point in the sequel.

We have seen then that the ensemble behaves substantially differently depending on whether

R1 ≥ R2 or R1 < R2. In the former case, the above calculation may indicate that the ensemble

performance is similar to that of an ordinary block code of length n without any structure. We

next carry out a detailed analysis of the characteristic function and its exponential rate, which we

shall denote by ψ(s,R1, R2).

Similarly as before, we first compute E{Z1/θ(sθ|X)}:

E{Z1/θ(sθ|X)} = E















n1
∑

d1=0

n2
∑

d2=0

N(d1, d2) · e−sθ(d1+d2)





1/θ










·
=

n1
∑

d1=0

n2
∑

d2=0

E{N1/θ(d1, d2)} · e−s(d1+d2), (17)

whereN(d1, d2) is the number concatenated codewords {(x̂, x̃)} for which the first stage contributes

distance d1 and the second stage contributes distance d2. For the moments E{N1/θ(d1, d2)}, or

equivalently, E{N1/θ(n1δ1, n2δ2)}, the following is proven in Section A.2 of the Appendix:

E{N1/θ(n1δ1, n2δ2)} ·
=















exp{n[λW1 + (1 − λ)W2]} δ1 ∈ Ic(R1), δ2 ∈ Ic(R2)
exp{n[λW1 + (1 − λ)W2/θ]} δ1 ∈ Ic(R1), δ2 ∈ I(R2)
exp{n[λW1 + (1 − λ)W2]/θ} δ1 ∈ I(R1), δ2 ∈ I(R2)
exp{nη[λW1 + (1 − λ)W2]} δ1 ∈ I(R1), δ2 ∈ Ic(R2)

(18)
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where I(R)
∆
= (δ(R), 1 − δ(R)), Ic(R) = [0, 1] \ I(R), Wi = W (δi, Ri), i = 1, 2, with W (δ,R) being

defined as

W (δ,R)
∆
= R+ h(δ) − ln 2

and

η = η(θ, δ1, δ2, λ,R) =

{

1 λW1 + (1 − λ)W2 < 0
1
θ λW1 + (1 − λ)W2 ≥ 0

Therefore,

E{Z1/θ(sθ|X)} ·
=

∑

δ1∈Ic(R1)

∑

δ2∈Ic(R2)

en[R+λh(δ1)+(1−λ)h(δ2)−ln 2] ×

e−sn[λδ1+(1−λ)δ2] +
∑

δ1∈Ic(R1)

∑

δ2∈I(R2)

en[λ(R1+h(δ1)−ln 2)+(1−λ)(R2+h(δ2)−ln 2)/θ] ×

e−sn[λδ1+(1−λ)δ2] +
∑

δ1∈I(R1)

∑

δ2∈I(R2)

en[λ(R1+h(δ1)−ln 2)+(1−λ)(R2+h(δ2)−ln 2)]/θ ×

e−sn[λδ1+(1−λ)δ2] +
∑

δ1∈I(R1)

∑

δ2∈Ic(R2)

enη[λ(R1+h(δ1)−ln 2)+(1−λ)(R2+h(δ2)−ln 2)] ×

e−sn[λδ1+(1−λ)δ2]

∆
= A+B + C +D (19)

Let us now handle each one of these four terms and take the limit θ → ∞. This results in:

A
·
=





∑

δ1∈Ic(R1)

en1[R1+h(δ1)−ln 2−sδ1]



 ·





∑

δ2∈Ic(R2)

en2[R2+h(δ2)−ln 2−sδ2]





·
= e−n1u(s,R1) · e−n2u(s,R2)

= e−n[λu(s,R1)+(1−λ)u(s,R2)], (20)

B
·
=





∑

δ1∈Ic(R1)

en1[R1+h(δ1)−ln 2−sδ1]



 ·





∑

δ2∈I(R2)

e−n2sδ2





·
= e−n1u(s,R1) · e−n2δ(R2)

= e−n[λu(s,R1)+(1−λ)δ(R2)], (21)
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C
·
= e−n[λδ(R1)+(1−λ)δ(R2)], (22)

and

D
·
= e−nf(s,R1,R2) (23)

where

f(s,R1, R2) = min
δ1∈I(R1),δ2∈Ic(R2)

{s[λδ1 + (1 − λ)δ2] − µ(δ1, δ2)[R + λh(δ1) + (1 − λ)h(δ2) − ln 2]}

and where

µ(δ1, δ2) =

{

1 R+ λh(δ1) + (1 − λ)h(δ2) < ln 2
0 R+ λh(δ1) + (1 − λ)h(δ2) ≥ ln 2

Among the terms A, B, and C, the term A is exponentially the dominant one. To check whether

or not A dominates also D, we will have to investigate the function f(s,R1, R2). This is done in

Subsection A.3 of the Appendix, where it is shown that this function is as follows: For R1 > R2:

f(s,R1, R2) =

{

u(s,R) 0 ≤ s ≤ sR1

λsδ(R1) + (1 − λ)v(s,R2) s > sR1

(24)

and for R1 < R2:

f(s,R1, R2) =

{

s[λδ(R1) + (1 − λ)δ(R2)] 0 ≤ s ≤ sR2

λsδ(R1) + (1 − λ)v(s,R2) s > sR2

(25)

Finally, the overall exponential rate of the characteristic function, ψ(s,R1, R2)), we have to take

into account the contribution of A, as mentioned above. This gives:

ψ(s,R1, R2)) = min{f(s,R1, R2), a(s,R1, R2)}

where a(s,R1, R2)
∆
= λu(s,R1)+(1−λ)u(s,R2). Now, in the case R1 > R2, for small s, the function

f is linear with slope δ(R), whereas the function a is linear with a slope of λδ(R1) + (1 − λ)δ(R2)

which is larger. Thus, f is smaller in some interval of small s. However, for larger s, f continues

to have a linear term with slope λδ(R1) whereas a never exceeds the level of ln 2−R. Thus, there

must be a (unique) point of intersection s∗. Consequently, for R1 > R2, we have

ψ(s,R1, R2) =

{

f(s,R1, R2) s ≤ s∗

a(s,R1, R2) s ≥ s∗

where f(s,R1, R2) is as in (24). Concerning the case R1 < R2, both f (of eq. (25)) and a start as

linear functions of the same slope of λδ(R1) + (1 − λ)δ(R2). However, while the latter begins its
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curvy part at s = sR1
, the former continues to be linear until the point s = sR2

> sR1
. In this case,

then it is easy to see that ψ(s,R1, R2) is dominated by a across the entire range s ≥ 0, i.e.,

ψ(s,R1, R2) = λu(s,R1) + (1 − λ)u(s,R2).

We see then that the ensemble performance is substantially different in the two cases: For

R1 < R2, ψ(s,R1, R2) is exactly the same as if we used two independent block codes of lengths

n1 and n2 at rates R1 and R2, respectively. In particular, the corresponding average distortion is

λδ(R1)+ (1−λ)δ(R2) which is, of course, larger than δ(R). In other words, we are gaining nothing

from the tree structure and the dependence between the two parts of the code. For R1 > R2, on

the other hand, there is at least a considerable range of small s for which ψ(s,R1, R2) = u(s,R),

namely, the ensemble performance is exactly like that of the ordinary ensemble of full block code

of length n and rate R, without any structure (which is also the best achievable exponential rate).

However, beyond a certain value of s, there is some loss in comparison to the ordinary ensemble.

The case R1 = R2 = R can be obtained as the limiting behavior of both R1 < R2 and R1 > R2, by

taking both rates to be arbitrarily close to each other. In this case, we obtain ψ(s,R1, R2) = u(s,R)

throughout the entire range s ≥ 0 (cf. the discussion on this in the Introduction). The conclusion

then is that if we use an hierarchical structure of the kind we consider in this paper, it is best to

assign equal rates at the two stages, but then we might as well abandon the tree structure of the code

altogether, and just encode the two parts independently, both at rate R (this will moreover save

complexity at the encoder). If, however, certain considerations dictate different rates at different

segments, then it is better to encode at a larger rate in the first segment and at a smaller rate in

the second.

This derivation can be extended, in principle, to any finite number k of stages. The analysis is,

of course, more complicated but conceptually, the ideas are the same. We will not carry out this

extension in this paper.

4.2 Channel Coding

In complete duality to the source coding problem, one may consider a channel code (for the BSC)

with a similar hierarchical structure: Given a binary information vector of length nR = n1R1+n2R2

nats, we encode it in two parts: The first segment, of length n1R1 nats, is encoded to a binary
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channel input vector of length n1, independently of the forthcoming n2R2 nats (thus, the channel

encoder is of reduced delay). Then, the remaining n2R2 nats are mapped to another binary channel

input vector of length n2 and it depends on the entire information vector of length nR.

The ensemble of codebooks is drawn similarly as before: first, a randomly drawn first–stage

codebook of size en1R1 , and then, for each one of its codewords, another codebook of size en2R2

is drawn independently. Once again, each bit of each codeword is drawn by independent fair coin

tossing.

The decoder applies maximum likelihood (ML) decoding based on the entire channel output

vector y of length n = n1 +n2, pertaining to the input x of length n. The analogy with the GREM

is that here, the energy function is the log–likelihood, which is additive over the two stages by the

memorylessness of the channel.

In full analogy to the GREM and the source coding problem of Subsection 4.1, and as an

extension to the derivation in Subsection 3.3, here too, the partition function Ze(β|y) has exactly

the same two different types of behavior, depending on whether R1 ≥ R2 or R1 < R2. Therefore,

we will not repeat this here.

Concerning the aspect of performance evaluation of this ensemble of codes, and a comparison to

the ordinary ensemble, here the natural figure of merit is Gallager’s random coding error exponent,

which can be analyzed using methods similar to those that we used in Subsection 4.1. We will

not carry out a very refined analysis as we did before, but we will make a few observations in this

context, although not quite directly related to the GREM.

Referring to the notation of Subsection 3.3, let C = {x1, . . . ,xM} be a given channel code of

size M = enR and block length n, and let y designate the output vector of the BSC, of length n.

Gallager’s classical upper bound [45, p. 65, eq. (2.4.8)] on the probability of error is well known to

be given by

Pe ≤ 1

M

M
∑

m=1

∑

y

P (y|xm)1/(1+ρ) ·





∑

m′ 6=m

P (y|xm′)1/(1+ρ)





ρ

0 ≤ ρ ≤ 1.

Consider first the ordinary ensemble, where all M codewords are chosen independently at random.

In this case, taking the expectation of both sides, the average error probability is upper bounded
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by

P̄e ≤ 1

M

M
∑

m=1

∑

y

E{P (y|Xm)1/(1+ρ)} · E











∑

m′ 6=m

P (y|Xm′)1/(1+ρ)





ρ




.

As is shown in [26], the second factor of the summand is actually the expectation of the ρ–th

moment of the partition function Ze(β|y) computed at the inverse temperature β = 1/(1 + ρ).

Now, at least for the ordinary ensemble, the traditional derivation, which is based on applying

Jensen’s inequality, is good enough to yield an exponentially tight bound [46] on the ensemble

performance. This amounts to inserting the expectation into the square brackets, i.e.,

P̄e ≤ 1

M

M
∑

m=1

∑

y

E{P (y|Xm)1/(1+ρ)} ·





∑

m′ 6=m

E{P (y|Xm′)1/(1+ρ)}





ρ

.

We shall not continue any further with the analysis of this expression. Instead, we shall compare

it as is, with a corresponding upper bound for the hierarchical ensemble defined above.

In the hierarchical case with k = 2 stages, the probability of error consists of two contributions.

The first pertains to all incorrect codewords x = (x′,x′′) whose first segment x′ agrees with that

of the correct codeword, and the second one is associated with all other incorrect codewords. As

for the former type of codewords, the ML decoder actually compares the likelihood scores of the

second segment only (as those of the first segment are the same and hence cancel out), and so, these

incorrect codewords contribute a term of the order of e−n2Er(R2) to the average error probability,

where Er(R) is the Gallager’s random coding error exponent function [47, p. 139, eq. (5.6.16)].

Concerning the second set of incorrect codewords, we can apply an upper bound as above, except

that the expectations have to be taken w.r.t. the hierarchical ensemble. However, it is easy to see

that the expectation of E{P (y|X)1/(1+ρ)} is exactly the same as in the ordinary ensemble, and

thus, so is the upper bound for this set of codewords, which is then e−nEr(R). The total average

error probability is then upper bounded by

P̄e ≤ e−nEr(R) + e−n2Er(R2) = e−nEr(R) + e−n(1−λ)Er(R2).

This gives further motivation why R2 should be chosen smaller than R1: If R2 > R1, the second

term definitely dominates the exponent, because both n2 < n and R2 > R and so Er(R2) < Er(R).

For a given R and λ, can we, and if so how, assign the segmental rates R1 and R2 such that the

second term would not be dominant, i.e., (1 − λ)Er(R2) ≥ Er(R)? If R is large enough this is
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possible. For example, one way to do this is to select R1 = C, where C is the channel capacity. In

this case, we have, by the convexity of Er(·):

Er(R) = Er(λC + (1 − λ)R2) ≤ λEr(C) + (1 − λ)Er(R2) = (1 − λ)Er(R2).

For this strategy to be applicable, R must be at least as large as λC.

How does this discussion extend to a general number of stages k and is there a more systematic

approach to allocate the segmental rates R1, . . . , Rk for a given overall rate R? For simplicity,

let us suppose that the segment lengths are all the same, i.e., n1 = n2 = . . . = nk = n/k. The

extension turns out to be quite straightforward: In the case of k stages there are k types of incorrect

codewords: Those that agree with the correct codeword in all stages except the last stage, those

that agree in all stages except the last two stages, etc. Accordingly, using the same considerations

as above, it is easy to see then that the upper bound on the average error probability consists of k

contributions whose exponents are

k − i

k
Er





1

k − i

k
∑

j=i+1

Rj



 , i = 0, 1, . . . , k − 1.

For convenience, let us denote

R̄i =
1

k − i

k
∑

j=i+1

Rj.

Under what conditions and how can we assign the segmental rates such that

k − i

k
Er(R̄k) ≥ Er(R)

for all i = 1, 2, . . . , k−1? First, we must select R̄1 sufficiently small such that Er(R̄1) ≥ k
k−1Er(R).

As R is given, this will dictate the choice of R1 according to the identity

R = R̄0 =
1

k
R1 +

k − 1

k
R̄1.

Next, we choose R̄2 small enough such that

Er(R̄2) ≥
k

k − 2
Er(R).

As R̄1 has already been chosen, this will dictate the choice of R2 according to the identity

R̄1 =
1

k − 1
R2 +

k − 2

k − 1
R̄2,
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and so on. This procedure continues until in the last step we choose Rk = R̄k−1 such that Er(Rk) ≥
kEr(R), which dictates the choice of Rk−1 via R̄k−2 = (Rk +Rk−1)/2, where R̄k−2 was selected in

preceeding step. An obvious condition for this procedure to be applicable is that R would be large

enough such that Er(R) ≤ Er(0)/k. Note that if some of the segmental rates exceed capacity (or

even the log alphabet size), this is not a problem, as long as the averages R̄i are all small enough.

Appendix

A.1 Proof of Eq. (13)

We begin with a simple large deviations bound regarding the distance enumerator, which appears

also in [44], but we present here too for the sake of completeness. For a, b ∈ [0, 1], consider the

binary divergence

D(a‖b) ∆
= a ln

a

b
+ (1 − a) ln

1 − a

1 − b

= a ln
a

b
+ (1 − a) ln

[

1 +
b− a

1 − b

]

. (A.1)

To derive a lower bound to D(a‖b), let us use the inequality

ln(1 + x) = − ln
1

1 + x
= − ln

(

1 − x

1 + x

)

≥ x

1 + x
, (A.2)

and then

D(a‖b) ≥ a ln
a

b
+ (1 − a) · (b− a)/(1 − b)

1 + (b− a)/(1 − b)

= a ln
a

b
+ b− a

> a
(

ln
a

b
− 1

)

. (A.3)

For every given y, N(d) is the sum of the enR−1 independent binary random variables, {1{d(Xm′ ,y) =

d}}m′ 6=m, where the probability that d(Xm′ ,y) = nδ is exponentially b
·
= e−n[ln 2−h(δ)]. The event

N(nδ) ≥ enA, for A ∈ [0, R), means that the relative frequency of the event 1{d(Xm′ ,y) = nδ} is

at least a = e−n(R−A). Thus, by the Chernoff bound:

Pr{N(nδ) ≥ enA}
·
≤ exp

{

−(enR − 1)D(e−n(R−A)‖e−n[ln 2−h(δ)])
}

·
≤ exp

{

−enR · e−n(R−A)(n[(ln 2 −R− h(δ) +A] − 1)
}

≤ exp
{

−enA(n[ln 2 −R− h(δ) +A] − 1)
}

. (A.4)

31



Denoting by I(R) the interval (δ(R), 1−δ(R)) and by Ic(R), the complementary range [0, 1]\I(R),

we have, for δ ∈ Ic(R):

E{N s(nδ)} ≤ enεs · Pr{1 ≤ N(nδ) ≤ enε} + enRs · Pr{N(nδ) ≥ enε}

≤ enεs · Pr{N(nδ) ≥ 1} + enRs · Pr{N(nδ) ≥ enε}

≤ enεs · E{N(nδ)} + enRs · e−(nε−1)enε

≤ enεs · en[R+h(δ)−ln 2] + enRs · e−(nε−1)enε

. (A.5)

One can let ε vanish with n sufficiently slowly that the second term is still superexponentially

small, e.g., ε = 1/
√
n. Thus, for δ ∈ Ic(R), E{N s(nδ)} is exponentially bounded by en[R+h(δ)−ln 2]

independently of s. For δ ∈ I(R), we have:

E{N s(nδ)} ≤ ens[R+h(δ)−ln 2+ε] · Pr{N(nδ) ≤ en[R+h(δ)−ln 2+ε]} +

enRs · Pr{N(nδ) ≥ en[R+h(δ)−ln 2+ε]}

≤ ens[R+h(δ)−ln 2+ε] + enRs · e−(nε−1)enε

(A.6)

where again, the second term is exponentially negligible.

To see that both bounds are exponentially tight, consider the following lower bounds. For

δ ∈ Ic(R),

E{N s(nδ)} ≥ 1s · Pr{N(nδ) = 1}

= enR · Pr{dH(X,y) = nδ} · [1 − Pr{dH(X ,y) = nδ}]enR−1

·
= enRe−n[ln 2−h(δ)] ·

[

1 − e−n[ln 2−h(δ)]
]enR

= en[R+h(δ)−ln 2] · exp{enR ln[1 − e−n[ln 2−h(δ)]]}. (A.7)

Using again the inequality in (A.2), the second factor is lower bounded by

exp{−enRe−n[ln 2−h(δ)]/(1 − e−n[ln 2−h(δ)])} = exp{−e−n[ln 2−R−h(δ)]/(1 − e−n[ln 2−h(δ)])}

which clearly tends to unity as ln 2−R−h(δ) > 0 for δ ∈ Ic(R). Thus, E{N s(nδ)} is exponentially

lower bounded by en[R+h(δ)−ln 2]. For δ ∈ I(R), and an arbitrarily small ε > 0, we have:

E{N s(nδ)} ≥ ens[R+h(δ)−ln 2−ε] · Pr{N(nδ) ≥ en[R+h(δ)−ln 2−ε]}

= ens[R+h(δ)−ln 2−ε] ·
(

1 − Pr{N(nδ) < en[R+h(δ)−ln 2−ε]}
)

(A.8)
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where Pr{N(nδ) < en[R+h(δ)−ln 2−ε]} is again upper bounded, for an internal point in I(R), by a

double exponentially small quantity as above. For δ near the boundary of I(R), namely, when

R + h(δ) − ln 2 ≈ 0, we can lower bound E{N s(nδ)} by slightly reducing R to R′ = R− ε (where

ε > 0 is very small). This will make δ an internal point of Ic(R′) for which the previous bound

applies, and this bound is of the exponential order of en[R′+h(δ)−ln 2]. Since R′ + h(δ) − ln 2 is still

very close to zero, then en[R′+h(δ)−ln 2] is of the same exponential order as ens[R+h(δ)−ln 2] since both

are about e0·n.

It should be noted that a similar double–exponential bound can be obtained for the probability

of the event {N(nδ) ≤ enA}, where A < R + h(δ) − ln 2 and R + h(δ) − ln 2 > 0. Here we can

proceed as above except that the in the lower bound on divergence D(a‖b) we should take the

second line of (A.3) (rather than the third), which is of the exponential order of b
·
= e−n[ln 2−h(δ)]

(observe that here b is exponentially larger than a, as opposed to the earlier case). Thus, we obtain

R+ h(δ) − ln 2 > 0 at the second level exponent, and so the decay is double exponential as before.

A.2. Proof of Eq. (18)

First, let us write N(n1δ1, n2δ2) as follows:

N(n1δ1, n2δ2) =

M1
∑

i=1

1{dH (x′, x̂i) = n1δ1} ·
M2
∑

j=1

1{dH(x′′, x̃i,j) = n2δ2}

∆
=

M1
∑

i=1

1{dH (x′, x̂i) = n1δ1} ·Ni(n2δ2) (A.9)

where x′ and x′′ designate (x1, . . . , xn1
) and (xn1+1, . . . , xn), respectively, and where 1{·} denotes

the indicator function of an event. We now treat each one of the four cases pertaining to the

combinations of both δ1 and δ2 being or not being members of I(R1) and I(R2), respectively.

Case 1: δ1 ∈ Ic(R1) and δ2 ∈ Ic(R2)

For a given, arbitrarily small ε > 0, consider the event E = {N(n1δ1, n2δ2) ≥ enε}. If both the

number of indices i for which dH(x′, x̂i) = n1δ1 is less than en1ε and for each i, Ni(n2δ2) ≤ en2ε,

then clearly, the event E does not occur. Thus, for E to occur, at least one of these events must

occur. In other words, either the number of indices i for which dH(x′, x̂i) = n1δ1 is larger than en1ε
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or there exist i for which Ni(n2δ2) > en2ε. The probability of the former event is upper bounded by

e−en1ε(n1ε−1) (cf. Subsection A.1). Similarly, the probability of the latter, for a given i, is bounded

by e−en2ε(n2ε−1). Thus, the probability of the union of events
⋃

i{Ni(n2δ2) > en2ε} is upper bounded

by M1e
−en2ε(n2ε−1) = en1R1 · e−en2ε(n2ε−1), which is still double exponential in n. Thus,

Pr{E} ≤ e−en1ε(n1ε−1) + en1R1 · e−en2ε(n2ε−1).

Therefore,

E{N1/θ(n1δ1, n2δ2)} ≤ 01/θ · Pr{N(n1δ1, n2δ2) = 0} + enε/θ · Pr{1 ≤ N(n1δ1, n2δ2) ≤ enε}

+enR/θ · Pr{E}

≤ enε/θ · Pr{N(n1δ1, n2δ2) ≥ 1} + enR/θ · Pr{E}

≤ enε/θ · E{N(n1δ1, n2δ2)} + enR/θ · Pr{E}, (A.10)

which is exponentially upper bounded by en[R+λh(δ1)+(1−λ)h(δ2)−ln 2] since ε is arbitrarily small,

E{N((n1δ1, n2δ2)} ·
= en[R+λh(δ1)+(1−λ)h(δ2)−ln 2], and the last term is double–exponential. To obtain

the compatible lower bound, we use

E{N1/θ(n1δ1, n2δ2)} ≥ 11/θ · Pr{N(n1δ1, n2δ2) = 1}

= Pr{N(n1δ1, n2δ2) = 1}. (A.11)

Now, the event {N(n1δ1, n2δ2) = 1} is the event that there is exactly one value of i such that

dH(x′, x̂) = n1δ1, and that for this i, there is exactly one j such that dH(x′′, x̃) = n2δ2. As shown

in Subsection A.1, the probability of the former is exponentially en1[R1+h(δ1)−ln 2] and the probability

of the latter is exponentially en2[R2+h(δ2)−ln 2]. Thus, by independence, Pr{N(n1δ1, n2δ2) = 1} is

the product, which is exponentially en[R+λh(δ1)+(1−λ)h(δ2)−ln 2].

Cases 2 and 3: δ2 ∈ I(R2)

Define now the event A as

A =

M1
⋂

i=1

{Ni(n2δ2) ≤ exp{n2[R2 + h(δ2) − ln 2 + ε]}} .

As we have argued before, the probability of A is doubly exponentially close to unity (since the

probability of Ac is upper bounded by the sum of exponentially many doubly-exponentially small
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probabilities). Now, clearly, if A occurs,

N(n1δ1, n2δ2) ≤ exp{n2[R2 + h(δ2) − ln 2 + ε]} ·
M1
∑

i=1

1{dH(x′, x̂i) = n1δ1}.

Thus,

E{N1/θ(n1δ1, n2δ2)} ≤ Pr{A} · E {[exp{n2[R2 + h(δ2) − ln 2 + ε]}×
M1
∑

i=1

1{dH(x′, x̂i) = n1δ1}
]1/θ







+enR/θ · Pr{Ac}, (A.12)

where the second term is again doubly–exponentially small. As for the first term, we bound Pr{A}
by unity and

E







[

exp{n2[R2 + h(δ2) − ln 2 + ε]}
M1
∑

i=1

1{dH(x′, x̂i) = n1δ1}
]1/θ







= exp{n2[R2 + h(δ2) − ln 2 + ε]/θ} · E







[

M1
∑

i=1

1{dH(x′, x̂i) = n1δ1}
]1/θ







(A.13)

where the latter expectation (cf. Subsection A.1) is of the exponential order of en1[R1+h(δ1)−ln 2] if

δ1 ∈ Ic(R1) (Case 2) and en1[R1+h(δ1)−ln 2]/θ if δ1 ∈ I(R1) (Case 3). Thus, in both cases, we obtain

the desired exponential order as an upper bound. For the lower bound, we argue similarly that the

probability of the event

A′ =

M1
⋂

i=1

{Ni(n2δ2) ≥ exp{n2[R2 + h(δ2) − ln 2 − ε]}}

is doubly–exponentially close to unity, and so,

E{N1/θ(n1δ1, n2δ2)} ≥ Pr{A}·E







[

exp{n2[R2 + h(δ2) − ln 2 − ε]}
M1
∑

i=1

1{dH(x′, x̂i) = n1δ1}
]1/θ







,

and we again use the above result on the moments of
∑M1

i=1 1{dH(x′, x̂i) = n1δ1} in both cases of

δ1.

35



Case 4: δ1 ∈ I(R1) and δ2 ∈ Ic(R2)

Since δ1 ∈ I(R1), then the event

A =

{

en1[R1+h(δ1)−ln 2−ε] ≤
M1
∑

i=1

1{dH(x′, x̂i) = n1δ1} ≤ en1[R1+h(δ1)−ln 2+ε]

}

,

has a probability which is doubly–exponentially close to unity. Thus, given that A occurs, there

are

en1[R1+h(δ1)−ln 2+ε] ≤ L ≤ en1[R1+h(δ1)−ln 2+ε]

indices i1, i2, . . . , iL for which dH(x′, x̂i) = n1δ1. Given L and given these indices, N(n1δ1, n2δ2)

is the sum of LM2
·
= en1[R1+h(δ1)−ln 2+]+n2R2 i.i.d. Bernoulli trials, 1{dH (x′′, x̃) = n2δ2}, whose

probability of success is exponentially q
·
= en2[h(δ2)−ln 2]. Thus, similarly as in the derivation in

Subsection A.1,

E{N1/θ(n1δ1, n2δ2)|A} ·
=

{

LM2q q
·
≥ LM2

(LM2q)
1/θ q

·
≤ LM2

or, equivalently, in the notation of eq. (18):

E{N1/θ(n1δ1, n2δ2)|A} ·
=

{

exp{n[λW1 + (1 − λ)W2]} λW1 + (1 − λ)W2 < 0
exp{n[λW1 + (1 − λ)W2]/θ} λW1 + (1 − λ)W2 ≥ 0

The total expectation should, of course, account for Ac as well, but since the probability of this

event is doubly exponentially small, then the contribution of this term is negligible.

This completes the proof of eq. (18).

A.3. The function f(s, R1, R2)

First, we observe that the constraints δ1 ∈ I(R1) and δ2 ∈ Ic(R2) can be replaced by their one-

sided versions δ1 ≥ δ(R1) and δ2 ≤ δ(R2), respectively, since values of δ1 and δ2 beyond 0.5 cannot

be better than their corresponding reflections 1 − δ1 and 1 − δ2.

Next observe that f(s,R1, R2) can be rewritten as follows:

f(s,R1, R2) = min{f1(s,R1, R2)), f2(s,R1, R2)},

where

f1(s,R1, R2) = smin[λδ1 + (1 − λ)δ2]
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subject to the constraints δ1 ≥ δ(R1), δ2 ≤ δ(R2), and R+ λh(δ1) + (1 − λ)h(δ2) ≥ ln 2, and

f2(s,R1, R2) = min{λ[sδ1 −R1 − h(δ1) + ln 2] + (1 − λ)[sδ2 −R2 − h(δ2) + ln 2]}

subject to the constraints δ1 ≥ δ(R1), δ2 ≤ δ(R2), and R+ λh(δ1) + (1− λ)h(δ2) ≤ ln 2. Note that

the optimization problem associated with f1(s,R1, R2) is a convex problem, but the one pertaining

to f2(s,R1, R2) is not, because of its last constraint which is not convex.

At this point, we have to distinguish between two cases: (i) R1 > R2 and (ii) R2 < R1 (the case

R1 = R2 will be taken as a limit R1 → R2 of case (i)).

The Case R1 > R2

When R1 > R2, we have δ(R1) < δ(R) < δ(R2). As for f1, it is easy to see that δ1 = δ2 = δ(R)

is a solution that satisfies the necessary and sufficient Kuhn–Tucker conditions for optimality of a

convex problem, and so, f1(s,R1, R2) = sδ(R).

Consider next the function f2(s,R1, R2). Let us ignore, for a moment, the non–convex constraint

R+λh(δ1)+(1−λ)h(δ2) ≤ 2, and refer only to the constraints δ1 ≥ δ(R1) and δ2 ≤ δ(R2). Denote by

f̃2(s,R1, R2) the corresponding maximum without the non–convex constraint. The maximization

problem associated with f̃2 is now convex and it is to see that δ∗1 = max{δ(R1), νs} and δ∗2 =

min{δ(R2), νs} satisfy the necessary and sufficient conditions for optimality, where νs
∆
= 1/(1+ es).

This is also a solution for f2 if it satisfies the non–convex constraint, namely, if

λh (max{δ(R1), νs}) + (1 − λ)h (min{δ(R2), νs}) +R ≤ ln 2. (A.14)

Whether or not this condition is satisfied depends on s. Since we are assuming R1 > R2, we then

have sR1
> sR2

, where we remind that sR
∆
= ln 1−δ(R)

δ(R) . Consequently, there are three different

ranges of s: s > sR1
, sR2

< s ≤ sR1
, and s ≤ sR2

.

When s > sR1
> sR2

, this is equivalent to νs < δ(R1) < δ(R2) in which case the above necessary

condition (A.14) becomes

λh(δ(R1)) + (1 − λ)h(νs) < ln 2 −R.

To check whether this condition is satisfied, observe that h(δ(R1)) ≡ ln 2 − R1, and so this is

equivalent to the condition h(νs) < ln 2−R2, which is νs < δ(R2), in agreement with the assumption
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on the range of s. Therefore, the above solution is acceptable for f2 and by substituting it back

into the objective function, we get:

f2(s,R1, R2) = λ[sδ(R1) −R1 − h(δ(R1)) + ln 2] + (1 − λ)[sνs −R2 − h(νs) + ln 2]

= λsδ(R1) + (1 − λ)v(s,R2) (A.15)

When sR1
≥ s > sR2

, this is equivalent to δ(R1) < νs < δ(R2), in which case the condition

(A.14) becomes h(νs) < ln 2 − R, or equivalently, νs < δ(R), which is s > sR. However, sR is

between sR1
and sR2

, and so, the conclusion is that the non–convex constraint is satisfied only

in upper part of the interval [sR2
, sR1

], i.e., [sR, sR1
]. In this range, δ∗1 = δ∗2 = νs, and this yields

f2(s,R1, R2) = v(s,R). For s < sR, the condition (A.14) no longer holds. In this case, the optimum

solution should be sought on the boundary of the non–convex constraint, namely, under the equality

constraint R+λh(δ1)+(1−λ)h(δ2) = ln 2, but this coincides then with the solution to f1 which was

found on this boundary as well. Thus, for s ∈ [0, sR], we have f2(s,R1, R2) = sδ(R). Summarizing

our results for f2 over the entire range of s ≥ 0, we have

f2(s,R1, R2) =







sδ(R) 0 ≤ s ≤ sR

v(s,R) sR < s ≤ sR1

λsδ(R1) + (1 − λ)v(s,R2) s > sR1

or, equivalently,

f2(s,R1, R2) =

{

u(s,R) 0 ≤ s ≤ sR1

λsδ(R1) + (1 − λ)v(s,R2) s > sR1

Finally, f should be taken as the minimum between f1 and f2. Now, f1 is linear and f2 is concave

(as it is the minimum of a linear function in s), coinciding with f1 along [0, sR]. Thus f2 cannot

exceed f1 for any s, and so, f = f2. Thus,

f(s,R1, R2) =

{

u(s,R) 0 ≤ s ≤ sR1

λsδ(R1) + (1 − λ)v(s,R2) s > sR1

The Case R1 < R2

In this case, δ(R1) > δ(R2). Once again, f1 is associated with a convex program whose conditions

for optimality are easily seen to be satisfied by the solution δ1 = δ(R1) and δ2 = δ(R2). Thus,

f1(s,R1, R2) = s[λδ(R1) + (1 − λ)δ(R2)].
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As for f2, let us examine again the various ranges of s, where this time, sR1
< sR < sR2

. For

s > sR2
, we have νs < δ(R2) < δ(R1) and then the condition (A.14) is equivalent to h(νs) ≤

ln 2−R2, which is νs < δ(R2), in agreement with the assumption. This corresponds to δ1 = δ(R1)

and δ2 = νs, which yields

f2(s,R1, R2) = λsδ(R1) + (1 − λ)v(s,R2).

For sR1
< s < sR2

, which means δ(R2) < νs < δ(R1), condition (A.14) is satisfied with equality,

and the corresponding solution is δ1 = δ(R1) and δ2 = δ(R2), which yields

f2(s,R1, R2) = s[λδ(R1) + (1 − λ)δ(R2)].

For s < sR1
, eq. (A.14) is not satisfied, and we resort again to the boundary solution, which, as

mentioned earlier, is the same as f1. Summarizing our findings for the case R1 < R2, and applying

similar concavity considerations as before (telling us that f = f2), we have:

f(s,R1, R2) =

{

s[λδ(R1) + (1 − λ)δ(R2)] 0 ≤ s ≤ sR2

λsδ(R1) + (1 − λ)v(s,R2) s > sR2
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