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ON THE CLASSICAL – AND NOT SO CLASSICAL –

SHANNON SAMPLING THEOREM

EMIL SAUCAN1,2, ELI APPLEBOIM1, DIRK A. LORENZ3 AND YEHOSHUA Y.
ZEEVI1

Abstract. We proceed with our recently-introduced geometric approach
to sampling of manifolds and investigate the relationship that exists be-
tween the classical, i.e. Shannon type, and geometric sampling concepts
and formalism. Some aspects of coding and the Gaussian channel prob-
lem are considered. A geometric version of Shannon’s Second Theorem
is introduced. Applications to Pulse Code Modulation and Vector Quan-
tization of Images are provided. An extension of our sampling scheme to
a certain class of infinite dimensional manifolds is also considered. The
relationship between real functions of bounded curvature and classical
band-limited signals is investigated.

1. General background

1.1. Introduction. A sampling theorem for differentiable manifolds was
recently presented and applied in the context image processing ([22], [23]):

Theorem 1.1. Let Σn ⊂ R
n+1, n ≥ 2 be a connected, not necessarily

compact, smooth hypersurface, with finitely many compact boundary com-
ponents. Then there exists a sampling scheme of Σn, with a proper density

D = D(p) = D
(

1
k(p)

)
, where k(p) = max{|k1|, ..., |kn|}, and where k1, ..., kn

are the principal curvatures of Σn, at the point p ∈ Σn.

Moreover, the following corollary is also applicable to this problem:

Corollary 1.2. Let Σn,D be as above. If there exists k0 > 0, such that
k(p) ≤ k0, for all p ∈ Σn, then there exists a sampling scheme of Σn of
finite density everywhere. In particular, if Σn is compact, then there exists
a sampling of Σn having uniformly bounded density.

The constructive proof of this theorem is based on the existence of the
so-called fat triangulations (see [21]). The density of the vertices of the
triangulation (i.e. of the sampling) is given by the inverse of the maximal
principal curvature. (A concise outline of the proof of Theorem 1.1 is pre-
sented in Appendix 1.) As was shown, the resultant sampling scheme is in
accord with the classical Shannon theorem, at least for the large class of
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(bandlimited) signals that are also C2 curves. In our proposed geometric
approach, the radius of curvature substitutes the condition of the Nyquist
rate.

Here we further investigate the extent and implications of this analogy,
and of the geometric approach in general. We begin by making a few ob-
servations regarding the extent of our results, by finding the largest space
of signals wherein our results may be applied effectively. Next, we estab-
lish the proper analogies considering concepts originating from the classical
sampling and coding theory of Gaussian channels. In doing so, we attempt
to construct a “dictionary” of geometric sampling and concepts originating
from Shannon’s fundamental approach [25].

In the the last section we extend our investigation to (a class of) infi-
nite dimensional manifolds. Such manifolds, and the need for a sampling
theory for this class of geometrical objects naturally arise, for instance, in
the context of continuous variations and deformations, of signals, e.g video,
perceived as infinite series of trigonometric functions.

Finally, in Appendix 2, we focus on classical (1-dimensional) bandlimited
signals and determine relationships, if any, between such signals and curves
of curvature bounded from above.

1.2. General geometric signals. We begin our investigation by noting
that, by the Paley-Wiener Theorem (see, e.g. [20]), any bandlimited signal
is of class C∞. We have already shown in [22] that our geometric sampling
method applies not only to bandlimited signals, but also to more general
blackboard signals, i.e. L2 functions whose graphs are smooth C2 curves,
not necessarily planar.1 In fact, the geometric sampling approach can be
extended to a far larger class of manifolds. Indeed, every piecewise linear
(PL) manifold of dimension n ≤ 4 admits a (unique, for n ≤ 3) smoothing
(see e.g. [27]), and every topological manifold of dimension n ≤ 3 admits
a PL structure (cf., e.g., [27]). In particular, for curves and surfaces, one
can first consider a smoothing of class ≥ C2 (so that curvature can be de-
fined properly), which can then be sampled with sampling rate given by the
maximal curvature radius. Since the given manifold and its smoothing are
arbitrarily close [18], one obtains the desired sampling result. (This very
scheme is developed and applied for gray-scale images in [22].)

While numerical schemes for practical computation of smoothing exist,
they are not necessarily computationally satisfactory. For practical applica-
tions, one can circumvent this problem by applying numerical schemes based
on the finite element method ([24]). However, for the sake of mathematical
correctness and in order to be able to tackle more general applications, one
would like to consider more general curvature measures (see, e.g. [28]) and
avoid smoothing altogether (see [24] for the full details of this approach and

1As already mentioned above, we shall further investigate the connections between
bandlimited signals and functions of bounded second derivative in Appendix 2.
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Section 2 below, for a brief discussion of this topic in a slightly different
context).

It is worthwhile to note yet another aspect of our geometric sampling
method: Shannon’s Sampling theorem relates to bandlimited signals, that
are, necessarily, unbounded in time (space). Obviously, unbounded signals
are not possible in Image Processing, nor in any other practical implemen-
tations. In contrast, geometric sampling presents no unboundedness restric-
tions, quite the opposite: it is far easier to apply for bounded manifolds.
The importance of this fact is far from being purely theoretical. Indeed,
by eliminating the need to produce periodic signals (surfaces) it drastically
reduces aliasing effects. There is, of course, a fundamental constraint of un-
certainty (see also [9]) in the background of Shannon’s Sampling Theorem.
This will be addressed in the context of our geometrical approach elsewhere
[24].

1.3. Pulse Code Modulation for Images. We note that our sampling
result offers, as a direct application, a new PCM (pulse code modulation)
method for images, considered as such and not as 1-dimensional signals. This
has as an intrinsic advantage in that the sampling points are associated with
relevant geometric features (via curvature) and are not chosen randomly
via the Nyquist rate. Moreover, such a sampling is adaptive and, indeed,
compressive (see discussion above), lending itself to obvious technological
benefits.

1.4. Vector Quantization for Images. A supplementary effortless byprod-
uct of the constructive proof of Theorem 1.1 resides in a precise method of
vector quantization (or block coding). Indeed, one of the steps in the proof of
Theorem 1.1 consists in the construction of a Voronoi (Dirichlet) cell com-
plex {γ̄n

k } (whose vertices will provide the sampling points). The centers
ak of the cells (satisfying a certain geometric density condition) represent,
as usual, the decision vectors. The advantage of this approach, besides its
immediacy, resides in the possibility of estimating the error in length and
angle distortion when passing from the cell complex {γ̄n

k } to the Euclidean
cell complex {c̄n

k} having the same set of vertices as {γ̄n
k } (see [19]).

2. Sampling and Codes

2.1. Packings, Coverings and Lattice codes. Recall that in classical
signal processing, W = η/2, where W is the frequency of the signal and η
represents the Nyquist rate. This admits an immediate (and rather trivial)
generalization to periodic signals, or, in geometric terms, for signals over a
lattice: Λ = {λi}. In this case, one can even interpret the sides of the lattice
as the various coordinates in a multi-dimensional (warped) space or time
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(see, e.g. [26], [15]).2 Note that such signals can be viewed as distributions
on the n-dimensional torus T

n = R
n/Z

n. According to this interpretation,
the (n-dimensional!) period is the fundamental cell λ of the lattice. Two
scalars are naturally associated with this cell: its diameter diam(λ) (or,
alternatively, the length of the longest edge) and its volume Vol(λ). Either
of them can be used as a measure of the n-dimensional period. However,
they are both interrelated and associated to one geometric feature, the so-
called “fatness”:

Definition 2.1. Let γ = γk be an k-dimensional cell. The fatness (or
aspect-ratio) of γ is defined as:

ϕ(γ) = min
λ

Vol(λ)

diaml(λ)
,

where the minimum is taken over all the l-dimensional faces of γ, 0 ≤ k. (If
dimλ = 0, then Vol(λ) = 1, by convention.)

This definition of fatness is equivalent (see [19]) to the following one:

Definition 2.2. A k-dimensional cell γ ⊂ R
n, 2 ≤ k ≤ n, is ϕ-fat if there

exists ϕ > 0 such that the ratio r
R ≥ ϕ; where r denotes the radius of the

inscribed sphere of γ and R denotes the radius of the circumscribed sphere
of γ. A cell-complex Γ = {γi}i∈I is fat if there exists ϕ ≥ 0 such that all its
cells are ϕ-fat.

Recall that the in- and circum-radius are important in lattice problems:
given a lattice Λ with (dual) Voronoi cell Π (of volume 1), one has to min-
imize the inradius to solve the packing problem, and to minimize the cir-
cumradius for solving the covering problem (see [6]). Note that Λ and Π are
simultaneously fat. It follows that fat cell-complexes and, in particular, fat
triangulations, represent a mini-max optimization for both the packing and
the covering problem. Moreover, since fat triangulations are essential for
the sampling theorem for manifolds, it appears that there exists an intrinsic
relation between the sampling problem for manifolds and the covering and
packing problems.

2.2. Average Power, Rate of Code and Channel Capacity. Note that
in the context of lattices with fundamental cell λ it is natural to extend the
classical definitions of average power in the signal:

P =
1

T

∫ T

0
f2(t)dt ,

and the rate of the code:

R =
1

T
log2 N ,

2Alternatively, one can interpret the dimensions as representing wave length, or even
as mixed fundamental quantities, e.g. space-time or even space-time-wave-length, as they
arise in Medical Imaging (CT).
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where N represents the number of code points, in the following manner:

P =
1

Vol(Λ)

∫

λ
f2(t)dt =

1

N1Vol(λ)

∫

λ
f2(t)dt ,

and

R =
1

Vol(Λ)
log2 N =

1

N1Vol(λ)
log2 N,

respectively, N1 being the number of cells.
Similarly, one can adapt the classical definition of the channel capacity:

C = lim
T→∞

R = lim
T→∞

log2 N

T
,

as:

C = lim
T→∞

log2 N

Vol(Λ)
= lim

T→∞

1

N1Vol(λ)
log2 N.

Since the numbers N and N1 are related by N1 = α(N), where α is the
growth function of the manifold, the expression of C becomes:

C = lim
T→∞

1

Vol(λ)

log2 N

α(N)
.

It follows immediately that C = ∞ for non-compact Euclidean and Hy-
perbolic manifolds, and C = 0 for their Elliptic counterparts. Unfortunately,
no such immediate estimates can be readily produced for manifolds of vari-
able curvature.

Note that by putting 1/T = Vol(M), the definitions above apply for any
sampling scheme of any manifold of finite volume, not just for lattices. In
this case N and N1 represent the number of vertices, respective simplices,
of the triangulation.

The interpretation of frequency considered above does not extend, how-
ever, to general geometric signals. For a proper generalization we have to
look into the geometric analogue of W . By [23], Theorem 5.2 on curves, i.e.
1-dimensional (geometric) signals, W equals the curvature rate k/2, were
k represents the maximal absolute curvature of the curve. This, and the
sampling Theorem 4.11 of [23] naturally leads us to the following definition
of W for general geometric signals:

Definition 2.3. Let M = Mn be an n-dimensional manifold n ≥ 2. W =
WM = 1/kM , where kM = max ki and ki, i = 1, . . . , n are the principal
curvatures of M .

According to classical considerations, the energy E of the signal f : R → R

is considered to be equal to its L2 norm:

E = E(f) =

∫ ∞

−∞

f2(t)dt =
1

2W

+∞∑

k=−∞

f2
( k

2W

)
.

One would like, of course, to find proper generalizations of the notion
of energy for more general (geometric) signals. In view of the discussion
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above, it is clear that a first step is to replace 2W by its proper general-
ization. However, when considering more general function spaces of specific
relevance (s.a. bounded variation (BV), bounded oscillation (BO), bounded
mean oscillation (BMO)), one should consider energies fitting the specific
norm of the space under consideration. This discussion is, of course, also
valid with regard to the best way to define average power P , and rate R, of
a geometric signal.

We can now look into the first definition of code efficiency: the nominal
coding gain of a code c1 over another (c2) is:

ncg(C1, C2) = 10 log10

(
µ1

E1

/ µ2

E2

)
,

where µ is the square of the minimal squared-distance between coding points.
For geometric codes of bounded curvature (hence compact ones), the expres-
sion for µ is particularly simple: µ = 1/min k (k denoting again principal
curvature).

2.3. The Channel Coding Problem. It is only natural to attack the
problem of the Gaussian white noise channel in the context of “geometric
signals”, i.e. manifolds. Recall that in the classical context, a received
signal is represented by a vector X = F + Y , where F = (f1, . . . , fN ) is
the transmitted signal, and Y = (y1, . . . , yn) represents the noise, whose
components yi are independent Gaussian random variables, of mean 0 and
average power σ2. The main, classical result for the Gaussian channel is the
following:

Theorem 2.4 (Shannon’s Second Theorem, [25]). For any rate R not ex-
ceeding the capacity C0:

C0 =
1

T
log2

(
1 +

P

σ2

)
,

there exists a sufficiently large T , such that there exists a code of rate R
and average power ≤ P , and such that the probability of a decoding error
is arbitrarily small. Conversely, it is not possible to obtain arbitrarily small
errors for rates R > C0.

In the case of geometric signals, F is given by the sampling (code) points
on the manifolds and, since the mean equals 0, the noisy transmitted signal
F + Y lies in the tube Tubσ(M). Recall that Tubσ(S) =

⋃
p∈S Ip,σp , where

Ip,σp is the open symmetric interval through p, in the direction of unit normal

N̄p of M at p, of length 2σp, where σp is chosen to be small enough such
that Ip,σp ∩ Iq,σq = ∅, for any p, q ∈ S.

While not being evident, the existence of tubular neighborhoods is assured
both locally, for any regular, orientable manifold, and globally for regular,
compact, orientable manifold (see [10]). In addition, the regularity of the
manifolds ∂Tub−

σ (M) = M − ⋃
p∈M εN̄p, ∂Tub+

σ (M) = M +
⋃

p∈M εN̄p,
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where ∂Tub−
σ (M) ∪ ∂Tub+

σ (M) = ∂Tubσ(M), is at least as high as that of
M : If M is convex, then ∂Tub−

σ (M), ∂Tub+
σ (M) are piecewise C1,1 manifolds

(i.e. they admit parameterizations with continuous and bounded deriva-
tives), for all σ > 0. Also, if M is a smooth enough manifold with a bound-
ary, that is, at least piecewise C2, then ∂Tub−

σ (M), ∂Tub+
σ (M) are piecewise

C2 manifolds, for all small enough σ (see [8]).
In the geometric setting, σ can be taken, of course, to be the maximal

Euclidean deviation. However, a better deviation measure is, at least for
compact manifolds, the Haussdorf Distance (between M and ∂Tub−

σ (M),
∂Tub+

σ (M)):

Definition 2.5. Let (X, d) be a metric space and let A,B ⊆ (X, d). The
Hausdorff distance between A and B is defined as:

dH(A,B) = max{sup
a∈A

d(a, B), sup
b∈B

d(b, A)} .

For non-compact manifolds one has to consider the more general Gromov-
Hausdorff distance (see, e.g., [1]).

Since, by the remarks above, for σ small enough, both the distance be-
tween M and ∂Tub−

σ (M), ∂Tub+
σ (M) and the deviations of their curvature

measures are arbitrarily small, we can state a first “soft” geometric version
of Shannon’s Theorem for the Gaussian channel. While a perfect analogy is
not available, we can nevertheless formulate the following theorem:

Theorem 2.6 (Shannon’s Second Theorem, qualitative version). Let Mn

be a smooth geometric signal (manifold) and let σ be small enough, such that
Tubσ(M) is a submanifold of R

n+1. Then, given any noisy signal M + Y ,
such that the average noise power σY is at most σ, there exists a sampling
of M + Y with an arbitrarily small probability of decoding error.

Remark 2.7. For geometric approach to codes, the analogue of the capacity
is C0 = C0(k, σ, r), where r represents the differentiability class of M .

Remark 2.8. For compact manifolds, the existence of tube ∂Tub+
σ (M) is, as

we have already remarked, assured globally. Hence it follows that the sam-
pling scheme is also global and necessitates O(N) points, N = NM . How-
ever, for non-compact manifolds (in particular non-band limited geometric
signals), the existence of ∂Tub+

σ (M) is guaranteed only locally. Therefore
“gluing ”of the patches is needed, operation which requires the insertion of
additional vertices (i.e. sampling points), their number being a function of
the dimension of M . Hence, in this case, NM+Y = O(Nn

M ).

It is important to note that, again, this result is not restricted to smooth
manifolds, but rather extends to much more general signals: Indeed, for any
compact set M ∈ R

n, the (n − 1)-dimensional sets ∂Tub−
σ (M), ∂Tub+

σ (M),
are Lipschitz manifolds 3 for almost any ε (see [11] ). Moreover, the gener-
alized curvatures measures of ∂Tub−

σ (M), ∂Tub+
σ (M) are arbitrarily close

3 i.e. topological manifolds equipped with a maximal atlas for which the changes of
coordinates are Lipschitz functions.
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to the curvature of M , for small enough σ ([5], [11]). It follows that the
generalization above befits not only the case of the Gaussian noise, but to
more general types of noise, as well (see, [25], [12], [14]).

The full details of a quantitative version, including the general case, are
laborious and warrant a separate discussion (see [24]).

3. Geometric Sampling of Infinite Dimensional Signals

Since in the classical context band-limited signals are viewed as elements
f of L2(R), such that supp (f̂) ⊆ [−π, π], where f̂ denotes the Fourier trans-
form of f , one is led naturally, to the following question: can one extend the
sampling theorem proven in [22] to infinite dimensional manifolds? Using
an example developed in [16], one may conclude that not only this question
is far from naive, but rather the answer is positive in that our geometric
sampling method translates directly into the context of infinite dimensional
manifolds, at least for a class of functions that naturally arise in the the
context of signal and image processing. However, since the full proofs re-
quired in the example below are rather technical, we refer the reader to the
original paper [16], and limit ourselves here solely to a brief presentation

Consider the following spaces:

C∞
1 =

{
e ∈ C∞(R)

∣∣ e(x + 1) = e(x)
}

,

C∞
+ =

{
e ∈ C∞(R)

∣∣ e(x + 1) = e(x),

∫ 1

0
e2 = 1

}
,

M ⊂ C∞
+ ,M =

{
λ0 = 0 |λ0 first eigenvalue ofQ

}
,

where Q denotes the Hill operator: Q = −D2 + q , q(x + 1) = q(x), and
where D = ∂/∂x, 0 ≤ x < 1.

Since 1 an 0 are regular values for their respective functions, M is a
smooth, co-dimension one hyper-surface in C∞

1 , that is endowed with the
topology inherited from that of C∞ endowed (as usual) with the sup norm.
Further, exactly as in the finite-dimensional case, for any 2-dimensional
section determined by unit tangent vectors to M at q, one can define (and
compute) the maximal principal curvature (of the section).

Moreover, since the co-dimension of M in C∞
1 is 1, it follows that, together

with a tangent plane, a normal to M at q is also defined. It follows that one
can use the same method as in the finite dimensional case to find a sampling
of M .

It follows that a sampling scheme identical to that developed for the finite
dimensional case can be applied for the manifold M , as well. Unfortunately,
no uniform sampling is possible for the entire manifold: the maximal cur-
vature, associated with functions approximating “saw-tooth” functions can
be made as large as desired (see [16]).

One would like to extend these considerations, in a systematic manner, to
general infinite dimensional manifolds (e.g. l2 and Hilbert cube manifolds).
However, even if the appropriate geometric differential notions are defined
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and computed, the fundamental problem of constructing fat triangulations
for infinite dimensional manifolds still has to be solved. On the positive side
is the fact that triangulations of such manifolds exist (see [3]). However,
even finding a notion analogous to that of fatness in the ∞-dimensional case
represents a challenge. (For a different approach to a differential geometry
of some infinite dimensional spaces see for example [17].)

Appendix 1 – A Concise Version of Proof of Theorem 1.1

We begin by introducing the necessary definitions and notations:
Let Mn denote an n-dimensional complete Riemannian manifold, and let

Mn be isometrically embedded into R
ν (“ν”-s existence is guaranteed by

Nash’s Theorem – see, e.g. [19]).
Let B

ν(x, r) = {y ∈ R
ν | deucl < r}; ∂B

ν(x, r) = S
ν−1(x, r). If x ∈ Mn, let

σn(x, r) = Mn ∩ B
ν(x, r), βn(x, r) = expx

(
B

n(0, r)
)
, where: expx denotes

the exponential map: expx : Tx(Mn) → Mn and where B
n(0, r) ⊂ Tx

(
Mn

)
,

B
n(0, r) = {y ∈ R

n | deucl(y, 0) < r}.
The following definitions generalize in a straightforward manner classical

ones used for surfaces in R
3:

Definition 3.1. (1) S
ν−1(x, r) is tangent to Mn at x ∈ Mn iff there

exists S
n(x, r) ⊂ S

ν−1(x, r), s.t. Tx(Sn(x, r)) ≡ Tx(Mn).
(2) Let l ⊂ R

ν be a line, then l is secant to X ⊂ Mn iff | l ∩ X| ≥ 2.

Definition 3.2. (1) S
ν−1(x, ρ) is an osculatory sphere at x ∈ Mn iff:

(a) S
ν−1(x, ρ) is tangent at x;

and
(b) B

n(x, ρ) ∩ Mn = ∅.
(2) Let X ⊂ Mn. The number ω = ωX = sup{ρ > 0 |Sν−1(x, ρ) osculatory

at any x ∈ X} is called the maximal osculatory (tubular) radius at
X.

Remark 3.3. There exists an osculatory sphere at any point of Mn (see [2] ).

Definition 3.4. Let U ⊂ Mn, U 6= ∅, be a relatively compact set, and let
T =

⋃
x∈Ū σ(x, ωU ). The number κU = max{r |σn(x, r)isconnected for all s ≤

ωU , x ∈ T̄}, is called the maximal connectivity radius at U, defined as fol-
lows:

Note that the maximal connectivity radius and the maximal osculatory
radius are interconnected by the following inequality ([19], Lemma 3.1):

ωU ≤
√

3

3
κU .

We are now able to present the main steps of the proof:
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The Compact Case. This case was proved in Cairns’ seminal paper [2]. His
method is to produce a point set A ⊆ Mn, that is maximal with respect to
the following density condition:

(3.1) d(a1, a2) ≥ η , for all a1, a2 ∈ A ;

where

(3.2) η < ωM .

One makes use of the fact that for a compact manifold Mn we have
|A| < ℵ0, to construct the finite cell complex “cut out of M” by the ν-
dimensional Dirichlet complex, whose (closed) cells are given by:

(3.3) c̄k = c̄ν
k = {x ∈ R

ν | deucl(ak, x) ≤ deucl(ai, x), ai ∈ A , ai 6= ak},
i.e. the (closed) cell complex {γ̄n

k }, where:

(3.4) {γ̄n
k } = γ̄k = c̄k ∩ Mn

(see [2] for details).

Open Riemannian Manifolds. In adapting Cairns’ method to the non-compact
case, one has to allow for a number of required modifications. We proceed
to present below the construction devised by Peltonen, which consists of two
parts:
Part 1

Step A
Construct an exhaustive set {Ei} of Mn, generated by the pair

(Ui, ηi), where:

(1) Ui is the relatively compact set Ei \ Ēi−1 and
(2) ηi is a number that controls the fatness of the simplices of the tri-

angulation of Ei , constructed in Part 2, such that it will not differ
to much on adjacent simplices, i.e.:
(i) The sequence (ηi)i≥1 descends to 0 ;
(ii) 2ηi ≥ ηi−1 .

The numbers ηi are chosen such that they satisfy the following bounds:

ηi ≤
1

4
min
i≥1

{ωŪi−1
, ωŪi

, ωŪi+1
} .

Step B

(1) Produce a maximal set A, |A| ≤ ℵ0, s.t. A ∩ Ui satisfies:
(i) a density condition, namely:

d(a, b) ≥ ηi/2 , for all i ≥ 1 ;
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and
(ii) a “gluing” condition for Ui, Ui+1 , i.e. their intersection is large
enough.

Note that according to the density condition (i), the following
holds:

For any i and for any x ∈ Ūi, there exists a ∈ A such that d(x, a) ≤
ηi/2 .

(2) Prove that the Dirichlet complex {γ̄i} defined by the sets Ai is a cell
complex and every cell has a finite number of faces (so that it can
be triangulated in a standard manner).

Part 2
Consider first the dual complex Γ, and prove that it is a Euclidian

simplicial complex with a “good” (i.e. proper) density. Project then Γ on

Mn (using the normal map). Finally, prove that the resulting complex Γ̃ can
be triangulated by fat simplices. Indeed, the fatness of any n-dimensional

simplex γ ∈ Γ̃, contained in the set Ui is given by the following bound:

(3.5)
rγ

Rγ
≥ 1

25n+1

(n + 2)
n+1

2

(n + 1)n+1
.

Manifolds With Boundary of Low-Differentiability. The idea of the proof
of this case is to build first two fat triangulations: T1 of a product neigh-
bourhood N of ∂Mn in Mn and T2 of intMn (its existence follows from
Peltonen’s result), and then to “mash” the two triangulations into a new
triangulation T , while retaining their fatness. While the mashing procedure
of the two triangulations is basically the one developed in the original proof
of Munkres’ theorem, the triangulation of T1 has been modified, in order to
ensure the fatness of the simplices of T1. The method we have employed
for fattening triangulations is the one developed in [4]. For the technical
details, see [21].

3.0.1. Curvature Radii. As mentioned above, a sampling scheme exists, the
sampling points being provided by the vertices of the fat triangulation con-
structed above. The fact that the density is a function solely of k =
max{|k1|, ..., |kn|} follows from the basic construction of Cairns and from
the fact that the osculatory radius ωγ(p) at a point p of a curve γ equals
1/kγ(p), where kγ(p) is the curvature of γ at p ; hence the maximal oscu-
latory radius (of Σ) at p is: ω(p) = max{|k1|, ..., |kn|} = max{ 1

ω1
, ..., 1

ωn
}.

(Here ωi , i = 1, ..., n denote the minimal, respective maximal sectional os-
culatory radii at p.)

Appendix 2 – Band-limited signals and bounded curvature

Given the geometric sampling algorithm one is naturally conducted to
pose the following question: “Are 1-dimensional band-limited signals of
bounded curvature?” The answer to this question is both “Yes” and “No”.
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On the positive side, we can state the following proposition:

Proposition 3.5. Let f ∈ L2(R) be a band-limited function. Than f ′′ ∈
L∞(R).

Proof. Since f is band-limited we have suppf̂ ⊂ [−B,B]. Since f ∈ L2(R)

it is clear that f̂ ∈ L2([−B, B]). The interval [−B,B] is bounded and this

implies f̂ ∈ L1([−B, B]).
The mapping properties of the Fourier transform show that f ∈ L∞(R).

This just shows that band-limited functions are bounded.
The second derivative of a band-limited function is also band-limited (be-

cause f̂ ′′(w) = (−2πiw)2f̂(w)). Hence, f ′′ ∈ L∞(R). ¤

On the other hand, the second derivative of a band-limited function can
be arbitrarily large just because λf is again band-limited for every λ > 0.
This shows, that the maximal frequency of a function does not imply a
bound on the second derivative of the function.

The classical formula (see, e.g. [7]) for the curvature of the function f is
given by:

κf (x) =
f ′′(x)

(1 + f ′(x)2)
3
2

,

while the scaling gλ(x) = λf(x), has curvature

κgλ
(x) =

λf ′′(x)

(1 + λ2f ′(x)2)
3
2

λ→∞−→
{

0 , f ′(x) 6= 0

∞ , f ′(x) = 0
.

In other words, the curvature goes to infinity at the maximum points of
f and to 0 everywhere else. Hence, the neither the second derivative nor
the curvature of a bandlimited function can be bounded in terms of the
bandwidth alone.

However, one can give bounds on the derivatives of f :

Proposition 3.6. For f with suppf̂ ⊂ [−B, B], we have the following esti-
mates on the derivative of f :

(3.6) |f (n)(x)| ≤ (2πB)n‖f̂‖L1 .

If we assume f̂ ∈ L∞, we have

(3.7) |f (n)(x)| ≤ 2(2π)nBn+1

n + 1
‖f̂‖L∞ ≤ 2(2π)nBn+1

n + 1
‖f‖L1

(while the second inequality only holds if f ∈ L1, of course). Another esti-
mate is

(3.8) |f (n)(x)| ≤ (
2(2π)pnBpn+1

pn + 1
)1/p‖f̂‖Lq ,

where 1
p + 1

q = 1.
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Proof. All inequalities are based on the formula

|f (n)(x)| = |
∫ B

−B
(−2πiω)ne2πiωxf̂(ω)dω| ≤

∫ B

−B
|2πω|n|f̂(ω)|dω.

Equation (3.6) follows from

sup
ω∈[−B,B]

|2πω|n = (2πB)n .

Equation (3.7) follows from
∫ B

−B
|2πω|n|f̂(ω)|dω ≤ ‖f̂‖L∞

∫ B

−B
|2πω|ndω ,

and the fact that ‖f̂‖L∞ ≤ ‖f‖L1 . Finally equation (3.8) follows by applying
Hölders inequality:

∫ B

−B
|2πω|n|f̂(ω)|dω ≤

(∫ B

−B
|2πω|pndω

)1/p

‖f̂‖q.

¤

For certain special cases, the above proposition yields

Corollary 3.7. Let f be a band-limited signal with bandwidth B. Then:

(1) If ‖f‖1 ≤ K, then:

|f ′′(x)| ≤ 8π2B3K

3
;

(2) If ‖f‖2 ≤ K, then:

|f ′′(x)| ≤ 32π4B5K

5
.

References

[1] Burago, D., Burago, Y. and Ivanov, S. Course in Metric Geometry, GSM 33, AMS,
Providence, 2000.

[2] Cairns, S.S. A simple triangulation method for smooth manifolds, Bull. Amer. Math.
Soc. 67, 1961, 380-390.

[3] Chapman, T.A. Lectures on Hilbert cube manifolds, AMS, Providence, Rhode Island,
1976.

[4] Cheeger, J., Müller, W. and Schrader, R. On the Curvature of Piecewise Flat Spaces,
Comm. Math. Phys., 92, 1984, 405-454.

[5] Cheeger, J. Müller, W. and Schrader, R. Kinematic and Tube Formulas for Piecewise
Linear Spaces, Indiana Univ. Math. J., 35 (4), 737-754, 1986.

[6] Conway, J.H. and Sloane, N.J.A. Sphere Packings, Lattices and Groups, third ed.,
Springer, New York, 1999.

[7] do Carmo, M. P. Differential Geometry of Curves and Surfaces, Prentice-Hall, En-
glewood Cliffs, N.J., 1976.

[8] Federer, H. Curvature measures, Trans. Amer. Math. Soc., 93, 418-491, 1959.
[9] Gabor, D. Theory of communication, J. Inst. Elect. Eng. (London), 93, pt. 3(26), 429,

1946.
[10] Gray, A. Tubes, Addison-Wesley, Redwood City, Ca, 1990.



14EMIL SAUCAN1,2, ELI APPLEBOIM1, DIRK A. LORENZ3 AND YEHOSHUA Y. ZEEVI1

[11] Howland, J. and Fu, J.H.G. Tubular neighbourhoods in Euclidean spaces, Duke Math.
J., 52(4), 1025-1045, 1985.

[12] Huang, J. Statistics of Natural Images and Models, PhD Thesis, Brown University,
2000.

[13] Jain, A.K. and Pratt, W.K. Color Image Quantization, IEEE Publication 72 CHO
601-5-NTC, National Telecommunication Conference 1972 Record, Huston, TX, 1972.

[14] Lee, A.B., Pedersen, K.S. and Mumford, D. The Nonlinear Statistics of High-Contrast
patches in Natural Images, 54(1/2/3), 83-1003, 2003.

[15] Louie, A.H. Multidimensional time: A much delayed chapter in a phenomenological
calculus, preprint, 2004.

[16] McKean, H.P. Curvature of an ∞-dimensional manifold related to Hill’s equation, J.
Diff. Geom. 17, (1982), 523-529.

[17] Michor, P.W. and Mumford, D. Riemannian geometries on spaces of plane curves. J.
Eur. Math. Soc. (JEMS) 8 (2006), 1-48.

[18] Munkres, J.R. Elementary Differential Topology, (rev. ed.) Princeton University
Press, Princeton, N.J., 1966.

[19] Peltonen, K. On the existence of quasiregular mappings, Ann. Acad. Sci. Fenn., Series I
Math., Dissertationes, 1992.

[20] Ramanathan, J. Methods of Applied Fourier Analysis, Birkhäuser, Boston, Ma., 1998.
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