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Abstract 

Random field models are one of the most common classes of image models. Such 

models, as suggested in the literature, attempt to characterize the correlation 

among neighboring pixels in the image. Since images are defined on 2D grids, it 

is more appropriate to model them as realizations of 2D time series or random 

field models. By assuming a separable correlation function for a 2D auto-

regressive (AR) model, a straightforward generalization of the 1D time series AR 

model to 2D is obtained. This simple model and its extensions have found many 

applications in image restoration, image compression, and texture classification 

and segmentation. In this work we explore the statistical properties of wide-sense 

Markov random fields with a separable correlation function. We analyze the 

effect of interpolation on the statistics of such images, and develop corresponding 

mathematical relations. Motivated by these results and relations, we propose a 

new method for texture interpolation, based on an orthogonal decomposition 

model for textures. Experiments with natural texture images and comparison with 

presently available interpolation methods demonstrate the advantages of the 

proposed method.   
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1. A Short Introduction  

Wide-sense Markov random fields constitute a useful 2D auto-regressive image model, which 

is highly applicable to image restoration, image compression and texture classification and 

segmentation [1], [2]. In this work we focus on sampling and interpolation of images that may 

be modeled (or approximated) by wide-sense Markov fields in particular, and by 2D AR 

models in general. We develop useful mathematical relations between the statistical features 

of low- and high-resolution versions of such images.  

We proceed to associating the above results with texture interpolation, a problem of interest 

since many natural images may be described as a collage of various textures [3], [4], [5].  

We propose a new interpolation method for textures, based on an orthogonal decomposition 

model for textures by Francos et al. [6], [7]. Experiments on Brodatz texture images [3] 

demonstrate the advantages of the proposed method compared to presently available 

interpolation methods. 

This paper is organized as follows. Section 2 introduces the wide sense Markov model and 

the new developed relations for its high and low resolution statistics. In Section 3 the 

application of texture interpolation, as well as a texture model, are reviewed. Then, the new 

method for texture interpolation is proposed. Section 4 summarizes the work and suggests 

future research.    

 

2. Wide-Sense Markov Random Fields 

2.1  Representation of images by wide-sense Markov random 
fields 

We denote by ,m nX  all the pixels that belong to an L-shaped region of an image matrix as 

shown in Figure 2.1, that is: 

 

( ){ }, ,m nX i j i m or j m= < < . (2.1)
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Figure 2.1 – The L-shaped region formed by the dashed lines is ,m nX . Note that the pixel at the 

location (m,n) is not included in ,m nX . 

 

Given a discrete random field ( , )f m n on an M N×  array of points, and assuming that the 

gray level ( , )f i j  at all points within .m nX  is known, we wish to estimate the gray level at 

 under the constraint that this estimate would be a linear function of the gray levels in ( , )m n

.m nX . In other words, denoting by ˆ ( , )f m n  the optimal estimator for ( , )f m n  based on the 

gray levels at .m nX , one may write 

 

,

,
,

. .

( , )

ˆ ( , ) ( , )

m n

i j
i j

s t

m i n j X

f m n c f m i n j

− − ∈

= −∑ ∑ − , (2.2)

 

where the coefficients  are chosen such that the mean-square estimation error ,i jc

 

{ }2

,
ˆ( , ) ( , )m ne E f m n f m n = −   

(2.3)

    

is minimized. ˆ ( , )f m n  is termed the "linear least square estimate of ( , )f m n ". 

 

By substituting (2.2) in (2.3), differentiating with respect to each c , and setting each 

derivative equal to zero, the following set of equations is obtained for the unknown 

coefficients {

,i j

},i jc : 

 

{ }ˆ( , ) ( , ) ( , ) 0E f m n f m n f i j − =  ,         for all .( , ) m ni j X∈ . 
(2.4)

 

The last result is merely the orthogonality principle in linear least squares estimation, which 

states that the optimal estimation coefficients must be such that the estimation error 
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ˆ( , ) ( , )f m n f m n−  is statistically orthogonal to each ( , )f i j  that is used in forming the 

linear estimator. 

 

We now proceed to the definition of wide-sense Markov fields. Let  represent the 

following pairs of : 

D

( , )i j

 

{ }(0,1), (1,1), (1,0)D = . (2.5)

 

A random field will be called wide-sense Markov [1]  if the coefficients c in (2.2) are such 

that 

,i j

f̂  may be written as 

 

,

( , )

ˆ ( , ) ( , )i j

i j D

f m n c f m i n j
∈

= −∑ − . (2.6)

 

In other words, the least squares estimate of ( , )f m n  in terms of .m nX  is the same as the 

estimate in terms of only the three nearest neighbors on the left and above corner.  

Substituting (2.6) in (2.4), the following conditions that a wide-sense Markov random field 

must satisfy are obtained: 

 

,

( , )

( , ) ( , ) ( , ) 0i j

i j D

E f m n c f m i n j f p q
∈

   − − −  
   

∑ =  

(2.7)

 

for all ( , ,) m np q X∈ , i.e., for ( ) ( ) ( ) ( ){ }, 1, , 1, 1 , ,p q m n m n m n 1= − − − − . Inserting these 

values of ( ),p q

1 0,1, ,c

 in (2.7) yields the following set of conditions, which can be solved for 

: 1,0 1,c c

 

1,0 1,1 0,1(0,0) (0,1) ( 1,1) ( 1,0)ff ff ff ffc R c R c R R+ + − = −

−

, (2.8a)

1,0 1,1 0,1(0,1) (0,0) ( 1,0) ( 1,1)ff ff ff ffc R c R c R R+ + − = , (2.8b)

1,0 1,1 0,1(1, 1) (1,0) (0,0) (0, 1)ff ff ff ffc R c R c R R− + + = − , (2.8c)

 

where  

 

( ) ( ){ }( , ) , ,ffR E f m n f m nα β α= + β+  (2.9)

 

is the auto-correlation matrix of the Random field ( , )f m n , and where the expectation value 

{}E ⋅  is taken over all the pairs ( , ), (f m n f m , )nα β+ + . 

 

By now it is obvious that a wide-sense Markov random field is described by the following 

difference equation: 
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( ) ( )
( )

,

,

( , ) , ,i j

i j D

f m n c f m i n j m nξ
∈

− − − =∑ , (2.10)

 

  where  is the difference at each point. ( ) ( ) (ˆ, ,m n f m n f m nξ −� ),

 The following theorem characterizes the difference ( ),m nξ . 

 

Theorem 2.1: A discrete random field ( , )f m n  is wide-sense Markov if and only if it satisfies 

the following difference equation for all points ( ),m n  with  and : 1m > 1n >
 

( ) ( )
( )

,

,

( , ) , ,i j

i j D

f m n c f m i n j m nξ
∈

− − − =∑ , (2.11) 

 

and for the points on the topmost row and the leftmost columns 

 

(1,1) (1,1)f ξ=  (2.12a) 

( ,1) ( 1,1) ( ,1)f m Af m mξ− − = ,    1m > (2.12b) 

(1, ) (1, 1) (1, )f n Bf n nξ− − = ,    1,n > (2.12c) 

 

where the  are the solutions of (2.8), and  ,i jc

 

(1,0)

(0,0)
ff

ff

R
A

R
= ,   

(0,1)

(0,0)
ff

ff

R
B

R
=    , 

(2.13) 

 

where ( , )m nξ  is a discrete random field of orthogonal random variables, i.e., 

 

{ }( , ) ( , ) 0E m n p qξ ξ = ,  m p≠  or n q≠ . (2.14) 

 

Proof: We first point out that (2.12b) and (2.12c) are consistent with (2.11) in the sense of the 

dependence of the estimator on points in .m nX . Specifically, the least squares estimate ˆ ( ,1)f m  of 

( ,1)f m  in terms of all the points in ,1mX  is the same as that in terms of ( 1,1f m )−  only, that is 

 

( )ˆ ( ,1) 1,1f m Af m= − . (2.15) 

 

By arguments similar to those leading to (2.7), the coefficient  must be such that A
 

[ ]{ }( ,1) ( 1,1) ( ,1) 0E f m Af m f p− − = ,  for all ( ) ,1,1 mp X∈  . (2.16) 

 

For , (2.16) yields 1p m= −
 

( 1,0) (1,0)

(0,0) (0,0)
ff ff

ff ff

R R
A

R R

−
= =    . 

(2.17) 

 

Thus, 

 

( ,1) ( 1,1) ( ,1)f m Af m mξ= − + , (2.18) 
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where  is the error. ˆ( ,1) ( ,1) ( ,1)m f m f mξ = −
 

In a similar manner it is easy to show that (2.12c) holds, where the coefficient B  is given by (2.13). 

We now proceed to the proof of the theorem. Assuming that the field is wide-sense Markov, we 

want to show that (2.14) is true. From (2.7), (2.16) we conclude that each ( , )m nξ  is orthogonal to 

( , )f p q  for all ,( , ) m np q X∈ . It is easy to see that for any ( ),k l ∈ ,m nX , ( , )k lξ  is a linear 

combination of ( , )f p q 's in ,m nX . Therefore, ( , )m nξ  must be orthogonal to ( , )k lξ  for all 

. This must hold for every point  in the image, and thus  ,m nX( , )k l ∈ ( ,m n)

 

{ }( , ) ( , ) 0,E p q m nξ ξ =  for p m≠  or q n≠   , (2.19) 

   

which is (2.14).  

Conversely, if (2.14) is true for ( , )m nξ  as defined by (2.11), (2.12), we need to show that ( , )f m n

(2,1)

 

is a wide-sense Markov field. This is done as follows. We observe that (2,1) (1,1)f Aξ ξ= +  

and that (1,2) (1,1)f B (1,2)ξ ξ= + , using (2.12b) and (2.12c), respectively.  Inserting these 

equalities in (2.11), we obtain 

 

( )1,1 1,0 0,1 1,0 0,1(2,2) (1,1) (1,2) (2,1) (2,2)f c Bc Ac c cξ ξ ξ ξ= + + + + + . 

 

In a similar manner, any ( , )f m n  may be expressed as a linear combination of ( , )p qξ 's with 

( ) ,, m np q Y∈ , as defined in Figure 2.2.  Using (2.14), this implies that ( ),f m n  is orthogonal to any 

( , )k lξ  for which  or l . From this we may conclude that the estimation error 

 is orthogonal to all 

k >

( ,f k l

m

)

n>
ˆ, )k l= −( , ) (k l fξ ( , )f p q  with ( ), ,k lp q X∈ , which, combined with 

(2.6), is exactly (2.7). Therefore, the random field ( , )f m n  is wide-sense Markov, which completes 

the proof of the theorem.  

 

 
Figure 2.2 – The region Y . Note that here, the pixel in (m,n) is included in the region. ,m n
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We proceed now to an interesting special case of a wide-sense Markov field, for which the 

autocorrelation function is 

 

( )1 2( , ) expffR c cα β α= − − β  . (2.20) 

 

Note that for this autocorrelation (0,0) 1ffR = , which means that the original image is first 

normalized by dividing it by (0,0ff

)

R

( ,

. By this normalization we avoid the need to insert a 

multiplicative constant to ffR α β . 

 

The expression in (2.20) may be rewritten as 

 

( , )ff h vR
α βα β ρ ρ=   , (2.21)

 

where  and  are measures of the horizontal and vertical correlation, respectively. 

Substituting (2.20) in (2.8), the following solution is obtained: 

1c

h eρ −= 2c

v eρ −=

 

1,0 ,hc ρ=   c0,1 vρ= , 1,1 h vc ρ ρ= −  . (2.22a)

 

Hence, the autocorrelation in (2.21) may be rewritten as 

 

10 01( , )ffR c c
α βα β =   . (2.22b)

  

Also, inserting (2.21) into (2.13) yields: 

 

10A c= ,   01B c= . (2.22c)

 

In the following sections we explore the special characteristics of this wide-sense random Markov 

random field. Specifically, we will examine the statistical properties of such an image under 

sampling. We first turn to a description of the sampling operation. 

 

   

2.2 Sampling operation 
In this section we introduce the sampling operation, which later on will be applied to a given 

Markov random field image.  

For simplicity, we discuss a square image, whose dimensions are (2 ) (2 )M M× . We denote this 

image by f  (the larger image or the high-resolution image).  

Sampling f  every other pixel yields a low-resolution version of this image, which we denote by 

*f  (the small image). Specifically, if  are the row and column indices of ,k l *f  respectively, then  

 

*( , ) (2 1,2 1).f k l f k l= − −  (2.23)
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 It is easy to see that the low-resolution version 
*f  is of dimensions M M× , and thus, the high-

resolution version f  consists of 3 2M  more pixels than 
*f . Figures 2.3 and 2.4 demonstrate the 

relation between f ,
*f . 

 

 
 

Figure 2.3 – High resolution image 

 
 

 
 

Figure 2.4 – Low resolution image (sampled image) 

 

2.3  Statistical properties of sampled Markov random field 
image 
We now turn to examining the statistical properties of the high resolution and low resolution 

Markov random field images, given that the autocorrelation of the high resolution image is as 

in (2.21) and (2.22), i.e., has an exponential form. For simplicity, we avoid general indices 

, and instead use numerical indices, as the ones that appear in Figures 2.3 and 2.4. This 

indices convention is valid due to the global nature of the definition of a wide-sense Markov 

field (see (2.6)), or the fact that the coefficients  are constant and that the white 

noise

,i j

01 10 11, ,c c c

ξ  is assumed to have the same variance throughout the whole image.    
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Theorem 2.2: Let f  be a wide-sense Markov random field with an autocorrelation of the 

form: 

( , )ff h vR
α βα β ρ ρ= , 

where 

1,0 ,hc ρ=  0,1 vc ρ= , 1,1 h vc ρ ρ= − . 

 

Then, the sampled version 
*f  is also wide-sense Markov and its coefficients are given by 

 
* 2

10 10c c= , , . 
* 2

01 01c c= * *

11 01 10c c c= − * (2.24)

 

Proof: We aim to express 55f  using 33 35 53, ,f f f , and then show that the pixels at these points 

are linearly related through constant coefficients that are the wide-sense Markov linear 

coefficients of the low-resolution image.  

Using the Markov property of f , note that 

  

44 01 43 11 33 10 34 44 ,f c f c f c f ξ= + + +  (2.25a)

45 01 44 11 34 10 35 45,f c f c f c f ξ= + + +  (2.25b)

54 01 53 11 43 10 44 54f c f c f c f ξ= + + + , (2.25c)

55 01 54 11 44 10 45 55f c f c f c f ξ= + + + , (2.25d)

 

where mnξ  is the white noise generating the image f . 

Inserting (2.25a), (2.25b) and (2.25c) into (2.25d), we obtain: 

 

[ ]
[ ]
[ ]

55 01 01 53 11 43 10 44 54

11 01 43 11 33 10 34 44

10 01 44 11 34 10 35 45 55.

f c c f c f c f

c c f c f c f

c c f c f c f

ξ

ξ

ξ ξ

= + + +

+ + + +

+ + + +

+

+

 

(2.26)

 

Opening the brackets and rearranging so that the noise-dependant terms will appear at the end 

of the expression, we get 

 
2

55 01 53 01 11 43 01 10 44 11 01 43

2 2

11 33 11 10 34 10 01 44 10 11 34 10 35

01 54 11 44 10 45 55.

f c f c c f c c f c c f

c f c c f c c f c c f c f

c c cξ ξ ξ ξ

= + + + +

+ + + + +
+ + + +

 

(2.27)

 

Inserting (2.25a) into (2.27), 

 

[ ]
[ ]

2

55 01 53 01 11 43 01 10 01 43 11 33 10 34 44

2 2

11 01 43 11 33 11 10 34 10 01 01 43 11 33 10 34 44 10 35

01 54 11 44 10 45 55

2

.

f c f c c f c c c f c f c f

c c f c f c c f c c c f c f c f c f

c c c

ξ

ξ
ξ ξ ξ ξ

= + + + + + +

+ + + + + + + +

+ + + +

+  

(2.28)

 

Rearranging the last expression yields 
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( ) ( )
( )

2 2 2 2

55 01 53 10 35 11 10 01 11 33 10 01 11 10 34

2

01 10 11 01 43

2 2 2

2 2 ,

f c f c f c c c c f c c c c f

c c c c f N

= + + + + +

+ + +

+
 

(2.29)

 

where 

 

01 10 44 01 54 11 44 10 45 552 ,N c c c c cξ ξ ξ ξ ξ+ + + +�  (2.30)

 

Observing that in the last equality the terms 34 43,f f  do not belong to the sampled image
*f , 

we proceed to express them in terms of the pixels that belong to
*f , that is:  

 

43 01 42 11 32 10 33 43f c f c f c f ξ= + + +  (2.31a)

34 01 33 11 23 10 24 34f c f c f c f ξ= + + + . (2.31b)

 

Inserting (2.31a), (2.31b) in (2.29) yields: 

 

( )
( )( )
( )( )

2 2 2

55 01 53 10 35 11 10 01 11 33

2

10 01 11 10 01 33 11 23 10 24 34

2

01 10 11 01 01 42 11 32 10 33 43

2

2 2

2 2

f c f c f c c c c f

c c c c c f c f c f

c c c c c f c f c f N

ξ

ξ

= + + + +

+ + + + + +

+ + + + + +

 

(2.32)

 

Which, after rearranging becomes 

 

( )2 2 2 2 2

55 01 53 10 35 11 10 01 11 10 01 336 4 totalf c f c f c c c c c c f N= + + + + +  (2.33)

 

Where 

 

( )( )

( )( )

2

10 01 11 10 11 23 10 24

2

01 10 11 01 01 42 11 32

2 2

2 2 .

totalN N c c c c c f c f

c c c c c f c f

= + + + +

+ + +
 

(2.34)

 

Inserting the expression for  from (2.30), we obtain N
 

( ) (
( ) (

01 10 44 01 54 11 44 10 45 55

2 2 3 2

10 01 11 11 10 23 10 01 11 10 24

3 2 2 2

01 10 11 01 42 01 10 11 11 01 32

2

2 2 2 2

2 2 2 2

totalN c c c c c

c c c c c f c c c c f

c c c c f c c c c c f

)
) .

ξ ξ ξ ξ ξ= + + + +

+ + + +

+ + + +

+

+  

(2.35)

 

Our goal now is to show that  has the form of a white noise, which is not dependant 

on

totalN

24 42 23 32, , ,f f f f . To obtain this result, we note that (2.22) implies that the wide-sense 

Markov field coefficients for the case of exponential autocorrelation are related by 

 

11 10 01c c c= − . (2.36)
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Using this last result, it is easy to observe that the terms that are dependant on 

24 42 23 32, , ,f f f f  vanish: 

 
2 2 3 2 3 2

10 01 11 11 10 10 01 10 012 2 2 2c c c c c c c c c+ = − + 0=

0=

0=

0.

 (2.37a)

3 2 3 3

10 01 11 10 10 01 10 012 2 2 2c c c c c c c c+ = −  (2.37b) 

3 2 3 3

01 10 11 01 01 10 10 012 2 2 2c c c c c c c c+ = −  (2.37c) 

2 2 3 2 2 3

01 10 11 11 01 01 10 10 012 2 2 2c c c c c c c c c+ = − + =  (2.37d) 

 

Inserting (2.36) and (2.37) into (2.35), we obtain: 

 

01 10 44 01 54 01 10 44 10 45 55

01 10 44 01 54 10 45 55

2

.

totalN c c c c c c

c c c c

ξ ξ ξ ξ ξ
ξ ξ ξ ξ

= + − + +
= + + +

=

=

 
(2.38)

 

Returning to (2.33) and using (2.36) and (2.38) yields: 

 

( )2 2 2 2 2 2 2 2

55 01 53 10 35 01 10 10 01 10 01 33

2 2 2 2

01 53 10 35 01 10 33

6 4

.

total

total

f c f c f c c c c c c f N

c f c f c c f N

= + + − + +

= + − +
 

(2.39)

 

Keeping in mind that 33 35 53 55, , ,f f f f  all belong to the sampled image
*f  (see Figure 2.4), 

and recalling that ( ),f m n  is orthogonal to any ( , )k lξ  for which  or (see proof 

of Theorem 2.1), and also that 

k > m l n>

ξ  is a white noise, it is straightforward to see that (2.39) is no 

other than the difference equation of a wide-sense Markov field (see (2.10)). In other words, 

(2.39) may be rewritten as: 

 
* * *

55 01 53 10 35 11 33 55f c f c f c f *ξ= + + + , (2.40)

 

where: 

 
* 2

01 01c c= ,  
* 2

10 10c c= ,  c c  
* *

11 10 01c= − * (2.41a)

*

55.totalN ξ=  (2.41b) 

 

From (2.40), 
*ξ  is a white noise generating the wide-sense Markov field of the sampled 

image
*f .  

 

To complete the proof, the boundaries of the sampled image 
*f  should be considered. To do 

so, we express the pixels that belong to the leftmost column of the image f : 

 

21 11 21f Af ξ= + , (2.42a)

31 21 31f Af ξ= + , (2.42b) 
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which, combined together, yield 

 

( ) 2

31 11 21 31 11 21 31f A Af A f Aξ ξ ξ= + + = + + ξ . (2.43)

 

  

Inspection of (2.43) reveals that the pixels 31 11,f f  (see Figure 2.4) on the leftmost boundary 

of the sampled image 
*f  are related in a similar manner to the pixels on the leftmost 

boundary of the high-resolution image f  (see (2.12b)). In other words, (2.43) may be 

rewritten as 

 

* *

31 11 31f A f ξ= + , (2.44)

 

where 

 

* 2A A=  (2.45a)

*

31 21 31,Aξ ξ ξ= +   (2.45b)

 

and 
*ξ  is the white noise generating the leftmost boundary of the sampled image

*f . 

It is easy to see that (2.45a) is in good agreement with (2.22b) and (2.41a), and indeed 

 

* 2 2

10 10A A c c= = = *

2

. (2.46)

   

In a similar manner it is easy to show that 
*B B=  is the coefficient that corresponds to the 

generation of the topmost boundary of
*f .   

 

Finally, recalling our convention that we use numerical indices for simplicity, and noting that 

the same procedure may be done for all the pixels that belong to
*f , the proof is completed. 

 ,
 

Using Theorem 2.2, it is possible to derive relations between the statistics of the original and 

sampled images, and also between their generating white noise statistics (expectation value 

and variance). We start with the noise and then proceed to handling the statistical properties 

of the images. 
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Theorem 2.3: Let f  be a wide-sense Markov random field, and let 
*f  be its sampled 

version.  

(a) Denoting by *

2 2,ξ ξ
σ σ  the variances of the generating white noise of 

*,f f  

respectively, the following relation holds: 

( )2 2 2 2 2

* 01 10 01 10 1c c c c 2

ξ ξσ σ= + + + . (2.47a)

(b) Denoting by 
*,µ µ  the expectation values of the white noise of 

*,f f  respectively,  

( )* 01 10 01 10 1c c c cξ ξµ µ= + + + . (2.47b)

 

Proof: We recall that ξ  is a white noise, i.e., that ( ) ( )1 1 2 2, , ,m n m nξ ξ  are statistically 

independent for m1 2m≠  or . Using the well-known result that the variance of the 

sum of two independent random variables is simply the sum of their variances, we obtain 

from (2.38): 

1n n≠ 2

2 2

 

( )22 2 2 2 2

* 01 10 01 10c c c cξ ξ ξ ξ ξσ σ σ σ= + + σ+ . (2.48)

 

Simple rearranging yields (2.47a), which is the desired result. 

 

In order to prove (2.47b), we take the expectation value {}E ⋅  from both sides of (2.38), 

which gives 

 

* 01 10 01 10c c c cξ ξ ξ ξ ξµ µ µ µ= + + + µ .  (2.49)

 

(2.49) is identical to (2.47b), and this completes the proof of the theorem. ,  

 

Theorem 2.4: The first moments (i.e., the expectation value) of the high resolution image f  

and the low-resolution image 
*f  are equal. 

 

Proof: We first formulate an expression to the expectation value of a wide-sense Markov 

random field. Taking the expectation value on both sides of the difference equation (2.11), we 

obtain: 

 

( )
( )

( ){ },

,

( , ) , ,i j

i j D

E f m n c f m i n j E m nξ
∈

  − − − = 
  

∑ , 

(2.50)

 

where the expectation is taken over all the points that belong to f . Using the linearity of the 

expectation operator {}E ⋅ , denoting Eµ ξ=  as the expectation value of the white noise ξ  

and { }F E f=  as the expectation of the image f , we obtain: 

 

10 01 111
F

c c c

µ
=

− − −
. 

(2.51)

 

In a similar manner, we may express the expectation of the sampled image { }* *F E f= : 
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*

*

* *

10 01 111
F

c c c

µ
=

− − − *
  . 

(2.52)

 

 

Now, inserting the relations between the coefficients of the high-resolution image and the 

sampled image (see (2.41a)), and also the relation between the expectation value of the white 

noise in the original and the sampled image (see (2.47b)), we get 

 

( )01 10 01 10*

2 2 2 2

10 01 10 01

1

1

c c c c
F

c c c c

µ+ + +
=

− − +
  . 

(2.53)

 

Using (2.51) to express µ  in terms of  and putting it in (2.52) yields: F

 

( )( )10 01 10 01 10 01 01 10*

2 2 2 2

10 01 01 10

1 1

1

c c c c c c c c F
F

c c c c

+ + + − − +
=

− − +
  . 

(2.54)

 

Noting that  

 

( ) ( )( )
( ) ( )

01 10 10 01 01 10 10 01

2 2 2 2 2 2

01 10 10 01 01 10 10 01 10 10 01 01

2 2 2 2

10 01 10 01

1 1

1 1 2 2

1 ,

c c c c c c c c

c c c c c c c c c c c c

c c c c

+ + + + − + =

= + − + = + + − − − =

= + − −

 

(2.55)

 

we obtain from (2.54): 

 
*F F= , (2.56)

 

which completes the proof of the theorem. ,  

 

Theorem 2.5: Let f  be a wide-sense Markov image with an exponential autocorrelation 

( ) 10 01,ffR c c
α βα β =  (see (2.22b). Then, the autocorrelation of the sampled image 

*f  is given 

by sampling the autocorrelation of f , i.e.,  

 

( ) ( )* , 2 ,ff ffR R 2α β α= β . (2.57)

 

Proof: Recalling the relation between the coefficients of the high-resolution image f  and the 

low-resolution image
*f  (see (2.41a)), we use (2.22b) to obtain 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2* * * 2 2

10 01 10 01 10 01( , ) 2 ,2 ,ff ffR c c c c c c R
α β α β α βα β α= = = = β  

(2.58a)

 

which is the desired result. ,  
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A result of Theorem 2.5 is that f  and 
*f  have equal second order moments, or in other 

words equal variances, since the second moment is by definition the value of the 

autocorrelation function at the origin: 

 
2 *

, 0 , 0
( , ) (2 , 2 )ff ffEf R R Ef

α β α β
α β α β

= =
= = 2= . (2.58b)

 

Note that the proof of Theorem 2.5 holds also for the case where the autocorrelation function 

is not normalized, i.e., ( )0,0 1ffR const= ≠ . In such a case, the only modification is that 

( ) (*2 , 2 , ,ff ffR R )α β α β  are multiplied by the constant  const .  

 

Remark: Although the relations for the variance of the noise in the original and the sampled 

image were obtained for pixels that are not located on the boundaries (leftmost column and 

topmost row) of the image, the results that were presented above do not change for these 

pixels. This may be easily seen by observing that (2.12) may be obtained from (2.11) by 

 for (2.12b) and  for (2.12c). Hence it follows that the pixels on 

the boundaries should obey the same statistical properties that were obtained for inner pixels. 

For example, inspection of (2.45) shows that  

10 ,A c B= = 0 010,A B c= =

( ) ( )2 2 2 2

* 11A c 2

0 1ξ ξ ξσ σ= + = + σ , which is 

exactly (2.48) for .    01 0c =

 

To demonstrate Theorem 2.5, we created a wide-sense Markov image in Matlab, with the 

following parameters: linear coefficients 01 10 0.9c c= = , and variance of the generating white 

noise  (see Figure 2.5). Then, we calculated the autocorrelation of the image, both 

theoretically (according to (2.22b)) and experimentally (see Figure 2.6). For the experimental 

calculation we used the following well-known formula, from the theory of nonparametric 

spectrum estimation: 

2 0.1ξσ =

 

( )
( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

0 0

1

0 1

1
, , ,

ˆ ,
1

, , , .

M N

m n

ff M N

m n

f m n f m n sign
M N

R

f m n f m n else
M N

α β

α

β

α β α β
α β

α β
α β

α β

− − − −

= =

− −

= = +


+ + ⋅ > − −= 

 + − − −

∑ ∑

∑ ∑

0
 

 

Note that this expression yields: ( ) ( )ˆ ˆ, ,ffR Rα β α β= − − . 

We then sampled the image to obtain a low-resolution version (shown in Figure 2.5), and 

calculated (experimentally) the autocorrelation of the sampled image (Figure 2.7). Finally, we 
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compared the autocorrelation of the sampled image to the sampled version of the 

autocorrelation of the original (high-resolution) image (also shown in Figure 2.7).  
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Figure 2.5 – high and low resolutions of wide-sense Markov image  
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Figure 2.6 – Theoretic and experimental autocorrelation of high resolution image 
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Numerical comparison between the theoretically and experimentally calculated 

autocorrelation shows that the deviation between the two is less than . 5%
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Figure 2.7 – autocorrelation of sampled image vs. sampled autocorrelation 

 

Numerical comparison of the sampled autocorrelation and the autocorrelation of the sampled 

image yields a deviation of less than 1%  between the two. Thus, this experiment is in 

agreement with the theoretical result of Theorem 2.5.  

 

2.4 High-order moment statistics for Gaussian Markov 

Random Fields 

In the previous section we saw that for a wide-sense Markov field with an exponential 

autocorrelation, the two first moments (expectation value + variance) are invariant under 

sampling. This result was obtained under the sole assumption that the noise ξ  is white. No 

further assumptions regarding the noise statistics (i.e., uniformly or normally distributed) 

were made. In this section we discuss the question of invariance of higher-order moments, or 

the equivalent question of invariance of the probability distribution of the image under 

sampling. 

 

We first review a few major terms from probability theory, which will help us in developing 

our results. 

 

Definition 2.1: Let X  be a random variable with a probability density function ( )f x . The 

characteristic function of X  is given by 
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( ) ( ) i xf x e dxωω
+∞

−∞

Φ = ∫ . 
(2.59)

  

This function has a maximum at the origin 0ω = since : ( ) 0f x ≥
 

( ) ( )0 1ωΦ ≤ Φ = . (2.60)

 

If jω  is changed to , the obtained integral s

 

( ) ( ) sxs f x e

+∞

−∞

Φ = ∫ dx  
(2.61)

 

is termed the moment generating function of X . 

Note: we use the same notation, Φ , for the characteristic function and for the moment 

generating function for simplicity. The distinction between the two functions is through the 

argument -  or s ω . 

 

From (2.59), (2.61) it is clear that 

 

( ) { }i xE e ωωΦ = , ( ) { }sxs E eΦ = . (2.62)

 

(2.62) leads to the following result: 

 

 If Y a , then X b= + ( ) ( ).jb

Y Xe aωω ωΦ = Φ  (2.63)

 

A well known characteristic function is for the case of a normal (Gaussian) random variable, 

with mean µ  and variance
2σ , which equals 

 

( )
2 2

2je e
σ ωηωω −Φ = . 

(2.64)

 

(2.64) may be easily obtained by using (2.63) and the following integral: 

 

2 2 2
22 2

1

2

x
j xe e dx e

σ ωωσ

σ π

+∞
− −

−∞

=∫ . 
(2.65)

 

Inversion Formula: Inspection of (2.59) reveals that ( )ωΦ −  is the Fourier transform 

of ( )f x , which means that the characteristic functions basically posses the same properties of 
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the Fourier transform. Moreover, the probability density distribution ( )f x  is actually the 

Fourier transform of the characteristic function ( )ωΦ : 

j xω ω−

f

+∞

−∞

= =

f

+∞

−∞

= =∫ ∫ =

(

n

 

( )1
( )

2
f x eω

π

+∞

−∞

= Φ∫ . 
(2.66)

d

 

Definition 2.2: The n-th moment of a random variable X  is  

 

{ }n

nm E X=  (2.67)

 

Moment Theorem: The derivatives of ( )sΦ  at the origin equal the moments of X , i.e., 

 
( ) ( )0
n

nmΦ = . (2.68)

 

Proof: Differentiating (2.61)  times with respect to gives  n s
 

( )
( ) ( )

n n
sx n sx

n n

s
f x e dx x x e dx

s s

+∞

−∞

 ∂ Φ ∂
 ∂ ∂  
∫ ∫ . 

(2.69)

 

Evaluating (2.69) at , we obtain 0s =
 

( )
00

( ) ( )

n

n sx n

nn

ss

s
f x x e dx x x dx m

s

+∞

−∞ ==

 ∂ Φ
 ∂  

, 

(2.70)

 

which is the desired result.  

Note: the term "moment generating function of X " is justified by the result of this 

theorem. 

 

Using the above results enables the formulation of the following relation between the moment 

generating function and the moments of a random variable. Expanding Φ  into a series 

near the origin and using (2.68), one obtains 

)s

 

( )
0 !

n

n

m
s s

n

∞

=

Φ = ∑ , 
(2.71)

 

where (2.71) is valid only if all moments are finite and the series converges absolutely near 

. Since 0s = ( )f x  may be determined in terms of ( )sΦ  (see (2.66)), the conclusion from 

(2.71) is that (under the stated convergence conditions) the density of a random variable is 

uniquely determined if all its moments are known. 
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Note: The above discussion and results were developed for the continuous case, but may be 

easily expanded to the discrete case; for example, suppose that X  is a discrete random 

variable which takes the values ix  with probabilities ip . The characteristic function in this 

case is of the following form: 

 

( ) ij x

i

i

p e
ωωΦ = ∑ . (2.72)

 

This expansion of the preceding results to the discrete case enables us to treat the gray level of 

the pixels of a Markov random field as a probability distribution function and discuss its 

properties in terms of the tools developed so far. We now proceed to doing so for the case of a 

wide-sense Markov random field with an exponential autocorrelation, generated by normally 

distributed white noise. 

 

Theorem 2.6: Let f  be a wide-sense Markov random field with an exponential 

autocorrelation function, generated by a normally distributed white noise. Let 
*f  be its low-

resolution version. Then, the moments of 
*f  up to any order are equal to those of f ; i.e., the 

probability distribution of the gray levels of f  is equal to the probability distribution of
*f . 

 

Proof: We first show that the gray level of f  is normally distributed. To see that, we observe 

that each pixel in f  may be expressed as a linear combination of samples of the white 

Gaussian noiseξ . For example, 

 

11 11f ξ=  

[ ] [ ]
22 10 12 01 21 11 11 22

10 01 11 12 01 10 11 21 11 11 22

10 01 11 10 01 11 10 12 01 21 22

10 01 11 10 12 01 21 22

2

.

f c f c f c f

c c f c c f c f

c c f c c f c c

c c c c

ξ
ξ ξ

ξ ξ ξ
ξ ξ ξ ξ

= + + + =

= + + + + +

= − + + + =
= + + +

ξ =
 

(2.73)

 

Now, since ξ  is normally distributed white noise, the last result implies that each pixel in f  

is a linear combination of statistically independent normally distributed random variables, and 

thus each pixel in f  is also a normally distributed random variable. Furthermore, if we take a 

linear combination of pixels in f , and substitute each pixel with its linear combination of 

samples of white noise (as in (2.73)), we finally obtain a linear combination of samples of 
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white noise as well, which, due to the normal distribution of the noise, is also normally 

distributed. Now, we recall the well-known result from probability theory which states that if 

any linear combination of normally distributed random variables is a normally distributed 

random variable as well, then the random variables have a joint statistics which is normally 

distributed. Using this result, we conclude that the joint statistics of the gray levels of pixels 

in f  is normally distributed. 

 

Furthermore, the low-resolution image
*f  is also normally distributed, since as we saw in 

previous sections,
*f  is also wide-sense Markov and the same arguments regarding the 

normal distribution may be applied to it. 

We now use Theorems 2.4 and 2.5, according to which the first two moments of a wide-sense 

Markov random field f  with an exponential autocorrelation are invariant under sampling. 

Since f  and 
*f  are normally distributed, and since the characteristic function of a normally 

distributed random variable is dependent only on its first two moments (see (1.64)), we 

conclude that f  and 
*f  have equal characteristic functions, and thus equal generating 

moment functions and equal probability distribution functions. ,  

 

To conclude Theorem 2.6, we proved that for a wide-sense random Markov field, with an 

exponential autocorrelation and normally distributed generating white noise, the probability 

distribution is invariant under sampling. 

 

The following example, simulated in Matlab, demonstrates the results obtained so far. 

In Figure 2.8 a wide-sense Markov field and its sampled (low-resolution) version are shown. 

The high-resolution (original) field was generated with the following parameters: variance 

and mean value of the normally distributed white noise: 
2 0.1, 0ξ ξσ µ= = ; vertical and 

horizontal correlation coefficients: 01 10 0.9c c= = . 
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Figure 2. 8 – High resolution and low resolution wide-sense Markov random field. 

 

In Figure 2.9 a comparison between the moments up till order 6 is presented. It is clear that 

the moments are almost identical. Note also that, as expected, the odd order moments are 

nearly zero – which is the case for normally distributed random variables with zero 

expectation value. Also, for the even order moments, the discrepancies between the 2, 4, 6 

order moments of the high- and low-resolutions were , 1.3%  and , respectively. 

We thus observe good fitting between theory and experimental results.  

0.6% 2.9%
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Figure 2.9 – moments up till order 6 for the low and high resolutions. 

 

In Figure 2.10 the histograms of the high- and low-resolutions are shown. It is easy to see that 

the two histograms, which correspond to the probability distributions of the gray levels, are 

nearly identical. The small discrepancy stems from the fact that the histogram is merely a 

discrete approximation of the continuous probability density function. 
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Figure 2.10 – Histograms of high and low resolutions.  
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To further validate that the histograms in Figure 2.10 indeed correspond to normal 

distribution, we recall the following known formula for moments of even orders of zero-mean 

normal distribution:  

 

( )2 2
2 !

2 !

k k

k

k
E X

k
σ  =  ⋅

. 
(2.74)

  

For example, the 2nd, 4th and 6th moments are given by: 

 

2 2E X σ  =  ,  
4 43E X σ  =  ,   

6 615E X σ  =  . (2.75)

 

To compare between the formula and the calculated moments, we first calculate the 2nd, 4th 

and 6th-order moments of the (high-resolution) Markov field f  in the following manner: 

 

2

,

1 1

2 2
ˆ

N N
k

i j

i j

k

f

m
N

= ==
∑∑

. 

(2.76)

 

This calculation yields: , 2
ˆ 2.6514m = 4

ˆ 21.0527m = , 6
ˆ 273.7359m = . Now, we first 

evaluate 
2σ̂  (the hat represents the fact that this is an estimation for 

2σ ) by finding where 

the histogram of f  falls to 
1

2e
−

 of its maximum value; this yields  

 

2ˆ 2.465σ = , (2.77)

 

which gives  relative error with respect to . Then, we calculate: 7% 2m̂

 

( )2

2
ˆ3 21.09m = ,  15 . ( )3

2
ˆ 279.59m = (1.78)

 

Clearly, (2.78) is in very good agreement with the theoretical result (2.75), which indicates 

that the histogram in Figure 2.10 is indeed a good approximation of normal distribution.  
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3. Application: Interpolation of Textures 

In Section 2 the wide-sense Markov model was addressed, and theoretical results regarding its 

distribution were obtained. Specifically, according to Theorem 2.6, the probability 

distribution of the gray levels of the low-resolution field 
*f  is equal to the probability 

distribution of the high-resolution field f . 

We now turn to an application of that result, which is the problem of texture interpolation. 

First, we give a short definition of texture and briefly address the problem of texture 

interpolation and its motivation. Then, we describe a model for texture analysis, by which a 

given texture may be analyzed and synthesized. Based on this model, we propose a new 

method for texture interpolation. The performance of the proposed method is demonstrated 

using experimental results on digitized image textures taken from Brodatz [3]. 

 

3.1. The Texture Interpolation Problem   

Texture may be defined as a structure which is made up of a large ensemble of elements that 

significantly resemble each other, organized according to some kind of ‘order’ in their 

locations. The elements are organized such that there is not a specific element that attracts the 

viewer's eyes, but the human viewer gets an impression of uniformity when he looks at the 

texture [4]. 

Image textures can be specified as: (1) grayscale or color images of natural textured surfaces, 

and (2) simulated patterns that approach these natural images [5]. 

The problem of texture interpolation may be stated as follows: given a down-sampled (low-

resolution) texture, we would like to obtain an up-sampled (high-resolution) version of the 

same texture, such that the  general visual impression will be preserved. 

 

The problem of image interpolation (not necessarily textures) is very common and appears in 

many image processing applications. Considering the fact that many natural images may be 

described as a collage of various textures patches, or at least as a collection of textures and 

relatively smooth areas, it is easy to see that an efficient texture interpolation scheme may be 

useful. This is the motivation for the method proposed in this work. 

 

3.2. The Texture Model 

In this section we briefly describe a texture model upon which we later base the proposed 

interpolation method. In this model, proposed by Francos et al. (see [4], [6], [7]), the texture 

field is assumed to be a realization of a 2D homogeneous random field. Based on a 2D Wold-
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like decomposition of homogeneous random field, the texture field is decomposed into a sum 

of two mutually orthogonal, spatially homogeneous components: (1) the global structural 

component, which is deterministic in prediction theory sense; and (2) the purely stochastic 

component, or purely in-deterministic component.  

The above decomposition may be formulated as follows. Denoting the homogeneous 2D 

texture field by ( ){ },y m n , it can be represented by the orthogonal decomposition 

( ) ( ) ( ), ,y m n w m n v m n= + ,

)

, (3.1)

where  is the purely in-deterministic component and ( ,w m n ( ),v m n  is a deterministic 

field. It is important to note that the deterministic component ( )n,v m  may be further 

decomposed as 

( ) ( ) ( ), , ,v m n h m n g m n= + , (3.2)

where  is called the harmonic field, and ( ,h m n) ( ),g m n  is termed the generalized 

evanescent field. Generally speaking, the harmonic field generates the periodic features of 

the texture field, while the evanescent component generates global directional features in the 

texture field. The spectral density function of the harmonic field is a sum of 2D delta 

functions, while the spectral density function of the generalized evanescent field is a sum of 

1D delta functions that are supported on lines of rational slope in the frequency domain. A 

further discussion of this decomposition exceeds the scope of this paper; for an extensive 

treatment see [4], [6], [7]. 

For simplicity, in this paper we assume that ( ),g m n 0= , that is, we treat the deterministic 

component  as composed of only the harmonic field, i.e., . 

According to this assumption, we confine our discussion to textures that possess periodic 

features, and not directional ones. Experiments with many textures from [1] reveal that this 

assumption is not very restrictive, and in fact enables us to simply treat a wide variety of 

textures.  

( ,v m n)

)

k+

( ) ( ), ,v m n h m n=

Returning to the harmonic field , it may be expressed as a countable sum of weighted 

2D sinusoids, i.e., 

( ,h m n

 

( ) ( ) ( ){ }
1

, cos 2 sin 2
P

k k k k k

k

h m n C n m D n mπ ω ν π ω ν
=

= + +∑ , 
(3.3)
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where ( ,k k )ω ν

'kD

 are the spatial frequencies of the k'th harmonic, and for practical use, the 

 and  may be treated as constant parameters.  'kC s s

To complete this brief review of the model, we have to refer to the in-deterministic 

component . It is shown [4] that this component may be expressed according to a 2D 

auto-regressive (AR) model (see [4], [6], [7] for a discussion regarding the auto-regressive 

modeling), i.e. ,  

( ,w m n)

( ) ( ) ( ) ( )
( ) ,,

, , ,
m nk l

w m n a k l w m k n l u m n
χ∈

= − − − +∑ ,

)

, (3.4)

where  is a 2D white innovations field, ( ,u m n ( ){ },a k l are the auto-regressive model 

parameters, and ,m nχ   is defined as follows: 

( ){ } ( ){ }, , , , ,m n k l l n k m k l l n all kχ = = < <∪ . (3.5)

  

Note that the definition of ,m nχ  in (3.5) differs from its definition in Section 2. Figure (3.1) 

clarifies this definition. 

 

Figure 3.1 – Two-dimensional support for the auto-regressive model  

 

Note that in Fig. (3.1), the pixel at location ( ),m n  is referred to as the "present", while the 

pixels that belong to ,m nχ  are referred to as the "past", and the remaining pixels as the 

"future". These terms allow us to define a 2D ordering relation, which is an extension to the 

1D natural time ordering in the simple 1D auto-regressive model. Since the purely in-

deterministic component  in (3.4) is auto-regressive with relation to its "past" 

samples, it may be viewed as generated by a causal auto-regressive model.  

( ,w m n)
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In order to estimate the 2D AR model parameters ( ){ },a k l  (according to the formulation in 

(3.4)), we seek for a set of parameters that minimizes the innovation field variance, which is 

also the prediction error variance. Applying the orthogonality principle for optimal linear 

estimation, the following set of normal equations is obtained: 

( ) ( ) ( ) ( ) ( )
( ) ( ),

2

,

, ,
, , ,

0,
i jk l

for i j
r i j a k l r i k j l

elseχ

σ

∈

 =
+ − − = 


∑ 0,0

   , 
(3.6)

where { ( )},r i j  is the autocorrelation sequence of the field ( ),w m n , and 
2σ  is the variance 

of the innovation process (or the prediction error variance). 

To conclude the review of this texture model, the generality of the above decomposition 

allows the modeling and parameterization of a wide variety of texture types. Finally, it is 

worth noting that this model is motivated by findings about human vision [4], [11].  

  

3.3. New Method for Texture Interpolation 

In this section we present a new method for texture interpolation. The method relies on the 

theoretical results that were obtained in Section 2, and uses the texture model of Francos et 

al., as reviewed in the previous section. The main idea behind the method is the following. 

Given a down-sampled (low-resolution) texture, we wish to extract its purely in-deterministic 

component, evaluate its optimal (low-resolution) auto-regressive model parameters, and use 

these parameters to generate the high-resolution purely in-deterministic component.  

The harmonic component of the down-sampled texture is also extracted, and by filtering and 

zero padding in the frequency domain is perfectly interpolated to create its up-sampled 

version. The generated deterministic (i.e., harmonic) and in-deterministic components are 

then combined, to yield the high-resolution output texture. 

 

Prior to formulating and elaborating on the stages of this method, we describe its motivation. 

Findings about the human visual system suggest that second-order statistics represent the 

textural information of homogenous purely in-deterministic random textures [4], [11]. The 

normal equations (3.6) imply that the auto-correlation function strongly depends on the AR 

model parameters, and thus we may conclude that ‘similar’ AR parameters correspond to 

visually similar textures.    

We now recall that in Section 2 the wide-sense Markov field was addressed. This random 

field is defined such that each pixel is a linear combination of its three upper-left corner 

nearest neighbors, plus some additive white noise. Furthermore, for the case of a wide-sense 
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Markov field with an exponential auto-correlation, we saw that the probability distributions of 

its high and low resolution were equal (see Theorem 2.6).  

Now, note that the wide sense Markov field is a special case of the auto-regressive model, and 

as such may be treated as a special case of an in-deterministic texture component. It is thus 

motivating to assume that the probability distributions of the low and high versions of the in-

deterministic components of general auto-regressive causal model (not necessarily wide-sense 

Markov), will also be approximately equal and will have similar visual features, and as such – 

also similar autocorrelations. Thus, it is motivating to approximate the AR model parameters 

of the high-resolution version by the parameters of the low resolution, and in this manner 

obtain an interpolation from low to high resolution for the in-deterministic component. 

 

 The proposed interpolation method is applied as follows: 

Input: An  low resolution texture image, denoted by . N M× *y

Output: An  high resolution texture image, denoted by .  2 2N M× y

Step 1: Extraction and interpolation of the harmonic component: 

1.1 Calculation of the DFT and  periodogram (i.e., squared absolute value of  the 

DFT) of . 
*y

1.2 Finding the peaks (2D delta functions) of the periodogram from    step 1.1, and 

creating a frequency domain filter (mask) whose value is 1 at the locations of those 

peaks and 0 elsewhere. 

       1.3 Filtering the DFT of   with the frequency domain mask from    step 1.2, to obtain 

the DFT of the harmonic component of . 

*y

*y

1.4 Zero padding the filtered DFT of   from step 1.3 in order to obtain the DFT 

which corresponds to the harmonic component of the high resolution . 

*y

y

1.5 Applying the inverse DFT on the output of 1.4, to obtain the estimated harmonic 

component of the high resolution, denoted by h . ˆ

 

Step 2: Extraction and interpolation of the purely in-deterministic component: 

2.1 Filtering the DFT of with a mask that is the negative of the mask in Step 1.2, to 

obtain the DFT of the purely in-deterministic component of the low resolution.  

*y

2.2 Applying inverse DFT on the output of Step 2.1, to obtain an estimation of the 

(space domain) purely in-deterministic component in low resolution, denoted by .  
*ŵ

2.3 Choosing the number of AR model parameters (AR order), or in other words the 

size of the past support that is used in the model.  
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2.4 Estimating the optimal AR model parameters according to the minimum innovation 

process variance criterion, using a least squares solution. These AR model parameters 

are estimated from the low-resolution version. 

2.5 Re-arranging the pixels of  in a 
*ŵ 2 2N M× matrix, such that sampling of this 

matrix yields again the low resolution  (as in Figures 3.3, 3.4). 
*ŵ

2.6 Calculating the gray levels at the locations of missing pixels (i.e., that are not 

populated by the original low-resolution pixels' values) according to the AR model 

(3.4), and using the model parameters that were obtained from the low resolution (in 

Step 2.4). The innovation process u  that drives the model is white Gaussian noise with 

some pre-determined variance 
2σ . Pixels whose support neighborhood exceeds the 

boundaries of the image are initialized simply by a white noise with the same 

distribution like the innovation process.  

2.7 The output of Step 2.6 is the estimated purely in-deterministic component in the 

high resolution, denoted by . ŵ

 

Step 3: Combining the estimated harmonic and purely in-deterministic components from 

Steps 1 and 2, to obtain the estimated texture image in high resolution, denoted by , i.e., 

. 

ŷ

ˆˆ ˆy h w= +

 

4.4 Experimental Results  

In this section experimental results of the proposed method are shown. The textures were 

taken from the Brodatz album. Each original 2 2N M×  texture was sampled such that an 

 texture was obtained. Then, various interpolation methods were applied on the 

sampled texture and compared to the original (high-resolution) texture in terms of visual 

impression and PSNR. The texture ‘water’ and its interpolation using various interpolation 

methods (nearest neighbor, bilinear, bicubic and spline) is shown in Figure 3.2. A close look 

on a patch from the texture is shown is Figure 3.3. 

N M×
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Figure 3.2 – Interpolation results for the texture 'water'. 
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Figure 3.3 – A close up on a patch from the textures in Fig. 3.2 (water). 

 

Similar figures (3.4-3.7) are shown below, for the textures ‘wood grain’ and ‘herring bone 

weave’.  
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Figure 3.4 - Interpolation results for the texture ‘Wood 

grain’

 

Figure 3.5 - A close up on a patch from the textures in Figure 4.4 (wood grain). 
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Figure 3.6 - Interpolation results for the texture "Herringbone weave". 

 

Figure 3.7 - A close up on a patch from the textures in Figure 3.6 (herringbone weave). 

 

Inspection of Figures 3.2-3.7 reveals that the proposed texture interpolation method achieves 

better interpolation results in the sense that it is less blurry and preserves the fine features of 

the original texture. The other interpolation methods have a smoothing effect, which tends to 

blur out the details of the textures.  

PSNR values (in dB) for the different methods on the three textures (water, wood grain and 

herringbone weave) are shown in Table 3.1. The PSNR was calculated according to the 

following formula: 
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where f  is the original (high resolution) ( ) ( )2 2N M×  texture image, ( )max f  is its 

highest gray level value, and ( )ˆ,MSE f f  is the mean square error of the interpolated image 

f̂  and the original image, which is calculated as 

( )
( )

( ) ( )

2 2 2

1 1

ˆ

ˆ,
2 2

N M

i j

f f
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N M
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−
=
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 Nearest Bilinear Bicubic Spline New Method 

Water 14.81 16.44 16.36 18.88 16.79 

Wood  Grain 14.95 15.99 15.83 17.9 16.3 

Herringbone Weave 19.39 20.6 20.46 23.52 21.52 

 

Table 3.1 – PSNR in dB for different interpolation methods, including the proposed method. 

 

Inspection of Table 3.1 shows that the new (proposed) method achieves significantly better 

PSNR results than nearest neighbor, bilinear and bicubic interpolations. It is worth noting that 

although the spline interpolation achieves higher PSNR values than the proposed method, it 

still suffers from the blurriness effect, and the proposed method achieves better visual results 

(see Figures 3.3, 3.5 and 3.7 for a better visual comparison). 

The fact that the proposed method achieves better visual results, and still a lower PSNR value 

in comparison with the spline interpolation may be explained by the realization of the 

proposed method, which generates the high-resolution in-deterministic component using 

additive white noise (the 2D AR innovation process). This inserts a random component into 

the interpolated texture, which results in a lower PSNR value (compared to spline 

interpolation), but also with a better visual resemblance to the original texture, which is 

successfully modeled as the sum of a deterministic (harmonic) and in-deterministic 

components. In other words, since the proposed method is adjusted to the specific model of 

the texture, it is able to interpolate it successfully. 
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Note also that the PSNR values in Table 3.1 are relatively small. This is due to the noisiness 

of the in-deterministic component of the texture, which is smoothed by the interpolation and 

thus increases the interpolation error with respect to the original texture image. 

To complete this section, we refer to Figures 3.8 and 3.9. In Figure 3.8 the calculated optimal 

2D AR model parameters are shown, for the high and low resolutions of the texture ‘Wood 

grain’. It is obvious that the two parameter sets resemble each other, which is in 

correspondence with the discussion of Section 3.3. 

 

 

 

Figure 3.8 – Optimal in-deterministic AR model parameters for low and high resolution, 

calculated on 'Wood grain' texture. 

 

In Figure 3.9 the PSNR (in dB) of the proposed method versus the innovation process 

variance is shown, for the case of the ‘water’ texture. As expected, and as discussed above, 

the PSNR increases as the variance of the innovation process decreases. This may imply that 

the best choice one can do (in terms of PSNR) is to set the variance of the innovation process 

to be zero, but it is important to note that visually, this choice doesn't always yield the best 

visual resemblance to the original texture. In practice, a good rule of thumb is to choose about 

0.7-0.8 of the estimated innovation process variance of the low resolution (i.e., the input 

texture). According to this, the PSNR values of the proposed method (shown in Table 3.1) 

may be further improved by setting the innovation variance to zero, but we chose to present 

the PSNR values which correspond to better visual performance, and those were calculated 

according to the above rule of thumb. 
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Figure 3.9 – PSNR vs. Innovation process variance for the case of 'water' texture. 

 

4. Summary and Discussion 

In this work we developed new mathematical relations between the high and low resolutions 

of wide-sense Markov random fields. In particular, we proved that under certain conditions, 

the probability distribution functions of the low and high resolutions are equal. This result 

motivated us to propose a new method for texture interpolation, based on an orthogonal 

decomposition texture model.  

The proposed method performance was tested on texture images taken from the Brodatz 

album. The experimental results demonstrated the advantages of the proposed method over 

existing interpolation methods. It was shown that the new method achieves better visual 

performance than nearest neighbor, bilinear, bicubic and spline interpolations, and in addition 

higher PSNR values than nearest neighbor, bilinear and bicubic interpolations. 

 

Future research will focus on interpolation of color textures (using an extended model for 

color textures) and further analysis of the relations between the high and low resolution 

statistics of a general 2D AR model. Specifically, it would be desirable to obtain explicit 

mathematical relations between the optimal model parameters for the high and low 

resolutions. 
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