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Abstract

A reproducing-kernel Hilbert space approach to image interpolation is introduced. In particular, the
reproducing kernels of Sobolev spaces are shown to be exponential functions. These functions, in turn,
give rise to alternative interpolation kernels that outperform presently available designs. Both theoretical
and experimental results are presented.

I. INTRODUCTION

Interpolation is needed in image processing tasks such as rotation, translation, resizing and derivative evalu-
ation. The underlying idea in current interpolation methods corresponds to regularity constraints imposed on the
continuous-domain image where the pixel values provide itssampled version. For example, sinc-based interpolation
kernels assume bandlimitedness (apodized sinc, discrete sinc [1]) while other methods assume piecewise polynomial
models (nearest neighbor, linear, Schaum, Keys, Dodgson, B-spline, Meijering and OMOMS [2]). Every model
converges to the original function as the sampling intervalshortens and the corresponding approximation error can
be characterized by [3]:

‖x − x̂‖L2
∝ C · ∆L ·

∥

∥

∥x
(L)

∥

∥

∥

L2

. (1)

Here,x is the original continuous domain signal,x
(L) is itsLth derivative,x̂ is the interpolated signal and∆ is the

sampling interval. In such a formulation, the parametersL andC are the approximation order and the proportional
constant, respectively; they provide a means for comparingthe various reconstruction (interpolation) methods. Both
theoretical and experimental studies have shown that B-spline interpolation kernels perform better in this regard
[2], [4], [5].

In spite of the power-law convergence of the approximation error to zero, current interpolation kernels do not
necessarily provide the best possible continuous domain model for the whole set of finite-energy functions and
a less restrictive regularization constraint other than the piecewise polynomial or bandlimited functions may be
considered in this regard. It is suggested here to use the Sobolev space framework for this purpose instead.

Sobolev spaces consist of smooth functions and they serve asthe underlying continuous-domain model in several
image processing algorithms [6]–[9]. Nevertheless, it seems that the reproducing-kernel Hilbert space (RKHS)
property of these spaces has not been investigated within the context of image interpolation; Sobolev functions are
dense inL2 and the suggested approach may further reduce the approximation error of (1). It will be shown that the
reproducing kernels of certain Sobolev spaces correspond to exponentials that give rise to interpolating functions.
These functions will be then shown to have attractive properties in terms of approximation error characterization
while experimental results will be further shown to supportthese findings.

II. REPRODUCING KERNELS OF SOBOLEV SPACES

LetHp
2 be the Sobolev space of orderp. This space consists of all one-dimensional finite-energy functions defined

on the real line for which their firstp derivatives are of finite energy as well [10]. The corresponding inner product
is given by

〈x,y〉Hp

2

=
p

∑

n=0

λn ·
〈

x
(n),y(n)

〉

L2

, (2)
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where{λn} is an arbitrary set of positive numbers and

〈x,y〉L2
=

∫ ∞

−∞
x(s) · y(s) ds. (3)

It then follows that the reproducing kernel ofHp
2 is given by

ϕ(s, t) = F−1

{

1

λ0 + λ1ω2 + · · · + λpω2p

}

(s− t), (4)

whereF−1 denotes the inverse Fourier transform operation. Recalling the binomial coefficients, one may choose
λn =

(p
n

)

to yield

ϕ(s, t) = F−1
{

1

(1 + ω2)p

}

(s− t) (5)

and the ensued kernels correspond to exponential functionsas given in Table I. Other choices for{λn}n will not
be considered here. Being an RKHS, the Sobolev space framework suggests an orthogonal projection interpretation
for the ideal sampling process [11], [12]. Letx(t) be an arbitrary Sobolev function and letΛ = {tn}n be a set of
sampling points. It then follows that the sample values satisfy x(tn) = 〈x(·), ϕ(·, tn)〉Hp

2

and the set of functions
{ϕ(·, tn)}n constitutes a Riesz basis for their span

S = Span {ϕ(·, tn)} . (6)

The corresponding Gram matrix is given by

G(m,n) = ϕ(tm, tn), (7)

and the orthogonal projection ofx onto the sampling space is given by

PSx =
∑

n

an · ϕ(·, tn). (8)

Here, a = G−1c while c denotes the ideal samples ofx on Λ. The unknown portion ofx that is not captured
by the sampling process isPS⊥x = x − PSx. In shift-invariant cases, whereΛ consists of an infinite number of
uniformly-spaced sampling points,G−1 can be replaced by a proper digital filter; this filter has a rational transfer
function originating from the exponential terms composingϕ(s, t). Table II describes several such filters for a unit
sampling step.

TABLE I

REPRODUCING KERNELS OFSOBOLEV SPACES.

Sobolev order,p ϕ(s, t)

1 1
2 e

−|s−t|

2 1
4 e

−|s−t| · [1 + |s− t|]
3 1

16 e
−|s−t| ·

[

3 + 3 |s− t| + |s− t|2
]

4 1
96 e

−|s−t| ·
[

15 + 15 |s− t| + 6 |s− t|2 + |s− t| 3
]

5 1
768 e

−|s−t| ·
[

105 + 105 |s− t| + 45 |s− t|2 + 10 |s− t|3 + |s− t|4
]

6 1
7680 e

−|s−t| ·
[

945 + 945 |s− t| + 420 |s− t|2 + 105 |s− t|3 + 15 |s− t|4 + |s− t|5
]

7 1
92160 e

−|s−t| · [10395 + 10395 |s− t| + 4725 |s− t|2 + 1260 |s− t|3 + 210 |s− t|4 + . . .

. . .+ 21 |s− t|5 + |s− t|6 ]
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TABLE II

DIGITAL FILTERS FOR EXTRACTING REPRESENTATION COEFFICIENTS FROM SAMPLED DATA.

Sobolev order,p G(Z)

1 2.31304 ·
(

1 − e−1Z−1
)

·
(

1 − e−1Z
)

2 168.044 · (1−e−1Z−1)2·(1−e−1Z)2

(1+4.18321 Z−1)·(1+4.18321 Z)

3 321.3686 · (1−e−1Z−1)3·(1−e−1Z)3

3(e6−1)+8e(Z−1+Z)+18e3(Z−1+Z)−2e5(Z−1+Z)+e4(Z−2−15+Z2)−7e2(Z−2+3+Z2)

III. EXPONENTIAL-BASED INTERPOLATING FUNCTIONS

The sample sequencec, on the other hand, may now be interpreted by means of the representation coefficients
of PSx with respect to the bi-orthogonal set of{ϕ(·, tn)}n. That is,

PSx =
∑

n

cn · ψn(s), (9)

where bi-orthogonality is taken in the Sobolev sense. i.e.,

ψn(s) =
∑

m

G−1
n,m · ϕ(s, tm). (10)

Each functionψn is composed of a weighted sum of shifted exponential functions and owing to the RKHS property
of Hp

2 they are interpolant. Figure 1 compares these exponential-based interpolating functions with the B-spline
interpolants and with the sinc function. Unlike currently available interpolants, the proposed functions do not comply
with the partition-of-unity condition given by

1 =
∞
∑

n=−∞

ψ(t− n) ∀t ∈ R, (11)

although the infinite sum on the right-hand-side of the equation does converge to unity as the Sobolv order increases.
When scaling the sampling grid, the ensued interpolating functions{ψn}n are scaled accordingly. This scaling

property does not apply, however, to the exponential functions{ϕn}n, which remain unscaled but align themselves
to the new sampling grid instead. Nevertheless, both{ϕn}n and {ψn}n span the same sampling spaceS. In
this regard, the error kernel introduced in [13] for the shift-invariant case provides a means for comparing between
various generating functions (interpolant and non-interpolant). It describes the averageL2 error between the original
function and its interpolated version where averaging is taken over all possible phase shifts of the sampling grid.
This kernel is given by

E(ω) =

∣

∣

∣

∑

k 6=0 Φ(ω + 2πk)
∣

∣

∣

2
+

∑

k 6=0 |Φ(ω + 2πk)|2
∣

∣

∑∞
k=−∞ Φ(ω + 2πk)

∣

∣

2 , (12)

where Φ denotes the Fourier transform ofϕ. Figure 2 depicts this kernel for several generating functions and
it is shown that the proposed exponential functions introduce less approximation error than the B-spline and the
OMOMS functions at the required lower frequency band. Unlike other interpolants, however,E(ω) of the proposed
exponential functions does not equal zero at the origin although it converges to this value asp increases.

Following [14], anL2 orthogonal projection approach is adopted for image scaling. Let c be the ideal samples
of x ∈ Hp

2 taken over a uniform sampling grid of a unit sampling stepΛ = {tn = n}n; in such a case, one can
determine the continuous-domain signalPSx. Upon scaling, this signal would be projected onto the spaceS∆,
where∆ is the scaling factor,S = Span {ψn(s− n)}n andS∆ = Span {ψn(s/∆ − n)}n. The ideal samples of
the scaled signal are then given by

c∆ = A−1 ·B−1 · C−1 ·D−1 · c, (13)
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Fig. 1. Sobolev (solid), B-spline (dashed) and sinc (dotted) interpolants for a unit sampling step.p denotes both Sobolev and B-spline
orders.
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Fig. 2. Error kernel for Sobolev (dashed), for B-spline (dash-dotted), for OMOMS (dotted) and for the sinc (solid) functions.p = 3 denotes
both the Sobolev and the B-spline orders.

whereA,B,C,D are all Gram matrices given by

Am,n = φ(∆m,∆n) φ ∈ H2p
2 ,

Bm,n = φ(∆m,∆n) φ ∈ Hp
2 ,

Cm,n = φ(m,∆n) φ ∈ H2p
2 ,

Dm,n = φ(m,n) φ ∈ Hp
2 .

(14)

The matrixD−1 extracts the representation coefficients ofPSx with respect to the exponential functions{φ(s, tn}n.
The matrixC−1 extracts the representation coefficients of theL2 orthogonal projection ofPSx onto S∆. These
coefficients correspond to the biorthognal set of{φ(s,∆ · tn)}n in theL2 sense, which are not interpolant functions.
The matrixB−1 extracts the representation coefficients corresponding to{φ(s,∆ · tn)}n and the matrixA−1 extracts
the representation coefficients of the scaled interpolant functions{ψ(s/∆ − n)}n. This Gram matrix formulation is
preferable over the shift-invariant structure due to the finite (rather than infinite) number of samples that are available
for an image and it introduces a negligible computational overhead for images of standard size. Nevertheless, the
significant values of these Gram matrices are located near the main diagonal and large images may be interpolated
by considering a relatively small neighborhood of pixels for every interpolated value. A neighborhood of 15 x 15
pixels are sufficient in practice for a Sobolev order ofp = 3. Additionally, both the matrixC and the sampling
function of [14] have a similar role in scaling an image by means of an orthogonal projection. Nevertheless, the
values ofC are explicitly given here and no Gaussian approximation is required in this regard.

A separable model is suggested in this work although the reproducing kernel of a two-dimensional Sobolev space
is not a separable function; the Fourier transform of such kernels is given byΦ(u, v) = 1/(1+u2 +v2)p , p ≥ 2 and
the radially symmetric space-domain kernels are given byφ(r) = 2πprp−1Kp−1(2πr)/Γ(p), wherer2 = x2 + y2,
Kn(·) denotes the Bessel function of the third kind of ordern, and Γ is the gamma function. Nevertheless, a
separable model allows for a relatively short run-time implementation that is comparable with the separable model
of the B-splines functions.
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IV. EXPERIMENTAL RESULTS

The proposed exponential kernels have been compared with the cubic B-spline interpolation function while
considering a Sobolev order ofp = 3. Two separate operations have been examined: rotation and scaling, and the
Gram matrix formulation was implemented for both methods. Such an implementation for the B-spline approach
was shown to yield better SNR values of more than 2[dB] over digitally filtering the samples as suggested by [2].
Also, the Gram matrix formulation does not require extracting the image by its mirror version as needed in the
shift-invariant case.

Following [15], successive image rotations have been applied to a given image until it reached its starting
position allowing for an SNR calculation. Figure 3 depicts several such rotations of an image using the proposed
interpolating functions. Additional results are given in Table III suggesting that these functions outperform the B-
splines functions. SNR values have been calculated based onthe circular region shown on the bottom-right image
of Figure 3 having a diameter of 90 percent of the image’s dimension.

Nevertheless, when considering larger circular areas, boundary effects lead to more prominent results in favor of
the proposed interpolating functions. Figure 4 depicts a detailed view of the rectangular area shown on the bottom-
right image of Figure 3. It is evident that while B-spline interpolants introduce boundary effects, the proposed
functions do not. This property was also observed in the scaling experiment. An additional comparison is given in
Figures 5 - 7 showing final images of the rotation experiment;one can observe that the proposed functions preform
better visually as well.

Rotation 2 of 15 Rotation 1 of 15

Rotation 4 of 15 Rotation 15 of 15

Fig. 3. Rotation of an image using the proposed exponential-based interpolants.

The image scaling experiment involves two consecutive reciprocal resizing operations [14] so the doubly scaled
image can be compared with the original one. As for an enlargement followed by a reduction, high SNR values
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TABLE III

A COMPARISON OF IMAGE ROTATION

Image SNR [dB]

15 Rotations 100 Rotations

B-spline Sobolev B-spline Sobolev

Brain MRI 32.2 33.7 28.2 30.5

Pap smear 47.0 48.6 43.7 47.1

Lena 32.0/33.9/34.29a 36.0 26.9 30.1

Fishing Boat 30.4/31.2/33.8a 33.4 26.8 29.0

Pepper 30.8 31.8 28.2 29.7

Bridge 24.5 25.8 21.2 22.9

aThe three values correspond to B-spline interpolation by digital filtering [2], [16]; to cubic B-spline interpolation
by Gram matrix computation as implemeneted in this work; andto cubic OMOMS interpoaltion [16].
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B−spline Original image Sobolev

Fig. 4. An image boundary. Shown is the rectangular area of Figure 3. Further image details are shown in Figs 5-7.

(a) B-spline. SNR = 28.2[dB]. (b) Sobolev. SNR = 30.5 [dB].

(c) Original.

Fig. 5. A comparison of an image rotation having applied 100 rotations of3.6◦ each. Shown is a portion of the Brain MRI image while
SNR values are given for the full image.
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(a) B-spline. SNR = 26.9[dB]. (b) Sobolev. SNR = 30.1[dB].

(c) Original.

Fig. 6. Similar to Figure 5. Shown is a portion of the image of Lena.

of more than 60[dB] were reported for the cubic B-spline interpolants [14] and similar values are achieved by the
proposed exponential functions. Therefore, such cases will not be presented here. Figure 8 depicts an example of
scaling and of unscaling an image by a factor of

√
18 using the proposed exponential-based interpolation functions.

Figure 9(a) compares the proposed interpolants with the B-spline interpolants for several scaling factors while
excluding a boundary frame of five pixels on each side of the image. Similar to the rotation experiment, more
prominent results are reported when including the boundarypixels in the SNR calculations as shown in Figure
9(b). Investigation of other images yields similar results. It is noted that the B-spline implementation of the scaling
experiment provides exact evaluation of the ’sampling function’ of [14] (using the Spline toolbox of Matlab) rather
than using the Gaussian approximation scheme suggested there.
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(a) B-spline. SNR = 24.3[dB]. (b) Sobolev. SNR = 26.3[dB].

(c) Original.

Fig. 7. Similar to Figure 5. Shown is a portion of the Fishing Boat image.
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(a) (b)

Fig. 8. Image scaling by a factor of
√

18. Shown are the scaled version (a) and the unscaled version (b) of the image of Lena.
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Fig. 9. A comparison of scaling performance for the image of Lena. (a) SNR values while excluding the boundaries of the image. (b) SNR
values while including the boundaries (b).
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V. CONCLUSIONS

A new approach to image interpolation based on a reproducing-kernel Hilbert space approach has been proposed.
Sobolev smooth functions are dense inL2 and the Sobolev space framework is very useful for this purpose.
The reproducing kernels of these spaces are shown to be exponential functions and the ideal sampling process is
characterized by a set of proper inner products. These kernels also give rise to interpolation functions that outperform
currently available interpolation methods. Both theoretical and experimental results have been presented involving
rotation and scaling of an image. Our conclusion is that the new method of image interpolation could be a helpful
alternative to the use of B-spline in interpolation tasks.
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