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Abstract

A reproducing-kernel Hilbert space approach to image frlation is introduced. In particular, the
reproducing kernels of Sobolev spaces are shown to be erpahtinctions. These functions, in turn,
give rise to alternative interpolation kernels that ouftpen presently available designs. Both theoretical
and experimental results are presented.

I. INTRODUCTION

Interpolation is needed in image processing tasks such tatiom, translation, resizing and derivative evalu-
ation. The underlying idea in current interpolation meth@drresponds to regularity constraints imposed on the
continuous-domain image where the pixel values providsatapled version. For example, sinc-based interpolation
kernels assume bandlimitedness (apodized sinc, disénet§ld) while other methods assume piecewise polynomial
models (nearest neighbor, linear, Schaum, Keys, DodgsespliBe, Meijering and OMOMS [2]). Every model
converges to the original function as the sampling intesbairtens and the corresponding approximation error can
be characterized by [3]:

1)

Here,x is the original continuous domain signal’) is its Lth derivative x is the interpolated signal antl is the
sampling interval. In such a formulation, the parametfed C are the approximation order and the proportional
constant, respectively; they provide a means for compdhiagarious reconstruction (interpolation) methods. Both
theoretical and experimental studies have shown that BBesjihterpolation kernels perform better in this regard
(2], [4]. [5].

In spite of the power-law convergence of the approximationreto zero, current interpolation kernels do not
necessarily provide the best possible continuous domaideiior the whole set of finite-energy functions and
a less restrictive regularization constraint other tham plecewise polynomial or bandlimited functions may be
considered in this regard. It is suggested here to use thel&obpace framework for this purpose instead.

Sobolev spaces consist of smooth functions and they sembeasderlying continuous-domain model in several
image processing algorithms [6]-[9]. Nevertheless, itns®ed¢hat the reproducing-kernel Hilbert space (RKHS)
property of these spaces has not been investigated withindhtext of image interpolation; Sobolev functions are
dense inL, and the suggested approach may further reduce the apptmnearor of (1). It will be shown that the
reproducing kernels of certain Sobolev spaces correspmedfonentials that give rise to interpolating functions.
These functions will be then shown to have attractive priggin terms of approximation error characterization
while experimental results will be further shown to suppbdse findings.
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[I. REPRODUCING KERNELS OF SOBOLEV SPACES

Let HY be the Sobolev space of orderThis space consists of all one-dimensional finite-eneugygtions defined
on the real line for which their firgt derivatives are of finite energy as well [10]. The correspogdnner product

is given by
p
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where{\,} is an arbitrary set of positive numbers and

¥, = [ x(s) - ¥G)ds. ©
It then follows that the reproducing kernel &f} is given by
1
_ 1 _
ols,t) = F {)\0 +Aw? 4+ )\pw2p} (s =), “)

where F~! denotes the inverse Fourier transform operation. Regathie binomial coefficients, one may choose
An = (P) to yield

olot) =7 o a1 Q

and the ensued kernels correspond to exponential funciierggven in Table |. Other choices fén,, }, will not

be considered here. Being an RKHS, the Sobolev space frarkenggests an orthogonal projection interpretation
for the ideal sampling process [11], [12]. Left) be an arbitrary Sobolev function and let= {¢,,},, be a set of
sampling points. It then follows that the sample valuess$atk(t,,) = (x(-), »(-,tn)) > and the set of functions
{e(-,tn)},, constitutes a Riesz basis for their span ’

S = Span{e(-tn)}. (6)
The corresponding Gram matrix is given by

G(m,n) = @(tm, tn), @)
and the orthogonal projection &f onto the sampling space is given by

Psx = an-¢(-,tn). (8)

Here,a = G~'c while ¢ denotes the ideal samples ®fon A. The unknown portion ok that is not captured
by the sampling process Bs.x = x — Psx. In shift-invariant cases, wher& consists of an infinite number of
uniformly-spaced sampling point&;~! can be replaced by a proper digital filter; this filter has #rat transfer
function originating from the exponential terms composij#g, t). Table 1l describes several such filters for a unit
sampling step.

TABLE |
REPRODUCING KERNELS OFSOBOLEV SPACES

Sobolev orderp ©(s,1)
1 el
2 Terls=th 14 |s — ]
3 Le~ls=tl. 3+3\s—t!+]s—t!2}
4 gre 15415 s — ] + 6 |s — t* + |s — ¢]?]
5 —celstl [105 +105|s —t| +45|s — t|* + 10 |s — t|> + |s — t|4]
6 s e st [945 + 945 |s — t| +420|s — t|* + 105 |s — t|* +15]s — t|* + |s — tﬂ
7 gougg €17t [10395 4 10395 |s — ¢ + 4725 |s — t|* + 1260 |s — ¢t + 210 |s — ¢|* + ...
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TABLE I
DIGITAL FILTERS FOR EXTRACTING REPRESENTATION COEFFICIENT FROM SAMPLED DATA

Sobolev orderp G(2)
1 2.31304- (1—e1Z7Y) - (1-¢712)
(1—e'Z" 1) (1-e'2)?
2 168.044 - (1+4.18321 Z—1)-(1+4.18321 2)
3 321.3686 - (e 2 ) (1c2)
: 3(eS—1)18e(Z '+ Z)+18e3(Z 4+ 2)—265(Z -+ Z)+e2(Z 2—15+22)—1e2(Z 243+ Z2)

I1l. EXPONENTIAL-BASED INTERPOLATING FUNCTIONS

The sample sequeneg on the other hand, may now be interpreted by means of theseptation coefficients
of Psx with respect to the bi-orthogonal set op(-,t,)},,. That is,

PSXZZCn’T/}n(S)a 9)
where bi-orthogonality is taken in the Sobolev sense. i.e.,

Un(s) =Gl (s, tm). (10)

Each functiory,, is composed of a weighted sum of shifted exponential funstand owing to the RKHS property
of HY they are interpolant. Figure 1 compares these expondyaid interpolating functions with the B-spline
interpolants and with the sinc function. Unlike currentiadable interpolants, the proposed functions do not cgmpl
with the partition-of-unity condition given by

1= ) o(t-n) VtER, (11)
although the infinite sum on the right-hand-side of the éguatoes converge to unity as the Sobolv order increases.
When scaling the sampling grid, the ensued interpolatimgtions{«, }, are scaled accordingly. This scaling
property does not apply, however, to the exponential fonst{y, },,, which remain unscaled but align themselves

to the new sampling grid instead. Nevertheless, bth},, and {¢,}, span the same sampling spaSe In

this regard, the error kernel introduced in [13] for the simfariant case provides a means for comparing between
various generating functions (interpolant and non-irg&pt). It describes the averade error between the original
function and its interpolated version where averaging kenaover all possible phase shifts of the sampling grid.
This kernel is given by

2
[0 ®(w + 27k)| + T [ B + 27k)
[0 o ®(w + 27R) |

where & denotes the Fourier transform g@f Figure 2 depicts this kernel for several generating fumgiand

it is shown that the proposed exponential functions intoedless approximation error than the B-spline and the
OMOMS functions at the required lower frequency band. Unlikher interpolants, howevdr,(w) of the proposed
exponential functions does not equal zero at the originoalgh it converges to this value asncreases.

Following [14], an L, orthogonal projection approach is adopted for image sgaliet ¢ be the ideal samples
of x € HY taken over a uniform sampling grid of a unit sampling step- {¢,, = n}; in such a case, one can
determine the continuous-domain sigradx. Upon scaling, this signal would be projected onto the spgce
where A is the scaling factorS = Span {¢,,(s — n)}, andSa = Span {¢,,(s/A —n)}, . The ideal samples of
the scaled signal are then given by

E(w) ; (12)

ca=A"1.Bt.ct.p7 g (13)
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Fig. 1. Sobolev (solid), B-spline (dashed) and sinc (d9tiaterpolants for a unit sampling step.denotes both Sobolev and B-spline
orders.
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Fig. 2. Error kernel for Sobolev (dashed), for B-spline {ddstted), for OMOMS (dotted) and for the sinc (solid) funos.p = 3 denotes
both the Sobolev and the B-spline orders.

where A, B,C, D are all Gram matrices given by

Apn = ¢(Am,An) ¢ € H22p,
Bunn = ¢(Am,An) ¢ € HY,
Copn = ¢(m,An) @€ H22p,
Dy = ¢(m,n) ¢ € Hb.

(14)

The matrixD~! extracts the representation coefficientdigfk with respect to the exponential functiofé(s, t,, },,.
The matrix C~! extracts the representation coefficients of fieorthogonal projection ofPsx onto Sa. These
coefficients correspond to the biorthognal sefofs, A - ¢,,)},, in the L, sense, which are not interpolant functions.
The matrixB~! extracts the representation coefficients correspondifgte, A - ¢,,)},, and the matrixA~! extracts
the representation coefficients of the scaled interpolamttions{«(s/A — n)}, . This Gram matrix formulation is
preferable over the shift-invariant structure due to thigdfifrather than infinite) number of samples that are avkilab
for an image and it introduces a negligible computationarbead for images of standard size. Nevertheless, the
significant values of these Gram matrices are located neamtin diagonal and large images may be interpolated
by considering a relatively small neighborhood of pixels évery interpolated value. A neighborhood of 15 x 15
pixels are sufficient in practice for a Sobolev orderpof 3. Additionally, both the matrixC' and the sampling
function of [14] have a similar role in scaling an image by meaf an orthogonal projection. Nevertheless, the
values ofC are explicitly given here and no Gaussian approximatioreggired in this regard.

A separable model is suggested in this work although theodeming kernel of a two-dimensional Sobolev space
is not a separable function; the Fourier transform of sueheds is given byd(u,v) = 1/(1+u%+v?)? ,p > 2 and
the radially symmetric space-domain kernels are givemby = 27Pr?~1K,_1(27r)/T(p), wherer? = 22 + y2,
K,(-) denotes the Bessel function of the third kind of ordgrandI" is the gamma function. Nevertheless, a
separable model allows for a relatively short run-time iempéntation that is comparable with the separable model
of the B-splines functions.



IV. EXPERIMENTAL RESULTS

The proposed exponential kernels have been compared watlcubic B-spline interpolation function while
considering a Sobolev order pf= 3. Two separate operations have been examined: rotationcatidg and the
Gram matrix formulation was implemented for both methodsciSan implementation for the B-spline approach
was shown to yield better SNR values of more than 2[dB] ovagitally filtering the samples as suggested by [2].
Also, the Gram matrix formulation does not require extragtthe image by its mirror version as needed in the
shift-invariant case.

Following [15], successive image rotations have been agpio a given image until it reached its starting
position allowing for an SNR calculation. Figure 3 depictveral such rotations of an image using the proposed
interpolating functions. Additional results are given iable Il suggesting that these functions outperform the B-
splines functions. SNR values have been calculated basdueorircular region shown on the bottom-right image
of Figure 3 having a diameter of 90 percent of the image’s diian.

Nevertheless, when considering larger circular areasdany effects lead to more prominent results in favor of
the proposed interpolating functions. Figure 4 depictstailbel view of the rectangular area shown on the bottom-
right image of Figure 3. It is evident that while B-splineantolants introduce boundary effects, the proposed
functions do not. This property was also observed in therggaxperiment. An additional comparison is given in
Figures 5 - 7 showing final images of the rotation experimen& can observe that the proposed functions preform
better visually as well.

Rotation 2 of 15 Rotation 1 of 15

Fig. 3. Rotation of an image using the proposed exponebéiaéd interpolants.

The image scaling experiment involves two consecutiveprecal resizing operations [14] so the doubly scaled
image can be compared with the original one. As for an enfaey followed by a reduction, high SNR values



TABLE 11l
A COMPARISON OF IMAGE ROTATION

Image SNR [dB]
15 Rotations 100 Rotations
B-spline Sobolev | B-spline | Sobolev

Brain MRI 32.2 33.7 28.2 30.5

Pap smear 47.0 48.6 43.7 47.1

Lena 32.0/33.9/34.29 36.0 26.9 30.1

Fishing Boat| 30.4/31.2/33.8 334 26.8 29.0
Pepper 30.8 31.8 28.2 29.7

Bridge 245 25.8 21.2 22.9

2The three values correspond to B-spline interpolation Iytali filtering [2], [16]; to cubic B-spline interpolation
by Gram matrix computation as implemeneted in this work; endubic OMOMS interpoaltion [16].
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Fig. 4. An image boundary. Shown is the rectangular area @iir€i 3. Further image details are shown in Figs 5-7.
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(a) B-spline. SNR = 28.2[dB]. (b) Sobolev. SNR = 30.5 [dB].
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(c) Original.

Fig. 5. A comparison of an image rotation having applied 1f@tions of3.6° each. Shown is a portion of the Brain MRI image while
SNR values are given for the full image.



(c) Original.

Fig. 6. Similar to Figure 5. Shown is a portion of the image ehh.

of more than 60[dB] were reported for the cubic B-spline riptéants [14] and similar values are achieved by the
proposed exponential functions. Therefore, such casésiatilbe presented here. Figure 8 depicts an example of
scaling and of unscaling an image by a factor@af3 using the proposed exponential-based interpolation fomst
Figure 9(a) compares the proposed interpolants with thelides interpolants for several scaling factors while
excluding a boundary frame of five pixels on each side of thagen Similar to the rotation experiment, more
prominent results are reported when including the boungargls in the SNR calculations as shown in Figure
9(b). Investigation of other images yields similar resultss noted that the B-spline implementation of the scaling
experiment provides exact evaluation of the 'sampling fiomc of [14] (using the Spline toolbox of Matlab) rather
than using the Gaussian approximation scheme suggested the



Fig. 7.

(b) Sobolev. SNR = 26.3[dB].

(c) Original.

Similar to Figure 5. Shown is a portion of the FishingaBimage.
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(@) (b)

Fig. 8. Image scaling by a factor af18. Shown are the scaled version (a) and the unscaled versjarf (he image of Lena.
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Fig. 9. A comparison of scaling performance for the image efd. (a) SNR values while excluding the boundaries of thg@né) SNR
values while including the boundaries (b).
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V. CONCLUSIONS

A new approach to image interpolation based on a reprodtl@ngel Hilbert space approach has been proposed.
Sobolev smooth functions are denselip and the Sobolev space framework is very useful for this psgpo
The reproducing kernels of these spaces are shown to be exjimnfunctions and the ideal sampling process is
characterized by a set of proper inner products. These lkaits® give rise to interpolation functions that outperfor
currently available interpolation methods. Both the@adtiand experimental results have been presented involving
rotation and scaling of an image. Our conclusion is that #& method of image interpolation could be a helpful
alternative to the use of B-spline in interpolation tasks.
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