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Abstract

In this paper we address the problem of global unsupervised detection, discrimination, and population

estimation of anomalies of the same type, in hyperspectral images. The proposed approach, denoted as

Anomaly Extraction and Discrimination Algorithm (AXDA), detects anomalies via analysis of a signal-

subspace obtained by the recently developed Maximum Orthogonal Complement Algorithm (MOCA).

MOCA is unique in providing an unsupervised combined estimation of signal-subspace that includes

anomalies, and its rank. The main idea of AXDA is to iteratively reduce the anomaly vector subspace-

rank, making the related anomalies to be poorly represented. This helps to detect them by a statistical

analysis of the ℓ2,∞-norm of data residuals. As a by-product, AXDA provides also an anomaly-free robust

background subspace and rank estimation. We experimentally show that AXDA performs better than other

global anomaly detection techniques, such as the Gaussian Mixture Model-based (GMRX) algorithm and

the classical Matched Subspace Detector (MSD), in most of the range of the tested parameters. Since

MSD requires prior knowledge of anomaly and background subspaces, which are unknown, the MSD

was applied to the anomaly subspace obtained from MOCA and the anomaly-free background subspace

obtained from AXDA.

Index Terms

Signal-subspace rank, Maximum Orthogonal-Complements Algorithm (MOCA), Unsupervised Anomaly

Detection, Unsupervised Anomaly Discrimination, Hyperspectral Images, Background Modelling.
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I. INTRODUCTION

In this work we address the problem of anomaly detection, as well as anomaly discrimination and

population estimation of anomalies of the same type, in hyperspectral image cubes (denoted in this paper

as hyperspectral images). The considered sceneries are composed of reflected spectra of abundant natural

ground materials such as vegetation, soil, minerals, etc., along with anomalies such as localized man-made

objects. E.g., small buildings, vehicles, etc. The wealth of spectral information in hyperspectral images

provides plentiful amount of data for classification tasks. One such task relates to anomaly detection, in

which hyperspectral pixels have to be classified into either background material spectra class or anomaly

material spectra class.

Since most often, neither prior anomaly signatures nor their statistical model, are known, anomaly

detection methods first model the background and then detect anomalies by finding pixels that are not

well-described by the background model. It turns out that the problem of background pixels modelling

is a critical and a subtle task. As a matter of fact, it poses a two-fold problem: On one hand, the model

has to be general enough in order to accurately represent the wealth of background material spectra, so

as to avoid false alarms due background pixel deviations from the model. On the other hand, the model

has to be concise enough (e.g., in terms of its order/rank), limiting its ability to adapt to anomalies, and

leaving anomalies to disagree with the model, which is essential for a high probability of detection.

A. Background-modelling literature review

A variety of background modelling methods appears in the literature. One type of these methods is

based on estimating the underlying probability density function (pdf) of the background signature, and

applying a threshold to the likelihood of tested pixels. The Reed-Xiaoli (RX) algorithm [3], is a benchmark

anomaly detector for hyperspectral imagery. According to this algorithm, the background pixels in a local

neighborhood of a tested pixel are assumed to be independent, identically distributed, Gaussian random

vectors. After estimating the background mean vector and covariance matrix, the Mahalanobis distance

between the tested pixel and the background mean vector is compared to a threshold to detect an anomaly

[3]. Unfortunately, in many environments, it has been shown empirically that local background modelling

by a single Gaussian provides an inadequate representation of the underlying distribution [8], leading

to poor false alarm performance. This is especially true when the local background contains multiple

classes of terrain.

To properly characterize nonhomogeneous backgrounds, researchers have employed a Gaussian Mix-

ture Model (GMM) [6], [8]. This approach models the background signature distribution as a linear
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combination of Gaussian distributions. The Gaussian Mixture distribution is applied as a global model

since the parameters are estimated over large regions. Anomaly detection may be achieved by applying the

generalized likelihood ratio test (GLRT) to the model. The authors of [8] denote the related approach by

GMRX. While GMRX provides good performance, it is limited by the simplicity of Gaussian components.

GMRX is further limited by the need to know or estimate a priori the number of terrain classes in the

image.

Another approach to local background modelling corresponds to the so-called large-margin techniques,

such as support vector machines (SVMs), which detect anomalies by directly estimating a decision

boundary with maximal separability. The authors of [5] propose to determine the minimal enclosing

hypersurface that contains a training set of background data pixels. A training set is sampled from

a window enclosing the tested pixel, excluding pixels belonging to its adjacent neighborhood (which

makes this method local) that is supposed to be large enough to contain a maximum-size anomaly. The

anomaly is detected by thresholding the distance from the tested pixel to the obtained hypersurface.

In this paper we adopt the following linear mixing model:

xi = Asi + zi, i = 1, . . . , N, (1)

where, xi ∈ IRp is the observed pixel, zi ∈ IRp is additive noise, columns of A are the pure materials

spectra (endmembers) and si ∈ IRr, r ≤ p, their corresponding abundances. Using this model, authors of

[28] propose a class of Generalized Likelihood Ratio Test (GLRT) - based algorithms to detect anomalies.

The authors of [28] assume a priori known target signatures, whereas the the background subspace is

estimated via SVD for a priori known background subspace rank. Using Orthogonal Subspace Projection,

the authors of [4] propose first to select target pixels from the data, then to detect the presence of anomaly

signatures in the data pixels. Unfortunately, the approaches of [4] and [28] lack a systematic way to

estimate the anomaly and the background subspace dimensionality. Moreover, they require ancillary

information to identify signatures belonging to anomalies.

There is a variety of rank determination methods that can be considered for determination of the

number of endmembers [9], [29]. The classical methods for rank determination such as MDL and AIC

[10] were shown as not reliable when applied to real hyperspectral data [12]. The authors of [12] propose

a new virtual dimensionality (VD) concept that is defined as “the minimum number of spectrally distinct

signal sources that characterize the hyperspectral data from the perspective view of target detection and

classification”. The drawback of the VD concept is that it is based on analyzing an eigen-structure
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of the sample covariance and correlation matrices. As experimentally shown in [2], the eigen-structure

of high-dimensional data containing energetically (related to ℓ2-norm) insignificant (rare or anomalous)

vectors, is extremely vulnerable to high-dimensional noise. The problem is that such weak contributions,

like that of single-pixel anomalies, met in practice, to the sample eigenvalues are typically masked by

noise perturbations with probability close to 1. Thus, the probability that anomaly-related eigenvalues

will be interchanged with the noise-related eigenvalue is extremely high. Therefore, VD, as well as other

ℓ2-related methods, work only when the anomalies are stronger than noise perturbations in the ℓ2-norm

sense. A recent rank-estimation approach, named MOCA [2], was shown to be much more robust to

noise perturbations, since it is based on a norm (denoted as ℓ2,∞-norm), which is much more sensitive

to individual pixel contributions. The proposed approach for anomaly detection, being based on MOCA,

inherits this property.

B. Maximum Orthogonal Complement Algorithm (MOCA) principles

In this paper, we propose to adapt MOCA [2] for anomaly detection and discrimination in hyperspectral

images. Originally, MOCA was developed by the authors of this paper for signal-subspace and rank

estimation in high-dimensional noisy signals that may contain anomaly vectors, which MOCA intends

to preserve. Similar to the approach proposed in [4], MOCA assumes the linear mixing model (1).

It is important to note that MOCA assumes zi to be Gaussian and spectrally white with a known

variance. As discussed in Appendix I, this assumption doesn’t actually hold in hyperspectral images.

Therefore, a preprocessing procedure is proposed in Appendix I for estimation of the noise variance and

spectrally whitening it before applying MOCA. The signal-subspace in MOCA is estimated by minimizing

the maximum of misrepresentation-residual ℓ2-norms denoted as ℓ2,∞-norm. The rank is determined by

applying Extreme Value Theory results [22], [23], [25] to model the distribution of the misrepresentation

ℓ2,∞-norm. Since ℓ2,∞ penalizes individual data-vector misrepresentations, it helps to represent well not

only background vectors, but also anomaly vectors. As a matter of fact, MOCA proposes an appropriate

compromise between the following two approaches: The first approach is based on selecting the signal-

subspace basis vectors directly from the data as presented in [4]. This approach is good for representing

anomalies, since it is capable of selecting anomalies from the data. However, due to noise in the obtained

basis vectors, it may perform poorly in representing background pixels. The second approach is based

on SVD, which, as shown in [2], represents well the background pixels. Yet, it may perform poorly in
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representing anomalies [2]. Thus, the signal-subspace estimated by MOCA admits the following form:

Ŝk = range [Ψk−h|Ωh] , (2)

i.e., Ŝk is the space linearly spanned by columns of matrices Ωh and Ψk−h, where Ωh is a matrix

composed of h linearly independent columns selected from the data, k is the estimated signal rank

and Ψk−h is a matrix with k − h orthogonal columns, obtained via SVD of the data residuals PΩ⊥

h
xi,

i=1,. . . ,N, where PΩ⊥

h
is a projection onto (range Ωh)⊥. This notation is equivalent to P⊥

Ωh
used in [4].

The matrix Ωh provides a natural way to identify and discriminate anomalies, since it collects individual

data pixels that are poorly represented by SVD and, therefore, are considered anomalous (see [2] for

details). Whereas, columns of Ψk−h span the background pixels projections lying in the (range Ωh)⊥.

C. Anomaly detection via MSD

At first glance, once MOCA estimates the anomaly and background subspaces, one may apply to the

result the classical Matched Subspace Detection (MSD) [1] for detection of anomalies. This method is

widely used in the literature for anomaly detection in hyperspectral images when anomaly and background

subspaces are known in advance (see for example references [13], [14], [15], [16], and there exist many

more).

According to the MSD method, two hypotheses are defined:

H0 : xi ∼ N [Bbi, σ
2
I], (3)

H1 : xi ∼ N [Bbi + Tθi, σ
2
I], (4)

where N denotes the normal distribution and σ corresponds to the noise std; B and T are background

and anomaly subspace bases with bi and θi background and anomaly subspace expansion coefficients

of data vector xi, respectively. The matrices B and T, comprising the signal-subspace basis, are not

necessarily orthogonal each other (i.e. B
T
T �= 0), but they are linearly independent, meaning that there

is no element in B that can be represented as a linear combination of vectors in T. The hypothesis

H0 corresponds to the case in which the observed vector is drawn from the interference/background

subspace, contaminated by white Gaussian noise. Whereas, the hypothesis H1 corresponds to the case in

which the observed vector is a superposition of a vector from the interference/background subspace and

a vector from the anomaly subspace, contaminated by white Gaussian noise.
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The Generalized Log-Likelihood Ratio (GLR) is given by

L(x) =
1

σ2
x

TPB⊥Tx, (5)

where PB⊥T is a projection onto (range B)⊥
⋂

range T - a low-rank anomaly-matched subspace, such

that interference contribution contained in range B, and noise contribution contained in both range B

and (range T)⊥, are removed. This filter is usually called a matched subspace filter or a matched field

filter. The energy of the filter output (corresponding to L(x)) is computed and compared to a threshold.

The problem with this approach is that it is not well-adapted to the ℓ2,∞ optimality criterion of the

signal-subspace basis [Ψk−h|Ωh] found by MOCA. Although, according to MOCA, the maximum of

the data residual norms η = ‖P[Ψk−h|Ωh]⊥X‖ℓ2,∞
is minimized, it may still leave large residuals (with

norms below η) belonging to (range [Ψk−h|Ωh])⊥. Obviously, these residuals don’t contribute to L(xi),

which measures the norms of data vector projections onto (range Ψ)⊥
⋂

range Ω (see (5) above). This

reduces the probability of anomaly detection by MSD in cases of anomalies having residual norms below

η. Note, that the value of η is determined by statistics of the maximum-norm noise realization that has

a narrow distribution [2] centered around a value that is not insignificant. This value is a function of σ

and the noise subspace rank.

Another disadvantage of using MSD in conjunction with a subspace determination by MOCA, is that

the anomaly subspace basis Ω found by MOCA is composed of vectors that were directly selected

from the data, whereas the background subspace basis satisfies range Ψ ⊂ null Ω
T . Therefore, the

estimated anomaly subspace, as well as the background subspaces are deflected by noise. Since in

hyperspectral images the background subspace and anomaly subspace are far from being orthogonal, even

small deviations of the anomaly and background subspace estimations may cause background vectors

to have a strong contribution to L(xi) of (5), which rapidly increases false alarm rate by MSD. This

observation is experimentally substantiated in section IV.

D. Proposed algorithm outline and paper organization

The proposed algorithm, denoted here as Anomaly Extraction and Discrimination Algorithm (AXDA),

is based on using the background and anomaly subspace estimates by MOCA and is designed to cope

with the above MSD drawbacks. The key-point of the proposed algorithm is that it iteratively modifies

both Ω and Ψ. The modification is performed by removing columns from the matrix Ω, one at a time,

and updating the matrix Ψ to match the modified Ω. This significantly reduces the effect of noise on the

anomaly detection process. AXDA uses the ℓ2,∞-optimality criterion of MOCA to extract all anomaly
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pixels belonging to the same anomaly endmember, where anomaly endmembers correspond to columns

of Ωh. Thus, AXDA combined with MOCA, allows determination of the number of anomalies and the

extraction of all pixels belonging to the same type in an unsupervised way. It still applies Extreme

Value Theory (EVT) [22] to model the ℓ2,∞-norm to construct a sharp, robust and adaptive anomaly

detector, which doesn’t rely on any prior knowledge about the dimensionality or statistical model of

the background, without the need for tuning a one-sided hypothesis threshold, and without any prior

knowledge about the number of anomaly classes and/or anomaly endmembers.

This paper is organized as follows: Section II provides a short overview of MOCA [2], which is designed

to estimate a signal-subspace defined to include anomalies. In section III, we describe the proposed

Anomaly Extraction and Discrimination Algorithm (AXDA), which employs signal-subspace and rank

estimation results obtained by MOCA for detection and discrimination of anomalies. In section IV, we

demonstrate results of applying AXDA to real hyperspectral images. We also show there a comparison

of AXDA vs. GMRX [8] and MSD algorithms in terms of Receiver Operating Curves (ROC) obtained

by applying the algorithms on 5 hyperspectral images. Finally, in section V, we conclude this work.

II. MAXIMUM ORTHOGONAL COMPLEMENT ALGORITHM (MOCA)

In this section we provide a short overview of MOCA, proposed in [2], which is designed to estimate

the signal-subspace that is defined to include anomaly vectors.

Thus, according to [2], given the signal-subspace rank, k, the signal-subspace estimation Ŝk that

preserves anomaly vectors is optimal in the following sense:

Ŝk = argmin
L

‖PL⊥X‖2
ℓ2,∞

s.t. rank L = k, (6)

where PL⊥ denotes an orthogonal projection onto L⊥, X is a matrix of observed data vectors ordered

as its columns, and ‖H‖ℓ2,∞
corresponds to the norm of H, defined as the maximum ℓ2 norm of H

columns.

In order to make the minimization of (6) computationally plausible, a suboptimal solution is proposed

in [2], according to which the sought basis of Ŝk, denoted by Φ, is constrained to the following form:

Φ = [Ψk−h|Ωh] , (7)

where Ωh is a full-rank matrix composed of h columns selected from X, and Ψk−h is a matrix with k−h

orthogonal columns, obtained via SVD of PΩ⊥

h
X. The main idea of this approach is to collect anomaly
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vectors into Ωh in order to directly represent the anomaly vectors subspace, whereas the background

vectors subspace is found by applying SVD in the null-space of Ω
T
h .

The signal-subspace rank estimator is based on examining the maximal data residual norms ‖PŜ⊥

k

X‖2
ℓ2,∞

,

for an increasing sequence of rank values k. It is assumed that for some k, rq ≤ k ≤ r, the signal-

subspace Ŝk is close to the subspace of background vectors, which is of rank rq. This assumption is

plausible due to the SVD-part of the signal subspace determination that is designed to represent well

the background vectors subspace. As a result, the background vector residuals in the complementary

subspace Ŝ⊥
k are governed by the noise contribution, whereas the anomaly vector residuals in Ŝ⊥

k may

still include significant signal contributions. Thus, for k ≥ rq, the set of all data-vector residual norms

can hypothetically be divided into two subsets as follows:

Γk � {squared norms of background vector residuals}

∆k � {squared norms of the remaining data-vectors}. (8)

Once the value of the maximum data-residual squared-norm

ηk = max
j=1,...,N

‖PŜ⊥

k

xj‖2 (9)

becomes available (with N denoting the number of pixels), the following two hypotheses are formu-

lated:

H0 : ηk belongs to Γk, (10)

H1 : ηk belongs to ∆k. (11)

The rank estimator r̂ is set to be equal to the minimal value of k for which the following condition is

satisfied:

p(H0|ηk) ≥ p(H1|ηk), (12)

which means that the optimal rank is reached when there is a higher likelihood that the maximum data-

residual squared norm ηk is governed by the noise statistics (i.e., it doesn’t include significant signal

contributions). The details of how to calculate p(H0|ηk) and p(H1|ηk) are found in [2].

To summarize, the flowchart of MOCA is presented in Fig. 1, according to [2]. The algorithm begins

with an initial guess for the signal-subspace rank, such as k = 1. At each rank-value iteration, the

signal-subspace basis Φk = [Ψk−h|Ωh] for the conjectured rank k, is obtained via a Min-Max SVD
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(MX-SVD) algorithm (introduced in [2]) producing Ωh - a matrix composed of h linearly independent

columns selected from X, and Ψk−h - a matrix with k − h orthogonal columns obtained via SVD of

PΩ⊥X. Then, the data maximum residual-norm is calculated in the (range Φk)
⊥. This norm is tested in

order to decide if it belongs to the noise hypothesis (this decision is performed by evaluating inequality

(12)). If the noise hypothesis passes, the algorithm is terminated, and the estimated signal-subspace and

rank equals to the range of the last obtained Φk, and to the last value of k, respectively. Otherwise, the

conjectured rank value k is incremented and a new iteration is carried out.

Fig. 1. Maximum Orthogonal Complement Algorithm (MOCA) flowchart (after [2]).

III. ANOMALY EXTRACTION AND DISCRIMINATION ALGORITHM (AXDA)

In this section we propose an Anomaly Extraction and Discrimination Algorithm (AXDA) that employs

signal-subspace and rank estimation results obtained by the above described MOCA.
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Let’s recall that the signal-subspace basis Φ produced by MOCA admits the following form:

Φr̂ = [Ψr̂−h|Ωh] , (13)

where r̂ is the estimated signal-subspace rank, the sub-matrix Ωh consists of h linearly independent

columns selected from the data matrix X and the sub-matrix Ψr̂−h consists of r̂−h principal components

of PΩ⊥X.

As it was already noted above, the matrix Ωh represents the anomaly vectors subspace. First of all,

given the matrix Ωh, one can mark anomaly vectors by locating indices of Ωh columns in the original data

matrix X. However, this straightforward method does not enable us to find all the pixels in the data that

belong to the anomaly subspace, since not all anomalies are guaranteed to be within the columns of Ωh.

For example, in a case where there are number of vehicles having the same anomalous reflected spectrum,

only one pixel representing all vehicle pixels would be collected by MOCA into Ωh. Therefore, neither

all vehicles, nor all vehicle pixels would be marked by this straightforward method. It was experimentally

observed that simple approaches such as looking for data vectors lying close enough to Ωh columns (or,

alternatively, to the subspace spanned by Ωh columns) are of a low practical value due to the need for

a threshold and due to a high false-alarm rate caused by background interference.

In order to detect and discriminate all anomaly pixels, we propose a new algorithm that extracts all

anomalies in the data and associates them with the Ωh columns found by MOCA. As stated earlier, the

proposed algorithm is denoted as Anomaly Extraction and Discrimination Algorithm (AXDA). For the

sake of clarity, we first present a concise outline of AXDA in Fig. 2.

A. Concise outline of AXDA

The main idea of the algorithm is to iteratively reduce the anomaly vector subspace-rank by dropping

columns of Ωh, producing submatrices {Ωj}h−1
j=0 . Since for a given rank r̂, the matrix [Ψr̂−h|Ωh]

minimizes the ℓ2,∞ of data residuals in the (range [Ψr̂−h|Ωh])⊥ (as noted above), dropping columns

from Ωh increases the ℓ2,∞-norm of data residuals. Obviously, this change in residual norms occurs

in pixels that are well-represented by the dropped column, including the residual norm of the dropped

column itself. Therefore, this operation reveals anomaly vectors in the data that belong to the dropped

column by increasing their residual norms. The increased residual norms are compared to the ℓ2,∞-norm

of data residuals from the previous iteration, which are determined by the test in (12) as stemming

from noise. If the increased norms exceed the ℓ2,∞-norm of data residuals from the previous iteration,

the corresponding pixels are marked as belonging to the dropped column and are depleted from data.
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Depletion of such pixels makes the ℓ2,∞-norm of data residuals in the current iteration to pass again the

noise hypothesis in (12). All operations in this paragraph are performed in block (2) of Fig. 2.

There are two indices, j and s that keep track of anomaly subspace and total signal subspace

dimensionality, respectively, at each iteration. The index j, which is initialized as j = h, denotes the

anomaly subspace rank throughout the AXDA iterations. It is decremented by one at each iteration. The

index s (initialized as s = r̂), denotes the total signal-subspace rank throughout the AXDA iterations.

The initialization is depicted in block (1) of Fig. 2. Since the depletion of anomaly vectors is supposed

to decrease the anomaly subspace dimensionality in the data by one (see block (3)), one expects the total

signal-subspace rank s to decrease by one as well. However, this is not always the case. For example, in

cases where the dropped anomaly vector is highly correlated with the background subspace, dropping it

from Ωh, impairs the ability of [Ψr̂−h|Ωh−1] (here s = r̂−1) to represent well the background subspace.

In order to sequentially deplete anomaly vectors at each iteration, one needs to maintain the ℓ2,∞-norm

of data residuals to be low enough to admit the noise hypothesis in (12) at each iteration (see block

(5)). Therefore, in this example, we need to increase the background dimensionality by one, which is

performed by retaining s unchanged. Therefore, the decision to decrement the total signal-subspace s

rank (see block (7)) is taken only if the reduced-rank subspace meets the maximum-norm noise residual

hypothesis (see block (6)).

Fig. 2. A concise outline of Anomaly Extraction and Discrimination Algorithm (AXDA). The notation in block (2) is

MATLAB� notation.
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B. Detailed description of AXDA

At this point, we are ready to describe the AXDA algorithm in detail as shown in Fig. 3, where we

mainly introduce details of block (2) in Fig. 2. The numbering of the following items correspond to the

block numbers in Fig. 3.

1) Initialization

The AXDA algorithm starts by initializing j = h, the number of anomaly vectors in Ωh and s = r̂,

the determined rank of signal subspace range [Ψs−j |Ωj ], and the maximum-residual norm denoted

by ηs (see (9)), all as obtained from MOCA.

2) Reduction of anomaly subspace basis

It is important to note that initially, the number j = h of anomaly vectors in the partition

Φr̂ = [Ψr̂−h|Ωh], obtained by MOCA, is optimal for the given signal-subspace rank, i.e., a decrease

of h for a given r̂ would result in an increased maximum-residual norm and, possibly, of other

residual norms of data-vectors.

We intentionally alter this optimality by dropping the last column of Ωj , providing Ωj−1 . This

operation is designed to detect anomalies related to the last column of Ωj .

3) Calculation of a new background vector representation basis Ψs−j+1, corresponding to the

new anomaly subspace basis Ωj−1

In order to retain the total signal-subspace rank s, a new background vector representation basis

Ψs−j+1 is calculated by applying SVD on PΩ⊥

j−1
X that matches the reduced-rank matrix Ωj−1.

4) Calculation of data residual-norms in the obtained residual-subspace

ri = ‖P[Ψs−j+1|Ωj−1]
⊥xi‖2 (14)

5) Detection of anomaly vectors belonging to the dropped column j

In this block we identify indices of all anomaly vector residuals that exceeded the noise level ηs,

which is equal to the maximum residual-norm initially obtained from MOCA.

6) Decision about the next operation, based on previous block results

In this block we decide about the next operation based on whether anomaly vectors were found

in the previous block. If there are such indices, then we perform the inner loop, in which we

deplete the found anomaly vectors, recalculate Ψs−j+1, and try to detect more anomaly vectors.

Otherwise, the depletion of anomaly vectors in this iteration is completed and other operations of

current iteration are performed.
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7) Association of found anomaly vectors to j-th column of Ωj

This block belongs to the inner loop of anomaly vectors depletion. We associate all data vectors in-

dices (found in the block (5)) to the dropped column j and store them. Therefore, the corresponding

anomaly vectors are denoted as j-associated anomaly vectors.

8) Depletion of found j-associated anomaly vectors from input data and recalculation of Ψs−j+1

Since (range Ωj−1)
⊥ contains j-associated anomaly vector contributions, the subspace correspond-

ing to Ψs−j+1 (obtained earlier via SVD in Block (3)) is expected to be diverted in a way that aims

to reduce these contributions along with the background vector residual-norms. As a result, not all

anomaly vectors corresponding to the dropped j-th column of Ωj may be detected via tresholding

their corresponding norms by ηs in Block (5). In order to remedy this problem, we deplete the

j-associated anomaly vectors in the data (detected in Block (5)) and perform operations of blocks

(3) - (5) again in order to obtain a more precise estimation of the background vectors subspace

Ψs−j+1, which is not diverted by the j-associated anomaly vectors found in Block (5).

9) Decrementing of anomaly subspace rank

Once all j-associated anomaly vectors are depleted, the rank of the anomaly subspace can be reduced

by one. However, this does not necessarily mean that the total signal representation rank should

also drop by one. This can be explained as follows: As it was already noted earlier, the background

and anomaly subspaces in the hyperspectral images are not orthogonal. Therefore, if one reduces

the rank of [Ψs−j |Ωj ] by removing a column from Ωj , one might transfer a significant amount

of background contribution to the complementary subspace (range [Ψs−j |Ωj−1])
⊥, which means

that the reduced-rank subspace basis [Ψs−j |Ωj−1] might not represent well the signal-subspace of

the data after the j-associated anomaly-vectors depletion.

Therefore, the decrementing of anomaly subspace rank j does not necessarily entails decrementing

the total signal-basis rank s. Thus, to decide if the total signal-basis rank s should be also

decremented, we again employ, in the next blocks, the maximum-norm hypothesis testing (12).

Due to the algorithm construction (see blocks (4),(5),(6)), it is guaranteed that at the input to this

block, the subspace (range [Ψs−j+1|Ωj−1])
⊥ doesn’t contain signal contributions. It is left to

determine if the same holds true for the subspace (range [Ψs−j |Ωj−1])
⊥, which corresponds to

the reduced total signal rank s − 1.

We start by setting j ← j − 1. In the next blocks we perform steps necessary for deciding if to

decrement also the total signal-subspace rank s.

10) Termination condition block
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If the anomaly subspace rank has reached 0, then terminate. Otherwise, continue.

11) Calculation of Ψs−1−j corresponding to a reduced-rank signal-subspace

In order to decide if decrementing j should also entail the decrementing of the total signal-subspace

s, one has to obtain the reduced-rank subspace [Ψs−1−j |Ωj ] and test the corresponding data

residuals. Therefore, in this block, we calculate Ψs−1−j by:

Ψs−1−j = SVD
s−1−j

PΩ⊥

j
X. (15)

12) Calculation of maximum data residual-norm ηs−1 in the obtained residual-subspace

ηs−1 = max
x∈cols X

‖P[Ψs−1−j |Ωj ]
⊥x‖2 (16)

13) Performing noise-related hypothesis testing of ηs−1

In this block we assess if ηs−1 contains signal-contribution. For this purpose we apply the test of

equation (12).

14) Decision if to reduce the total signal-subspace rank s

If ηs−1 meets the noise-hypothesis, meaning that the subspace (range [Ψs−1−j |Ωj ])
⊥ doesn’t

contain signal contributions (i.e., the basis [Ψs−1−j |Ωj ] represents well the signal-subspace), then

s should be decremented. Otherwise, leave s intact and continue to a new iteration.

15) Decrementing the total signal-subspace rank s

s ← s − 1, (17)

and continue to a new iteration at block (2).

Comments

1) Once the new value of s is determined, we approach a nominal state (at block (2)), where the

anomaly vectors matrix rank is decremented by 1, and the signal-subspace basis [Ψs−j |Ωj ] (with

the updated values of j and s) is “MOCA-optimal” with respect to the modified data-matrix X. In

order to extract other anomaly vectors, corresponding to the rest of Ωj columns, until the complete

depletion of all anomaly vectors, steps 2 - 15 are repeated. The iterations stop when there are no

more columns in the anomaly-basis matrix Ωj , i.e., j = 0.

2) It is important to note that at the end of the AXDA procedure, the signal-subspace basis is composed

solely of Ψs (s ≤ r̂), which constitutes the MOCA-optimal basis of the background vectors.
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So the AXDA algorithm equips us also with a anomaly-free (in other words “robust”) estimated

background-subspace and rank.

Fig. 3. Detailed description of Anomaly Extraction and Discrimination Algorithm (AXDA). The notation in block (2) is

MATLAB� notation.

IV. EXPERIMENTS WITH REAL HYPERSPECTRAL DATA

In this section we evaluate performance of the MOCA algorithm followed by AXDA postprocessing

applying them on real hyperspectral data. For an analysis of the effect of noise on MOCA, using self

designed synthetic data experiments with different signal to noise ratios, the reader is referred to [2].

To demonstrate the results, the proposed approach was applied to 6 real hyperspectral image cubes

collected by an AISA airborne sensor configured to 65 spectral bands, uniformly covering VNIR range of
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400nm - 1000nm wavelengths. At 4 km altitude pixel resolution corresponds to (0.8m)2. The obtained

image cubes are b × r × c = 65 × 300 × 479 hyperspectral images, where b,r and c denote the number

of hyperspectral bands, the number of rows and the number of columns in the image, respectively.

In Fig. 4 one can see results of anomaly detection and discrimination. Shown are images containing the

30th-band of 4 different hyperspectral cubes with different terrain types. The 5th and 6th images are not

shown here just because of space limitations and convenience of placing an even number of images in the

figure. The left 4 images contain ground-truth anomalies (marked in white and encircled by red ellipses),

which were manually identified using side information collected from high resolution RGB images of

the corresponding scenes. In Fig. 5, we show one of RGB images used for identifying the ground-truth

anomalies. The right 4 images contain anomalies (marked in color) detected by AXDA, overlayed on the

white ground-truth pixels. All anomaly pixels of the same type are marked by the same color. There are

no missed anomalies in the presented 4 images. The corresponding dimensionality results obtained by

MOCA and AXDA are separately summarized in Table. I, where r̂ is the signal subspace rank determined

by MOCA, h is the anomaly dimensionality, s is the dimensionality of anomaly-free background. Note,

that according to the discussion in step 9 of the AXDA algorithm presented in the section III, it is possible

that s ≥ r̂ − h. Thus, AXDA allows discrimination of anomalies according to corresponding anomaly

endmembers (constituent materials spectra) found by MOCA, though the accuracy of this discrimination

is not evaluated in this paper and is under investigation.
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Fig. 4. AXDA results at the nominal operating point. The left 4 images contain manually identified ground-truth anomalies

(marked in white and encircled by red ellipses). The right 4 images contain anomalies (marked in color) detected by AXDA,

overlayed on the white ground-truth pixels. There are no missed anomalies in the presented 4 images. All anomaly pixels of

the same type are marked by the same color.
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TABLE I

No. image r̂ h s

1 10 2 10

2 15 9 11

3 10 5 8
4 16 8 12
5 15 7 13
6 11 4 10

As it was noted above, in Fig. 5, we show one of the RGB images used for identifying the ground-truth

anomalies. The scene under consideration is shown in a high-resolution (2672×4000) color RGB-image.

The ground-truth anomalies are encircled by red ellipses. As it can be seen, the detected anomalies

correspond to vehicles and small agriculture facilities, which occupy a few pixel segments.

In Fig. 6, we compare between GMRX [8], MSD [1] and the proposed AXDA in terms of Receiver

Operation Characteristic (ROC) curves. For the purpose of ROC curves generation, 6 hyperspectral images

were used, in which the total number of anomaly segments count is 25.

An anomaly is considered as detected if at least one of the detected pixels hits the corresponding

marked segment. All pixels detected by the algorithms were grouped into connected objects using 8-

connected object labelling. If an object doesn’t intersect a marked anomaly, it is considered a false alarm

object. This kind of anomaly detection/miss criteria is particularly suitable for applications that aim to

alert the user on all anomalies of all sizes. Therefore, it is more important to detect at least one pixel

on each anomaly, rather than many pixels on only some of the anomalies.

In order to obtain multiple operating points for AXDA, an additional parameter should be introduced

to the proposed algorithm. A reasonable place for such a parameter is in the noise hypothesis relation in

(12). However, due to special characteristics of maximum-norm noise distribution, which is very narrow

- almost deterministic (see [2]), any factor introduced to this relation would result in almost the same

decision. Thus, AXDA has naturally a single(nominal) operating point dictated by the noise statistical

properties.

Yet, for the sake of comparison, we’ve introduced a rather compelling parameter γ to the equation of

block (5) in Fig. 3, which now reads as:

{ωt} = I(ri > γηs). (18)

In words, the noise-related threshold value ηs (measured in a previous iteration) is multiplied by the

factor γ in order to produce a new threshold value. The lower the factor γ is, the more data vectors
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Fig. 5. High resolution RGB image of the analyzed scene, used as a ground-truth indication for AXDA results verification.

The ground-truth anomalies are encircled by red ellipses.

will be treated as anomaly-vectors and be associated to the dropped column j of Ωj . In our simulation,

we have used 30 values of γ, which were uniformly sampled from [0.8, 1.2]. The position of nominal

operating point of AXDA (for γ = 1) is pointed out by a red arrow. As can be seen from the figure, the

nominal operating point provides a high detection rate (24 detected anomalies) with a significantly low

false alarm rate (6 false alarm segments).

The GMRX algorithm was initialized by an excessive number of Gaussians using the k-means algorithm

for initializing the Gaussian parameters. During the EM iterations of the GMRX, too small clusters, and

hence unreliable, were eliminated. In Fig. 7 one can see results of the GMRX algorithm, applied to

the same 4 hyperspectral cubes as AXDA, with a GLR parameter producing the same false alarm rate

as AXDA at the nominal operating point (which equals to 6 false alarm segments). As in Fig. 4, The

left 4 images contain manually identified ground-truth anomalies (marked in white and encircled by red

ellipses), whereas the right 4 images contain anomalies (marked in red), detected by GMRX, overlayed
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Fig. 6. ROC curves corresponding to GMRX, MSD and AXDA. The nominal operating point of AXDA is marked in

magenta color and is pointed out by the arrow. This point corresponds to 24 detected anomalies and 6 false alarm segments.

on the white ground-truth pixels. The missed targets are encircled by cyan ellipses.

The MSD algorithm was provided an anomaly-free estimation of the background basis Ψs estimated

by AXDA, which uses the anomaly subspace basis Ωh provided by MOCA, since MOCA and AXDA

combined are unique in their ability to perform an unsupervised determination of both anomaly and

background subspaces and their ranks.

Fig. 6 clearly shows that for the examined images AXDA has a better performance than GMRX and

MSD, in most of the range of the tested parameters. It is also important to note, that in contrast to MSD

and GMRX, AXDA allows an unsupervised determination of the nominal operating point, determined

by maximum-norm noise statistical properties. Moreover, AXDA has an ability to discriminate between

different types of anomalies.
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Fig. 7. GMRX Anomaly Detection Results for GLRT parameter producing the same false alarm rate as AXDA at its

nominal operating point. The left 4 images contain manually identified ground-truth anomalies (marked in white and encircled

by red ellipses). The right 4 images contain anomalies (marked in red) detected by GMRX, overlayed on the white ground-truth

pixels. Missed anomalies are encircled by cyan ellipses.
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V. SUMMARY AND CONCLUSION

In this work we have proposed an algorithm for anomaly detection, discrimination and population

estimation of anomalies of the same type, called AXDA. The algorithm is based on a signal-subspace

and rank estimation provided by MOCA [2]. By its construction, the signal basis consists of two groups

of basis vectors. One group spans the subspace of anomalies. The second group is designed to represent

background pixel residuals belonging to the subspace that is complementary to the subspace of the

anomalies. The proposed AXDA extracts anomaly pixels by removing an anomaly basis vector from the

anomaly vectors group and compensating for its removal by augmenting the background vectors related

subspace. This operation causes a violation of the noise hypothesis condition in vectors that are highly

correlated with the removed anomaly basis vector. Such vectors are detected, associated with the removed

basis vector, and depleted from the data. This way we obtain groups of data vectors associated with each

one of the anomaly basis vectors.

In experiments with real hyperspectral image cubes AXDA was shown to have a better performance

than GMRX and MSD, in most of the range of the tested parameters. Since the anomaly and background

subspaces are unknown in advance, the MSD algorithm was provided the anomaly-free estimation of

the background basis Ψs obtained from AXDA and the anomaly subspace obtained from MOCA. This

provides MSD subspace-related information that is (at least) as good as AXDA has for the detection

of anomalies. It is also important to note, that in contrast to MSD and GMRX, AXDA is equipped

with an unsupervised determination of the nominal operating point. AXDA also has a capability to

discriminate between different types of anomalies, though the accuracy of this discrimination, as well

as the accuracy of population estimation of anomalies of the same type, are not evaluated in this paper

and are under investigation. Moreover, AXDA allows also an anomaly-free (robust) estimation of the

background-subspace and rank.

It turns out now that MOCA in combination with AXDA provide means to meet a wide range of

signal-subspace estimation scenarios:

1) Estimation of a signal-subspace that includes anomaly-vectors.

2) Detection of anomaly-vectors and determination of their subspace.

3) Providing a natural (nominal) operating point for anomaly detection.

4) Estimation of the pure (free of outliers) background-subspace.
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APPENDIX I

NOISE VARIANCE ESTIMATION PROCEDURE

AXDA and MOCA strongly rely on the assumption of additive white Gaussian noise of known variance.

The correct specification of the noise variance is of paramount importance since it determines the signal

subspace rank (see (12)) and, as a result, affects the detection/false-alarm rates. In this appendix we

describe a technique used for the estimation of noise variance in each hyperspectral channel. The estimated

noise variance is then used for a band-wise normalization of the noise variance to 1.

It was observed in experiments with real hyperspectral data that overestimation of the noise variance

by about a half an order of magnitude has little influence on AXDA performance. Although using an

overestimated value of the noise variance (causing a poorer representation of the background) would

result in the underestimation of signal subspace rank, the false alarm rate remains mostly unchanged.

This happens since background misrepresentations are tested by rule (12) (used in steps 9 and 13 of

AXDA), which depends on the noise variance as well. Thus, the overestimated noise variance raises the

“effective threshold value”, which naturally leaves the background misrepresentations undetected. Thus,

an overestimated noise level may just slightly impair detection rate of anomalies that aren’t prominent

enough.

Using an underestimated value of the noise variance is less favorable because of special statistical

properties of the maximal norm of noise. As shown in [2], the maximal norm of noise has a narrow

distribution, explained by Extreme Value Theory results. Therefore, there is a high likelihood that the

maximal norm of noise would obtain an almost deterministic value (see Figs. 4 and 5 in [2]). Thus,

if the underestimated noise variance makes the “effective threshold value” implied by (12) lower than

the almost deterministic maximal norm of noise, MOCA would never terminate its iterations (or will

terminate too late). This would result in a significant signal-subspace rank overestimation, which may

cause the background subspace of increased-rank to include the anomalies and to significantly impair the

anomaly detection rate. Therefore, the noise variance estimation technique proposed below prefers noise

variance overestimation.

In CCD-based hyperspectral systems, the noise is a combination of dark current noise, photon (shot)

noise and fixed pattern noise (FPN) [19]. The FPN is due to different sensor responsivities, which is

estimated and compensated out by calibrating the sensor. It turns out that even at mild light intensities,

the photon noise may be dominant [19]. The photon noise problem arises from the statistical nature of

photon production. The probability distribution for n photons in an observation window is known to be
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Poisson:

p(n) =
Mne−M

n!
, (19)

where M is the average number of photons within the given observation window. For the linear part of

the CCD response function, the image intensity I is linearly proportional to n, i.e.,

I = gn, (20)

for some proportionality coefficient g. Since the Poisson distribution approaches a normal distribution

for large M , the photon noise in I can be modelled as having a zero-mean normal distribution with std

σe satisfying:

σe(I) =
√

gH, (21)

where H being the mean of I satisfying H = gM , is considered to be the clean signal.

Thus, the photon noise variance is not constant and, therefore, doesn’t meet the noise stationarity

property assumed in MOCA. Nevertheless, in our real-data simulations, we have empirically found that

using

σ0.98 =
√

gH0.98 (22)

in AXDA, as an estimate of the noise std in each band (with H0.98 denoting the 0.98 quantile of image

intensities in the band), decreases false alarm rate caused by high image intensity pixels, while allowing

a reasonably high anomaly detection rate. The 0.98 quantile corresponds to almost maximum image

intensity, ignoring 2% of the most intense image values that may stem from anomalies.

The only thing left is to estimate g. According to (21), g satisfies:

g = var
( e

H

)

, (23)

where e denotes pixel noise and var denotes variance. Note, that random variables {ei/Hi}, where i

denotes pixel index, are identically distributed. If one assumes that they are independent, then g can be

estimated by:

ĝ =
1

N

N
∑

i=1

(

êi

Ĥi

)2

, (24)

where êi is a noise estimation, and Ĥi is a clean image intensity estimation.
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The estimation of {Hi} can be obtained via a 2D linear prediction as follows:

Ĥi =
∑

j∈K

ajIi,j , (25)

where K denotes the set of a 2D neighborhood indices, Ii,j denotes the image intensity at position j

in the neighborhood of a pixel i, and {aj} denote the linear prediction coefficients, obtained via least

squares over the whole image. In our simulations we used a 5 × 5 neighborhood.

The estimation of {ei} is then given by

êi = Ii − Ĥi. (26)

Unfortunately, the estimation of {Hi} given in (25) is inaccurate in non-smooth image regions such

as edges and/or anomaly pixels. Therefore, the estimates êi and Ĥi from these regions should not be

accounted in (24) for the estimation of g. In order to filter out the undesired contributions of êi and Ĥi,

we estimate
√

g using median absolute deviation (MAD), proposed in [27], for a robust estimation of

the standard deviation of e/H as follows:

√

ĝ = MAD
(

ê/Ĥ
)

= median
i=1,...,N

∣

∣

∣
êi/Ĥi

∣

∣

∣
, (27)

where N is the total number of hyperspectral pixels.

Using the estimated values of g and Hi and substituting to (22), we obtain an estimate of the effective

noise std σ0.98 in each band and normalize the noise to unity variance in each band of the hyperspectral

cube for further processing.
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