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Abstract

The rapid developing area of compressed sensing suggests that a sparse vector lying in an arbitrary high

dimensional space can be accurately recovered from only a small set of non-adaptive linear measurements. Under

appropriate conditions on the measurement matrix, the entire information about the original sparse vector is captured

in the measurements, and can be recovered using efficient polynomial methods. The vector model has been extended

both theoretically and practically to a finite set of sparse vectors sharing a common non-zero location set. In this

paper, we treat a broader framework in which the goal is to recover a possibly infinite set of jointly sparse vectors.

Extending existing recovery methods to this model is difficult due to the infinite structure of the sparse vector set.

Instead, we prove that the entire infinite set of sparse vectors can recovered by solving a single, reduced-size finite-

dimensional problem, corresponding to recovery of a finite set of sparse vectors. We then show that the problem

can be further reduced to the basic recovery of a single sparse vector by randomly combining the measurement

vectors. Our approach results in exact recovery of both countable and uncountable sets as it does not rely on

discretization or heuristic techniques. To efficiently recover the single sparse vector produced by the last reduction

step, we suggest an empirical boosting strategy that improves the recovery ability of any given sub-optimal method

for recovering a sparse vector. Numerical experiments on random data demonstrate that when applied to infinite

sets our strategy outperforms discretization techniques in terms of both run time and empirical recovery rate. In

the finite model, our boosting algorithm is characterized by fast run time and superior recovery rate than known

popular methods.

Index Terms

Basis pursuit, compressed sensing, multiple measurement vectors (MMV), orthogonal matching pursuit (OMP),

sparse representation.

I. INTRODUCTION

Many signals of interest often have sparse representations, meaning that the signal is well approximated by

only a few large coefficients in a specific basis. The traditional strategy to capitalize on the sparsity profile is to
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first acquire the signal in a high-dimensional space, and then utilize a compression method in order to capture

the dominant part of the signal in the appropriate basis. Familiar formats like MP3 (for audio signals) and JPEG

(for images) implement this approach. The research area of compressed sensing (CS) challenges this strategy by

suggesting that a compact representation can be acquired directly.

The fundamentals of CS were founded in the works of Donoho [1] and Candès et. al. [2]. In the basic model,

referred to as a single measurement vector (SMV), the signal is a discrete vector x of high dimension. The sensing

process yields a measurement vector y that is formed by inner products with a set of sensing vectors. The key

observation is that y can be relatively short and still contain the entire information about x as long as x is sparsely

represented in some basis, or simply when x itself contains only a few non-zero entries. An important problem in

this context is whether the vector x producing y is unique [3]. Another well studied issue is the practical recovery

of x from the compressed data y, which is known to be NP-hard in general. Many sub-optimal methods have been

proposed for this problem [1],[2],[4],[5], which achieve a high recovery rate when tested on randomly generated

sparse vectors.

The SMV model has been extended to a finite set of jointly sparse vectors having their non-zeros occurring

in a common location set. The sensing vectors are applied to each of the sparse vectors resulting in multiple

measurement vectors (MMV). This model is well suited for problems in Magnetoencephalography, which is a

modality for imaging the brain [6],[7],[8]. It is also found in array processing [6],[9], nonparametric spectrum

analysis of time series [10] and equalization of sparse communication channels [11],[12]. The issue of uniqueness

in the MMV problem was addressed in [13],[14], together with extensions of SMV recovery techniques to MMV.

In this paper, we start from a broader model which consists of an infinite set of jointly sparse vectors, termed

infinite measurement vectors (IMV). The set may be countable or uncountable (for example, when described

over a continuous interval). The IMV model is broader than MMV and naturally arises in recovery problems

involving analog signals, such as our earlier work on multi-band signals [15]. As we explain further in the paper,

the recovery of the entire infinite set of sparse vectors in IMV models is highly complicated. A straightforward

recovery approach in this context is to consider only a finite subset of vectors using discretization. However, this

strategy cannot guarantee perfect recovery. Instead, we derive a reduced finite-dimensional problem from which

the common non-zero location set can be inferred exactly. This paradigm relies on the observation that once the

non-zero locations are identified, the original recovery problem translates into a simple linear inversion with a

closed form solution.

Our first main contribution is a theoretical result showing that for every given IMV problem there is an explicit

MMV counterpart with the same non-zero location set. This reduction to finite dimensions is achieved without

any discretization or heuristic techniques and thus allows in principle an exact recovery of the entire set of

sparse vectors. Other papers that treated problems involving infinite vector sets used discretization techniques to

approximate the solution [16] or alternatively assumed an underlying discrete finite-dimensional signal model [17].

In contrast, our approach is exact as neither the IMV model nor the solution is discretized. Once the IMV problem
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Fig. 1: The entire flow of the paper consists of: (I) a deterministic reduction from IMV to MMV, (II) a random

reduction from MMV to SMV and (III) a boosting stage. The ReMBo algorithm is a formal description of the

last two steps.

is reduced to an MMV problem, results developed in that context can be applied.

To further improve the recovery performance both in terms of speed and recovery rate, we develop another

theoretical result allowing to identify the non-zero locations of a given MMV model from a sparse vector of a

specific SMV system. As opposed to the IMV reduction, our strategy here is to construct a random SMV problem

that merges the set of sparse vectors using random coefficients. We prove that this reduction preserves the crucial

information of the non-zero location set with probability one.

Our final contribution treats the practical aspect of using a sub-optimal technique to find the sparse vector of an

SMV problem. While examining popular SMV recovery techniques, we observed that the recovery ability depends

on the exact non-zero values and not only on their locations. Based on this observation we argue that it is beneficial

to draw several realizations of the merged measurement vector, by using different random combinations, until a

sparse vector is identified. These iterations are referred to as the boost step of our method, since, empirically,

each iteration improves the overall recovery rate of the non-zero location set. We formulate a generic algorithm,

referred to as ReMBo, for the Reduction of MMV and Boosting. The ReMBo algorithm yields different recovery

techniques for MMV based on the embedded SMV technique.

The results presented in this paper provide a complete flow between the recovery problem of different models.

Fig. 1 depicts the entire flow which can be initiated from a given IMV system or an arbitrary MMV problem.

Numerical experiments demonstrate the performance advantage of methods derived from the ReMBo algorithm

over familiar MMV techniques in terms of empirical recovery rate and run time. In addition, we present a simulation

emphasizing the advantage of the IMV reduction over a discretization technique.

The outline of the paper is as follows. The IMV model is introduced in Section II, where we also discuss

conditions for a unique solution. The deterministic reduction method of IMV to MMV and the random reduction

of MMV to SMV are developed in Sections III and IV respectively. The description of the ReMBo algorithm

follows in Section V. Numerical experiments are provided in Section VI.

II. INFINITE-MEASUREMENT-VECTORS MODEL

Let A be a given m × n matrix with m < n and consider the parametric linear system:

y(λ) = Ax(λ), λ ∈ Λ, (1)
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where Λ is some known set. Our goal is to recover the unknown vector set x(Λ) = {x(λ)}λ∈Λ which is referred

to as the solution set, from the measurements set y(Λ) = {y(λ)}λ∈Λ. The cardinality of the parameter set Λ is

arbitrary including both finite (single or multiple element) sets and infinite sets (countable or uncountable). For

example, λ can be the index of a discrete set, or alternatively a variable over a continuous interval.

Clearly, the recovery problem is not well defined unless there is a unique solution set x(Λ) for each y(Λ).

However, the system of (1) does not posses a unique solution in general, since for every λ, (1) contains less

equations than unknowns. Specifically, each y(λ) is a vector of length m, while the corresponding x(λ) is of

length n > m. Therefore, in order to guarantee a unique solution an additional prior on x(Λ) must be associated

with (1). Throughout this paper, we assume the joint sparsity prior, which constrains each x(λ) to have only a

few non-zero entries and in addition requires that all the vectors in x(Λ) share a common non-zero location set.

The system of (1) is termed IMV when Λ is infinite and the joint sparsity prior is assumed. In the sequel, this

prior is formally described and is used to derive a sufficient condition for the uniqueness of the IMV solution set.

A. SMV Model

We start by describing notation and a uniqueness result for the special case of a single element set Λ, in which

(1) is abbreviated as y = Ax. This corresponds to the well studied SMV model.

A vector x is called K-sparse if it contains no more than K non-zero entries. For a given vector x the support

function

I(x) = {k |xk 6= 0}, (2)

describes the locations of the non-zero entries where xk stands for the kth entry of x. Thus, a K-sparse vector

x conforms with a support size |I(x)| ≤ K. A sufficient condition for the uniqueness of a K-sparse solution in

this setting can be stated in terms of the Kruskal-rank of a matrix, which was first used in the seminal work of

Kruskal [18]:

Definition 1: The Kruskal-rank of A, denoted σ(A), is the maximal number q such that every set of q columns

of A is linearly independent.

Theorem 1: If the vector x̄ is a K-sparse solution of y = Ax and σ(A) ≥ 2K, then x̄ is the unique K-sparse

solution of the system.

Theorem 1 and its proof are given in [3],[14] with a slightly different notation of Spark(A) instead of the Kruskal-

rank.
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TABLE I: Sparsity Models and Priors

Model Λ Cardinality Linear System K-sparsity prior

SMV 1 y = Ax |I(x̄)| ≤ K
MMV d Y = AX |I(X̄)| ≤ K
IMV Infinite y(Λ) = Ax(Λ) |I(x̄(Λ))| ≤ K

B. Uniqueness in IMV Models

The joint sparsity prior becomes relevant when Λ contains more than a single element. By abuse of notation,

we define the support function of a vector set as the union over the support of each vector. Specifically,

I(x(Λ)) =
⋃

λ∈Λ

I(x(λ)) (3)

= {1 ≤ k ≤ n |xk(λ0) 6= 0, for some λ0 ∈ Λ} .

For brevity, a jointly sparse solution set x(Λ) with |I(x(Λ))| ≤ K is also called K-sparse. A K-sparse vector

set x(Λ) implies two properties: (I) Each x(λ) is a K-sparse vector, and (II) the non-zero entries of x(λ) are

confined to a fixed location set of size no more than K. The system of (1) is called MMV in the literature when

the joint sparsity prior holds over a finite set of sparse vectors [13],[14]. Similarly, we refer to the system of (1)

as IMV when Λ is an infinite set and x̄(Λ) is jointly sparse. Table I summarizes the models derived from (1) for

different cardinalities of the set Λ. The abbreviations used for the linear systems of MMV and IMV are clear from

the context. Evidently, the joint sparsity prior is what distinguishes MMV and IMV models from being a set of

independent SMV systems.

The first property of the joint sparsity prior implies that σ(A) ≥ 2K is sufficient to guarantee the uniqueness

of a K-sparse solution set x̄(Λ), since we can consider the SMV problem y(λ) = Ax(λ) for each λ separately.

Exploiting the joint sparsity, we expect that a value of σ(A) less than 2K would suffice to ensure uniqueness.

Extending uniqueness results regarding MMV [13],[14] leads to the following proposition:

Proposition 1: If x̄(Λ) is a K-sparse solution set for (1), and

σ(A) ≥ 2K − (dim( span(y(Λ)) ) − 1) , (4)

then x̄(Λ) is the unique K-sparse solution set of (1).

The notation span(y(Λ)) is used for the subspace of minimal dimension containing the entire vector set y(Λ). Note

that span(y(Λ)) is guaranteed to have finite dimension since y(λ) has finite length. For jointly sparse solution sets,

Proposition 1 indeed claims that the required Kruskal-rank of A can be generally lower than 2K of Theorem 1.

Proof: The solution set x̄(Λ) is K-sparse which implies that dim(span(x̄(Λ))) ≤ K. It follows from

the linear system of (1) that the dimension of the subspace span(y(Λ)) cannot be higher than span(x̄(Λ)), i.e.
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r = dim{span(y(Λ))} ≤ K. From (4) we get that σ(A) ≥ K. Consequently, for each y(λ) = 0 the corresponding

unique K-sparse vector is x(λ) = 0, as the null space of A cannot contain other K-sparse vectors. Therefore,

without loss of generality we can prove the claim for a measurement set y(Λ) with r ≥ 1 which does not contain

zero vectors.

For r ≥ 1 there exists a finite set Λ̃ = {λi}
r
i=1 ⊆ Λ such that the vector set y(Λ̃) is linearly independent. Since

Λ̃ is a finite set, y(Λ̃) = Ax(Λ̃) is an MMV system. According to [13],[14], the corresponding solution set x̄(Λ̃)

is unique under the condition (4). Since y(Λ) does not contain zero vectors, every vector y(λ) belongs to some

subset of r linearly independent vectors. The argument above implies the uniqueness of the corresponding subset

of x̄(Λ), and consequently the uniqueness of the entire solution set.

Note that (1) can be viewed as a sampling process, where x̄(Λ) is the signal, A the sampling operator and

y(Λ) is the generated set of samples. In this context, the design of the sampling operator requires to determine

the number of rows in A such that the samples match a unique signal. However, (4) cannot be used for this task

since the value of dim( span(y(Λ)) ) is not known a-priori. In other words, if a matrix A needs to be designed

such that uniqueness is guaranteed to every K-sparse solution set, including those with dim{span(y(Λ))} = 1,

then the condition (4) is reduced to σ(A) ≤ 2K of Theorem 1.

In the remainder of the paper, we assume that a unique solution of (1) is guaranteed by either Theorem 1 or

Proposition 1. In the next sections, we develop the main contributions of our work which address the recovery of

the unique K-sparse solution set x̄(Λ).

III. DIMENSION REDUCTION FOR INFINITE Λ

A. Optimization Viewpoint

Before discussing the IMV model we review the optimization viewpoint for the SMV and MMV problems.

If x̄ is the unique K-sparse solution of the SMV problem y = Ax, then it is also the unique sparsest solution.

Therefore, recovery of x̄ can be formulated as an optimization problem [1]:

x̄ = arg min
x

‖x‖ℓ0 s.t. y = Ax, (5)

where the pseudo-norm ℓ0 counts the number of non-zero entries in x. In our notation the objective can be replaced

by |I(x)|. Since (5) is known to be NP-hard [1],[2], several alternatives have been proposed in the literature. Donoho

[1] and Candès et. al. [2] rigorously analyze the basis pursuit technique which uses the ℓ1 norm instead of the ℓ0

in (5) resulting in a tractable convex program. Various greedy techniques to approximate the sparsest solution have

also been studied thoroughly [4],[5],[6]. Empirically, all these methods show a high recovery rate of the unique

sparsest solution when tested on random data. Analogously, it was shown that the combinatorial problem

X̄ = arg min
X

|I(X)| s.t. Y = AX, (6)
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recovers the unique K-sparse solution matrix of an MMV system [14]. This optimization problem is also NP-hard

and can be tackled with similar efficient sub-optimal techniques [13],[14].

Extending the optimization viewpoint to the IMV model leads to the equivalent problem:

x̄(Λ) = arg min
x(Λ)

|I(x(Λ))| (7)

s.t. y(λ) = Ax(λ),∀λ ∈ Λ.

Note that in (7) there are infinitely many unknowns x(Λ), and infinitely many equations. In contrast to the finite

formulation of both (5) and (6), a program of the type (7) was not analyzed in the optimization literature. The most

relevant programming structures are semi-infinite programming [19] and generalized semi-infinite programming

[20]. However, these formulations allow only for infinite constraints while the optimization variable is finite. This

inherent intricacy of (7) remains even if the objective is relaxed by known strategies. To overcome this difficulty,

we suggest to transform (7) into one of the forms known in the literature. Specifically, we show that the joint

sparsity prior allows to convert (7) into a problem of the form (6), in which both the variable and the constraint

set are finite.

A straightforward approach to reduce (7) to a finite-dimensional problem is to choose a finite grid Λ̃ ⊂ Λ, and

then solve only for x̄(Λ̃). This yields an MMV system corresponding to the optimization problem (6). In turn, this

program can be relaxed by any of the known CS techniques. The final step is to approximate x(Λ) by interpolating

the partial solution set x̄(Λ̃). However, a discretization approach typically results in an approximation x(Λ) that

is different from the unique solution x̄(Λ). Moreover, x(Λ) typically does not satisfy (1) between the grid points,

that is for λ /∈ Λ̃. This drawback of discretization happens even if a brute-force method is used to optimally

find the solution set x̄(Λ̃) on the grid Λ̃. Furthermore, the density of the grid directly impacts the complexity

of discretization techniques. For these reasons, we avoid discretization and instead propose an exact method that

transforms the infinite structure of (7) into a single MMV system without loosing any information. A numerical

experiment illustrating the difference between our exact method and discretization is provided in Section VI-C.

B. Paradigm

In order to solve (7) exactly we split the problem into two sub-problems. One is aimed at finding the support

set S = I(x̄(Λ)). The other reconstructs x̄(Λ) from the data y(Λ) and the knowledge of S. The reason for this

separation is that once S is known the linear relation of (1) can be inverted exactly. To see this, let AS denote

the matrix containing the subset of the columns of A whose indices belong to S. Since the solution set x̄(Λ) is

K-sparse we have that |S| ≤ K. In addition, from Proposition 1, σ(A) ≥ K. Therefore AS consists of linearly

independent columns implying that

(AS)†AS = I, (8)
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where (·)† is the Moore-Penrose pseudo-inverse operation. Explicitly, (AS)† =
(

AH
S AS

)−1
AH

S where AH
S denotes

the conjugate transpose of AS . Using S the system of (1) can be written as

y(λ) = ASxS(λ), λ ∈ Λ, (9)

where the superscript xS(λ) is the vector that consists of the entries of x(λ) in the locations S. Multiplying (9)

by (AS)† from both sides gives

xS(λ) = (AS)†y(λ), λ ∈ Λ. (10)

In addition, it follows from the definition of the support set I(x(Λ)) that

xi(λ) = 0, ∀i /∈ S, λ ∈ Λ. (11)

Therefore (10)-(11) allow for exact recovery of x̄(Λ) once the finite set S is correctly recovered.

C. Method

The essential part of our method is the first sub-problem that recovers S from the measurement set y(Λ). Our key

observation is that every collection of vectors spanning the subspace span(y(Λ)) contains sufficient information

to recover S exactly, as incorporated in the following theorem:

Theorem 2: Suppose (1) has a unique K-sparse solution set x̄(Λ) with S = I(x̄(Λ)) and that the matrix Am×n

satisfies (4). Let V be a matrix of m rows such that the column span of V is equal to span(y(Λ)). Then, the

linear system

V = AU (12)

has a unique K-sparse solution Ū and I(Ū) = S.

Proof: Let r = dim(span(y(Λ))) and construct an m × r matrix Y by taking some set of r linearly

independent vectors from y(Λ). Similarly, construct the matrix X̄ of size n × r by taking the corresponding r

vectors from x̄(Λ). The proof is based on observing the linear system

Y = AX. (13)

We first prove that X̄ is the unique K-sparse solution matrix of (13) and that I(X̄) = S. Based on this result, the

matrix Ū is constructed, proving the theorem.

It is easy to see that I(X̄) ⊆ S, since the columns of X̄ are a subset of x̄(Λ). This means that X̄ is a K-sparse

solution set of (13). Moreover, X̄ is also the unique K-sparse solution of (13) according to Proposition 1. To

conclude the claim on X̄ it remains to prove that k ∈ S implies k ∈ I(X̄) as the opposite direction was already

proved. If k ∈ S, then for some λ0 ∈ Λ the kth entry of the vector x(λ0) is non-zero. Now, if x(λ0) is one of

the columns of X̄, then the claim follows trivially. Therefore, assume that x(λ0) is not a column of X̄. We next

exploit the following lemma:
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Lemma 1 ([15]): For every two matrices A,P, if |I(P)| ≤ σ(A) then rank(P) = rank(AP).

Clearly, Lemma 1 ensures that rank(X̄) = r. In addition it follows from the same lemma that dim{span(x̄(Λ))} =

r. Thus, x(λ0) must be a (non-trivial) linear combination of the columns of X̄. Since the kth entry of x(λ0) is

non-zero, it implies that at least one column of X̄ has a non-zero value in its kth entry, which means k ∈ I(X̄).

Summarizing the first step of the proof, we have that every r linearly independent columns of y(Λ) form an

MMV model (13) having a unique K-sparse solution matrix X̄, such that I(X̄) = S. As the column span of

V is equal to the column span of Y we have that rank(V) = r. Since V and Y have the same rank, and Y

also has full column rank, we get that V = YR for a unique matrix R of r linearly independent rows. This

immediately implies that Ū = X̄R is a solution matrix for (12). Moreover, Ū is K-sparse, as each of its columns

is a linear combination of the columns of X̄. Proposition 1 implies the uniqueness of Ū among the K-sparse

solution matrices of (12).

It remains to prove that I(Ū) = I(X̄). To simplify notation, we write X̄i for the ith row of X̄. Now, Ūi = X̄iR,

for every 1 ≤ i ≤ n. Thus, if X̄i is a zero row, then so is Ūi. However, for a non-zero row X̄i, the corresponding

row Ūi cannot be zero since the rows of R are linearly independent.

The advantage of Theorem 2 is that it allows to avoid the infinite structure of (7) and to concentrate on finding

the finite set S by solving the single MMV system of (12). The additional requirement of Theorem 2 is to construct

a matrix V having a column span equal to span(y(Λ)) (i.e. the columns of V are a frame for span(y(Λ))). The

following proposition suggests a procedure for creating a matrix V with this property.

Proposition 2: If the integral

Q =

∫

λ∈Λ
y(λ)yH(λ)dλ, (14)

exists, then every matrix V satisfying Q = VVH has a column span equal to span(y(Λ)).

The existence of the integral in (14) translates into a finite energy requirement. Specifically, for countable Λ the

integral exists if the sequence {yk(λi)}∞i=1 is energy bounded in the ℓ2 sense for every 1 ≤ k ≤ m. For uncountable

Λ, yk(λ) can be viewed as a function of λ which is required to be integrable and of bounded energy in the L2

sense for every 1 ≤ k ≤ m. Note that the matrix Q of (14) is positive semi-definite and thus a decomposition

Q = VVH always exists. In particular, the columns of V can be chosen as the eigenvectors of Q multiplied by

the square-root of the corresponding eigenvalues.

Proof: For finite Λ the claim follows immediately from the fact that every two matrices M,N with MMH =

NNH have the same column space. Therefore, it remains to extend this property to infinite Λ.

Let r = dim(span(y(Λ))) and define a matrix Ym×r as in the proof of Theorem 2. The columns of Y are

linearly independent and thus Y† is well defined. Define the vector set d(λ) = Y†(y(λ)), λ ∈ Λ, where each

d(λ) is a vector of length r. By construction, the integral

∫

λ∈Λ
d(λ)dH(λ)dλ = Y†Q(Y†)H = DDH (15)
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Fig. 2: The fundamental stages for the recovery of the non-zero location set S using only one finite-dimensional

problem.

exists. The last equality in (15) is due to the positive semi-definiteness of the integrand. Substituting into (14) we

have that VVH = (YD)(YD)H which implies that the column spans of V and (YD) are the same. Since the

column span of Y equals to span(y(Λ)), d(Λ) contains the columns of the identity matrix of size r× r, and thus

D is invertible. In turn, this implies that span(Y) = span(YD).

The computation of the matrix Q depends on the underlying application. In [15] we considered this approach

for the reconstruction of an analog multi-band signal from point-wise samples. This class of signals are sparsely

represented in the frequency domain as their Fourier transform is restricted to several disjoint intervals. Imposing

a blind constraint, namely that both sampling and reconstruction are carried out without knowledge of the band

locations, yields an IMV system that depends on a continuous frequency parameter. As described in [15], in this

application Q can be computed by evaluating correlations between the sampling sequences in the time domain.

The existence of the integral in (14) corresponds to the basic requirement that the point-wise sampling process

produces bounded energy sampling sequences.

Fig. 2 summarizes the reduction steps that follow from Theorem 2 and Proposition 2. The flow of Fig. 2 was

first presented and proved in our earlier work [15]. The version we provide here has several improvements over

the preliminary one of [15]. First, the flow is now divided into two independent logical stages and the purpose of

each step is highlighted. Second, each stage has a stand-alone proof as opposed to the technique used in [15] to

prove the entire scheme at once. Mathematically, this separation allows us to remove the restriction imposed in

[15] on V to have only orthogonal columns. Moreover, each block can be replaced by another set of operations

having an equivalent functionality. In particular, the computation of the matrix Q of Proposition 2 can be avoided

if other methods are employed for the construction of a frame V for span(y(Λ)).

IV. DIMENSION REDUCTION FOR FINITE Λ

A. Objective

We now address the finite case of an MMV system

Y = AX, (16)

with A an m × n rectangular matrix as before. Following the convention of Table I, Y is an m × d matrix, and

the dimensions of X are n × d. We assume that a unique K-sparse solution matrix X̄ with no more than K
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non-identical zero rows exists. The unique solution X̄ can be found by the optimization problem (6), which has

known relaxations to tractable techniques. Our goal in this section is to rely on ideas developed in the context

of the IMV model in order to reduce the dimension of the optimization variable of (6) before performing any

relaxation. Note that the MMV system (16) is arbitrary and the results developed in the sequel do not assume a

preceding stage of reduction from IMV.

Applying the same paradigm of the infinite scenario, we aim to recover the support set S = I(X̄). This set

contains the crucial information in the sense that once S is recovered the solution is obtained by (10)-(11), namely

by inverting the relevant columns of A. An immediate corollary of Theorem 2 is that if Y does not have full

column rank, then (16) can be reduced by taking an appropriate column subset of Y. However, we wish to improve

on this trivial result. Specifically, we intend to find the support set S from a single SMV optimization of the form

(5). Such a reduction method is beneficial as the dimensions of the unknown variable in (5) is n while in (6) it

is nd.

B. Method

Our approach is to randomly merge the columns of Y into a single vector y. We then show that the set S can

be extracted from the random SMV y = Ax. In order to derive this result rigorously we rely on the following

definition from probability and measure theory [21],[22]:

Definition 2: A probability distribution P is called absolutely continuous if every event of measure zero occurs

with probability zero.

A distribution is absolutely continuous if and only if it can be represented as an integral over an integrable

density function [21],[22]. For example, Gaussian and uniform distributions have an explicit density function that

is integrable and thus both are absolutely continuous. Conversely, discrete and other singular distributions are not

absolutely continuous. The following theorem exploits this property to reduce (6) into (5):

Theorem 3: Let X̄ be the unique K-sparse solution matrix of (16) with σ(A) ≥ 2K. In addition, let a be a

random vector of length d with an absolutely continuous distribution and define the random vectors y = Ya and

x̄ = X̄a. Then, for the random SMV system y = Ax we have:

1) For every realization of a, the vector x̄ is the unique K-sparse solution of the SMV.

2) I(x̄) = I(X̄) with probability one.

Proof: For every realization of a, the vector x̄ is a linear combination of the jointly K-sparse columns of

X̄, and thus x̄ is K-sparse. It is easy to see that x̄ satisfies the SMV system and that Theorem 1 implies its

uniqueness among the K-sparse vectors.

Denote S = I(X̄) and observe that the previous argument implies that I(x̄) ⊆ S for every realization of a.

Therefore, it remains to prove that the event I(x̄) = S occurs with probability one. Expressing this event in terms
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of the rows of X̄ gives

Prob {I(x̄) = S} = Prob
{

a /∈ N
(

X̄i
)

, ∀i ∈ S
}

(17)

= 1 − Prob

{

a ∈
⋃

i∈S

N
(

X̄i
)

}

,

where X̄i denotes the ith row of X̄, and N
(

X̄i
)

= {v | X̄iv = 0} is the null space of that row. Now, for every

i ∈ S, the row X̄i is not identically zero, and thus the dimension of N
(

X̄i
)

is d − 1. In other words, for every

i ∈ S, we have that N
(

X̄i
)

has a zero measure in the underlying sample space of a, which can be either R
d or

C
d. The union in (17) is over the finite set S and thus has also a measure zero. The absolutely continuity of the

distribution of a concludes the proof.

The randomness of a plays a main role in the reduction method suggested by Theorem 3. In fact, random

merging is a best choice in the sense that for every deterministic linear merging there are infinite counterexamples

in which the merging process would fail to preserve the support set S. For example, a simple summation over the

columns of Y may fail if the non-zero values in a single row of X̄ sum to zero. In contrast, Theorem 3 ensures

that for every given MMV system and with probability one, the random reduction yields an SMV with the same

non-zero location set.

The result of Theorem 3 resembles a result of [23], in which the authors suggested merging the columns of

Y using an ordinary summation. The non-zero locations were then estimated using a one step greedy algorithm

(OSGA). It was shown that if the entries of X̄ are random, drawn independently from a Gaussian distribution,

then the set S can be recovered by OSGA with probability approaching one as long as d → ∞, that is when the

number of columns in each of the matrices Y, X̄ is taken to infinity. In contrast, our method does not assume a

stochastic prior on the solution set X̄. Moreover, Theorem 3 holds with probability one for arbitrary finite and

fixed values of d.

V. THE REMBO ALGORITHM

Theorem 3 paves the way to a new class of MMV techniques based on reduction to an SMV. In this approach,

the measurement matrix Y is first transformed into a single vector y by drawing a realization of a from some

absolutely continuous distribution. Then, an SMV problem of the type (5) is solved in order to find the support

set S. Finally, the recovery of X̄ is carried out by inverting the matrix AS as in (10)-(11).

Since (5) is NP-hard it is not solved explicitly in practice. Instead, many efficient sub-optimal techniques have

been proposed in the literature that are designed to be tractable but no longer guarantee a recovery of the unique

sparsest solution. Interestingly, we have discovered that repeating the reduction process of the previous section with

different realizations of a is advantageous due to the following empirical behavior of these sub-optimal techniques.

Consider two K-sparse vectors x̄, x̃ having the same non-zero locations but with different values. Denote by S an

SMV technique which is used to recover x̄, x̃ from the measurement vectors Ax̄,Ax̃ respectively. Empirically, we
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observed that S may recover one of the vectors x̄, x̃ while failing to recover the other, even though their non-zero

locations are the same. As far as we are aware, this behavior was not studied thoroughly yet in the literature.

In fact, Monte-Carlo simulations that are typically conducted in the evaluation of CS techniques may imply a

converse conclusion. For example, Candès et. al. [2] analyzed the basis pursuit method for SMV when A is a

row subset of the discrete time Fourier matrix. A footnote in the simulation section points out that the observed

behavior seems to be independent of the exact distribution of which the non-zero entries are drawn from. This

remark was also validated by other papers that conducted similar experiments. The conjecture that Monte-Carlo

simulations are insensitive to distribution of the non-zero values appears to be true. Nevertheless, it is beneficial

for a given SMV system to apply S on both measurement vectors Ax̄,Ax̃. Once the crucial information of the

non-zero locations is recovered, the final step of inverting AS leads to the correct solution of both x̄, x̃.

The ReMBo algorithm, outlined in Algorithm 1, makes use of the reduction method and also capitalizes on the

empirical behavior discussed above. In steps 4-7, the MMV system is reduced into an SMV and solved using a

given SMV technique S. These steps produce a sub-optimal solution x̂, which is examined in step 8. If x̂ is not

sparse enough or is not well aligned with the measurements, then the reduction steps are repeated with another

draw of the random vector a. We term these additional iterations the boosting step of the algorithm. Theorem 3

ensures that each of the different SMV systems of step 6 has a sparse solution that preserves the required support

set S with probability one. The iterations improve the chances to recover S by changing the non-zero values of

the sparse solutions. Note that if the number of iterations exceed the pre-determined parameter MaxIters, then

the algorithm is terminated. The content of the flag variable indicates whether X̂ represents a valid solution. If

flag=false, then we may solve the MMV system by any other method.

In general, CS techniques can be clustered into two groups. Those of the first group search for the sparsest

feasible solution. The other group contains approximation methods that fix the sparsity to a user-defined value and

determine a solution in this set that is best aligned with the data. For example, basis pursuit [24] belongs to the

first group, while matching pursuit [25] with a fixed number of iterations belongs to the second group. The ReMBo

algorithm can be tuned to prefer either feasibility or sparsity according to user preference by selecting appropriate

values for the parameters K, ǫ. However, it is recommended to avoid an approximation technique of the second

group when constraining only K to a desired value. The reason is that such a method makes the condition of step

8 always true, and thus no boosting will occur.

We now compare the behavior of ReMBo with standard MMV techniques in terms of computational complexity

and recovery rate. Clearly, the complexity of SMV is lower due to the reduced number of unknowns. The reduction

method itself is no more than one matrix multiplication which in practice is a negligible portion of the overall

run time in typical CS techniques. Performance of different algorithms can also be evaluated by measuring the

empirical recovery rate in a set of random tests [1],[2],[13],[14]. As we detail in the following section, for some

parameters choices a single reduction iteration achieves an overall recovery rate that is higher than applying a

direct MMV technique. For other parameter selections, a single iteration is not sufficient and boosting is required
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Algorithm 1 ReMBo (Reduce MMV and Boost)

Input: Y,A
Control Parameters: K, ǫ, MaxIters, S, P

Output: X̂, Ŝ, flag

1: Set iter= 1
2: Set flag=false

3: while (iter ≤ MaxIters) and (flag is false) do

4: draw a random vector a of length d according to P .

5: y = Ya

6: Solve y = Ax using SMV technique S. Denote the solution x̂.

7: Ŝ = I(x̂)
8: if (|Ŝ| ≤ K) and (‖y − Ax̂‖2 ≤ ǫ) then

9: flag=true

10: else

11: flag=flase

12: end if

13: Construct X̂ using Ŝ and (10)-(11)

14: iter=iter+1
15: end while

16: return X̂, Ŝ, flag

to increase the recovery rate of a ReMBo technique beyond that of a standard MMV. The results indicate that

ReMBo based techniques are comparably fast even when boosting is employed.

VI. NUMERICAL EXPERIMENTS

In this section we begin by evaluating the reduction and boosting approach for MMV systems. The behavior

of the ReMBo algorithm is demonstrated when the produced SMV is solved using a sub-optimal method. Two

representative MMV techniques are derived from Algorithm 1 and compared with other popular MMV techniques.

We then present an experiment that demonstrates the benefits of the IMV reduction flow over a discretization

technique.

A. Evaluating ReMBo

We choose m = 20, n = 30, d = 5 for the dimensions of (16). The following steps are repeated 500 times for

each MMV technique:

1) A real-valued matrix A of size 20 × 30 is constructed by drawing each of its entries independently from a

Gaussian distribution with zero mean and variance one.

2) For each value of 1 ≤ K ≤ 20 we construct a K-sparse real-valued solution matrix X̄K of size 30× 5. The

non-zero values of X̄K are also drawn from a Gaussian distribution in the same way described before.

3) The MMV technique that is being tested is executed in order to recover each X̄K from the measurement

data AX̄K . For ReMBo techniques, P is an i.i.d. uniform distribution in [−1, 1]d.
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TABLE II: Sub-Optimal Techniques

Model Tag Formal Description Type

SMV

BP Basis Pursuit, (5) with objective ‖x‖1, see [1],[2] Convex relaxation

OMP Orthogonal Matching Pursuit, see [13] Greedy

FOCUSS FOcal Underdetermined System Solver, see [6] Greedy

MMV

M-BP-ℓ1 [14] (6) with objective ‖Rℓ1(X)‖1 Convex relaxation

M-BP-ℓ∞ [5] (6) with objective ‖Rℓ∞(X)‖1 Convex relaxation

M-OMP MMV version of OMP, see [13] Greedy

M-FOCUSS MMV version of FOCUSS, see [13] Greedy

ReMBo-BP ReMBo with S =BP Convex relaxation

ReMBo-OMP ReMBo with S =OMP Greedy

4) A correct solution is announced if X̄K is recovered exactly up to machine precision.

The empirical recovery rate for each value of K is calculated as the percentage of correct solutions. We also

collected run time data in order to qualitatively compare between the time complexity of the tested techniques.

Rigorous complexity analysis and comparison are beyond the scope of this paper. Note that the selection of

real-valued matrices is not mandatory and the results are also valid for complex values. However, we stick to

the real-valued setting as it reproduces the setup of [13],[14]. In addition, the same empirical recovery rate is

noticed when the non-zero entries of X̄K are drawn from a non-Gaussian distribution (e.g. uniform distribution).

This behavior strengthens the conjecture that Monte-Carlo analysis is insensitive to the specific distribution of the

non-zero values.

To simplify the presentation of the results, Table II lists the techniques that are used throughout the experiments.

Short labels are used to denote each of the techniques. The notation Rℓp
(X) stands for a vector of length n such

that its ith entry is equal to the ℓp norm of the ith row of X. In the sequel we denote the MaxIters parameter

of ReMBo based techniques in brackets, for example ReMBo-BP[1]. A default value of MaxIters = rank(Y) is

used if the brackets are omitted. This selection represents an intuitive choice, since after rank(Y) iterations, step

5 of Algorithm 1 produces a vector y that is linearly dependent in the realizations of the previous iterations. This

intuition is discussed later in the results.

Note that there is a difference in deciding on a correct solution for SMV and MMV. In the latter, a solution is

considered correct only when all the vectors in the matrix are recovered successfully, while in SMV a recovery

of a single vector is required. Nevertheless, as both problems amount to recovering the finite support set, we plot

the recovery rate curves of SMV and MMV techniques on the same scale. An alternative approach would be to

adjust the SMV recovery curve so that it represents the overall success rate when the SMV technique is applied to

each of the columns separately. Adjusting the results according to this approach will only intensify the improved

recovery rate of ReMBo based techniques.
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Fig. 3: Comparison of MMV techniques based on convex relaxations. The ReMBo techniques are in solid lines.

As expected, the recovery curves of ReMBo-BP[1] and BP coincide.

B. Results

In Fig. 3 we compare between MMV techniques based on convex relaxation of (6). For reference we also draw

the recovery rate of BP on a single measurement column. It is seen that both M-BP(ℓ1) and M-BP(ℓ∞) suffer

from a decreased recovery rate with respect to BP. In contrast, the recovery rate of ReMBo-BP improves on BP

due to the boosting effect. In addition, as revealed from Fig. 7 the average run time of ReMBo-BP is also lower

than the run time of either M-BP(ℓ1) and M-BP(ℓ∞). Clearly, this simulation shows that besides the theoretical

interest in the special convex relaxation of M-BP-ℓ1 and M-BP-ℓ∞, in this example these method do not offer

a practical benefit. Furthermore, the M-BP techniques require the selection of a row norm besides the standard

selection of ℓ1 norm for the final column vector. The reduction method allows to avoid this ambiguous selection

by first transforming to an SMV problem.

Matching pursuit (including its variations) and FOCUSS are both greedy methods that construct the set S

iteratively. These techniques are typically faster than basis pursuit based methods as seen in Fig. 7. In addition,

extending the SMV version of these techniques into MMV is immediate. As opposed to convex relaxation methods,

these approaches demonstrate an improved recovery rate when a joint sparsity prior is introduced. This behavior

is depicted in Fig. 4. A comparison of these methods with ReMBo techniques is shown in Fig. 5. It is seen that

ReMBo-OMP outperforms M-OMP and M-FOCUSS over the range 1 ≤ K ≤ 13. Specifically, in the intermediate

range 10 ≤ K ≤ 13 it reaches a recovery rate that is approximately 10% higher than the maximal recovery rate

of the non-ReMBo techniques. In addition, the run time of the ReMBo-OMP is not far from the direct greedy

approaches as seen from Fig. 7.

In order to emphasize the impact of iterations, Fig. 6 depicts the recovery rate of ReMBo-BP and ReMBo-OMP

for different values of MaxIters. The recovery rate at K = 10 is of special interest as according to Theorem 3

σ(A) ≥ 2K is required1 to ensure that the random instances of SMV preserve the set S. For example, a single

1According to [1],[2], a matrix with random entries has a full column rank and a full Kruskal rank with an overwhelming probability. In

our setup the maximal value of σ(A) is m = 20. Empirically, it was also noticed that rank(Y) = 5 in all generated measurements.
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Fig. 4: The recovery rate of sequential selection techniques is demonstrated for MMV and SMV with the same

number of non-zero entries per solution vector. The stopping criteria for OMP is based on the residual. The FOCUSS

algorithm is designed to produce a K-sparse approximation of the solution (for this reason a ReMBo-FOCUSS

method is not tested as it cannot exploit the boosting strategy).
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Fig. 5: A comparison between popular MMV techniques and ReMBo derived methods.

iteration of ReMBo-BP achieves a recovery rate of 54%, while two and five iterations improve the recovery rate

to 74% and 91% respectively. A higher number of iterations results in a minor improvement conforming with

our intuitive default selection of MaxIters = rank(Y). However, the condition of K ≤ 10 is only sufficient and

empirical recovery is allowed to some extent even for K > 10. This behavior is common to all the techniques

tested here as shown in Figs. 3-6. In this range of K > 10, repeating the reduction process for more than rank(Y)

can be beneficial. For example, ReMBo-BP[20] yields a recovery rate of 56% for K = 14 instead of 25% when

allowing only MaxIters=5.

C. IMV Reduction vs. Discretization

We now extend the previous setup in order to simulate an IMV model by letting d = 10000. To discretize the

IMV system, g evenly spaced columns of Y are chosen resulting in an MMV system whose sparsest solution is
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Fig. 6: The impact of boosting iterations for various selections of MaxIters.
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searched, where 1 ≤ g ≤ 200. Since the non-zero values are drawn randomly, interpolation of the missing columns

is no useful in this setting. Instead, we consider an approximation of the non-zero location set S by taking the

support of the solution matrix on the chosen grid. Finally, the entire solution set is recovered by (10)-(11). In

order to capitalize on the difference between the IMV reduction flow of Fig. 1 and this discretization technique,

we consider K-sparse solution matrices X̄K such that each non-zero row of X̄K has only a few non-zero entries

(e.g. up to 150 non-zero values). For a fair comparison, the M-OMP technique is used for the recovery of X̄K in

both methods.

The empirical recovery rate for several values of g is shown in Fig. 8. It is evident that a discretization technique

of this type requires a grid of g = 200 to approach a reasonable recovery rate, which is still below the recovery

rate of the IMV flow. In order to explain the superior performance of the IMV flow we plot a typical structure of

a solution set in Fig. 9. It is clear that discretization may fail as it does not capture the entire information of the

solution set. In contrast, our approach preserves the necessary information required for perfect reconstruction of
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Fig. 8: A comparison of (a) the recovery rate and (b) the average run time between the IMV flow and discretization.

Fig. 9: A typical structure of the solution set and a grid selection. The grid cannot be synchronized with the

non-zero locations. In this example, discretization technique would fail to reconstruct x2(λ) whereas the IMV flow

guarantees an exact recovery of the support set S.

the solution set, namely the non-zero location set. Furthermore, comparing the average run time of both approaches

reveals that IMV is even faster than discretization having a similar recovery rate. Note that the density of the grid

influences the run time of discretization methods. In the example above of g = 200, discretization yields an MMV

system with 200 columns. The IMV flow does not have this drawback, as it follows from Lemma 1 that the matrix

V can be chosen such that it consists of no more than K ≤ 20 columns.

VII. CONCLUSIONS

The essence of the reduction theorems developed in this paper is that the recovery of an arbitrary number of

jointly sparse vectors amounts to solving a single sparse vector of an SMV. This result applies to the finite case of

MMV and to the broader model of IMV which we introduced here. The key observation used in our developments

is that the non-zero location set is the crucial information for the exact recovery of the entire solution set. We

prove that this set can be recovered from a low dimensional problem rather than directly from the given high
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dimensional system.

The explicit recovery problem of sparse vectors is a difficult combinatorial optimization program. Various

methods to approximate the sparse solution of a given program have been previously proposed. However, to the

best of our knowledge, a direct simplification of the explicit combinatorial formulation, in the way described here,

was not studied so far. Furthermore, in a typical CS setting the sensing process involves randomness while the

reconstruction is deterministic. The reduction method for MMV shows that randomness can also be beneficial in

the reconstruction stage. In addition, popular recovery techniques have a fixed performance in terms of run time

and recovery rate. In contrast, the ReMBo algorithm is tunable as it allows to trade the run time by the overall

recovery rate. The simulations conducted on several ReMBo methods demonstrate this ability and affirm that these

methods outperform other known techniques.
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