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Abstract

We present Brahms, an algorithm for sampling random nodes ina large dynamic system
prone to Byzantine failures. Brahms stores small membership views at each node, and yet
overcomes Byzantine failures of a linear portion of the system. Brahms is composed of two
components. The first one is a Byzantine-resistant gossip-based membership protocol. The
second one uses a novel memory-efficient approach for uniform sampling from a possibly bi-
ased stream of ids that traverse the node. We evaluate Brahmsusing rigorous analysis, backed
by extensive simulations, which show that our theoretical model captures the protocol’s essen-
tials. We show that, with high probability, an attacker cannot create a partition between correct
nodes. We further prove that each node’s sample converges toa uniform one over time. To our
knowledge, no such properties were proven for gossip-basedmembership in the past.

Keywords: random sampling, gossip, membership, Byzantine failures.

1Department of Electrical Engineering, The Technion – Israel Institute of Technology.
Email: {ebortnik@techunix, gmax@techunix, idish@ee, shralex@techunix}.technion.ac.il.

2Department of Computer Science, The Technion – Israel Institute of Technology.
Email: gabik@cs.technion.ac.il.

lesley
Text Box
CCIT Report #688                               February 2008



1 Introduction

We consider the problem of sampling a random node (or peer) ina large dynamic system subject to Byzan-
tine (arbitrary) failures. Random node sampling is important for many scalable dynamic applications, in-
cluding neighbor selection in constructing and maintaining overlay networks [13, 19, 22, 24], selection of
communication partners in gossip-based protocols [5, 8, 11], data sampling, and choosing locations for data
caching, e.g., in unstructured peer-to-peer networks [21].

Typically, in such applications, each node maintains a set of random node ids that is asymptotically
smaller than the system size. This set is called alocal view. In a dynamic system, where the set of active
nodes changes over time (this is calledchurn), the local views must continuously evolve to reflect these
changes, adding new active nodes and removing ones that are no longer active. By using small local views,
the maintenance overhead is kept small. In the absence of Byzantine failures, small local views can be
effectively maintained with gossip-based membership protocols [1, 11, 12, 16, 28], which were proven to
have a low probability for partitions, including under churn [1].

Nevertheless, Byzantine failures present a major challenge for small local views. Previous Byzantine-
tolerant gossip protocols either considered static settings where the full membership is known to all [9, 20,
26], or maintained (almost) full local views [3, 17], where faulty nodes cannot push correct ones out of the
view. In contrast, small local views are susceptible to poisoning with entries (node ids) originating from
faulty nodes; this is because the system is dynamic, and therefore nodes inherently must accept new ids
and store them in place of old ones in their local views. It is even more challenging to provideindependent
uniform samplesin such a setting. Even without Byzantine failures, gossip-based membership only ensures
that eventually theaveragerepresentation of nodes in local views is uniform [1, 12, 16], and not thatevery
nodeobtains an independent uniform random sample. Faulty nodesmay attempt to skew the system-wide
distribution, as well as the individual local view of a givennode.

In this paper, we address these challenges. We present Brahms (Section 3), a gossip-based membership
service that stores a sub-linear number of ids (e.g.,Θ( 3

√
N) in a system of sizeN ) at each node, and

provideseach nodewith membership samples that converge to uniform ones over time. The main ideas
behind Brahms are (1) to use gossip-based membership with some extra defenses to make it viable (in the
sense that local views are not solely composed of faulty ids)in a Byzantine setting; (2) to recognize that
such a solution is bound to produce biased views due to attacks (we precisely quantify the extent of this bias
mathematically); and (3) to correct this bias at each node.

To achieve the latter, we introduceSampler, a component that obtains uniform samples out of a data
stream in which elements recur with an unknown bias, using min-wise independent permutations [6]. We
prove (Section 4) that Sampler obtains independent uniform samples from thebiased stream of gossiped
node ids. By using suchhistory samplesof the gossiped ids to update part of the local view, Brahms
achievesself-healingfrom partitions that may occur with gossip-based membership. In particular, nodes
that have been active for sufficiently long (we quantify how long) cannot be isolated from the rest of the
system. The use of history samples is an example ofamplification, whereby even a small healthy sample of
the past can boost the resilience of a constantly evolving view. We note that only a small portion of the view
is updated with history samples, e.g.,10%. Therefore, the protocol can still deal effectively with churn.

One of the important contributions of this paper is our mathematical analysis (Section 5), which provides
insights to the extent of damage that Byzantine nodes can cause and the effectiveness of various mechanisms
for dealing with them. Extensive simulations of Brahms withup to4000 nodes validate the few simplifying
assumptions made in the analysis. We consider two possible goals for an attacker. First, we study attacks
that attempt to maximize the representation of faulty ids inlocal views at any given time. We show that as
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long as faulty nodes comprise less than1
3 of the system, even without using history samples, the portion of

faulty ids in local views is bounded by a constant smaller than one. (Recall that the over-representation of
faulty ids is later fixed by Sampler; the upper bound on faultyids in local views ensures Sampler has good
ids to work with). If the adversary gains control of additional nodes after uniform samples have already
been obtained, then Brahms can resistanyratio of faulty nodes.

Second, we consider an attacker that aims to partition the network. The easiest way to do so is by
attempting to isolate one node from the rest. Clearly, once anode has obtained uniform samples of correct
nodes, it can no longer be isolated. We therefore study an attack launched on a new node that joins the
system when its samples are still empty, and when it does not yet appear in views or samples of other nodes.
We further assume that such atargetedattack on the new node occurs in tandem with an attack on the entire
system, as described above. The key to proving that Brahms prevents, w.h.p., an attacked node’s isolation
is in comparing how long it takes for two competing processesto complete: on the one hand, we provide
a lower bound on the expected time to poison the entire view ofthe attacked node, assuming there are no
history samples at all. On the other hand, we provide an uppper bound on how fast history samples are
expected to converge, under the same attack. Whenever the former exceeds the latter, the attacked node
is expected to become immune to isolation before it is isolated. We prove that with appropriate parameter
settings, this is indeed the case.

Finally, we simulate the complete system (Section 6), and measure Brahms’s resilience to the combi-
nation of both attacks. Our results show that, indeed, Brahms prevents the isolation of attacked nodes, its
views never partition, and the membership samples convergeto perfectly random ones over time.

Related Work. We are not familiar with prior work dealing with random node sampling in a Byzantine
setting. Previous Byzantine-tolerant membership services maintained full local views [17, 3] rather than
partial samples. Previous work on gossip-based partial views [1, 11, 12, 16, 28], and on near-uniform node
sampling using random walks [13, 19, 23, 4] or DHT overlays [18] was limited to benign settings.

One application of Brahms is Byzantine-tolerant overlay construction. Brahms’s sampling allows each
node to connect with some random correct nodes, thus constructing an overlay in which the sub-graph
of correct nodes is connected. Several recent works, e.g., [27, 7, 2], have focused explicitly on securing
overlays, mostly structured ones, attempting to ensure that all correct nodes may communicate with each
other using the overlay, i.e., to prevent theeclipse attack[27], where routing tables of correct nodes are
gradually poisoned with links to adversarial nodes. These works have a different focus than ours, since their
goal is to construct (structured) overlay networks, whereas we present a general sampling technique, one
application of which is building Byzantine-resilient unstructured overlays.

2 Model and Required Properties

2.1 System Model

We consider a dynamic set of nodes, each of which can be eitheractiveor passiveat any given time. Each
node is identified by a unique id, chosen when the node becomesactive for the first time. The set of active
nodes at timet is denotedA(t). Active nodes can communicate through a fully connected network with
reliable links. For simplicity of the analysis, we assume a synchronous model with a discrete global clock,
zero processing times, and message latencies of a single time unit.

Some of the active nodes arecorrect, and the rest arefaulty. Faulty modes can exhibit arbitrary behavior
(Byzantine faults). The subset of correct nodes inA(t) is denotedC(t). Nodes can determine the source
of every message and cannot intercept messages addressed toother nodes (the standard ”unauthenticated“
Byzantine model).In static systems (without churn), it is common to require that faulty nodes comprise less
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than some fractionf < 1 of the nodes. In a dynamic setting, we require that the numberof faulty nodes at
all times is limited by a constant fractionf of the minimal number of active nodes, i.e.,|⋃t(A(t) \ C(t))| ≤
f ·mint|A(t)|.While this assumption rules out massive Sybil attacks [10] (by bounding the number of faulty
node ids), it is weaker than assuming a certification authority [17], e.g., nodes can use historic information
for choosing new active ids.

We assume a mechanism that makes it costly for nodes to send designated messages, which we call
limited messages, thereby limiting their sending rate. This mechanism can be implemented in different
ways, e.g., computational challenges like Merkle’s puzzles [25], virtual currency, etc. We assume that the
system-wide fraction of limited messages that all faulty nodes can jointly send in a single time unit is at most
p, for somep < 1. We also assume that the faulty nodes choose the destinations of all limited messages in
advance (i.e., they do not adapt their transmissions to information learned during the run).

2.2 Membership Sampling Specification

At all times t, Brahms provides two tuples at every active correct nodeu: a neighbor listNu(t) used for
communication, and asample listSu(t). These lists may contain duplicates, and some entries inSu(t) may
be non-defined (denoted⊥). We denote thei’th element in the neighbor list and the sample list at timet by
N i

u(t) andSi
u(t), respectively. Every correct node has a limited local storage, asymptotically smaller than

the maximal size of the active node set (i.e., bothNu(t) andSu(t) are asymptotically smaller thanA(t)).
First, we require the overlay induced byN to remain connected w.h.p.Formally, we define a dynamic

directedoverlay graph, which captures the knowledge of correct nodes about each other at each timet:

N (t) , {C(t),
⋃

u∈C(t)

{(u, v)|v ∈ Nu(t) ∩ C(t)}}.

Requirement 1 With high probability,N (t) remains weakly connected at allt.

Next, we requireS to converge to a uniform sample of the connected overlay. However, when the set
of active nodes is constantly changing, the notion of a uniform distribution over it is meaningless. Hence,
like previous specifications [1, 12, 16], we consider the system’s properties after a pointT0 when the churn
of correct nodes ceases (i.e.,C(t) = C(T0) for all t ≥ T0). We are interested ineventual independent
uniformsampling fromC(T0). Note that we cannot require the same from the set of faulty nodes, since their
behavior is arbitrary. However, we require that (1) the probability of a sample being faulty does not exceed
the maximal fraction of faulty ids inA(t) afterT0, and (2) the probability of a sample being each specific
correct id is eventually between1

|C(t)| and 1
|A(t)| . Formally,

Requirement 2 If N (t) is weakly connected for allt ≥ T1 ≥ T0, then for allu, v ∈ C(T0), all samplesi,
and all ε > 0, there existsTε ≥ T1 such that for allt ≥ Tε

1

maxT≥T0 |A(T )| − ε ≤ Pr[Si
u(t) = v] ≤ 1

|C(T0)|
+ ε.

In other words,
1 − f

|C(T0)|
− ε ≤ Pr[Si

u(t) = v] ≤ 1

|C(T0)|
+ ε.
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1: function Sampler.init()
2: h← randomPRF(); q ← ⊥

3: function Sampler.next(elem)
4: if q = ⊥ ∨ h(elem) < h(q) then
5: q ← elem

6: function Sampler.sample()
7: return q

Sampler Sampler Sampler Sampler

Id stream

sample()

next()

Validator

init()

Validator Validator Validator

Figure 1: Uniform sampling from an id stream in Brahms. (a) Sampler’s pseudo-code. (b) Sampling and
validation of ℓ2 ids.

3 Brahms

Brahms has two components. The localsamplingcomponent maintains asample listS – a tuple of uniform
samples from the set of ids that traverse the node (Section 3.1). The gossipcomponent is a distributed
protocol that spreads locally known ids across the network (Section 3.2), and maintains a dynamicviewV.
Each node has some initialV (e.g., received from some bootstrap server or peer node). The concatenation
of V andS (denotedV ◦ S) is the node’sneighbor listN .

3.1 Sampling

Sampler is a building block for uniform sampling of unique elements from a data stream. The input stream
may be biased, that is, some values may appear in it more than others. Sampler accepts one element at a
time as input, produces one output, and stores a single element at any time. The output is a uniform random
choice of one of the unique inputs witnessed thus far.

Sampler usesmin-wise independentpermutations [6]. A family of permutationsH over a range[1 . . . |U |]
is min-wise independent if for any setX ⊂ [1 . . . |U |] and anyx ∈ X, if h is chosen at random fromH,
thenPr(min{h(X)} = h(x)) = 1

|X| . That is, all the elements of any fixed setX have an equal chance to
have the minimum image underh. Pseudo-random (hash) functions (e.g., [14]) are considered an excellent
practical approximation of min-wise independent permutations, provided that|U | is large, e.g.,2160.

Sampler (Figure 1(a)) selects a random min-wise independent functionh upon initialization, and applies
it to all input values (next() function). The input with the smallest image value encountered thus far
becomes the output returned by thesample() function. The property of uniform sampling from the set of
unique observed ids follows directly from the definition of amin-wise independent permutation family.

Brahms maintains a tuple ofℓ2 sampled elements in a vector ofℓ2 Sampler blocks (Figure 1(b)), which
select hashes independently. The same id stream is input to all Samplers. Sampled ids are periodically
probed (e.g., using pings), and a Sampler that holds an inactive node is invalidated (re-initialized).

3.2 Gossip

Brahms’s view is maintained by a gossip protocol (Figure 2). By slight abuse of notation, we denote
both the vector of samplers and their outputs (the sample list) by S. Brahms executes in (unsynchronized)
rounds. It uses two means for propagation: (1)push– sending the node’s id to some other node, and (2)pull
– retrieving the view from another node. These operations serve two different purposes: pushes are required
to reinforce knowledge about nodes that are under-represented in other nodes’ views (e.g., newborn nodes),
whereas pulls are needed to spread existing knowledge within the network [1]. A combination of pulls and
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1: V : tuple[ℓ1] of Id
2: S : tuple[ℓ2] of Sampler
3: N , V ◦ S

4: Initialization (V0):
5: V ← V0

6: for all 1 ≤ i ≤ ℓ2 do
7: S [i].init()
8: updateSample(V0)

9: {Stale sample invalidation}
10: periodically do
11: for all 1 ≤ i ≤ ℓ2 do
12: if probe(S [i].sample()) fails then
13: S [i].init()

14: {Auxiliary functions}
15: function updateSample(V)
16: for all id ∈ V, 1 ≤ i ≤ ℓ2 do
17: S [i].next(id)

18: function rand(V, n)
19: return n random choices fromV

20: {Gossip}
21: while true do
22: Vpush ← Vpull ← ∅
23: for all 1 ≤ i ≤ αℓ1 do
24: {Limited push}
25: send lim 〈“push request“〉 to rand(V, 1)
26: for all 1 ≤ i ≤ βℓ1 do
27: send 〈“pull request“〉 to rand(V, 1)

28: wait(1)

29: for all received 〈“push request“〉 from id do
30: Vpush ← Vpush ◦ {id}
31: for all received 〈“pull request“〉 from id do
32: send 〈“pull reply“,V〉 to id

33: for all received 〈“pull reply“,V ′〉 from id do
34: if I sent the request, and this is the first replythen
35: Vpull ← Vpull ◦ V

′

36: if (|Vpush| ≤ αℓ1 ∧ Vpush 6= ∅ ∧ Vpull 6= ∅) then
37: V ← rand(Vpush, αℓ1) ◦ rand(Vpull, βℓ1) ◦ rand(S , γℓ1)
38: updateSample(Vpush ◦ Vpull)

Figure 2:The pseudo-code of Brahms.

αl1 βl1 γl1 l2

Pushed ids

Pulled ids

History samples

View Sample
Figure 3:View re-computation in Brahms.

pushes is required because the representation of ids propagated solely by pulls decays over time, whereas
the representation of push-propagated ids increases.

Brahms uses parametersα > 0, β > 0 andγ > 0 that satisfyα + β + γ = 1. In a single round, a
correct node issuesαℓ1 push requests andβℓ1 pull requests to destinations randomly selected from its view
(possibly with repetitions). At the end of each round,V andS are updated with fresh ids. While all received
ids are streamed toS (Figure 1, Line 38), re-computingV requires extra care, to protect against poisoning
of the views with faulty ids. Brahms offers a set of techniques sto mitigate this problem.

Limited pushes. Since pushes arrive unsolicited, an adversary with an unlimited capacity could swamp
the system with push requests. Then, correct ids would be propagated mainly through pulls, and their
representation would decay exponentially [1]. Brahms employs limited push messages, hence the fraction
of faulty pushes does not exceedp.

Attack detection and blocking. While using limited pushes prevents a simultaneous attack on all correct
nodes, it provides no solace against an adversary that floodsa specific node. Brahms protects against this
targeted attackby blocking the update ofV. Namely, if more than the expectedαℓ1 pushes are received, it
does not updateV. Although this policy slows down progress, its expected impact in the absence of attacks
is bounded (nodes recomputeV in most rounds). Thanks to limited pushes, some nodes make progress even
under an attack (Line 36).

Controlling the contribution of pushes vs pulls. As most correct nodes do not suffer from targeted attacks
(due to limited pushes), their views are threatened by pullsfrom neighbors more than by adversarial pushes.
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This is because whereas all pushes from correct nodes are correct, a pull from a random correct node may
contribute some faulty ids. Hence, the contribution of pushes and pulls toV must be balanced: pushes must
be constrained to protect the targeted nodes, while pulls must be constrained to protect the rest. Brahms
updatesV with randomly chosenαℓ1 pushed ids andβℓ1 pulled ids (Line 37).

History samples. The attack detection and blocking technique can slowdown a targeted attack, but not
prevent it completely. Note that if the adversary succeeds to increase its representation in a victim’s view
through targeted pushes, it subsequently causes this victim to pull more data from faulty nodes. As the
attacked node’s view deteriorates, it sends fewer pushes tocorrect nodes, causing its system-wide represen-
tation to decrease. It then receives fewer correct pushes, opening the door for more faulty pushes1. Brahms
overcomes such attacks using a self-healing mechanism, whereby a portion (γ) of V reflects thehistory, i.e.,
previously observed ids (Line 37). A direct use of history does not help since the latter may also be biased.
Therefore, we use a feedback fromS to obtain unbiased history samples. Once some correct id becomes
the attacked node’s permanent sample (or the node’s id becomes a permanent sample of some other correct
node), the threat of isolation is eliminated.Figure 3illustrates the entire view re-computation procedure.

Brahms’s parameters entail a tradeoff between performancein a benign setting and resilience against
Byzantine attacks. For example,γ must not be too large since the algorithm needs to deal with churn; on
the other hand, it must not be too small to make the feedback effective. We show (Section 6) thatγ = 0.1 is
enough for protectingV from partitions. The choice ofℓ1 andℓ2 is crucial for guaranteeing that a targeted
attack can be contained until the attacked node’s sample stabilizes. For example,ℓ1, ℓ2 = Θ( 3

√

|C(T0)|)
suffice to protect even nodes that are attacked immediately upon joining the system (Section 5.2).

4 Analysis - Sampling

In this section we analyze the properties ofSu of a correct nodeu. Recall that each SamplerR employs a
min-wise independent permutationR.h, chosen independently at random. LetR(t) be the output ofR at
time t. We define theperfectid corresponding toR, VR ∈ A(T0), to be the id with the minimal value of
R.h in A(T0) (we neglect collisions for the sake of the definition). Note thatVR can be either a correct or
a faulty id. InSection 4.1we show that the subset of correct ids inSu eventually converges to a uniform
random sample fromC(T0). In Section 4.2we analyze how fast a node obtains at least one correct perfect
sample, as needed for self-healing.Section 4.3discusses scalability, namely, how to choose view sizes that
ensure a constant convergence time, independent of system size.

4.1 Eventual Convergence to Uniform Sample

Consider SamplerR. Given thatVR is correct,R samples correct ids uniformly at random. IfVR is faulty,
it may refrain from answering pings and become invalidated instead of remaining in the sample. However,
since faulty nodes do not adapt to the correct nodes’ random choices, we assume that such an invalidation is
not timed in order to capture any particular correct id intoR. We therefore assume that each correct id has
an equal probability for taking the place of an invalidated faulty node. The following theorem shows thatSu

satisfies Requirement 2 of the membership sampling specification (seeSection 2.2).

1This avalanche process can be started, e.g., by opportunistically sending the target a slightly higher number of pushesthan
expected. Since correct pushes are random, a round in which sufficiently few correct pushes arrive, such that Brahms doesnot
detect an attack, happens soon w.h.p.
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Theorem 4.1 If N (t) remains weakly connected for eacht ≥ T1, for someT1 ≥ T0, then, for allv ∈ C(T0),
andε > 0, there existsTε ≥ T1 such that for allt ≥ Tε

1 − f

|C(T0)|
− ε ≤ Pr(R(t) = v) ≤ 1

|C(T0)|
+ ε.

Proof idea (seeAppendix A.1). The key to the theorem is to show that wheneverN (t) remains weakly
connected, the id of each correct node eventually reaches every other correct node w.h.p. This is because
the id has a non-zero probability to traverse a path to every correct node in the system. Thus, each Sampler
will eventually settle on its perfect id, provided that its perfect id is correct. Therefore,Pr(R(t) = VR|VR ∈
C(T0)) →t→∞ 1. Since the probability forVR to be faulty is at mostf , Pr(R(t) = VR) approaches the
range[1− f, 1]. The theorem follows since∀v ∈ C(T0),Pr(R(t) = v|VR ∈ C(T0)) = 1

|C(T0)| , and since we

assume that whenVR is faulty,0 ≤ Pr(R(t) = v|VR /∈ C(T0)) ≤ 1
|C(T0)| .

The next lemma discusses the convergence rate of samples.

Lemma 4.2 If no invalidations happen, for each correct nodeu, the expected fraction of Samplers that
output their perfect id grows linearly with the fraction of unique ids fromA(T0) observed byu.

Proof : LetD(t) ⊆ A(T0) be the set of ids observed byu until time t. Then, for each samplerR, Pr(VR ∈
D(t)) = |D(t)|

|A(T0)| . Since for eachR such thatVR ∈ D(t), R(t′) = VR for t′ ≥ t, the lemma follows. �

4.2 Convergence to First Perfect Sample

Here we analyze how many ids have to be observed by a correct node,u, in order to guarantee, w.h.p., that
its Su containsat least oneperfect id of an active correct node. This provides an upper bound on the time it
takesSu ensure self-healing and preventu’s isolation. We assume thatu joins the system at timeT0, with
an empty sample. LetΛ(t) be the number of correct ids observed byu from timeT0 to t. Our analysis
depends on the number of unique ids observed byu, rather than directly onΛ. Obviously, one can expect
the observed stream to include many repetitions, as it is unrealistic to expect our gossip protocol to produce
independent uniform random samples (cf. [16]). Indeed, achieving this property is the goal of Sampler. In
order to capture the bias inΛ, we define astream deficiency factor, 0 ≤ ρ ≤ 1, so that a stream of length
Λ(t) produced by our gossip mechanism is roughly equivalent, forthe purposes of Sampler, to a stream of
lengthρΛ(t) in which correct ids are independent and distributed uniformly at random. This is akin to the
clustering coefficient of gossip-based overlays [16]. We empirically measuredρ to be about0.4 with our
gossip protocol (seeSection 5.2).

We define theperfect sample probabilityPSPu(t) as the probability thatSu(t) contains at least one
correct perfect id. The convergence rate ofPSP is captured by the following:

Lemma 4.3 Letu be a random correct node. Then, fort > T0, PSPu(t) ≥ 1 − ((1 − f)e
−

ρΛ(t)
|C(T0)| + f)ℓ2 .

Proof idea (seeAppendix A.2). A Sampler outputs a correct perfect id if (1) its perfect id iscorrect, and
(2) this id is observed by the Sampler in the stream.PSP is the probability that at least one ofℓ2 Samplers
outputs a correct perfect id.

Figure 4.2illustrates the dependence ofPSP on the stream sizeΛ(t) and onℓ2. When the sample size
is 40 = 4 3

√

|A(T0)|, and the portion of unique ids in the stream isρ = 0.4, a perfect sample is obtained,
w.h.p., after300 ids traverse the node.
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Figure 4:Growth of the probability to observe at least one correct perfect sample (Perfect Sample Probability
- PSP) with the stream size, for1000 nodes,f = 0.2, and ρ = 0.4.

4.3 Scalability

From Lemma 4.3we see thatPSP depends onΛ andℓ2. To get a higherPSP , we can increase either
one. While increasingΛ is achieved by increasingℓ1, and consequently the network traffic, increasingℓ2
has only a memory cost. We now study the asymptotic behavior of PSPu(t) as the number of the nodes,
N , increases. When a node hasℓ2 Samplers,Ω(ℓ2) of them have correctVR w.h.p. Therefore, w.h.p.,

PSPu(t) ≥ Ω(1 − (e−
ρΛ(t)

N )ℓ2) = Ω(1 − e−
ρΛ(t)ℓ2

N ). For a constantt, Λ(t) = Ω(ℓ21) since there areΩ(ℓ1)

pulls, obtainingΩ(ℓ1) ids each. Thus,PSPu(t) ≥ Ω(1 − e−
ℓ21·ℓ2

N ). For scalability, it is important that for a
given t, PSPu(t) will be bounded by a constant independent of the system size.This condition is satisfied
whenℓ21 ·ℓ2 = Ω(N), e.g., whenℓ2 = ℓ1 = Ω( 3

√
N), orℓ1 = Ω( 4

√
N) andℓ2 = Ω( 2

√
N). To reduce network

traffic at the cost of a higher memory consumption, one can setℓ1 = Ω(logN) andℓ2 = Ω( N
log2 N

).

5 Evaluation – Overlay Connectivity

We prove that Brahms, with appropriate parameter settings,maintains overlay connectivity despite adversary
attacks. Our main methodology is mathematical analysis, which, like previous studies [1], makes some
simplifying assumptions. The theoretical results are validated through extensive simulations.

Definitions. We study time-varying random variables, listed inTable 1. A local variable at a specific correct
nodeu is subscripted byu. When used without subscript, a variable corresponds to a random correct node.
Correct (resp., faulty) ids propagated through pushes and pulls are denotedg (green) (resp.,r (red)). We
defineV(t), a subgraph ofN (t) induced byV of correct nodes: (edges induced byS are omitted):

V(t) , {C(t),
⋃

u∈C(t)

{(u, v)|v ∈ Vu(t) ∩ C(t)}}.

For a nodeu, the number of instances ofu in views of correct nodes is called itsin-degree, and the number
of correct ids inVu is called itsout-degree. Thedegreeof u is the sum of its in-degree and out-degree.

Assumptions. Brahms’s resilience depends on the distribution of in-degrees and out-degrees inV(t). We
assume a necessary condition for initial connectivity, namely, that the view of every joining correct node
contains some correct ids (the ratio of faulty ids in the viewis not necessarily bounded byf ). We further
assume that before the attack starts, the in-degrees and out-degrees of all correct nodes are (roughly) equal.
This property is a close approximation of reality, since a benign gossip process preserves it [1].

8



Correct nodeu Random correct node Semantics

xu(t)/x̃u(t) x(t)/x̃(t) number/fraction of faulty ids in the view

yu(t)/ỹu(t) number/fraction of instances among the views of correct nodes

gpush
u (t)/g̃push

u (t) gpush(t)/g̃push(t) number/fraction of correct ids pushed to the node

rpush
u (t)/r̃push

u (t) rpush(t)/r̃push(t) number/fraction of faulty ids pushed to the node

gpull
u (t)/g̃pull

u (t) gpull(t)/g̃pull(t) number/fraction of correct ids pulled by the node

rpull
u (t)/r̃pull

u (t) rpull(t)/r̃pull(t) number/fraction of faulty ids pulled by the node

Table 1:Definition of common random variables.

Adversarial behavior. The adversary’s way to partition the overlay is through increasing its representation
in the views of correct nodes. We assume the worst-case behavior by faulty nodes. In particular, they push
faulty ids to correct nodes and always return faulty ids to pulls.

We first bound the damage that can be caused within asingleround (a similar approach was taken, e.g.,
in [20]). In Appendix B, we proveLemma B.1, which asserts that in any single round, abalancedattack,
which spreads faulty pushes evenly among correct nodes, maximizes the expected system-wide fraction of
faulty ids, x̃(t), among all strategies. InSection 5.1, we prove that if this attack persists, the ratio of faulty
ids in the system eventually stabilizes at a fixed point. We study the convergence process, and show that for
certain parameter choices, this fixed point is strictly smaller than 1.

Alternatively, an adversary can try to partition the network (rather than increase its representation) by
targeting a subset of nodes with more pushes than in a balanced attack. Without prior information about the
overlay’s topology, attacking a single node can be most damaging, since the sets of edges adjacent to single
nodes are likely to be the sparsest cuts in the overlay.Section 5.2shows that had Brahms not used history
samples, correct nodes could have been isolated in this manner. However, Brahms sustains suchtargeted
attacks, even if they start immediately upon a node’s join, when it is not represented in other views and has
no history. The key property is that Brahms’s gossip prevents isolation long enough for history samples to
become effective.

Simulation setup. We validate our assumptions using simulations with N=1000 nodes or more. Each data
point is averaged over 100 runs. The maximal possible numberof faulty nodes,fN , remain always active.
For simplicity,p = f . A different subset of faulty nodes push their ids to a given correct node in each round,
using a round-robin schedule. Faulty nodes always respond to probe requests, to avoid invalidation.

5.1 Balanced Attack

In the analysis of a balanced attack we ignore blocking sinceits only effect is to slow the convergence
rate. Simulations show that this assumption has little effect on the results. Since a balanced attack does not
distinguish between correct nodes, we assume that it preserves the in-degrees and out-degrees of all correct
nodes equal over time:

Assumption 5.1 For all u ∈ C(T0) and all t ≥ T0: xu(t) = x(t), andyu(t) = ℓ1 − xu(t).

We show the existence of a parameter-dependent fixed point ofx̃(t) and the system’s convergence to it.
Since the focus is on asymptotic behavior, we assumet≫ T0.

Lemma 5.1 For t≫ T0, if p 6= 0 or x̃(t) 6= 1, the expected system-wide fraction of faulty ids evolves as

E(x̃(t+ 1)) = α
p

p+ (1 − p)(1 − x̃(t))
+ β(x̃(t) + (1 − x̃(t))x̃(t)) + γf.

9
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Figure 5:Fixed point analysis illustration.

Proof : Consider the re-computation ofV at a correct nodeu at timet. The weights of pushes, pulls, and
history samples in the recomputed view areα, β andγ, respectively. Since the random selection process
preserves the distribution of faulty ids in each data source, the probability of a push- (resp., pull)-originated
entry being faulty is equal to the probability of receiving afaulty push (resp., pulling a faulty id).

Figure 5(a) illustrates the analysis of̃rpush(t). Each correct node wastes an expected fractionx̃(t) of its
pushes because they are sent to faulty nodes. The rest are sent with an equal probability over each outgoing
edge inV(t). Since out-degrees and in-degrees are equal among all correct nodes, each correct nodeu
receives the same expected number of correct pushes:E(gpush

u (t)) = (1 − x̃(t))αℓ1. The variablegpush
u (t)

is binomially distributed, with the number of trials equal to the total number of pushes among all nodes with
an outgoing edge tou. Since this number is large, the number of received correct pushes is approximately
equal among all correct nodes, i.e.,gpush

u (t) ≈ (1 − x̃(t))αℓ1, for all u.
The total number of correct pushes isαℓ1|C(T0)|, which is1−p out of all pushes, hence the total number

of faulty pushes ispαℓ1
1−p

|C(T0)|. Therefore,u receives exactlyrpush
u (t) = p

1−p
αℓ1 faulty pushes, i.e., their

fraction among all received pushes is:

r̃push
u (t) =

p
1−p

αℓ1
p

1−p
αℓ1 + (1 − x̃(t))αℓ1

=
p

p+ (1 − p)(1 − x̃(t))
.

Hence, the expected ratio of push-originated faulty ids inVu is α p
p+(1−p)(1−x̃(t)) .

Figure 5(b) depicts the evolution of pull-originated faulty ids. Since all correct nodes have an equal
out-degree, a correct node is pulled with probability1 − x̃(t), while a faulty node is pulled with probability
x̃(t). A pulled id is faulty with probabilityx̃(t) if it comes from a correct node, and otherwise, it is always
faulty. Hence, the expected fraction of pull-originated faulty ids isβ(x̃(t) + (1 − x̃(t))x̃(t)).

Finally, sincet≫ T0, the history sample is perfect (the ratio of faulty ids in it isf ). Hence, its expected
contribution isγf , and the claim follows. �

We now show that the system converges to a stable state. A value x̂ is called afixed pointof x̃(t) if
E(x̃(t+ 1)) = x̃(t) = x̂. Substituting this requirement into the equation fromLemma 5.1, we get:

Lemma 5.2 For α, β, γ, p, f ∈ [0, 1], every real root0 ≤ x̂ ≤ 1 of the following cubic equation is a fixed
point ofx̃(t), except for the rootx = 1 for p = 0:

β(1 − p)x̃3 + (2βp − 3β − p+ 1)x̃2 + (γfp− γf + 2β − 1)x̃+ (αp + γf) = 0.
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Figure 6: System-wide fraction of faulty ids in local views, under a balanced attack: (a) Fixed points (b)
Convergence process.

If γ = 0 (no history samples),̂x = 1 is always a root. We call it atrivial fixed point. This is easily
explainable, since if the views of all the correct nodes are totally poisoned, then neither pulls nor pushes
help. Appendix Bshows that ifγ = 0, there can exist at most one nontrivial fixed point0 ≤ x̂ < 1. For

example, ifα = β = 1
2 andγ = 0, thenx̂ =

p+
√

4p−3p2

2(1−p) , for 0 ≤ p ≤ 1
3 . In contrast, if the fraction of faulty

pushes exceeds13 , the only fixed point is 1, causing isolation of all correct nodes.
If γ > 0, there exists a single nontrivial fixed point for allp. This highlights the importance of history

samples.Figure 6(a) depicts the analysis results, perfectly matched by simulations.
We conclude the analysis by proving convergence to a nontrivial fixed point.

Lemma 5.3 If there exists a fixed point̂x < 1 of x̃(t), andx̃(T0) < 1, thenx̃(t) converges tôx.

Proof idea (seeAppendix B). We show that for allt, the sequence of̃x(t) is trapped between̂x and another
sequence,φ(t), that converges tôx. Hillam’s theorem [15] is then used to prove sequence convergence.

Since the balanced attack does not distinguish between correct nodes, the same result holds forx̃u(t),
for each correct nodeu. Figure 6(b) depicts the convergence to the nontrivial fixed point from various initial
values ofx̃(t). The analytical and simulation results are similar. The latter’s convergence is slightly slower
because the analysis ignores blocking.

5.2 Targeted Attack

We study a targeted attack on a single correct nodeu, which starts uponu’s join at T0. We prove thatu is
not isolated from the overlay by showing a lower bound on the expected time to isolation, which exceeds an
upper bound on the time to a perfect correct sample (a sufficient condition for non-isolation,Section 4).

Lower bound on expected isolation time. As we seek a lower bound, we make a number of worst-case
assumptions (formally stated inAppendix C). First, we analyze a simplified protocol that does not employ
history samples (i.e.,γ = 0), so thatS does not correctV ’s bias. Next, we assume an unrealistic adaptive
adversary that observes the exact number of correct pushes to u, gpush

u (t), and complements them with
αℓ1 − gpush

u (t) faulty pushes – the most that can be accepted without blocking. The adversary maximizes
its global representation through a balanced attack on all correct nodesv 6= u, thus minimizing the fraction
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of correct ids thatu pulls from correct nodes. Finally, we assume thatu is not represented in the system
initially, and it derives its initial view from a random set of correct nodes, where the ratio of faulty ids is at
the fixed point (Section 5.1).

Clearly, the time to isolation inV(t) is a lower bound on that inN (t). We study the dynamics of the
number of correct ids inu’s out-degree inV(t), ℓ1 − xu(t), andu’s in-degree,yu(t). We show that for any
two specific values ofxu(t) andyu(t), the expected out-degree and in-degree values att+ 1 are

(

ℓ1 − E(xu(t+ 1))

E(yu(t+ 1))

)

=

(

β(1 − x̂) α

α 1−p
p+(1−p)(1−x̂) β(1 − x̂)

)

×
(

ℓ1 − xu(t)

yu(t)

)

.

Note that the coefficient matrix does not depend onxu(t) andyu(t), and the sum of entries in each row is
smaller than 1. This implies that once the in-degree and the out-degree are close, they both decay exponen-
tially. (Initially, this does not hold becauseu is not represented, i.e.,yu(T0) = 0.) Therefore, the expected
time to isolation is logarithmic withℓ1. Note that this process does not depend on the number of nodes, since
blocking bounds the potential attacks onu independently of the system-wide budget of faulty pushes. Had
blocking not been employed, the top right coefficient would have been0 instead ofα, because the adversary
would have completely hijacked the push-originated entries inVu. The decay factor would have been much
larger, leading to almost immediate isolation.

Figure 7(a) depicts the dynamics ofu’s expected degree (i.e., the sum ofu’s in- and out-degrees) until it
becomes smaller than 1. Simulation results closely follow our analysis. The temporary growth inu’s degree
at t = 1 occurs becauseu becomes represented in the system after the first round. For example, the average
time to isolation forℓ1 = 2 3

√
N is 10 rounds.Figure 7(b) depicts the same results in log-scale, emphasizing

the exponential decay ofu’s degree and the logarithmic dependency betweenℓ1 and time to isolation.
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Figure 7:Targeted attack without history samples: node degree dynamics. N = 1000, p = 0.2, α = β = 0.5,
γ = 0. Without history samples a targeted attack isolatesu in logarithmic time in ℓ1.

Upper bound on expected time to perfect correct sample.Lemma 4.3boundsPSPu(t) for given values
of the non-unique stream sizeΛ(t), and the deficiency factorρ (Section 4). The expected number of correct
ids observed byu till the end of roundT is Λ(t) =

∑T0+T−1
t=T0

(E(gpush
u (t)) + E(gpull

u (t))); the expected

values ofgpush
u (t) andgpull

u (t) are by-products of the analysis inAppendix C, for γ = 0. Figure 8(a)depicts
the deficiency factorρ measured by our simulations, which behaves similarly for all values ofℓ1: ρ ≥ 0.4
for all t. Figure 8(b) depicts the progress of the upper bound ofLemma 4.3with time, withΛ(t) computed

12



0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time

S
tr

ea
m

 s
iz

e

 

 

Simulation: l
1
=20

Simulation: l
1
=40

Simulation: l
1
=60

(a) Deficiency factor

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time

P
er

fe
ct

 S
am

pl
e 

P
ro

ba
bi

lit
y

 

 

Simulation: l
1
=l

2
=20

Theory:       l
1
=l

2
=20

Simulation: l
1
=l

2
=40

Theory:       l
1
=l

2
=40

Simulation: l
1
=l

2
=60

Theory:       l
1
=l

2
=60

(b) Perfect sample probability

Figure 8: Dynamics within a targeted node (N = 1000, p = 0.2, α = β = 0.5 and γ = 0): (a) Fraction of
unique ids in the stream of correct ids,ρ. (b) Growth of Perfect Sample Probability (PSP) with time,ρ = 0.4.
PSP becomes high quickly enough to prevent isolation.

as explained above andρ = 0.4. The corresponding simulation results show, for each timet, the fraction
of runs in which at least one correct id inSu is perfect. Forℓ2 ≥ 40, the PSP becomes close to 1 in a few
rounds, much faster than isolation happens (Figure 7(b)). Forℓ1 = 20, it stabilizes at0.5. The growth stops
because we run the protocol without history samples, thusu becomes isolated, and the id stream ceases.
A higher PSP can be achieved by independently increasingℓ2, e.g., if ℓ2 is 40, then the PSP grows to0.8
(Figure 4.2). Note that perfect samples only provide an upper bound on self-healing time, asSu contains
imperfect correct ids, andu also becomes sampled by other correct nodes, w.h.p. These factors coupled with
history samples (γ > 0) completely preventu’s isolation, as shown inSection 6.

6 Putting it All Together

In previous sections we analyzed each of Brahms’s mechanisms separately. We now simulate the entire
system.Figure 9depicts the degree of nodeu in N (t) under a targeted attack. Nodeu remains connected
to the overlay, thanks to history samples (γ = 0.1). Note that the actual degree ofu in N (t) is higher than
the lower bound shown inSection 5.2, due to the pessimistic assumptions made in the analysis (nohistory
samples, no imperfect correct ids, etc.).
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Figure 9:Degree dynamics of an attacked node inN (t),N = 1000, p = 0.2, α = β = 0.45 and γ = 0.1.
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Figure 10:Fraction of (a) perfect samples and (b) faulty nodes inS, under a balanced attack (f = 0.2), for
1000, 2000, 3000 and 4000 nodes,ℓ2 = 2 3

√
N .

We now demonstrate the convergence ofS in the correct nodes. We simulate systems with up toN =
4000 nodes;ℓ1 andℓ2 are set to2 3

√
N . To measure the quality of sampleS under a balanced attack, we depict

the fraction of ids inS that are indeed the perfect sample over time (Figure 10(a)). Note that this criterion is
conservative, since missing a perfect sample does not automatically lead to a biased choice. More than50%
of perfect samples are achieved within less than 15 rounds; for ℓ2 = ℓ1 = 3 3

√
N , the convergence is twice as

fast.Figure 10(b)depicts the evolution of the fraction of faulty ids inS. Initially, this fraction equalsf , and
at first increases, up to approximately the fixed point’s value. This is to be expected, since the first observed
samples are distributed like the original (biased) data stream. Subsequently, as the node encounters more
unique ids, the quality ofS improves, and the fraction of faulty ids drops fast tof . The protocol exhibits
almost perfect scalability, as the convergence rate is the same forN ≥ 2000.

7 Conclusions

We presented Brahms, a Byzantine-resilient membership sampling algorithm. Brahms stores small views,
and yet resists the failure of a linear portion of the nodes. It ensures that every node’s sample converges to
a uniform one, which was not achieved before by gossip-basedmembership even in benign settings. We
presented extensive analysis and simulations explaining the impact of various attacks on the membership,
as well as the effectiveness of the different mechanisms Brahms employs.
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A Analysis - sampling

A.1 Eventual convergence

Proposition A.1 If N (t) remains weakly connected for eacht ≥ T1 for someT1 ≥ T0 then, for each
u, v ∈ C(T0), there is a positive probability ofv ∈ Vu(t′i) for infinitely many timest′i > T1.

Proof : For t ≥ T1, we define the(t)-reachable setof u, denotedΓu(t), as a set of correct ids that have
nonzero probability to appear inVu(t‘), for someT1 ≤ t‘ ≤ t. Clearly,Γu(T1) = Vu(T1)

⋂ C(T0), and
Γu(t) ⊆ Γu(t + 1), for all t ≥ T1. We show that as long asΓu(t) ⊂ C(T0), the setΓu(t) grows by at
least one correct id each three rounds. For simplicity we consider a slightly transformed protocol that does
not employ blocking. The only effect of this is a faster, by a constant factor, growth rate ofΓu. Note that
v ∈ Γu(t) impliesPr(v ∈ Vu(t′)) > 0 for all t′ ≥ t, asv can remain inVu indefinitely, e.g., by repeatedly
exchanging withu push messages, or ifv is sampled byu into Su and then returned by the history sampling
mechanism toVu.

A new entry inVu(t) can appear following (1) a push from some other nodev, (2) pulling a view from
some other nodev, and (3) applying a history sample fromSu(t). Let us define the effects of these three
operations as following:Γu(t) = Γu(t− 1)

⋃

∆(t)
⋂ C(T0), where

∆(t) = ∆push(t)
⋃

∆pull(t)
⋃

∆history(t)

is the set of nodes that can potentially reachVu(t). We now describe each of its components.

∆push(t) = {v|u ∈ Vv(t− 1)}
⋃

{v|Γu(t− 2) ∩ Vv(t− 2) 6= ∅}
⋃

{v|Γu(t− 3) ∩ Sv(t− 3) 6= ∅}

is a set of to all the node ids that can potentially reachu through push. Note that only the first term refers
to the direct pushes tou. The second term refers to pushes to some intermediate nodew ∈ Γu(t − 2),
that can then be pulled byu. The second term refers to the nodes that first sample some intermediate node
w ∈ Γu(t− 3) from their history sample, then push tow, and only then their ids can be pulled byu fromw.

∆pull(t) =
⋃

v∈Γu(t)

Vv(t− 1)

is a set of to all the nodes thatu can potentially pull from.

∆history(t) = Su(t− 1)

is a set of to all the nodes thatu can potentially sample from its history sample.
Recall thatN (t) is a directed graph spanned by(Vv(t)

⋃Sv(t))
⋂ C(t) of all correct nodesv. Since

N (t) is connected, for any subset ofC(T0), in particularΓu(t), there exist at least one edge between that
subset and the complementing subset. Consider a nodev ∈ C(T0) \Γu(t), connected to somew ∈ Γu(t) by
an edge inN (t). It is easy to see thatv will appear in either∆(t + 1), ∆(t + 2), or ∆(t + 3), depending
onw and the origins of the edge (e.g., on whetherw = u, whether the edge originated fromVu or SU , etc.).
Therefore, for at least each third roundt, ∆(t)

⋂

Γu(t) 6= ∅, andΓu(t) is a proper superset ofΓu(t − 1),
which guarantees that byt = T1 + 3|C(T0)|, Γu(t) will contain all the nodes inC(T0).

We have shown that by the timeT1 + 3|C(T0)|, all ids inC(T0) have a positive probability to appear in
Vu between timeT1 andT1 + 3|C(T0)|. Obviously, we can start over and see that after the next period of
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3|C(T0)| rounds all ids inC(T0) had a chance to appear inVu, and so on. We conclude that afterT1, each id
in C(T0) can appear inVu infinitely many times. �

The following proposition shows that each correct perfect id VR can eventually be observed byR, so
that there exist timet, such thatR(t) = VR.

Proposition A.2 If N (t) remains weakly connected for eacht ≥ T1 for someT1 ≥ T0 then, for each
VR ∈ C(T0)

lim
t→∞

Pr(R(t) = VR|VR ∈ C(T0)) = 1.

Proof : Let nodeu be the owner ofR. It follows from Proposition A.1that the probability ofVR appear in
Vu, and consequently inu’s stream approaches1. The proposition follows immediately. �

W assume that each correct id has equal probability to take place of an invalidated faulty id in a Sampler.

Assumption A.1 In each SamplerR, such thatVR /∈ C(T0), for eachv ∈ C(T0) and for eacht > T0,

0 ≤ Pr(R(t) = v|VR /∈ C(T0)) ≤
1

|C(T0)|
.

The assumption is justified since the if faulty nodeVR responds to all invalidation probes,Pr(R(t) =
v) = 0, and if it never responds to them,Pr(R(t) = v) = 1

|C(T0)| . Otherwise, if it sometimes does and
sometimes does not, since faulty nodes do not adapt to the local choices of correct nodes, no correct id will
be overrepresented compared to the other correct nodes.

Theorem 4.1(restated) If N (t) remains weakly connected for eacht ≥ T1, for someT1 ≥ T0, then, for
all v ∈ C(T0), andε > 0, there existsTε ≥ T1 such that for allt ≥ Tε

1 − f

|C(T0)|
− ε ≤ Pr(R(t) = v) ≤ 1

|C(T0)|
+ ε.

Proof : We can writePr(R(t) = v) as following:

Pr(R(t) = v) = Pr(R(t) = v|VR ∈ C(T0)) · Pr(VR ∈ C(T0))

+ Pr(R(t) = v|VR /∈ C(T0)) · Pr(VR /∈ C(T0)).

FromProposition A.2we know thatlimt→∞ Pr(R(t) = VR|VR ∈ C(T0)) = 1, so that

lim
t→∞

Pr(R(t) = v|VR ∈ C(T0)) = Pr(VR = v|VR ∈ C(T0)) =
1

|C(T0)|
.

From here, for eachε > 0, there existsTε ≥ T1 such that for allt ≥ Tε,

1

|C(T0)|
− ε ≤ Pr(R(t) = v|VR ∈ C(T0)) ≤

1

|C(T0)|
+ ε.

Using AssumptionA.1, and sincePr(VR ∈ C(T0)) ≥ 1−f andPr(VR ∈ C(T0)) ≤ f , we boundPr(R(t) =
v) as following. For allε > 0, there existsTε ≥ T1 such that for allt ≥ Tε

1 − f

|C(T0)|
− ε ≤ Pr(R(t) = v) ≤ 1

|C(T0)|
+ ε.

�
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A.2 Convergence rate

In the following lemma we study the dependency between the probability of a sampler to output a correct
perfect id and the numberΛ(t) of correct ids observed by the Sampler, and the stream deficiency factorρ.

Proposition A.3 For |C(T0)| ≫ 1 and for eacht > T1, for someT1 ≥ T0,

Pr(R(t) = VR|VR ∈ C(T0)) = 1 − e
−

ρΛ(t)
|C(T0)| .

Proof : Sampler outputs its perfect idVR only after that id passed in the Sampler’s input stream. So the
probability ofR(t) 6= VR is the probability thatVR did not appear in the stream of during the rounds
T0 ≤ t′ ≤ t. Denote elementj (considering only the correct ids) in the input stream ofR byG(j), and note
that for eachv ∈ C(T0), Pr(G(j) = v) = 1

|C(T0)| . Then,

Pr(R(t) 6= VR|VR ∈ C(T0)) = Pr(VR /∈
ρΛ(t)
⋃

j=1

G(j)|VR ∈ C(T0)) =

ρΛ(t)
∏

j=1

Pr(G(j) 6= VR|VR ∈ C(T0)) =

ρΛ(t)
∏

j=1

(1 − Pr(G(j) = VR|VR ∈ C(T0))) =

ρΛ(t)
∏

j=1

(

1 − 1

|C(T0)|

)

=

(

1 − 1

|C(T0)|

)ρΛ(t)

.

Since 1
|C(T0)|

≪ 1, we can rely on1 − x ≈ e−x for x≪ 1 and approximate the above as following

Pr(R(t) 6= VR|VR ∈ C(T0)) ≈
(

e
− 1

|C(T0)|

)ρΛ(t)

= e
− ρΛ(t)

|C(T0)| .

From now on, we assume 1
|C(T0)| is small enough, so we use equality. It is now obvious that

Pr(R(t) = VR|VR ∈ C(T0)) = 1 − e
− ρΛ(t)

|C(T0)| .

�

Lemma 4.3(restated) Letu ∈ C(T0) be a random correct node. Then, fort > T0,

PSPu(t) ≥ 1 −
(

(1 − f)e
− ρΛ(t)

|C(T0)| + f

)ℓ2

.

Proof : Sinceℓ2 of u’s Samplers are independent, the probability of each one to have a correct perfect id is

Pr(VR ∈ C(T0)) =
|A(T0)

⋂ C(T0)|
|A(T0)|

≥ 1 − f.
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Similarly,

Pr(VR /∈ C(T0)) =
|A(T0) \ C(T0)|

|A(T0)|
≤ f.

Based onProposition A.3, the probability ofR(t) not being a correct perfect id is

Pr(R(t) 6= VR ∨ VR /∈ C(T0)) = Pr(R(t) 6= VR|VR ∈ C(T0)) Pr(VR ∈ C(T0)) + Pr(VR /∈ C(T0))

≤ (1 − f)e
−

ρΛ(t)
|C(T0)| + f.

We now calculate the perfect sample probabilityPSPu(t), which equals1 minus the probability of each of
ℓ2 Samplers not outputting a correct perfect id.

PSPu(t) = 1 −
ℓ2
∏

i=1

Pr(R(t) 6= VR ∨ VR /∈ C(T0)) =

1 − (Pr(R(t) 6= VR ∨ VR /∈ C(T0)))
ℓ2 ≥

1 −
(

(1 − f)e
−

ρΛ(t)
|C(T0)| + f

)ℓ2

.

�

B Balanced Attack Analysis

B.1 Short-term Optimality

We now prove that in any single round, a balanced attack maximizes the expected system-wide fraction of
faulty ids, x̃(t), among all strategies. Consider a scheduleR : C(T0) → N that assigns a number of faulty
pushes to each correct node at roundt. A schedule isbalancedif for every two correct nodesu andv, it
holds that|R(u) − R(v)| ≤ 1. Otherwise, the schedule isunbalanced. We prove that every unbalanced
schedule is suboptimal. All balanced schedules are equallyoptimal, for symmetry considerations.

Lemma B.1 If scheduleR is unbalanced, then there exists another schedule that imposes a larger expected
ratio of faulty ids thanR in roundt+ 1.

Proof : Since a schedule of faulty pushes in roundt does not affect the pulls in this round, it is enough to
prove the claim for the push-originated ids. Consider two nodes,u andv, such thatR(u) > R(v) + 1.
Consider an alternative scheduleR′ that differs fromR in moving a single push fromu to v. Consider the
change in the expected cumulative fraction of push-originated faulty ids inVu(t + 1) andVv(t + 1) after
this shift (in the other nodes, the ratio of faulty ids does not change).

The probability of a push-originated view entry at nodeu being faulty, provided thatR(u) faulty pushes
were received, is equal to the expected fraction ofR(u) among all pushes received byu. Note thatR(u) is
set in advance, i.e., without knowing the number of receivedcorrect pushes,gpush

u (t) (Section 2.1). Condi-
tioning on the latter, we get:

E(r̃push
u |rpush

u = R(u)) =

|C(T0)|
∑

G=1

Pr[gpush
u (t) = G] · R(u)

R(u) +G
.

19



We need to show that

E(r̃push
u |rpush

u = R(u)−1)+E(r̃push
v |rpush

v = R(v)+1) > E(r̃push
u |rpush

u = R(u))+E(r̃push
v |rpush

v = R(v)),

i.e.,
|C(T0)|
∑

G=1

Pr[gpush
u (t) = G] · R(u) − 1

R(u) − 1 +G
+

|C(T0)|
∑

G=1

Pr[gpush
v (t) = G] · R(v) + 1

R(v) + 1 +G

≥
|C(T0)|
∑

G=1

Pr[gpush
u (t) = G] · R(u)

R(u) +G
+

|C(T0)|
∑

G=1

Pr[gpush
v (t) = G] · R(v)

R(v) +G
.

Since all correct nodes have the same in-degree inV(t) (Assumption 5.1), gpush
u (t) andgpush

v (t) have iden-
tical (binomial) distributions. Hence, it is enough to showthat

R(u) − 1

R(u) − 1 +G
+

R(v) + 1

R(v) + 1 +G
≥ R(u)

R(u) +G
+

R(v)

R(v) +G
,

for all G ≥ 0 and allR(u) > R(v) + 1 > 0. We start simplifying:

−G
(R(u) −G)(R(u) − 1 +G)

+
G

(R(v) +G)(R(v) + 1 +G)
≥ 0.

SinceR(u) − 1 ≥ R(v) + 1 > 0,

−G
(R(u) +G)(R(u) − 1 +G)

+
G

(R(v) +G)(R(v) + 1 +G)

≥ −G
(R(u) +G)(R(u) − 1 +G)

+
G

(R(u) − 2 +G)(R(u) − 1 +G)

≥ G

R(u) − 1 +G
· [ 1

R(u) − 2 +G
− 1

R(u) +G
] =

G

R(u) +G
· 2

(R(u) +G)(R(u) − 2 +G)
> 0.

�

We conclude by showing that all balanced schedules are equally optimal for the adversary.

Proposition B.2 Every two balanced schedules induce the same expected fraction of faulty ids in round
t+ 1.

Proof : R can be transformed intoR′ by a sequence of moves of a single push message from nodeu to
nodev, such thatR(u) = R(v) + 1 whereasR′(v) = R′(u) + 1. For symmetry reasons, neither of these
moves alters the expected cumulative fraction of faulty idsreceived byu andv. Hence, each transformation
produces a schedule that implies the samex̃(t+ 1) as the previous one. �
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Figure 11:Nontrivial fixed points x̂ (depicted by circles), forα = β = 1

2
, γ = 0.

B.2 Fixed Point Analysis

Fixed point values. Considerg(x̃) , β(1−p)x̃3+(2βp−3β−p+1)x̃2+(γfp−γf+2β−1)x̃+αp+γf .
By Lemma 5.2, the fixed point̂x is a root ofg(x̃). Note thatg(0) = (α+ γ)p > 0, andg(1) = p(α + β +
γp − 1) ≤ 0. Hence, ifγ > 0, then the function has a single feasible rootx̂ ∈ (0, 1) (the others lie outside
[0, 1]). In other words, there is always a single nontrivial fixed point. If γ = 0, thenx̂ = 1 is always a root
(a trivial fixed point). Since there exists an infeasible negative root, this leaves room for at most one more
root 0 ≤ x̂ < 1 (i.e., theremayexist at most one nontrivial fixed point).Figure 11depicts the behavior of
g(x) for α = β = 1

2 (γ = 0), and different values ofp. The fixed points are depicted by circles.
Two more parameter combinations deserve special interest:

1. β = 1, α = γ = 0 (pull only, no history samples). The only valid root isx̂ = 0, for all p. That is, if
none of the views initially contain a faulty id, and the faulty nodes cannot push their own ids, then the
latter will remain unrepresented.

2. α = 1, β = γ = 0 (push only, no history samples). The only valid root isx̂ = p
1−p

, for p ≤ 1
2 .

That is, a nonzero fraction of correct ids can be maintained iff the majority of pushes are correct. This
follows from the fact that a single correct push and a single faulty push equally contribute to the view.

Convergence. We prove convergence to a nontrivial fixed point.

Lemma 5.3(restated) If there exists a fixed point̂x < 1 of x̃(t), andx̃(T0) < 1, thenx̃(t) converges tôx.

Proof : We defineψ(x̃) : [0, 1] → [0, 1] asψ(x̃) , α p
p+(1−p)(1−x̃) +β(x̃+(1− x̃)x̃)+γf . The sequence of

expected values of̃x(t) is defined by the iteration scheme{x̃(t+ 1) = ψ(x̃(t))}, for t ≥ T0. We show that
for any x̃(T0) < 1, this scheme converges tôx. For this purpose, we define an auxiliary sequence{φ(t)}
that converges tôx, such that for eacht, the value of̃x(t) is trapped between̂x andφ(t), thus implying the
desired result.

A straightforward calculus shows two facts to be used throughout the proof:

1. ψ(x̃) is monotonically increasing for̃x ∈ [0, 1], since both p
p+(1−p)(1−x̃) andx̃+ (1− x̃)x̃ = 2x̃− x̃2

are monotonically increasing in this interval.
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2. The absolute value of the first derivative ofψ(x̃) for x ∈ [0, 1] is bounded by a constantK (except for
a combinationp = 0, x = 1 which we do not consider).

By the mean value theorem, for allx̃1, x̃2 ∈ [0, 1] (x̃1 ≤ x̃2), there exists̃x′ ∈ [x̃1, x̃2] such that

ψ(x̃2) − ψ(x̃1) =
δψ

δx
(x′) · (x̃2 − x̃1).

Hence, the function satisfies the Liphschitz condition withconstantK, namely, for each pair̃x1, x̃2 ∈ [0, 1],
it holds that|ψ(x̃1) − ψ(x̃2)| ≤ K|x̃1 − x̃2|. Therefore, by Hillam’s theorem [15], the iteration scheme
{φ(t + 1) = λφ(t) + (1 − λ)ψ(φ(t))}, whereλ = 1

K+1 , converges to a fixed point ofψ(x) for each
φ(T0) ∈ [0, 1]. It remains to show that the sequence{x̃(t)} is confined between̂x and{φ(t)}, and therefore,
it also converges tôx. Specifically, we argue that:

1. Assume that̂x < x̃(T0) = φ(T0) < 1. Then, (a) the sequence{φ(t)} converges tôx, and (b) for all
t ≥ T0, it holds thatx̂ < x̃(t) ≤ φ(t).

2. Assume that0 ≤ x̃(T0) = φ(T0) < x̂. Then, (a) the sequence{φ(t)} converges tôx, and (b) for all
t ≥ T0, it holds thatφ(t) ≤ x̃(t) < x̂.

We prove the first part of the claim (the second part’s proof issymmetrical). Recall that̂x is a single
nontrivial fixed point. By the definition,̂x is the root of the functionψ(x) − x, which is negative for
x ∈ (x̂, 1) (i.e., ψ(x) < x). For an arbitraryx ∈ (x̂, 1), it holds thatλx + (1 − λ)ψ(x) < x, i.e, the
sequence{φ(t)} is monotonically decreasing witht. Hence, this sequence cannot converge to the trivial
fixed point (if one exists), i.e., it converges tox̂.

Next, we prove that̂x < x̃(t) ≤ φ(t) by induction ont. The basis is immediate. Assume thatx̂ < x̃(t) ≤
φ(t) for somet ≥ T0. We denoteX , x̃(t) andΦ , φ(t). It holds thatφ(t+ 1) = λΦ + (1 − λ)ψ(Φ) >
ψ(Φ). Sinceψ(x) is a monotonically increasing function forx ∈ [0, 1], ψ(Φ) ≥ ψ(X) = x̃(t+ 1), that is,
φ(t+ 1) > x̃(t+ 1). Similarly, x̃(t+ 1) = ψ(X) > ψ(x̂) = x̂, thus concluding the induction step. �

C Targeted Attack Analysis

This section analyzes the dynamics of a targeted attack on a single correct node, which aims isolating it
from the other correct nodes.

C.1 Assumptions

We use the following assumptions on the environment to boundthe time to isolation from below.

Assumption C.1 (no history samples)γ = 0, which is equivalent to the worst-case assumption that the
expected ratio of faulty ids inS at all times is equal to that in the id stream observed by the node (i.e.,
history samples are ineffective).

Assumption C.2 (unrealistically strong adversary) In each roundt ≥ T0, the adversary observes the exact
number of correct pushes received byu, gpush

u (t), and complements it with faulty pushes toαℓ1 (i.e., the
maximal number of faulty ids that can be accepted without blocking). Formally,rpush

u (t) , max(αℓ1 −
gpush
u (t), 0).
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Assumption C.3 (background attack on the rest of the system) The adversary maximizes its global rep-
resentation through a balanced attack on all correct nodesv 6= u. At timeT0, the system-wide expected
fraction of faulty ids is at the fixed point̂x. (Note that this attack minimizes the fraction of correct ids thatu
can pull from correct nodes).

Assumption C.4 (fresh attacked node)u joins the system atT0. It is initially not represented in any correct
node’s view andu’s initial view is taken from a random correct node.

We assume that the effect ofu on the entire system’s dynamics is negligible. Hence, we assume that
the out-degrees and the in-degrees of all correct nodes except u are equal at all times (Assumption 5.1), and
these nodes do not block (Section 5.1showed that the system-wide effect of blocking is marginal).

C.2 Node Degree Dynamics

We study the dynamics of the degree of the attacked nodeu V(t). Consider a set of triples{(X,Y, t)}, each
standing for a state{xu(t) = X ∧ yu(t) = Y }, for X ∈ {0, . . . , ℓ1}, Y ∈ {0, . . . , |C(T0)|ℓ1}. Eacht
defines a probability space, i.e.,

∑

X,Y Pr[(X,Y, t)] = 1. Sinceu is initially not represented, the only states
that have non-zero probability fort = T0 are those for whichY = 0. The probability distribution over these
states is identical to the distribution ofxu(T0). Sinceu borrows its initial view from a random collection of
correct nodes,xu(T0) ∼ Bin(ℓ1, x̂).

We now develop probability spaces for eacht > T0. The notationPr[(X ′, Y ′, t + 1)|(X,Y, t)] stands
for the probability of transition from state(X,Y, t) to state(X ′, Y ′, t). That is,Pr[(X ′, Y ′, t + 1)] =
∑

X,Y Pr[(X ′, Y ′, t + 1)|(X,Y, t)] · Pr[(X,Y, t)]. To analyzePr[(X ′, Y ′, t + 1)|(X,Y, t)] we separately
consider four independent random variables: the number of push- and pull-originated entries inVu, (denoted
x
push
u (t) andxpullu (t)), and the number of push- and pull-propagated instances ofu in the views of correct

nodes (denotedypushu (t) andypullu (t)). The first two affectX ′ whereas the last two affectY ′. We now
demonstrate how conditional probability distributions for these variables are computed. For convenience,
we omit the conditioning on(X,Y, t) from further notation.

y
pull
u (t): Since the system is at the fixed point, the probability of pulling from some other correct node

is (1 − x̂). Hence,ypullu (t + 1) is a binomially distributed variable, with the number of trials equal to the
total number of correct pulls,(1 − x̂)βℓ1|C(T0)|, and the probability of success equal to the chance of an
entry in a random node’s view beingu, namely Y

ℓ1|C(T0)|
: ypullu (t+ 1) ∼ Bin((1 − x̂)βℓ1|C(T0)|, Y

ℓ1|C(T0)|).

Note thatE(y
pull
u (t+ 1)) = β(1 − x̂)Y .

y
push
u (t): By Lemma 5.1, the number of pushes that reach correct nodes isαℓ1|C(T0)| (1−x̂)(1−p)+p

1−p
.

Denote the number of pushes fromu to correct nodes in roundt by zu(t). This is a binomially distributed
variable withαℓ1 trials and probability of success equal to1 − X

ℓ1
: zu(t) ∼ Bin(αℓ1, 1 − X

ℓ1
). For a given

zu(t) = Z, since the total number of push-originated entries isαℓ1|C(T0)|, the number of push-propagated
instances ofu is ypushu (t+ 1|Z) ∼ Bin (αℓ1|C(T0)|, Z

αℓ1|C(T0)|((1−x̂)+ p
1−p

)
). Note thatE(y

push
u (t+ 1|Z)) =

Z 1−p
p+(1−p)(1−x̂) . Hence, sinceZ is independent onp andx̂,

E(ypushu (t+ 1)) = E(Z)
1 − p

p+ (1 − p)(1 − x̂)
= α(ℓ1 −X) · 1 − p

p+ (1 − p)(1 − x̂)
.

x
pull
u (t): A pull from a faulty node (which happens with probabilityX

ℓ1
) produces a faulty id with

probability 1, otherwise the probability to receive a faulty id is x̂. Hence, the probability of pulling a faulty
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id is X
ℓ1

+ (1 − X
ℓ1

)x̂. That is, the number of pull-originated faulty ids inu’s view is xpullu (t + 1) ∼
Bin(βℓ1,

X
ℓ1

+ (1 − X
ℓ1

)x̂) (i.e.,E(x
pull
u (t+ 1)) = β(X + (ℓ1 −X)x̂)).

We also compute the expected number of correct ids (with duplicates) pulled byu, which we need for
estimating the size of the id stream that traverses this node(Section 5.2). Sinceu performsβℓ1 pulls, and
the expected number of correct ids pulled from a random node is (1 − x̂)ℓ1,

E(gpull
u (t)) = (1 − X

ℓ1
) · βℓ1 · (1 − x̂)ℓ1 = (1 − x̂)ℓ1(ℓ1 −X).

x
push
u (t): The number of push-originated ids,xpushu (t + 1), depends on the number of correct pushes

received byu, gpush
u (t). The latter is a binomially distributed variable, with the number of trials equal to

the total number of correct pushes,αℓ1|C(T0)|, and the probability of success equal to the chance of an
entry in a random node’s view beingu, namely Y

ℓ1|C(T0)|
: gpush

u (t) ∼ Bin(αℓ1|C(T0)|, Y
ℓ1|C(T0)|

) (Note that

E(gpush
u (t)) = αY . This value is of independent use for evaluating the size of the id stream that traversesu

(Section 5.2)).
An expected representation of a correct node different fromu in the system is(1 − x̂)ℓ1. Sinceu is

under-represented (Y < (1 − x̂)ℓ1 w.h.p), the probability of receiving aboveαℓ1 correct pushes is low, and
hence, we ignore the case ofu being blocked by exceedingly many correct pushes. On the other hand, faulty
pushes cannot blocku either (AssumptionC.2), and therefore, we assume thatu never blocks. IfG ≤ αℓ1
correct pushes are received, the adversary complements thenumber of pushes to the maximum allowed
(AssumptionC.2), i.e., the fraction of faulty pushes tou is 1 − G

αℓ1
. Hence, the number of push-originated

faulty ids inu’s view isxpushu (t+ 1|G) ∼ Bin(αℓ1, 1 − G
αℓ1

). In other words,

E(xpushu (t+ 1)) = αℓ1(1 − E(gpush
u (t))

αℓ1
) = αℓ1(1 − αY

αℓ1
) = α(ℓ1 − Y ).

Putting it all together. Summing up, the expected values of in-degree and out-degreecan be written as
(

ℓ1 − E(xu(t+ 1))

E(yu(t+ 1))

)

=

(

ℓ1 − (E(x
push
u (t+ 1)) + E(x

pull
u (t+ 1)))

E(y
push
u (t+ 1)) + E(y

pull
u (t+ 1))

)

=

=

(

ℓ1 − (α(ℓ1 − Y ) + β(X + (ℓ1 −X)x̂))

α(ℓ1 −X) 1−p
p+(1−p)(1−x̂) + β(1 − x̂)

)

=

=

(

β(1 − x̂) α

α 1−p
p+(1−p)(1−x̂) β(1 − x̂)

)

·
(

ℓ1 − xu(t)

yu(t)

)

Since we have shown thatu does not block w.h.p., andSection 5.1demonstrated that the effect of blocking
on the rest of correct nodes is negligible, we assume that allviews are recomputed in each round. That is,

Pr[xu(t+ 1) = X ′|(X,Y, t)] =
∑

X′
1+X′

2=X′

Pr[xpushu (t) = X ′
1|(X,Y, t)] · Pr[xpullu (t) = X ′

2|(X,Y, t)],

and

Pr[yu(t+ 1) = Y ′|(X,Y, t)] =
∑

Y ′
1+Y ′

2=Y ′

Pr[ypushu (t) = Y ′
1 |(X,Y, t)] · Pr[ypullu (t) = Y ′

2 |(X,Y, t)].

Since the computations ofX ′ andY ′ are independent, we conclude:

Pr[(X ′, Y ′, t)|(X,Y, t)] = Pr[xu(t+ 1) = X ′|(X,Y, t)] · Pr[yu(t+ 1) = Y ′|(X,Y, t)].
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