

IRWIN AND JOAN JACOBS

CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

Local Approxim at ion of

PageRank and Reverse PageRank

Ziv Bar- Yossef and Li- Tal Mashiach

CCI T Report # 6 9 0

March 2 0 0 8

Electronics
Computers
Communications

DEPARTMENT OF ELECTRICAL ENGINEERING

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL

Local Approximation of PageRank and Reverse PageRank∗

Ziv Bar-Yossef

Department of Electrical Engineering

Technion, Haifa, Israel

and

Google Haifa Engineering Center

Haifa, Israel

zivby@ee.technion.ac.il

Li-Tal Mashiach

Department of Computer Science

Technion, Haifa, Israel

litalma@cs.technion.ac.il

February 5, 2008

Abstract

We consider the problem of approximating the PageRank of a target node using only
local information provided by a link server. This problem was originally studied by Chen,
Gan, and Suel (CIKM 2004), who presented an algorithm for tackling it. We prove that local
approximation of PageRank, even to within modest approximation factors, is infeasible in
the worst-case, as it requires probing the link server for Ω(n) nodes, where n is the size of the
graph. The difficulty emanates from nodes of high in-degree and/or from slow convergence
of the PageRank random walk.

We show that when the graph has bounded in-degree and admits fast PageRank con-
vergence, then local PageRank approximation can be done using a small number of queries.
Unfortunately, natural graphs, such as the web graph, are abundant with high in-degree
nodes, making this algorithm (or any other local approximation algorithm) too costly. On
the other hand, reverse natural graphs tend to have low in-degree while maintaining fast
PageRank convergence. It follows that calculating Reverse PageRank locally is frequently
more feasible than computing PageRank locally.

We demonstrate that Reverse PageRank is useful for several applications, including com-
putation of hub scores for web pages, finding influencers in social networks, obtaining good
seeds for crawling, and measurement of semantic relatedness between concepts in a taxon-
omy.

1 Introduction

1.1 Local PageRank approximation

The vast majority of algorithms for computing PageRank, whether they are centralized, parallel,
or decentralized, have focused on global computation of the PageRank vector. That is, PageRank
scores for all the graph’s nodes are computed. While in many applications of PageRank a global
computation is needed, there are situations in which one is interested in computing PageRank
scores for just a small subset of the nodes.

Consider, for instance, a business that owns a website and would like to promote the website
in search engine rankings in order to attract traffic of potential clients. As PageRank is well-
known to be an important signal used by the scoring functions of major search engines, tracking

∗This work was funded by the European Commission Marie Curie International Re-integration Grant.

1

lesley
Text Box
CCIT Report #690 March 2008

the PageRank of the website would enable the website’s owner to better understand its position
in search engine rankings and potentially take actions to improve the website’s PageRank. In
this case, the website’s owner is interested only in the PageRank score of his own website (and
maybe also in the scores of his competitors’ websites), but not in the PageRank scores of all
other web pages.

Major search engines choose to keep the PageRank scores of web pages confidential. Some
search engines publish crude PageRank values (e.g., through the Google Toolbar), but these
are usually given in a 1 to 10 logarithmic scale. Users who wish to obtain more accurate
PageRank scores for pages of their choice are left to compute them on their own. Global
PageRank computation for the entire web graph is out of the question for most users, as it
requires significant resources and knowhow. This brings up the following natural question: can
one compute the PageRank score of a single web page using reasonable resources?

Chen, Gan, and Suel [9] were the first to introduce the problem of local PageRank approxi-
mation. Suppose we are given access to a large graph G through a link server, which for every
given query node x, returns the edges incident to x (both incoming and outgoing).1 Can we
then use a small number of queries to the link server to approximate the PageRank score of a
target node x to within high precision?

Chen et al. propose an algorithm for solving this problem. Their algorithm crawls a small
subgraph around the target node, applies various heuristics to guess the PageRank scores of the
nodes on the boundary of this subgraph, and then computes the PageRank of the target node
within this subgraph. Chen et al. empirically show this algorithm to provide good approxima-
tions on average. However, they note that high in-degree nodes sometimes make the algorithm
either very expensive or inaccurate.

1.2 Lower bounds

In this work we study the limits of local PageRank approximation. We identify two factors that
make local PageRank approximation hard on certain graphs: (1) the existence of high in-degree
nodes; (2) slow convergence of the PageRank random walk.

In order to demonstrate the effect of high in-degree nodes, we exhibit for every n a family of
graphs of size n whose maximum in-degree is high (Ω(n)) and on which any algorithm would need
to send Ω(

√
n) queries to the link server in order to obtain accurate PageRank approximations.

For very large n, fetching
√

n pages from the network or sending
√

n queries to a search engine
is very costly (for example, for the web graph n ≥ 10B, and thus

√
n ≥ 128K). The lower

bound we prove applies to both randomized and deterministic algorithms. For deterministic
algorithms, we are able to prove an even stronger (and optimal) Ω(n) lower bound.

Similarly, to demonstrate the effect of slow PageRank convergence, we present a family of
graphs on which the PageRank random converges rather slowly (in Ω(logn) steps) and on which

every algorithm needs to submit Ω(n
1
2
−ǫ) queries in order to obtain good PageRank approx-

imations (ǫ > 0 is a small constant that depends on the PageRank damping factor). Again,
this lower bound holds for both randomized and deterministic algorithms. For deterministic
algorithms, we show an optimal Ω(n) lower bound.

We note that the two lower bounds are mutually exclusive, as the family of hard graphs
constructed in the first lower bound has very fast PageRank convergence (2 iterations), while
the family of hard graphs constructed in the second lower bound has bounded in-degree (2).

1If G is the web graph, out-links can be extracted from the content of x itself and in-links can be
retrieved from search engines using the link: query.

2

1.3 Sufficiency

Having proved that local PageRank approximation is hard for graphs that either have high
in-degree or do not admit quick PageRank convergence, it is natural to ask whether local
PageRank approximation is feasible for graphs of bounded in-degree and on which PageRank
converges quickly. We observe that the algorithm of Chen et al. works well for such graphs: if
the PageRank random walk converges on the graph in r steps and if the maximum in-degree
of the graph is d, then the algorithm of Chen et al. crawls a subgraph of size at most dr and
thus requires at most this number of queries to the link server. When d and r are small, the
algorithm is efficient. This demonstrates that the two conditions we showed to be necessary for
fast local PageRank approximation are also sufficient.

1.4 PageRank vs. Reverse PageRank

As natural graphs, like the web graph and social networks, are abundant with high in-degree
nodes, our first lower bound suggests that local PageRank approximation is frequently infeasible
to do on such graphs. We substantiate this observation with an empirical analysis of a 280,000
crawl of the www.stanford.edu site. We show that locally approximating PageRank is especially
difficult for the high PageRank nodes, requiring thousands of queries to the link server. These
findings provide analytical and empirical explanations for the difficulties encountered by Chen
et al.

We then demonstrate that reverse natural graphs (the graphs obtained by reversing the
directions of all links) are more suitable for local PageRank approximation. By analyzing
the stanford.edu crawl, we show that the reverse web graph, like the web graph, admits quick
PageRank convergence (on 80% nodes of the reverse graph, PageRank converged within 20
iterations). We also show that the reverse graph has a bounded in-degree (only 255 as opposed
to 38,606 in the regular graph). A more refined analysis shows that the growth rate of crawls
around highly ranked target nodes is much slower on the reverse graph than on the regular
graph (by 80% on average). These findings hint that local PageRank approximation should be
feasible on the reverse graph.

To put this hypothesis to test, we measured the performance of the algorithm of Chen et
al. on a sample of nodes from the stanford.edu graph. We show that for highly ranked nodes
the performance of the algorithm on the reverse graph is up to three times better than on the
regular graph.

We conclude from the above that the reverse web graph is much more amenable to efficient
local PageRank approximation than the regular web graph. Thus, computing Reverse PageRank
(PageRank of the reverse graph; “RPR” in short) is more feasible to do locally than computing
regular PageRank. Social networks and other natural graphs possess similar properties to the
web graph (power law degrees, high in-degree vs. low out-degree) and are thus expected to
exhibit similar behavior.

1.5 Applications of Reverse PageRank

While locally approximating RPR is easier than locally approximating PageRank, why would
one want to compute RPR in the first place? We observe that RPR has a multitude of appli-
cations. It has been used before to select good seeds for the TrustRank measure [18], to detect
highly influential nodes in social networks [20], and to find hubs in the web graph [15]. We
present two additional novel applications of RPR: (1) finding good seeds for crawling; and (2)
measuring the “semantic relatedness” of concepts in a taxonomy.

3

2 Related Work

PageRank was first introduced in [32] by Page et al. as a global ranking of web pages, inde-
pendent of their textual content, solely based on the hyperlink structure of the web. It was
shown in [32] that the PageRank vector can be obtained by calculating a principal eigenvector
of a linear system, which can be found via the power method [17]. Due to the immense size of
the Web graph this computation demands enormous computational resources and can take a
significant amount of time. This brought many researchers to look for other possible solution
methods.

There is a large body of work on accelerating PageRank computation, varying from central-
ized algorithms (e.g., [22, 24, 7, 1, 31]), to parallel algorithms (e.g., [29, 28]) to decentralized
P2P algorithms (e.g., [39, 34]). All of these are designed for computing the whole PageRank
vector and are therefore not directly applicable to our problem. See a survey by Berkhin [4] for
an extensive review of global PageRank computation techniques.

The idea of calculating PageRank locally was studied in previous works. The most related
one is the work of Chen, Gan, and Suel [9] which uses the set of influential nodes to calculate the
PageRank of a single page. The algorithm is based on the availability of a link server that can
supply the set of in-links to a given page. They experimentally show that a reasonable estimate
of the node‘s PageRank can be obtained by visiting at most a few hundred nodes. Chen et al.
noticed that their results have a significant estimation error from time to time. Our work gives
explanation to this phenomenon and provides the theoretical analysis of the lower bound for
these family of algorithms. In addition, we discuss the specific case of using the approximate
algorithm on bounded in-degree graphs, and in particular, for calculating Reverse PageRank.

The notion of the influence between two nodes also plays a role in the work of Jeh and Widom
[21], which studies efficient computation of personalized PageRank. Our notion of influence is
different in that it splits into “layers”, while in different layers the same node can influence
differently.

In the second part of our work we discuss applications of Reverse PageRank. One of the
previously known applications of Reverse PageRank is in the context of TrustRank, first in-
troduced by Gyöngyi et al. in [18]. The idea is to choose pages with high Reverse PageRank
as seed nodes and to give preference to pages from which many other pages could be reached.
Fogaras suggest Reverse PageRank as a measure of good hubs in [15]. The author noticed that
in ranking keyword queries Reverse PageRank gives high credit to archives or large collections
of databases within a Web site. In [20] Java et al. suggest calculating PageRank on a social
networks of bloggers to detect influential bloggers.

The above works did not consider using local approximation of Reverse PageRank, which
appears to be very suitable for finding hub web pages and influencers in social networks.

3 Preliminaries

3.1 PageRank overview

Let G = (V, E) be a directed graph on n nodes. Let M be the n × n probability transition
matrix of the simple random walk on G:

M(u, v) =

{

1
outdeg(u) , if u → v is an edge,

0, otherwise.

4

Let U be the probability transition matrix of the uniform random walk, in which at each step
a node is chosen uniformly at random independently of the history:

U(u, v) =
1

n
.

Given a damping factor 0 ≤ α ≤ 1, PageRank [32] is defined as the limit distribution of the
random walk induced by the following convex combination of M and U:

P = αM + (1 − α)U.

α = 0.85 is a typical choice, and we use it as well in our experiments. Personalized PageR-
ank [19, 21] is a popular generalization of PageRank, in which the uniform distribution in U

is replaced by a different, “personalized”, distribution. Everything we do in this paper can
be rather easily generalized to the personalized case. Nevertheless, we choose to stick to the
uniform case, for simplicity of exposition.

For more information about PageRank, refer to recent surveys on the topic [5, 6].

3.2 Local PageRank approximation

A local algorithm working on an input graph G is given access to G only through a “link server”.
Given an id of a node u ∈ V , the server returns the ids of u’s neighbors in G (both in-neighbors
and out-neighbors).

Definition 1. An algorithm is said to locally approximate PageRank, if for any graph G =
(V, E), for which it has local access, any target node u ∈ V , and any error parameter ǫ > 0, the
algorithm outputs a value PR(u) satisfying:

(1 − ǫ)PR(u) ≤ PR(u) ≤ (1 + ǫ)PR(u).

If the algorithm is randomized, it is required to output, for any inputs G, u, ǫ, a 1 ± ǫ approx-
imation of PR(u) with probability at least 1 − δ, where 0 < δ < 1 is the algorithm’s confidence
parameter. The probability is over the algorithm’s internal coin tosses.

We measure the performance of such algorithms in terms of their query cost, which is the
number of queries they send to the link server for the worst-case choice of graph G and target
node u. Typically, the actual resources used by these algorithms (time, space, bandwidth) are
proportional to their query cost. We will view poly-logarithmic cost (O(logO(1)(n)) as feasible
and polynomial cost (Ω(n1−ǫ) for some ǫ > 0) as infeasible.

3.3 PageRank and influence

Jeh and Widom [21] and Chen et al. [9] provide a useful characterization of PageRank in term
of the notion of “influence”. We present a different variation of influence, which divides the
influence of a node into layers. Later, this will make the analysis easier.

The influence [9] of a node v ∈ G on the PageRank of u ∈ G is the fraction of the PageRank
score of v that flows into u, excluding the effect of decay due to the damping factor α:

Definition 2. For a path p = (u0, u1, . . . , ut), define

weight(p) =
t−1
∏

i=0

1

outdeg(ui)
.

5

Let pathst(v, u) be the set of all paths of length t from v to u. The influence of v on u at radius
t is:

inft(v, u) =
∑

p∈pathst(v,u)

weight(p).

(For t = 0, we define inf0(u, u) = 1 and inf0(v, u) = 0, for all v 6= u.) The total influence of v
on u is:

inf(v, u) =
∞

∑

t=0

inft(v, u).

Note that the same node v may have influence on u at several different radii. Using influence,
we define the PageRank value of u at radius r to be:

PRr(u) =
1 − α

n

r
∑

t=0

∑

v∈G

αt inft(v, u).

PRr(u) represents the cumulative PageRank score that flows into u from nodes at distance at
most r from u. Jeh and Widom [21] prove the following characterization of PageRank:

Theorem 3. For every node u ∈ G,

PR(u) = lim
r→∞

PRr(u).

For completeness, we provide here the proof of this theorem.

Proof. Consider the initial distribution p0 = (1, 0, . . . , 0), and let pt = p0P
t. Recall that

limt→∞(pt) = PR. In particular, limt→∞(pt(u)) = PR(u). As pt(u) = Pt(1, u), we need to study
the limit of Pt(1, u) as t tends to infinity. To this end, we express Pt as a power series in terms
of M and U:

Claim 4. Pt = αtMt + (1 − α) · ∑t−1
i=0 αiUMi.

Proof.

Pt = (αM + (1 − α)U)t

=
∑

S⊆{1,2,...,t}

α|S|(1 − α)t−|S| · πS(M,U).

Here, πS(M,U) is a product of t matrices, where M occurs in the positions corresponding to
S and U occurs in all other positions. For example, for t = 4 and S = {1, 3}, πS(M,U) =
MUMU.

Note that if T1 and T2 are transition matrices of two random walks on the same graph,
then T1T2 is the transition matrix of a composite random walk, in which each step consists
of first taking a step according to T1 and then a step according to T2. Now, as U represents
a random walk in which each step is done independently of the currently visited node, then
when we compose U with any other random walk, we get U itself. That is, for every T, TU =
U. It follows that πS(M,U) always has the form UMk for some k. Formally, πS(M,U) =
UMt−max(Sc), where Sc = {1, . . . , t} \ S is the complement of S (in the edge case Sc = ∅,
πS(M,U) = Mt). As a result, we rewrite the expression for Pt as follows:

Pt = αtMt + U ·
∑

S({1,2,...,t}

α|S|(1 − α)t−|S| · Mt−max(Sc).

6

We now rewrite the sum on the RHS:

∑

S({1,2,...,t}

α|S|(1 − α)t−|S| · Mt−max(Sc)

=
t

∑

i=1

Mt−i ·
∑

S({1,...,t},max(Sc)=i

α|S|(1 − α)t−|S|

=
t

∑

i=1

Mt−i · αt−i(1 − α) ·
∑

T⊆{1,...,i−1}

α|T |(1 − α)i−1−|T |

=

t
∑

i=1

Mt−i · αt−i(1 − α) · (α + (1 − α))i−1

= (1 − α) ·
t

∑

i=1

αt−iMt−i = (1 − α) ·
t−1
∑

i=0

αiMi.

Using the above claim, we have:

Pt(1, u) = αtMt(1, u) + (1 − α) ·
t−1
∑

i=0

αi(UMi)(1, u)

= αtMt(1, u) + (1 − α) ·
t−1
∑

i=0

αi ·
∑

v∈V

U(v) · Mi(v, u).

As Mt is a probability transition matrix, Mt(1, u) ≤ 1, and thus as t → ∞, αtMt(1, u) → 0.
We conclude that:

PR(u) = (1 − α) ·
∞

∑

t=0

αt ·
∑

v∈V

U(v) · Mt(v, u).

We complete the proof of the theorem, by noting the following identity between Mt(v, u) and
inft(v, u):

Claim 5. For all u, v, t, inft(v, u) = Mt(v, u).

We prove the proposition by induction on t. For the base case, t = 0, note that M0 = I, the
identity matrix. Thus, M0(u, u) = 1 = inf0(u, u) and M0(v, u) = 0 = inf0(v, u), for v 6= u. For
t = 1, there are two sub-cases: either there is a link from v to u or not. In the former case, there
is exactly one length-1 path from v to u, and its weight is 1/ outdeg(v). This weight is exactly
the same as the entry M(v, u). Hence, inf1(v, u) = 1/ outdeg(v) = M(v, u). In the latter case,
there is no length-1 path from v to u, and thus inf1(v, u) = 0 = M(u, v).

Let t ≥ 2. Assume that for all u, v and all t′ < t, inft′(v, u) = Mt′(v, u). Note that every path
p of length t from v to u is the concatenation of a path p1 of length t−1 from v to some node w and
a path p2 of length 1 from w to u. Furthermore, weight(p) = weight(p1)·weight(p2). Conversely,
the concatenation of every path p1 of length t− 1 from v to some node w and every path p2 of
length 1 from w to u yields a path p of length t from v to u s.t. weight(p) = weight(p1)·weight(p2).

7

We can therefore rewrite inft(v, u) as follows:

inft(v, u) =
∑

p∈pathst(v,u)

weight(p)

=
∑

w∈V

∑

p1∈pathst−1(v,w)

∑

p2∈paths1(w,u)

weight(p1) · weight(p2)

=
∑

w∈V





∑

p1∈pathst−1(v,w)

weight(p1)



 ·





∑

p2∈paths1(w,u)

·weight(p2)





=
∑

w∈V

inft−1(v, w) · inf1(w, u).

Using now the induction hypothesis, we have:

∑

w∈V

inft−1(v, w) · inf1(w, u)

=
∑

w∈V

Mt−1(v, w) · M(w, u) = Mt(v, u).

Note that PRr(u) always approaches PR(u) from below. Throughout this paper, we will say
that “PageRank converges in r iterations on node u”, if PRr(u) ≥ (1 − ǫ)PR(u), where ǫ is a
pre-determined relative error parameter.

4 Lower bounds

In this section we present four lower bounds on the query complexity of local PageRank approx-
imation, which demonstrate the two major sources of hardness for this problem: high in-degrees
and slow PageRank convergence. The first two lower bounds (one for randomized algorithms
and another for deterministic algorithms) address high in-degrees, while the other two lower
bounds address slow PageRank convergence.

4.1 High in degree

The first two lower bounds demonstrate that graphs with high in-degree can be hard for local
PageRank approximation. The hard instances constructed in these graphs are three-level trees
with very high branching factors. Thus, PageRank converges very quickly on these graph (in
merely 2 iterations), yet local PageRank approximation requires lots of queries, due to the high
degrees. The first lower bound (Ω(

√
n)) holds for any algorithm, even randomized ones, and

the second lower bound (an optimal Ω(n)) holds for deterministic algorithms only.

Theorem 6. Fix any α ∈ (0, 1), δ ∈ (0, 1), and ǫ ∈ (0, 1
2). Let A be an algorithm that

locally approximates PageRank to within relative error ǫ and confidence 1 − δ. Then, for every
sufficiently large n, there exists a graph G on at most n nodes and a node u ∈ G on which
A uses Ω(

√
n) queries. Furthermore, the maximum in-degree of G is Ω(

√
n), while PageRank

converges in merely 2 iterations on G.

8

u

………..

x1 = 1

…

x2 = 0

…

xm = 1

…

Figure 1: Hard graph (Theorem 6).

Proof. We prove the lower bound by a reduction from the OR problem. In the OR problem,
an algorithm is given a vector x of m bits (x1, . . . , xm), and is required to output the OR
x1 ∨x2 ∨ · · · ∨xm. The algorithm has only “local access” to x, meaning that in order to recover
any bit xi, the algorithm must send a query to an external server. The goal is to compute the
OR with as few queries to the server as possible. A simple sensitivity argument (cf. [8, 3]) shows
that m(1 − 2δ) queries are needed for computing OR to within confidence 1 − δ.

We reduce the OR problem to local PageRank approximation as follows. We assume n ≥
max{(1

α + 1)2 · (4
α + 1) + 1, 36

α + 10}. Define m = ⌊
√

n−1
4
α

+1
⌋ and k = ⌊n−1

m ⌋ − 1. Note that by

the choice of n, m ≥ 1, k ≥ 1. Furthermore, m ≥ Ω(
√

n). Let S be the maximum number of
queries A uses on graphs of size ≤ n. We will use A to construct an algorithm B that computes
the OR function on input vectors of length m using at most S queries. That would imply
S ≥ m(1 − 2δ) = Ω(

√
n).

We map each input vector x = (x1, . . . , xm) into a graph Gx on n′ = m(k + 1) + 1 nodes
(see Figure 1). Note that n′ ≤ n and therefore A uses at most S queries on Gx. Gx is a tree
of depth 2, whose root is u . The tree has one node at level 0 (namely, u), m nodes at level 1
(v1, . . . , vm), and mk nodes at level 2 (w11, . . . , w1k, . . . , wm1, . . . , wmk). All the nodes at level
1 link to u. For each i = 1, . . . , m, the k nodes wi1, . . . , wik either all link to vi (if xi = 1) or
all link to themselves (if xi = 0). Finally, u links to itself. Note that Gx is sink-free and has
a maximum in-degree ≥ m ≥ Ω(

√
n). Furthermore, since the longest path in Gx is of length 2

(excluding self loops), PageRank converges in merely 2 steps on any node in G.
For each node y, we denote by PRx(y) the PageRank of y in the graph Gx. The following

claim shows that PRx(u) is determined by the number of 1’s in x:

Claim 7. Let |x| be the number of 1’s in x. Then,

PRx(u) =
1 − α

n′
(1 + αm + α2k|x|).

Proof. Using the influence characterization of PageRank (Theorem 3),

PRx(u) =
1 − α

n′

∞
∑

t=0

∑

v∈Gx

αt inft(v, u). (1)

As Gx is a tree, every node v ∈ Gx has at most one path to u. Furthermore, all the nodes along
this path are of out-degree 1. Therefore, inft(v, u) = 1, if the path from v to u is of length t,
and inft(v, u) = 0, otherwise. There is one node (u) whose path to u is of length 0, m nodes

9

(v1, . . . , vm) whose path to u is of length 1, and k|x| nodes (nodes wij for i’s s.t. xi = 1 and
j = 1, . . . , k) whose path to u is of length 2. We can now rewrite Equation 1 as follows:

PRx(u) =
1 − α

n′
(1 + αm + α2k|x|).

Note that PRx(u) is the same for all x that have the same number of 1’s. Furthermore, it is
monotonically increasing with |x|. Let

p0 =
1 − α

n′
(1 + αm)

p1 =
1 − α

n′
(1 + αm + α2k).

The algorithm B now works as follows. Given an input x, B simulates A on the graph Gx

and on the target node u. In order to simulate the link server for Gx, B may resort to queries to
its own external server (which returns bits of x): (a) If A probes the link server for u, B returns
u,v1, . . . , vm as the in-neighbors and u as the single out-neighbor. In this case, B’s simulation
of the link server is independent of x, so there is no need to probe the external server. (b) If
A probes a node vi, for i = 1, . . . , m, B sends i to its own server; if the answer is xi = 1, B
returns wi1, . . . , wik as the in-neighbors and u as the out-neighbor; if the answer is xi = 0, B
returns only u as the out-neighbor. (c) If A probes a node wij , B sends i to the external server;
if xi = 1, B returns vi as the out-neighbor; if xi = 0, B returns wij as the out-neighbor and
in-neighbor. After the simulation of A ends, B declares the OR to be 1, if A’s estimation of
PRx(u) is at least p1(1 − ǫ), and 0 otherwise.

Note that each query A sends to the link server incurs at most one query to B’s server. So
B uses a total of at most S queries. To prove that B is always correct, we analyze two cases.

Case 1:
∨m

i=1 xi = 1. In this case |x| ≥ 1. Therefore, by Claim 7, PRx(u) ≥ p1. This means
that A’s output will satisfy PRx(u) ≥ p1(1− ǫ) with probability ≥ 1− δ. In this case B outputs
1, as needed.

Case 2:
∨m

i=1 xi = 0. In this case |x| = 0. Therefore, by Claim 7, PRx(u) = p0. Hence, A’s
output will satisfy PRx(u) ≤ p0(1 + ǫ) with probability ≥ 1− δ. The following claim shows that
this value is less than p1(1 − ǫ), and thus B outputs 0, as needed.

Claim 8. p0(1 + ǫ) < p1(1 − ǫ).

Proof. To prove the claim, it suffices to show that p1−p0

p1+p0
> ǫ. Expanding the LHS, we have:

p1 − p0

p1 + p0
=

α2k

2 + 2αm + α2k
.

By the choice of n,

m = ⌊
√

n − 1
4
α + 1

⌋ ≥
√

n − 1
4
α + 1

− 1 ≥
√

(1
α + 1)2(4

α + 1)
4
α + 1

− 1 = (
1

α
+ 1) − 1 =

1

α
.

Therefore, 2 + 2αm ≤ 4αm, and thus

α2k

2 + 2αm + α2k
≥ α2k

4αm + α2k
=

1
4m
αk + 1

.

10

From k’s definition,

k

m
=

⌊n−1
m ⌋ − 1

m
≥

n−1
m − 2

m
=

n − 1

(⌊
√

n−1
4
α

+1
⌋)2

− 2

⌊
√

n−1
4
α

+1
⌋

≥ n − 1
n−1
4
α

+1

− 2
√

n−1
4
α

+1
− 1

≥ 4

α
+ 1 − 2

√

36
α

+9
4
α

+1
− 1

=
4

α
+ 1 − 2√

9 − 1
=

4

α
.

Since ǫ < 1
2 , ǫ

1−ǫ > 1. Therefore,
k

m
≥ 4

α
>

4

α
· ǫ

1 − ǫ
.

Hence, 1
4m
αk

+1
> ǫ.

For deterministic algorithms, we are able to strengthen the lower bound to the optimum
Ω(n):

Theorem 9. Fix any α ∈ (1
2 , 1) and ǫ ∈ (0, 2

4+α). Let A be a deterministic algorithm that
locally approximates PageRank to within a factor of 1 ± ǫ. Then, for every n > 4, there exists
a graph G on at most n nodes and a node u ∈ G on which A uses Ω(n) queries. Furthermore,
the maximum in-degree of G is Ω(n) and PageRank converges in merely 2 iterations on G.

Proof. We prove the lower bound by a reduction from a variant of the majority problem. In
majority-by-a-margin, we are given a vector x of m bits x1, . . . , xm, which is guaranteed to
contain either at least (1

2 + β)m 0’s or at least (1
2 + β)m 1’s.

We first use a simple adversary argument to show that at least (1 − 2β)m queries to x are
needed for computing majority-by-a-margin deterministically.

Proposition 10. Given a vector x of m bits x1, ..., xm, which is guaranteed to contain either
at least (1

2 + β)m 0’s or at least (1
2 + β)m 1’s, at least (1 − 2β)m queries to x are needed for

determining (deterministically) which of the two cases holds.

Proof. We will prove the proposition using an adversary argument. Suppose, to reach a contra-
diction, that there exists an algorithm A that solves majority-by-a-margin on inputs of length
m with t < (1 − 2β)m queries to the input server. Without loss of generality, we assume A
never queries the same bit twice.

The adversary simulates the input server as follows. The adversary provides the algorithm
with 0’s and 1’s alternately. For the first bit queried by A (regardless of which bit position that
was actually queried), the adversary returns a 0; for the second bit, the adversary returns a
1; and so on. Now, since the algorithm peforms at most t < (1 − 2β)m queries, it must have
seen at most (1

2 − β)m 0’s and at most (1
2 − β)m 1’s. Now, if the algorithm outputs “0”, the

adversary sets the rest of the m − t input bits to be 1, while if the algorithm outputs “1”,
the adversary sets the rest of the input bits to be 0. In both cases the input created by the
adversary is legal (has at least (1

2 + β)m 0’s or at least (1
2 + β)m 1’s). In the former case, the

output should be 1, but the algorithm outputs 0, while in the latter case, the output should
be 0, but the algorithm outputs 1. This is a contradiction to our assumption that A correctly
solves the majority-by-a-margin problem.

11

u

………..

x1 = 1 x2 = 0 xm = 1

Figure 2: Hard graph (Theorem 9).

Let m = ⌊(n − 1)/2⌋. Note that n − 1 ≤ 2m + 1 ≤ n. We reduce majority-by-a-margin to
local PageRank approximation as follows. Let S be the maximum number of queries A uses on
graphs of size ≤ n. We will use A to construct an algorithm B that computes majority-by-a-
margin on inputs of size m and margin β = ǫ(4 + α)/(2α) using at most S queries. It would
then follow that S ≥ m(1 − 2β) ≥ Ω(n).

We map each input vector x of majority-by-a-margin to an input graph Gx on n′ = 2m + 1
nodes (see Figure 2). Gx is a tree of depth 2, whose root is u. Level 0 consists of u, level 1
of the m nodes v1, . . . , vm, and level 2 of the m nodes w1, . . . , wm. v1, . . . , vm and u link to u.
For each i = 1, . . . ,m, wi links to vi, if xi = 1, and links to itself, if xi = 0. Note that Gx is
sink-free and that the inverse P-distance converges on it in 2 steps.

For each node y, we denote by PRx(y) the PageRank of y in the graph Gx. We characterize
PRx(u) as follows:

Claim 11.

PRx(u) =
1 − α

n′
(1 + αm + α2|x|).

Proof. Since the out-degree of Gx is 1, all the nodes that have a path to u have influence 1 on
u. There is one node (u) of distance 0 from u, m nodes of distance 1, and |x| nodes of distance
2. Therefore, using Theorem 3,

PRx(u) =
1 − α

n′
(1 + αm + α2|x|).

Note that PRx(u) is the same for all x that have the same number of 1’s. Furthermore, it is
monotonically increasing with |x|. Let

p0 =
1 − α

n′

(

1 + αm + α2(
1

2
− β)m

)

and let

p1 =
1 − α

n′

(

1 + αm + α2(
1

2
+ β)m

)

.

Given an input x, B simulates A on the graph Gx and on the target node u. The simulation
of the link server works as follows: (a) If A probes the link server for u, B returns u,v1

1,v
1
2 as the

12

in-neighbors and u as the single out-neighbor. (b) If A probes vi, for i ∈ {1, . . . , m}, B queries
xi; if xi = 1, B returns wi as the single in-neighbor and u as the single out-neighbor; if xi = 0,
B returns only u as the single out-neighbor. (c) If A probes wi, for i ∈ {1, . . . , m}, B queries
xi; if xi = 1, B returns vi as the single out-neighbor; if xi = 0, B returns wi as both the single
out-neighbor and single in-neighbor. As each query A sends to the link server requires at most
one query to the external server in the simulation, B uses at most S queries. To prove that B
is always correct, we analyze two cases.

Case 1: The majority bit of x is 1. In this case |x| ≥ (1
2 + β)m. Therefore, by Claim 11,

PRx(u) ≥ p1. This means that A’s output will satisfy PRx(u) ≥ p1(1− ǫ). In this case B outputs
1, as needed.

Case 2: The majority bit of x is 0. In this case |x| ≤ (1
2 − β)m. Therefore, by Claim 11,

PRx(u) ≤ p0. Hence, A’s output will satisfy PRx(u) ≤ p0(1 + ǫ). The following claim shows that
this value is less than p1(1 − ǫ), and thus B outputs 0, as needed.

Claim 12. p0(1 + ǫ) < p1(1 − ǫ).

Proof. To prove the claim, it suffices to show that

p1 − p0

p1 + p0
> ǫ.

Expanding the LHS, we have:

p1 − p0

p1 + p0
=

2βα2m

2 + 2αm + α2m
.

As α > 1/2, m ≥ (n − 1)/2, and n > 4, we have m > 1/α, and thus 2 + 2αm < 4αm. Hence,

2βα2m

2 + 2αm + α2m
>

2βα2m

4αm + α2m
=

2βα

4 + α
.

By our choice of β (β = ǫ(4 + α)/(2α)), the RHS is exactly ǫ.

It remains open to determine whether an Ω(n) lower bound holds for randomized algorithms
when the approximation factor is large.

4.2 Slow PageRank convergence

The next two lower bounds demonstrate that slow PageRank convergence is another reason
for the intractability of local PageRank approximation. We show an Ω(nγ) lower bound for
randomized algorithms (where γ < 1

2 depends on α) and an Ω(n) lower bound for determin-
istic algorithms. The hard instances constructed in the proofs are deep binary trees. So, the
maximum in-degree in these graphs is 2, and the high query costs are incurred by the slow
convergence (O(log n) iterations). The proofs of these two lower bounds are similar to the
proofs of Theorems 6 and 9. They essentially trade fast convergence for bounded in-degree,
by transforming the hard input graphs from shallow trees of large in-degree into deep trees of
bounded in-degree.

Theorem 13. Fix any α ∈ (1
2 , 1), ǫ ∈ (0, 1

2), and δ ∈ (0, 1
2). Let A be an algorithm that

locally approximates PageRank to within relative error ǫ and confidence 1 − δ. Then, for every
sufficiently large n, there exists a graph G on at most n nodes and a node u ∈ G on which A uses

Ω(n
1+logα

2) queries. Furthermore, the maximum in-degree of G is 2 and PageRank converges in
Ω(log n) iterations on u.

13

Remark: The logs in the theorem’s proof, as of the rest of the logs in the paper, are of the
base of two.

Proof. We prove the lower bound by a reduction from the OR problem. We assume n >

8 · (1−ǫ
ǫ · 1

α)
1

1+log α . Let m be the largest power of two which is at most (n
8)

1+log α

2 ·
√

2α(1−ǫ)
8ǫ .

Let k be the smallest power of two which greater than (1
α · 4mǫ

1−ǫ)
1

1+log α . Let lm = log m and let
lk = log k. Let S be the maximum number of queries A uses on graphs of size ≤ n. We will
use A to construct an algorithm B that computes the OR function on input vectors of length

m using at most S queries. That would imply S ≥ m(1 − 2δ) = Ω(n
1+log α

2).
We map each input vector x = (x1, . . . , xm) into a graph Gx on n′ = m(2k + 1) − 1 nodes

(see Figure 3). Gx consists of m+1 binary trees T, S1, . . . , Sm. The root of T is u and its leaves
are v1, . . . , vm. Thus, T has 2m− 1 nodes and its depth is ℓm. For each i = 1, . . . , m, the leaves
of Si are wi1, . . . , wik. Thus, Si has 2k − 1 nodes and its depth is ℓk. If xi = 1, the root of Si

links to vi, and otherwise it links to itself. Finally, u links to itself. Note that Gx is sink-free
and has a maximum in-degree of 2.

For each node y, we denote by PRx(y) the PageRank of y in the graph Gx.

Claim 14.

PRx(u) =
1 − α

n′(2α − 1)
((2α)ℓm+1 − 1 + |x|αℓm((2α)ℓk+1 − 1)).

Proof. As the maximum out-degree of Gx is 1, each node that has a path to u has influence 1
on u. For t = 0, . . . , ℓm, there are 2t nodes whose path to u is of length t (the nodes at layer t
of T). For each i = 1, . . . , m and t = 0, . . . , ℓk, if xi = 1, then there are 2t nodes at layer t of Si

that have a path of length ℓm + t to u. Therefore, the total number of nodes that have a path
of length ℓm + t to u is |x| · 2t. We can now use Theorem 3 to write PRx(u) as follows:

PRx(u) =

=
1 − α

n′

(

ℓm
∑

t=0

2t · αt + |x| ·
ℓk

∑

t=0

2t · αℓm+t

)

=
1 − α

n′

(

(2α)ℓm+1 − 1

2α − 1
+ |x|αℓm · (2α)ℓk+1 − 1

2α − 1

)

=
1 − α

n′(2α − 1)
((2α)ℓm+1 − 1 + |x|αℓm((2α)ℓk+1 − 1)).

Note that PRx(u) is the same for all x that have the same number of 1’s. Furthermore, it is
monotonically increasing with |x|. Let

p0 =
1 − α

n′(2α − 1)
((2α)ℓm+1 − 1)

and

p1 =
1 − α

n′(2α − 1)
((2α)ℓm+1 − 1 + αℓm((2α)ℓk+1 − 1)).

Given an input x, B simulates A on the graph Gx and on the target node u. The simulation
of the link server works as follows: (a) If A probes the link server for any node except for
v1, . . . , vm and root(S1), . . . , root(Sm), B simply returns the in-neighbors and out-neighbors of
that node in its corresponding tree (T or one of the Si’s). (b) If A probes vi, then B returns
its single out-neighbor in T . For figuring out whether root(Si) is an in-neighbor, B probes its

14

own server for xi. If xi = 1, root(Si) is an in-neighbor of vi, and otherwise it is not. (c) If A
probes root(Si), B returns its two in-neighbors in Si as in-neighbors. For figuring out whether
vi is an out-neighbor, B queries xi. After the simulation of A ends, B declares the majority bit
to be 1, if A’s estimation of PRx(u) is at least p1(1 − ǫ), and 0 otherwise.

Note that each query A sends to the link server incurs at most one query to B’s server. So
B uses a total of at most S queries. To prove that B is always correct, we analyze two cases.

Case 1:
∨m

i=1 xi = 1. In this case |x| ≥ 1. Therefore, by Claim 14, PRx(u) ≥ p1. This means
that A’s output will satisfy PRx(u) ≥ p1(1− ǫ) with probability ≥ 1− δ. In this case B outputs
1, as needed.

Case 2:
∨m

i=1 xi = 0. In this case |x| = 0. Therefore, by Claim 14, PRx(u) = p0. Hence, A’s
output will satisfy PRx(u) ≤ p0(1 + ǫ) with probability ≥ 1− δ. The following claim shows that
this value is less than p1(1 − ǫ), and thus B outputs 0, as needed.

Claim 15. p0(1 + ǫ) < p1(1 − ǫ).

Proof. To prove the claim, it suffices to show that

p1 − p0

p1 + p0
> ǫ.

Expanding the LHS, we have:

p1 − p0

p1 + p0
=

αℓm+1((2α)ℓk+1 − 1)

2 · ((2α)ℓm+1 − 1) + αℓm+1((2α)ℓk+1 − 1)

>
αℓm+1((2α)ℓk+1 − 1)

2 · (2α)ℓm+1 + αℓm+1((2α)ℓk+1 − 1)

=
(2α)ℓk+1 − 1

2ℓm+2 + (2α)ℓk+1 − 1
.

Recall that k = 2ℓk and m = 2ℓm . Therefore,

(2α)ℓk+1 − 1

2ℓm+2 + (2α)ℓk+1 − 1
=

2kα · αℓk − 1

4m + 2kα · αℓk − 1
=

1
4m

2kα·αℓk−1
+ 1

=
1

4m
2α·k1+ℓα−1

+ 1

By the definition of k,

1
4m

2α·k1+log(α)−1
+ 1

≥ 1
4m

2α(1
α
· 4mǫ
1−ǫ

)
1

1+log(α)
·(1+log(α))

−1
+ 1

=
1

4m
2α 1

α
· 4mǫ
1−ǫ

−1
+ 1

=
1

4m
8mǫ
1−ǫ

−1
+ 1

.

By the definition of m and the choice of n,

4mǫ

1 − ǫ
≥ 4ǫ

1 − ǫ
· 1

2
· (n

8
)

1+log(α)
2

√

2α(1 − ǫ)

8ǫ
>

2ǫ

1 − ǫ
(
8(1−ǫ

ǫ · 1
α)

1
1+log(α)

8
)

1+log(α)
2

√

2α(1 − ǫ)

8ǫ

=
2ǫ

1 − ǫ
(
1 − ǫ

ǫ
· 1

α
)

1
2 (

2α(1 − ǫ)

8ǫ
)

1
2 =

2ǫ

1 − ǫ
· 1

2
· 1 − ǫ

ǫ
= 1

Thus,
1

4m
8mǫ
1−ǫ

−1
+ 1

>
1

4m
8mǫ
1−ǫ

− 4mǫ
1−ǫ

+ 1
=

1
4m
4mǫ
1−ǫ

+ 1
=

1
1−ǫ

ǫ + 1
=

ǫ

1 − ǫ + ǫ
= ǫ.

15

u

……

�✁✂✄ �☎✂
✆

T

S✝ S✞

Figure 3: Hard graph (Theorem 13).

Also in this case we are able to show an optimal Ω(n) lower bound for deterministic algo-
rithms:

Theorem 16. Fix any α ∈ (1
2 , 1) and ǫ ∈ (0, 2α−1

2α+1). Let A be a deterministic algorithm that
locally approximates PageRank to within relative error ǫ. Then, for every n > 4, there exists a
graph G on at most n nodes and a node u ∈ G on which A uses Ω(n) queries. Furthermore, the
maximum in-degree of G is 2 and PageRank converges in Ω(log n) iterations on u.

Proof. We prove the lower bound by a reduction from majority-by-a-margin. Let M = 2ℓ be the
largest power of 2 that is at most n. Note that n/2 ≤ M ≤ n. Let S be the maximum number of
queries A uses on graphs of size ≤ n. We will use A to construct an algorithm B that computes
majority-by-a-margin on inputs of size m = M/2 and margin β = (ǫ/2) · (2α+1)/(2α−1) using
at most 2S queries. It would then follow that S ≥ 1

2(1 − ǫ · (2α + 1)/(2α − 1)) · m = Ω(n).
We map each input vector x of majority-by-a-margin to an input graph Gx on n′ = M−1 ≤ n

nodes (see Figure 4). Gx is a binary tree of depth ℓ − 1, whose root is u. We denote the nodes
at level t of the tree (t = 0, . . . , ℓ − 2) by vt

1, . . . , v
t
2t . Note that u = v0

1. We denote the nodes
at level ℓ − 1 by w1, . . . , wm. The tree is complete, except for nodes at level ℓ − 1. For each
i = 1, . . . ,m, wi links to vℓ−2

⌈i/2⌉, if xi = 1, and links to itself, if xi = 0. Finally, u links to itself.
Note that Gx is sink-free and has a maximum in-degree of 2.

For each node y, we denote by PRx(y) the PageRank of y in the graph Gx.

Claim 17.

PRx(u) =
1 − α

n′

(

(2α)ℓ−1 − 1

2α − 1
+ |x| · αℓ−1

)

.

As Gx is of out-degree 1, every node that has a path to u has influence 1 on u. For
t = 0, . . . , ℓ − 2, there are 2t nodes whose path to u is of length t. For t = ℓ − 1, the number
of nodes at layer ℓ − 1 that have a path to u is exactly |x|. Hence, the number of nodes whose
path to u is of length ℓ − 1 is |x|. We can now use Theorem 3 to write PRx(u) as follows:

PRx(u) =
1 − α

n′

(

ℓ−2
∑

t=0

2t · αt + |x| · αℓ−1

)

=
1 − α

n′

(

(2α)ℓ−1 − 1

2α − 1
+ |x| · αℓ−1

)

.

16

u

………..

x1 = 1 x2 = 0 x3 = 0

………..

x4 = 1

…
…

…
…

…
…

xm-1= 0 xm = 1

Figure 4: Hard graph (Theorem 16).

Note that PRx(u) is the same for all x that have the same number of 1’s. Furthermore, it is
monotonically increasing with |x|. Let

p0 =
1 − α

n′

(

(2α)ℓ−1 − 1

2α − 1
+ (

1

2
− β)2ℓ−1 · αℓ−1

)

and let

p1 =
1 − α

n′

(

(2α)ℓ−1 − 1

2α − 1
+ (

1

2
+ β)2ℓ−1 · αℓ−1

)

.

Given an input x, B simulates A on the graph Gx and on the target node u. The simulation
of the link server works as follows: (a) If A probes the link server for u, B returns u,v1

1,v
1
2 as the

in-neighbors and u as the single out-neighbor. (b) If A probes a node vt
i , for t = 1, . . . , ℓ − 3,

B returns vt+1
2i−1,v

t+1
2i as the in-neighbors and vt−1

⌈i/2⌉ as the single out-neighbor. (c) If A probes

a node vℓ−2
i at layer ℓ − 2, B sends 2i − 1 and 2i to its own server; if x2i−1 = 1, B returns

w2i−1 as an in-neighbor of vℓ−2
i ; similarly, if x2i = 1, B returns w2i as an in-neighbor of vℓ−2

i ;
in any case B returns vℓ−3

⌈i/2⌉ as the single out-neighbor. (d) If A probes a node wi, B sends i

to its own server; if xi = 1, B returns vℓ−2
⌈i/2⌉ as the single out-neighbor; if the answer is xi = 0,

B returns wi as both the single out-neighbor and single in-neighbor. After the simulation of A
ends, B declares the majority bit to be 1, if A’s estimation of PRx(u) is at least p1(1 − ǫ), and
0 otherwise.

Note that each query A sends to the link server incurs at most two queries to B’s server. So
B uses a total of at most 2S queries. To prove that B is always correct, we analyze two cases.

Case 1: The majority bit of x is 1. In this case |x| ≥ (1
2 + β)2ℓ−1. Therefore, by Claim 17,

PRx(u) ≥ p1. This means that A’s output will satisfy PRx(u) ≥ p1(1− ǫ). In this case B outputs
1, as needed.

Case 2: The majority bit of x is 0. In this case |x| ≤ (1
2 − β)2ℓ−1. Therefore, by Claim 17,

PRx(u) ≤ p0. Hence, A’s output will satisfy PRx(u) ≤ p0(1 + ǫ). The following claim shows that
this value is less than p1(1 − ǫ), and thus B outputs 0, as needed.

Claim 18. p0(1 + ǫ) < p1(1 − ǫ).

17

Proof. To prove the claim, it suffices to show that

p1 − p0

p1 + p0
> ǫ.

Expanding the LHS, we have:

p1 − p0

p1 + p0
=

2β(2α)ℓ−1

2 · (2α)ℓ−1−1
2α−1 + (2α)ℓ−1

>
2β(2α)ℓ−1

2 · (2α)ℓ−1

2α−1 + (2α)ℓ−1

=
2β

2
2α−1 + 1

= 2β · 2α − 1

2α + 1
.

By our choice of β, the RHS is exactly ǫ, as needed.

It remains open to determine whether an Ω(n) lower bound holds for randomized algorithms
when the approximation factor is large.

5 Upper bounds

The above lower bounds imply that high in-degrees and slow PageRank convergence make local
PageRank approximation infeasible. We next show that local PageRank can be approximated
efficiently on graphs that have low in-degrees and that admit fast PageRank convergence. In
fact, the algorithms proposed by Chen et al. [9] are already sufficient for this purpose.

5.1 The brute force algorithm

The simplest algorithm performs a brute force computation of PRr(u) (see Figure 5). Recall
that

PRr(u) =
1 − α

n

r
∑

t=0

∑

v∈G

αt inft(v, u).

The algorithm crawls the subgraph of radius r around u “backwards” (i.e., it fetches all nodes
that have a path of length ≤ r to u). The crawling is done in BFS order. For each node v at
layer t, the algorithm calculates the influence of v on u at radius t. It sums up the influence
values, weighted by the factor 1−α

n αt. In order to compute the influence values, the algorithm
uses the following recursive property of influence:

inft(v, u) =
1

outdeg(v)

∑

w:v→w

inft−1(w, u).

That is, the influence of v on u at radius t equals the average influence of the out-neighbors of
v on u at radius t− 1. Thus, the influence values at layer t can be computed from the influence
values at layer t − 1.

Recall that PRr(u) converges to PR(u) as r → ∞ (Theorem 3). So, ideally, we would like to
choose r to be the smallest integer for which PRr(u) ≥ (1 − ǫ)PR(u). In practice, we stop the
crawling whenever we notice that the value of PRt(u) does not change by much.

18

procedure BruteForceLocalPR(u)

1: PR0(u) := 1−α
n

2: layer0 := {u}
3: inf0(u, u) := 1
4: for t = 1, . . . , r do

5: layert := Get all in-neighbors of nodes in layert−1

6: for each v ∈ layert do

7: inft(v, u) := 1
outdeg(v)

∑

w:v→w inft−1(w, u)
8: end for

9: PRt(u) := PRt−1(u) + 1−α
n

∑

v∈layert
αt inft(v, u)

10: end for

11: return PRr(u)

Figure 5: The brute force algorithm.

The cost of the brute force algorithm is exactly the size of the subgraph crawled. It follows
that if all nodes in the subgraph are of degree ≤ d, then the cost of the algorithm is at most dr.
In particular, if the graph admits fast PageRank convergence (i.e., r is small) and has bounded
in-degree (i.e., d is small), then also the cost of the algorithm is low (e.g., if both d and r are
constant, then also the cost of the algorithm is constant).

5.2 Optimizing by pruning

To improve the cost of the brute force algorithm in practice, Chen et al. apply a pruning
heuristic. The idea is simple: if the influence of a node v on u at radius t is small, then
only a small fraction of its score eventually propagates to PRt(u) and thus omitting v from the
computation of PRt(u) should not do much harm. Furthermore, nodes whose paths to u pass
only through low influence nodes are likely to have low influence on u as well, and therefore if
we prune the crawl at low influence nodes we are unlikely to neglect high influence nodes from
the crawl.

The pruning heuristic is implemented by calling the procedure depicted in Figure 6. The
procedure removes all nodes whose influence is below some threshold value T from layer t. Thus,
these nodes will not be expanded in the next iteration.

procedure Prune(t)

1: for each v ∈ layert do

2: if αt inft(v) < T then

3: remove v from layert

4: end if

5: end for

Figure 6: The pruning procedure.

6 PageRank vs. Reverse PageRank

In the previous sections we established that there are two necessary and sufficient conditions
for a graph to admit efficient local PageRank approximation: (1) quick PageRank convergence;
and (2) bounded in-degree. In this section we compare two graphs in light of these criteria:

19

the web graph and the reverse web graph. We demonstrate that while both graphs admit fast
PageRank convergence, the reverse web graph has bounded in-degree and is therefore more
suitable for local PageRank approximation. We also show empirically that the algorithm of
Chen et al. performs better on the reverse web graph than on the web graph.

6.1 Experimental setup

We base our empirical analysis on a 280,000 page crawl of the www.stanford.edu domain
performed in September 2002 by the WebBase project2 and a 22,000 page crawl of the www.

cnn.com site we performed in February 2007. We built the adjacency matrices of these graphs,
which enabled us to calculate their true PageRank and Reverse PageRank as well as to simulate
link servers for the algorithm of Chen et al. In the PR and RPR iterative computations we used
the uniform distribution as the initial distribution.

The same stanford.edu crawl has been previously used by Kamvar et al. [23] to analyze
the convergence rate of PageRank on the web graph. Kamvar et al. also showed that the
convergence rate of PageRank on a much larger crawl of about 80M pages is almost the same
as the one on the stanford.edu crawl. In addition, Dill et al. [12] showed that the structure of
the web is “fractal-like”, i.e., cohesive sub-regions exhibit the same characteristics as the web
at large. These observations hint that the results of our experiments on the relatively small
280,000 page crawl are applicable also to larger connected components of the web graph.

6.2 Convergence rate

We start by analyzing the PageRank convergence rate. Kamvar, Haveliwala, and Golub [22]
already observed that PageRank converges very quickly on most nodes of the web graph (it
converges in less than 15 iterations on most nodes, while requiring about 50 iterations to con-
verge globally). In Figure 7, we show that a similar phenomenon holds also for the reverse web
graph. The two histograms specify for each integer t, the number of pages in the stanford.edu
and cnn.com graphs on which PageRank and Reverse PageRank converge in t iterations. We
determine that PageRank converges on a page u in t steps, if |PRt(u)−PRt−1(u)|

PRt−1
< 10−3.

As can be seen from the results, Reverse PageRank converges only slightly slower than
PageRank: in less than 20 iterations, 80% of the stanford.edu nodes and 90% of the cnn.com

nodes converges.

6.3 Crawl growth rate

Previous studies [37] have already shown that the maximum out-degree of the web graph is
much lower than its maximum in-degree. The same holds in the stanford.edu graph, whose
maximum in-degree is 38,606, while its maximum out-degree is only 255. In the cnn.com graph,
the maximum in-degree is 7,666, while its maximum out-degree is 64.

We show a more refined analysis, which demonstrates that the average growth rate of back-
ward BFS crawls around target nodes with high PageRank is much slower in the reverse web
graph than in the web graph.

In Figure 8, we plot the average size of a backward BFS crawl as a function of the crawl
depth for the stanford.edu and for cnn.com graphs and for their reverse graphs. To create
the plot for the regular graph, we selected random nodes from the graph as follows. We ordered
all the nodes in the graph by their PageRank, from highest to lowest. We divided the nodes
into buckets of exponentially increasing sizes (the first bucket had the top 12 nodes, the second
one had the next 24 nodes, and so on). We picked from each bucket 100 random nodes (if

2Available at vlado.fmf.uni-lj.si/pub/networks/data/mix/mixed.htm.

20

0 10 20 30 40
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of iterations

N
u

m
b

e
r

o
f

P
a

g
e

s
PR
RPR

(a) stanford.edu

0 10 20 30 40
0

2000

4000

6000

8000

10000

12000

Number of iterations

N
u

m
b

e
r

o
f

P
a

g
e

s

PR
RPR

(b) cnn.com

Figure 7: Number of iterations until convergence for PageRank and Reverse PageRank.

21

the bucket was smaller we took all its nodes), and performed a backward BFS crawl from each
sample node up to depth 9. For each bucket and for each t = 1, . . . , 9, we calculated the average
number of nodes crawled up to depth t when starting the crawl from a node in the bucket. The
plot for the reverse graph was constructed analogously. We present in Figure 8 the results for
the top bucket (12 pages with highest PageRank/Reverse PageRank), the middle bucket (768
pages with intermediate PageRank/Reverse PageRank) and the last bucket (85,000 pages with
lowest PageRank/Reverse PageRank).

The graphs clearly indicates that the growth rate of the backward BFS crawl in the reverse
web graph is slower than in the regular graph for pages with high PageRank/Reverse PageRank.
For example, for stanford.edu the average crawl size at depth 6 in the top bucket on the regular
graph was 77,480, while the average crawl size at depth 6 in the top bucket on the reverse graph
was 15,980 (a gap of 80%). The situation was opposite for the low ranked nodes. For example,
the average crawl size at depth 6 in the last bucket on the reverse graph was 10,835, while the
average crawl size at depth 6 in the last bucket on the regular graph was 4,701 (a gap of 57%).
Also for cnn.com the results were similar. As we show below, the decreased crawl growth rate
for the highly ranked nodes well pays off the increase in crawl growth rate for the low ranked
nodes.

6.4 Algorithm’s performance

We made a direct empirical comparison of the performance of the algorithm of Chen et al. on
the web graph vs. the reverse web graph. To do the comparison, we used the same buckets and
samples as the ones used for evaluating the crawl growth rate. We then calculated, for each
bucket, the average cost (number of queries to the link server) of the runs on samples from that
bucket. The results are plotted in Figure 9.

The graph shows that the cost of the algorithm on the reverse graph is significantly lower
than on the regular graph, especially for highly ranked nodes. For example, for stanford.edu,
the average cost of the algorithm on the first bucket of PageRank was three times higher than the
cost of the algorithm on the first bucket of Reverse PageRank. For cnn.com the results are even
better, with PageRank cost ten times higher than Reverse PageRank on the first bucket. On
the other hand, for the low ranked nodes, the increased crawl growth rate on the reverse graph
and the regular graph are almost the same. For example, the average cost for stanford.edu of
the algorithm on the last bucket of PageRank was 13 and for Reverse PageRank it was 14.

7 Applications of Reverse PageRank

RPR has already been used in the past to select good seeds for the TrustRank measure [18], to
detect highly influential nodes in social networks [20], and to find hubs in the web graph [15].
In this section we present two additional novel applications: (1) finding good seeds for crawling;
and (2) measuring the “semantic relatedness” of concepts in a taxonomy.

We note that local RPR approximation is potentially useful in several of these applications.
For example, to estimate the influence score of a given node in a social network, the hub score
of a given page on the web, or the semantic relatedness of two given concepts in a taxonomy.
Social networks exhibit similar properties to the web graph [30], such as the power law degree
distribution and the gap between in- and out- degrees. As we show below, the same holds for
the taxonomy graph extracted from the Open Directory Project.

22

0 2 4 6 8
0

2

4

6

8

10

12
x 10

4

Crawl Depth

C
ra

w
l
S

iz
e

PR top bucket
RPR top bucket
PR middle bucket
RPR middle bucket
PR last bucket
RPR last bucket

(a) stanford.edu

0 2 4 6 8
0

0.5

1

1.5

2
x 10

4

Crawl Depth

C
ra

w
l
S

iz
e

PR top bucket
RPR top bucket
PR middle bucket
RPR middle bucket
PR last bucket
RPR last bucket

(b) cnn.com

Figure 8: Average growth rates of backward BFS crawls at the graph and its reverse.

23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

2

2.5

3
x 10

4

Buckets by PR/RPR

A
v
e

ra
g

e
 C

o
s
t

PR
RPR

(a) stanford.edu

1 2 3 4 5 6 7 8 9 10 11
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Buckets by PR/RPR

A
v
e

ra
g

e
 c

o
s
t

PR
RPR

(b) cnn.com

Figure 9: Avergae cost of the pruning algorithm by PageRank/Reverse PageRank values. Re-
sults of runs on the graph and its reverse.

24

7.1 Influencers in social networks

The optimization problem of selecting the most influential members is one of the most well
studied problems in social networking [36, 13, 25], introduced by Domingos and Richardson
[13].

They presented a probabilistic model for the way members of a social network influence each
other. They also presented the following algorithmic problem. Suppose that we have data on
a social network and on the way members of the network influence each other. Suppose also
that we would like to market a new product that we hope will be adopted by a large fraction
of the network’s members. By initially targeting a few “influential” members (for example,
by giving them free samples of the product), we can trigger a cascade of influence in which
individuals recommend the product to their friends, leading eventually to a large number of
individuals trying it. How should we choose the few key individuals to be used as seeds for this
process? More formally, given a social network and a number k, find the k “seed” nodes, Sk,
that maximize the expected number of “active” nodes when starting with Sk as a set of initial
active nodes. It is known that finding the optimal set is NP-hard [25].

In [26], Kempe, Kleinberg, and Tardos show that a natural greedy hill-climbing strategy
provides a solution, which is always at least 1− 1/e (≈ 63%) of the optimal solution. Unfortu-
nately, this algorithms runs in O(n2) time (where n is the size of the network), and therefore
it is not very feasible for big networks. It is still open whether sub-quadratic time algorithms
exist for this problem.

In [20], Java et al. suggest using Reverse PageRank as a heuristic for selecting the seed
influential active nodes. This is motivated by the fact that nodes with high Reverse PageRank
have short paths to many other nodes in the network, and moreover they are frequently the only
gateways to these other nodes. Note that Reverse PageRank can be approximated in almost
linear time for graphs on which it convergence quickly. Reverse PageRank can also be locally
approximated as already shown above.

Experimental results. To demonstrate this method we ran experiments on the network of
friendship links from the site LiveJournal3, constructed from a crawl of this site performed in
February 2006, as our data. Each node in LiveJournal corresponds to a user who has made his
or her blog public through the site; each user can also declare friendship links to other users.
These links are the edges of the social network. The data contains 3.5 million nodes and 47
million edges.

We compare a number of strategies for choosing an initial seed set of k nodes: k random
nodes, the top k Reverse PageRank nodes, the top k PageRank nodes, and the k nodes of
highest out-degree. For simplicity, we assume that every node that is reachable from a seed
by a short path eventually becomes active (this is indeed a property shared by most of the
probabilistic models for influence propagation).

For each seed selection method and for varying values of k and i, we measured the (relative)
size of Gi, where Gi is the set of nodes reachable from the k seeds by paths of length at most
i. We view Gi as the set of nodes that become active. As can be seen in Figure 10, our
results reconfirm the observations of Java et al. Reverse PageRank outperforms all the other
strategies we studied. Surprisingly, Reverse PageRank even defeats the out-degree measure for
G1. This can be attributed to the fact Reverse PageRank tries not only to find nodes with high
out-degree, but also nodes that lead to other nodes that cannot be reached from elsewhere.

3http://www.livejournal.com. We used the same crawl that was used in [2].

25

0 2000 4000 6000 8000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Size of seed set

F
ra

c
ti
o
n
 o

f
re

a
c
h
e
d
 n

o
d
e
s

RPR
Random
PageRank
Out−Degree

(a) G
1 - Reachable nodes at distance 1.

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

Size of seed set

F
ra

c
ti
o
n
 o

f
re

a
c
h
e
d
 n

o
d
e
s

RPR
Random
PageRank
Out−Degree

(b) G
2 - Reachable nodes at distance 2.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Size of seed set

F
ra

c
ti
o

n
 o

f
re

a
c
h

e
d

 n
o

d
e

s

RPR
Random
PageRank
Out−Degree

(c) G
4 - Reachable nodes at distance 4.

Figure 10: Influence in Social Networks - LiveJournal nodes reachable at varying distances from
seed nodes.

26

7.2 Hub web pages

There are a number of reasons for users to prefer navigation as a search tactic, as opposed to
using direct search: difficulty in formulating appropriate queries, broad search tasks, and need
to understand the surrounding context.

The notion of hub web pages was first introduced by Kleinberg in the framework of the HITS
algorithm [27] as means for ranking search results. Kleinberg defined the hub score of a page
as the sum of the authority scores of the pages it links to, where authoritativeness represents
the relevance of the page to the search topic. In [15], Fogaras suggested using (topic-sensitive)
Reverse PageRank for measuing hub scores. In some sense, this generalizes Kleinberg’s measure,
as pages with high Reverse PageRank tend to have short paths (of length possibly greater than
1) to many authorities. Fogaras experimented with his techniques on a crawl of the .ie (Ireland)
country domain.

Recently, Pandit and Olston [33], proposed navigation-aided retrieval as a new mode re-
trieval, where the search engine does not necessarily return the most relevant documents, but
rather the best starting points for navigation that will eventually lead to the desired relevant
documents. We observe that the more general definition of hub web pages, due to Fogaras,
seems very suitable in this scenario, as pages with high topic-sensitive Reverse PageRank pages
lead to many relevant documents via short paths.

Experimental results. In order to gauge the quality of Reverse PageRank as a hub scoring
measure, we built a meta-search engine over Yahoo! Search. Given a user query, we submitted
the query to Yahoo! Search, using their developer API4, calculated the Reverse PageRank of
the top 100 matches using the local Reverse PageRank algorithm, and sorted the results by the
Reverse PageRank values. To measure in-degrees of pages in the local Reverse PageRank algo-
rithm, we used the Yahoo! Search API again. When expanding the subgraph around the target
node, we considered only pages that contain the search terms. Thus, in effect we calculated the
Reverse PageRank not on the whole web graph, but rather on the graph spanned by pages that
contain the search terms.5

Figures 11 and 12 present our results for several broad-topic queries. We compared the
original Yahoo! Search results with the Reverse PageRank sorted results. Figure 11 shows
the top 20 results for the query “computer scientists”. The results that were classified as
hubs (see the classification heuristic below), are shaded. Among the top 20 original Yahoo!
Search results, only results 1 and 8 are hubs. On the other hand, among the top 20 Reverse
PageRank results, results 1,2,3,10,16,19, and 20 were classified as hubs. For example, the first
and the third results are articles in http://www.answers.com and http://en.wikipedia.org

that link to many other related articles (ranked as 39 and 1 by Yahoo!), and the second result
(http://ei.cs.vt.edu/∼history/people.html) is a hub of many computer scientists (ranked
as 24 by Yahoo!).

Figure 12 depicts the fraction of hub results for the following queries 1. “computer scientists”
2. “global warming” 3. “folk dancing” 4. “queen Elizabeth”. For each query, we counted the
number of hub results among the top 20 results. To classify whether a page is a hub or not, we
used the following heuristic: a page p is a hub, if at least 5 of its out-neighbors that are not in
the same domain contain the search terms. As can be seen, the fraction of hub results is higher
in the Reverse PageRank ranking for all queries.

Remark: Note that Yahoo! generally tries to optimize the ”authoritativeness” of the top
ranking results, rather than their hub scores, so it is not surprising the density of hubs in its

4http://developer.yahoo.com.
5Strictly speaking, this not entirely correct, as the in-degrees returned by Yahoo! take into account also pages

that do not contain the search terms.

27

���✁✂✄☎�✆✝☎✁✞✟✠
✡☛✟☞✌✞✡✞✟✠☞✍☛✆✝✎☎✞✌✆✄✞✆���✁✆

✏✏
✁✟✝✑

✡✒✓✡✔✌✕✆✟✡✖✓✗✗
✘
✙✔✙

✘
✞✂☎✆☎✡✚✛✛✜✛✜✚✢

✘
✄✣

✘
☞✝✟✑✂✞✂✕

✘
✂✠✌✞✍☎✁

✤☛✠✥✦✧

���✁✞☎✁✍✞
✥✂✁✆

✕✍✡���✁✂✠✂★✟✄✁✞✟✠
✡✩✌✄✆✂✝✎✗✥✑✆✪✝✂✎✏✟✝✎✫✟✠☞✍☛✆✝✎✬✞✌✆✄☛✌☎☛☎✡✥✠✡✚✭✚✮✯✰✯✗✗✱✲✳✬✴✵

���✁✞✂✝✆✆✝☎☞✝✆☞✁✞✟✠
✡✤☛✠✥✡✌☛

✘
✆✄✑✁

✤☛✠✥✄✆�☎✁✞✟✠✁✞✟✠
✡✫✟✠☞✍☛✆✝✶☎✞✌✆✄☛✌☎☛☎✶☎✥✂✠✶✆✎✷✟☛✌✄✑✶✠✂✞✤✌✄✆☎✡✚✜✜✛✎✜✛✚✸✘

✯✎
✹✯✸✱✺✱✢

✁
✤☛✠✥

✴✻

���✁✂☞☞
✥✆✁✞✟✠

✡✆✕✍✞✂☛✌✟✄✡✤✆✕✡☎✞✌☛✆✞✤✡✞✟✠☞☎✞✌✁
✤☛✠✥���✁✂✠✂★✟✄✁✞✟✠

✡☎✼✌✆✽✾✿✰✸❀✌✄✕✆❁✽✪✟✟❂☎❀✏✌✆✥✕✎
❂✆✣�✟✝✕☎✽✫✟✠☞✍☛✆✝✶☎✞✌✆✄☛✌☎☛☎❀☞✂✑✆✽✜

✴❃

✕✠✟★✁✟✝✑
✡✫✟✠☞✍☛✆✝☎✡✫✟✠☞✍☛✆✝

✘
✬✞✌✆✄✞✆✡✓✆✟☞✥✆✡���✁☎✆✞✍✝

✌☛✣✏✟✞✍☎✁✞✟✠
✡✄✆�☎✡✜✜✱✚✜✼✝✆✏✽✝☎☎✴❄

���✁✄☎✂✁✑✟✷
✡✞✂✝✆✆✝☎✡✞✂✝✆✆✝☎

✘
✹
✁✞
✏✠✞✟✠☞✍☛✆✝☎✞✌✆✄✞✆✁

❅✪☞✍✪✁✞✟✠
✡✠✂☛✤✏✟✝✞☎✡✴❆

❅✟✤✄✁✝✆✑✆
✤✝✁✟✝✑

✡✝✆✂✕✌✄✑
✘
✥✌☎☛✡✂✞✂✕✆✠✌✞☎✁✍

☛✆☞✁✆
✕✍✡✙✆✏✂✍✥☛✁✂☎☞❁

✼☛✂✪✌✕✽✯❇✜✱✯✴❈

���✁☞
✤✣☎✟✝✑✁✞✟✠

✡✄✆�☎✸✱❇❇✺✯✺✺✁
✤☛✠✥���✁✠✂☛✤✁✍

☛✆☞✁✆
✕✍✡✠✂☛✤✠✂❅✟✝✡✞☎✡✤✟✠✆✁

✤☛✠✥✴❉

���✁✂✠✂★✟✄✁✞✟✠
✡✩✌✄✆✂✝✎✗✥✑✆✪✝✂✎✏✟✝✎✫✟✠☞✍☛✆✝✎✬✞✌✆✄☛✌☎☛☎✡✥✠✡✚✭✚✮✯✰✯✗✗✱✲✳✬���✁✞☎✁☞✍✝

✕✍✆✁✆
✕✍✡✤✟✠✆☎✡✕✆✞✡✆☎☎✂✣✁✞✝

✌☛✌✞✌★✆✁
✤☛✠✥✴✦

���✁
✪✥☎✁✑✟✷

✡✟✞✟✡✟✞✟☎✛✱✚✁
✤☛✠���✁✂☞☞

✥✆✁✞✟✠
✡✆✕✍✞✂☛✌✟✄✡✤✆✕✡☎✞✌☛✆✞✤✡✞✟✠☞☎✞✌✁

✤☛✠✥✴✴

✤✤☛☞❊✡✡���✁✠✂☛✤✁
✪✍✏✏✂✥✟✁✆

✕✍✡✠✂✕✡✞✟✠☞✍☛✆✝✎☎✞✌✆✄✞✆✡✌✄✕✆❁✁
✤☛✠✥���✁

✌✪✌✪✥✌✟✁✟✝✑
✡✟✪☞✡☛✤✌✄❂✫✬☞✣✡✴✧

���✁✠✂☛✤✁✍
☛✆☞✁✆

✕✍✡✠✂☛✤✠✂❅✟✝✡✞☎✡✤✟✠✆✁
✤☛✠✥���✁

✪✥☎✁✑✟✷
✡✟✞✟✡☞✝✌✄☛✡✟✞✟☎✛✱✚✁

✤☛✠✵

���✚
✁
❅✟✪☛✝✂❂✁✞✟✠

✡✤✆✥☞
✘
✠✂✄✍✂✥☎✡✟✍☛✥✟✟❂✡✟✞✟☎✛✱✚✁

✤☛✠✥���✁✞☎✁✍✞
✥✂✁✆

✕✍✡✻

���✁✆✍✝✆
❂✂✥✆✝☛✁✟✝✑

✡☞✍✪
✘
✝✆✥✆✂☎✆☎✡✚✛✛✢✎✜✚✡❅✤✍✎✞☎✍✜✚✛❇✛✢✁☞

✤☞���✁
☛✤✆✏✝✆✆✕✌✞☛✌✟✄✂✝✣✁✞✟✠

✡✞✟✠☞✍☛✆✝✶☎✞✌✆✄☛✌☎☛❃

✆✄✞✂✝☛✂✁✠☎✄✁✞✟✠
✡✆✄✞✣✞✥✟☞✆✕✌✂

✘
❇✢✜✹✢✯✸✢✯

✘
✚✡✫✟✠☞✍☛✆✝

✘
✬✞✌✆✄✞✆✁

✤☛✠✥���✚
✁
❅✟✪☛✝✂❂✁✞✟✠

✡✤✆✥☞
✘
✠✂✄✍✂✥☎✡✟✍☛✥✟✟❂✡✟✞✟☎✛✱✚✁

✤☛✠✥❄

✥✌✪✝✂✝✣✁
☛✤✌✄❂❋✍✆☎☛✁✟✝✑

✡●✛✜✜✯✚❇✱✡✞✟✠☞✍☛✆✝
✘
☎✞✌✆✄☛✌☎☛✁

✤☛✠✥✌✪✝✂✝✣✁
☛✤✌✄❂❋✍✆☎☛✁✟✝✑

✡●✛✜✜✯✚❇✱✡✞✟✠☞✍☛✆✝
✘
☎✞✌✆✄☛✌☎☛✁

✤☛✠❆

���✁�✟✝✥✕�✌✕✆✥✆✂✝✄✁✞✟✠
✡✟✄✥✌✄✆✎✠✂☎☛✆✝✡✞✟✠☞✍☛✆✝✎☎✞✌✆✄✞✆✎✕✆✑✝✆✆✁

✤☛✠✆✄✁�
✌❂✌☞✆✕✌✂✁✟✝✑

✡�✌❂✌✡●✟✤✄
✘
✖✞✫✂✝☛✤✣

✘
❍✞✟✠☞✍☛✆✝

✘
☎✞✌✆✄☛✌☎☛■❈

✆✄✁�
✌❂✌☞✆✕✌✂✁✟✝✑

✡�✌❂✌✡✫✟✠☞✍☛✆✝
✘
☎✞✌✆✄☛✌☎☛���✁✄☎✂✁✑✟✷

✡✞✂✝✆✆✝☎✡✞✂✝✆✆✝☎
✘
✹
✁✞
✏✠❉

✆✌✁✞☎✁✷
☛
✁✆
✕✍✡❏✤✌☎☛✟✝✣✡☞✆✟☞✥✆✁

✤☛✠✥���✁
✪✥☎✁✑✟✷

✡✟✞✟✡✟✞✟☎✛✱✚✁
✤☛✠✦

���✁✂✄☎�✆✝☎✁✞✟✠
✡☛✟☞✌✞✡✞✟✠☞✍☛✆✝✎☎✞✌✆✄✞✆✆✄✁�

✌❂✌☞✆✕✌✂✁✟✝✑
✡�✌❂✌✡✫✟✠☞✍☛✆✝

✘
☎✞✌✆✄☛✌☎☛✴

❑▲❑▼◆❖PP◗

Figure 11: Results for the query “computer scientists” according to Yahoo! Search and Reverse
PageRank ranking.

�

�
✁
✂

�
✁
✄

�
✁
☎

�
✁
✆

�
✁
✝

�
✁
✞

�
✁
✟

�
✁
✠

�
✁
✡

✂

✂ ✄ ☎ ✆

☛☞✌✍✎✌✏

✑
✒
✓
✔✕
✖
✗
✘
✗✙
✚
✛
✜
✢

✣✤✣✥✦✧★★✩

✥✦✧★★✩

Figure 12: Fraction of hubs in the top 20 results for the queries: 1. “computer scientists” 2.
“global warming” 3. “folk dancing” 4. “queen Elizabeth”.

28

top results is not very high. The comparison made above just tries to demonstrate that the
RPR-induced ranking indeed promotes hubs over authorities.

7.3 Finding crawl seeds

Discoverability of the web. Motivated by the fast pace of web growth and the need of
crawlers to discover new content quickly, Dasgupta et al. [10] have recently posed the following
question: how can a crawler discover as much new content as possible, while incurring as little
“overhead” as possible? Dasgupta et al. formally define the overhead of a crawler to be the
average number of old pages it needs to refetch per new pages being discovered. Formally, if
the crawler refreshes a set S of “seed” pages previously crawled, resulting in a set N(S) of
new pages being discovered, then the overhead is |S|/|N(S)|. Dasgupta et al. present crawling
algorithms that ensure low overhead and analyze them theoretically and empirically.

Selecting seeds using Reverse PageRank. We show that RPR is an effective strategy for
finding good seeds. Our algorithm simply chooses the nodes with highest Reverse PageRank
values to be the seed set. The intuition behind this is the following. A page p has high RPR if
many pages are reachable from p by short paths, and moreover these pages are not reachable
from many other pages. Thus, by selecting p as a seed, we benefit from discovering many
new pages without doing too many fetches (because the paths leading to them are short) and
furthermore these new pages are not “covered” by other potential seeds. Assuming the web
graph does not change drastically between two crawls, we can predict the Reverse PageRank of
the nodes in the new graph by calculating RPR on the already known sub-graph.

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of seeds

F
ra

c
ti
o

n
 o

f
n

e
w

 p
a

g
e

s
 d

e
s
c
o

v
e

re
d

RPR

Random

Out−Degree

PR

(a) Fraction of the new pages discovered by the
crawler versus the number of seeds.

0 10 20 30 40 50
0

20

40

60

80

100

120

140

Number of seeds

O
v
e

rh
e

a
d

RPR
Random
Out−Degree
PR

(b) Overhead versus the number of seeds.

Figure 13: 4-level BFS crawl.

Experimental results. To evaluate this seed selection strategy, we used two 1 million page
Stanford WebBase crawls6. The two crawls are of the same sites and were conducted one week
apart in May 2006. The later crawl consists of 132,000 new pages. We compared four seed
selection strategies: the k pages with highest RPR scores, the k pages with highest PR scores,
the k pages with largest out-degree, and k random pages. We chose the seeds from the nodes of
the first crawl and performed a BFS traversal for t levels starting from these seeds on the second
crawl. Figure 13 shows the results for t = 4. We can see that RPR performs significantly better

6http://www-diglib.stanford.edu/∼testbed/doc2/WebBase.

29

than the rest of the strategies, discovering more than twice new content with less overhead
compared to any other strategy.

7.4 Measuring semantic relatedness

Semantic relatedness indicates how much two concepts are related to each other. Semantic
relatedness is used in many applications in natural language processing, such as word sense dis-
ambiguation, information retrieval, interpretation of noun compounds, and spelling correction
(cf. [38]).

In the experiments below, we focus on measuring semantic relatedness between concepts
represented as nodes in the Open Directory7 taxonomy. Given two nodes in ODP, we wish to
find the relatedness between the concepts corresponding to these nodes. Note that the ODP is
a directed graph, whose links represent an is-a relation between concepts. Thus two concepts
should be related if the sets of nodes that are reachable from them are “similar”.

Previously, Strube and Ponzetto [38] used Wikipedia for computing semantic relatedness.
Given a pair of words w1 and w2, their method, called WikiRelate!, searches for Wikipedia
articles, p1 and p2 that respectively contain w1 and w2 in their titles. Semantic relatedness
is then computed using various distance measures between p1 and p2. Also the ODP was
previously used to measure semantic relatedness by Gabrilovich and Markovitch in [16]. The
authors used machine learning techniques to explicitly represent the meaning of any text as a
weighted vector of concepts. We show that (personalized) Reverse PageRank can be also used
to measure semantic relatedness. Note that to this end we do not use any textual analysis of
the taxonomy, only its graph strucrure.

Given two nodes x, y in the ODP graph, we compute two personalized Reverse PageRank
vectors RPRx and RPRy. RPRx is the personalized Reverse PageRank vector of the ODP graph
corresponding to a personalization vector that has 1 in the position corresponding to x and 0
everywhere else. Note that for a node a, a high value of RPRx(a) implies there are many shorts
paths from x to a yet a is not reachable by short paths from many other nodes. This implies a
is a prominent sub-concept of x and it is not a prominent sub-concept for (many) other nodes.
Thus, the vector RPRx represents x by the weighted union of its sub-concepts.

We evaluate two alternative techniques for using these vectors in measuring semantic re-
latedness: (1) Reverse PageRank: the measure of y as a sub-concept of x is the score RPRx(y)
and the measure of x as a sub-concept of y is the score RPRy(x); (2) Reverse PageRank simi-
larity: two concepts will be similar in case they have significant overlap between their Reverse
PageRank vectors. Therefore, the similarity between x and y is the cosine similarity between
the vectors RPRx and RPRy. At first glance, RPR similarity seems more accurate than RPR,
but RPR has a computational advantage since we can calculate RPRx(y) by using the local
approximation algorithm. In our experiments we compare the quality of these two measures.

An alternative graph-based approach for finding related nodes in a graph is the cocitation
algorithm [11]. Two nodes are cocited if they share a common parent. The number of common
parents of two nodes is their degree of cocitation. This measure is not suitable for us, since parent
sharing is quite rare on the ODP. Another graph-based measure of semantic relatedness is the
path-based measure [35], which defines the semantic distance (inverse of relatedness) between
two nodes as the length of the shortest path between them in the graph.

Experimental results. We base our experiment on a 110, 000 page crawl of the ODP. First,
we wanted to verify that the reverse ODP graph admits the two conditions that allow efficient
local PageRank approximation. We analyzed the Reverse PageRank convergence rate and saw

7http://www.dmoz.org.

30

that more than 90% of the nodes converged in less than 20 iterations. The maximum out-degree
of the graph was 2745.

To evaluate the semantic relatedness measures, we chose a collection of concepts (“main
concepts”) from the ODP and ranked another collection of concepts (“test concepts”) according
to their relatedness to the main concepts. We used three methods for measuring relatedness:
Reverse PageRank, Reverse PageRank similarity, and inverse path-based. Table 14(a) shows
the ordering of the test concepts by relatedness to the main concept “Einstein” using each one
of the techniques. Table 14(b) shows a similar comparison for the main concept “ice climbing”.

�✁✂✁✄☎✆✝✞✞✟�✁✂✁✄☎

✠✡☛✝☞✁✌✍✡✎�✁✂✁✄☎✆✝✞✞✟

✏✁✑✟☛✂✏✡✟✒✟✑✓✑✝✍✡✂�✍✟✍✡✔✕✍✟☛✖

✗✁✎☛✂✗✟✎✕✕✕✑✍✡✎✑✡✍✏✁✑✟☛✂✏✡✟✒✟✑

✕✍✟☛✖✕✍✟☛✖✠✡☛✝☞✁✌✍✡✎

✘✡✙✍✁✑
✚
✕✔✟✟☞✏✁✑✟☛✂✏✡✟✒✟✑✕✑✍✡✎✑✡✍

✆✛✖✔✝☞✔✠✡☛✝☞✁✌✍✡✎✗✁✎☛✂✗✟✎✕✕

✓✑✝✍✡✂�✍✟✍✡✔✜✒✎✝☞☎☛✍☎✎✡✓✑✝✍✡✂�✍✟✍✡✔

✆✝✞✞✟✗✁✎☛✂✗✟✎✕✕✜✒✎✝☞☎☛✍☎✎✡

✆✛✖✔✝☞✔✆✎✝✞✡✘☎☞☛✡✟✎✘☎☞☛✡✟✎

✘☎☞☛✡✟✎✆✛✖✔✝☞✔✘✡✙✍✁✑
✚
✕✔✟✟☞

✕✑✍✡✎✑✡✍✆✛✖✔✝☞✔✆✎✝✞✡✆✛✖✔✝☞✔

✜✒✎✝☞☎☛✍☎✎✡✘✡✙✍✁✑
✚
✕✔✟✟☞✆✛✖✔✝☞✔✆✎✝✞✡

✢✝✑✔✍✡✝✑
✚
✜☛✣✡✎✍✢✝✑✔✍✡✝✑

✚
✜☛✣✡✎✍✢✝✑✔✍✡✝✑

✚
✜☛✣✡✎✍

✤✥✦✧★
✩✥✪✫✬✭✤✭✪✮✯✮✰✥✱✮✦✲✭✤✭

(a) Relatedness to “Einstein”.

�✁✂✁✄☎✆✝✞✟✠✄✡☛✠✝✡☎✠☞✞✌

✆✝✞✟✠✄✡☛✠✝✡☎✠☞✞✌✍✎☎✠

✍✎☎✠✏✠✝✡✞✄✁✄☎✆✝✞✟✠✄✡

✑✎✒✄✓✠✁✄✞✞✝✁✄☎✍✎☎✠✔✎☎✌

�✒✄✓✁✄☎✕✠✌✞✖✠✟✟✏✠✝✡✞✄✁✄☎

✔✎☎✌✔✎☎✌☛✠☞✗✁✄☎

☛✠✝✡☎✠☞✞✌☛✠☞✗✁✄☎✕✠✌✞✖✠✟✟

✏✠✝✡✞✄✁✄☎✘✁✌✙✁✄☎✘✁✌✙✁✄☎

✘✁✌✙✁✄☎�✒✄✓✁✄☎�✒✄✓✁✄☎

✕✠✌✞✖✠✟✟�✁✂✁✄☎�✁✂✁✄☎

✚✎✛✂✛✟✁☞✖✁✄☎☛✟✁☞✖✁✄☎✚✎✛✂☛✟✁☞✖✁✄☎

☛✠☞✗✁✄☎✑✎✒✄✓✠✁✄✞✞✝✁✄☎✑✎✒✄✓✠✁✄✞✞✝✁✄☎

☛✟✁☞✖✁✄☎✚✎✛✂☛✟✁☞✖✁✄☎☛✟✁☞✖✁✄☎

✆✛✞✛✟✁☞✖✁✄☎✆✛✞✛✟✁☞✖✁✄☎✆✛✞✛✟✁☞✖✁✄☎

✜✢✣✤✥
✦✢✧★✩✪✜✪✧✫✬✫✭✢✮✫✣✯✪✜✪

(b) Relatedness to “Ice climbing”.

Figure 14: Test concepts ordered by their relatedness to a main concept.

As can be seen from the results, the Reverse PageRank-based rankings were much better than
the path-based ranking: while the path-based measure ranked “Agriculture” and “Internet” as
very related concepts to “Einstein”, both our measures ranked “physics prize” and “Newton,
Issac” on the top of the list. For the “ice climbing” concept, the path-based measure ranked
“Basketball” and “Card game” before “Mountaineering” and “Hiking”, while both of them were
ranked high by the RPR measures. We can also see from the experiment that the quality of
RPR measure is almost the same as RPR similarity measure, which means we can use the local
approximation algorithm to find semantic relatedness.

In the second experiment, we used human judgments extracted from the standard dataset
WordSimilarity-353 [14], to evaluate the quality of the relatedness measures on the ODP graph.
This test collection, available on the web8, contains English word pairs along with human-
assigned similarity judgments. For the terms “Computer” and “Seafood”, which appear as
nodes at the ODP taxonomy, we selected from the WordSimilarity-353 dataset all the pairs
one of whose terms was “Computer” or “Seafood” and whose other term was also a node in
the ODP taxonomy. We then compared the ranking induced by the human judgments on these
other terms with the semantic relatedness scores produced by Reverse PageRank-based rankings
and the path-based measure. The results, depicted in Tables 15(a) and 15(b), show the rankings
obtained under each of the above techniques, as well as their correlation with the human-based
ranking (using the Kendall-Tau coefficient). As it can be seen from the tables, the Reverse
PageRank measures have strong correlation with the human judgments, while the path-based
method does not.

8http://www.cs.technion.ac.il/∼gabr/resources/data/wordsim353/wordsim353.html.

31

��✁✂
✄✁
✂
✄✁

✂
☎✁
✂
☎✁

✂
☎✁
✂
☎

✆✝✞✟✠✝✟✞✡✟☛☞✌✍✎✏✠✍✞✏✠✑✡✟☛☞✒✓✔
✓✕✖

✗✏✘✞☛✍✠✟✌✍✎✏✠✍✞✏✠✑✡✟☛☞✌✍✎✏✠✍✞✏✠✑✒✙✔
✕✚✖

✡✟☛☞✛✟✑✎✏✍✠✜✛✟✑✎✏✍✠✜✆✝✞✟✠✝✟✞✒✕✔
✙✢✖

✛✟✑✎✏✍✠✜✆✝✞✟✠✝✟✞✆✝✞✟✠✝✟✞✛✟✑✎✏✍✠✜✒✕✔
✣✚✖

✌✍✎✏✠✍✞✏✠✑✗✏✘✞☛✍✠✟✗✏✘✞☛✍✠✟✗✏✘✞☛✍✠✟✒✚✔
✣✖

✤✥✦✧★✩✥✪✫✬✭✤✭✪✮✯✮✰✥✱✮✦✲✭✤✭✳✴✯✥✵
✶✴✬✷✫✯✫✵✦

(a) Relatedness to “Computer”.

�
✁
✂✂�
✁
✂✂✄✄✄✄

☎✆✝✞✟✠✞✟✠✞✟✠✡☛☞
✌☛✍

✎✏✑✒✓✆✔✕✖✖✗✕✖✖✗✕✖✖✗✡✘☞
✙✌✍

✚✏✏✛✜✖✢✣✤✟✥✜✖✢✣✤✟✥✜✖✢✣✤✟✥✡✘☞
☛✍

✦✧★✩✪✫✧✬✭✮✯✦✯✰✭✱✧★✭✮✲✭✬✬✯✦✯✳✴✵✧✲

(b) Relatedness to “Seafood”.

Figure 15: Relatedness between concepts.

In future work, we plan to evaluate the Reverse PageRank measures on the more complex
wikipedia9 graph.

7.5 TrustRank

Another known use of Reverse PageRank is in the context of TrustRank, first introduced by
Gyöngyi et al. in [18]. The authors show that spam sites can be pushed down in PageRank
ordering if we personalize PageRank using a few trusted hub sites. The basic assumption
underlying TrustRank is that good pages usually point to good pages and seldom have links to
spam pages. Therefore, after convergence good sites will have relatively high trust scores, while
spam sites will have poor trust scores.

Note that TrustRank provides meaningful scores only to nodes that are reachable from the
trusted seeds. Therefore, it is desirable to choose seeds that have high “coverage”, i.e., ones from
which many other pages are reachable by short paths. For this reason, Gyöngyi et al. use Reverse
PageRank to choose the trusted seeds. They rank all web pages by their Reverse PageRank
scores and then manually pick among the top 1,250 the ones that seem indeed trusted.

8 Conclusions

In this paper we studied the limitations of local PageRank approximation. We showed that in
the worst-case Ω(

√
n) queries to the link server are needed in order to obtain a good PageRank

approximation. For deterministic algorithms, a stronger (and optimal) Ω(n) lower bound was
shown.

We identify two graph properties that make local PageRank approximation hard: abundance
of high in-degree nodes and slow convergence of the PageRank random walk. We show that
graphs that do not have these properties do admit efficient local PageRank approximation.

As the web graph has many high in-degree nodes, we conclude that it is not suitable for
local PageRank approximation. We validate this conclusion by empirical analysis over a large
crawl. We then show that the reverse web graph is amenable to efficient local PageRank
approximation, as it has bounded in-degree and it admits quick PageRank convergence. We
demonstrate empirically that the algorithm of Chen et al. [9] indeed performs much better on
the reverse web graph than on the web graph.

9http://www.wikipedia.org/.

32

Finally, we present two new applications of the Reverse PageRank measure: detecting good
seeds for crawling and measuring semantic relatedness between concepts in a taxonomy.

9 Acknowledgment

We wish to thank Lars Backstrom for letting us use LiveJournal crawl.

References

[1] S. Abiteboul, M. Preda, and G. Cobena. Adaptive on-line page importance computation.
In Proceedings of the 12th International Conference on World Wide Web (WWW), pages
280–290, 2003.

[2] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art thou r3579x?: anonymized
social networks, hidden patterns, and structural steganography. In Proceedings of the 16th
International Conference on World Wide Web (WWW), pages 181–190, 2007.

[3] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Sampling algorithms: Lower bounds and
applications. In Proceedings of the 33th ACM Symposium on Theory of Computing (STOC),
pages 266–275, 2001.

[4] P. Berkhin. A survey on PageRank computing. Internet Mathematics, 2(1):73–120, 2005.

[5] M. Bianchini, M. Gori, and F. Scarselli. Inside PageRank. ACM Transactions on Internet
Technology (TOIT), 5(1):92–128, 2005.

[6] M. Brinkmeier. PageRank revisited. ACM Transactions on Internet Technology (TOIT),
6(3):282–301, 2006.

[7] A. Z. Broder, R. Lempel, F. Maghoul, and J. O. Pedersen. Efficient PageRank approxima-
tion via graph aggregation. Information Retrieval, 9(2):123–138, 2006.

[8] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: A survey.
Theoretical Computer Science, 288(1):21–43, 2002.

[9] Y. Chen, Q. Gan, and T. Suel. Local methods for estimating PageRank values. In Proceed-
ing of the 13th ACM International Conference on Information and Knowledge Management
(CIKM), pages 381–389, 2004.

[10] A. Dasgupta, A. Ghosh, R. Kumar, C. Olston, S. Pandey, and A. Tomkins. The discov-
erability of the web. In Proceedings of the 16th International Conference on World Wide
Web (WWW), pages 421–430, 2007.

[11] J. Dean and M. R. Henzinger. Finding related pages in the World Wide Web. Computer
Networks, 31(11–16):1467–1479, 1999.

[12] S. Dill, R. Kumar, K. Mccurley, S. Rajagopalan, D. Sivakumar, and A. Tomkins. Self-
similarity in the web. ACM Transactions on Internet Technology (TOIT), 2(3):205–223,
2002.

[13] P. Domingos and M. Richardson. Mining the network value of customers. In Proceedings
of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 57–66, 2001.

33

[14] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and E. Ruppin.
Placing search in context: the concept revisited. In Proceedings of the 10th International
Conference on World Wide Web (WWW), pages 406–414, 2001.

[15] D. Fogaras. Where to start browsing the Web? In Proceeding of the 3rd International
Conference on Innovative Internet Community Systems (I2CS), pages 65–79, 2003.

[16] E. Gabrilovich and S. Markovitch. Computing semantic relatedness using wikipedia-based
explicit semantic analysis. In Proceedings of the 20th International Joint Conferences on
Artificial Intelligence (IJCAI), pages 250–257, 2007.

[17] G. H. Golub and C. F. V. Loan. Matrix Computations. The Johns Hopkins University
Press, Baltimore, 2006.

[18] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Combating Web Spam with TrustRank.
In Proceeding of the 30th International Conference on Very Large Data Bases (VLDB),
pages 576–587, 2004.

[19] T. H. Haveliwala. Topic-sensitive PageRank: a context-sensitive ranking algorithm for web
search. IEEE Transactions on Knowledge and Data Engineering, 15(4):784–796, 2003.

[20] A. Java, P. Kolari, T. Finin, and T. Oates. Modeling the spread of influence on the
Blogosphere. Technical report, University of Maryland, Baltimore County, 2006.

[21] G. Jeh and J. Widom. Scaling personalized Web search. In Proceedings of the 12th Inter-
national Conference on World Wide Web (WWW), pages 271–279, 2003.

[22] S. Kamvar, H. Haveliwala, and G. Golub. Adaptive methods for the computation of PageR-
ank. Linear Algebra and its Applications, 386:51–65, 2004.

[23] S. Kamvar, T. Haveliwala, and G. Golub. Adaptive methods for the computation of pager-
ank, 2003.

[24] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub. Exploiting the block
structure of the Web for computing PageRank. Technical report, Stanford University, 2003.

[25] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social
network. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 137–146, 2003.

[26] D. Kempe, J. Kleinberg, and E. Tardos. Influential nodes in a diffusion model for social
networks. In Proceeding of the 32nd International Colloquium on Automata, Languages
and Programming (ICALP), pages 1127–1138, 2005.

[27] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM
(JACM), 46(5):604–632, 1999.

[28] C. Kohlschütter, P. A. Chirita, and W. Nejdl. Efficient parallel computation of PageRank.
In Proceedings of the 28th European Conference on Information Retrieval (ECIR), pages
241–252, 2006.

[29] G. Kollias and E. Gallopoulos. Asynchronous computation of PageRank computation in an
interactive multithreading environment. In Web Information Retrieval and Linear Algebra
Algorithms, 2007.

34

[30] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. The web and social networks.
Computer, 35(11):32–36, 2002.

[31] F. McSherry. A uniform approach to accelerated PageRank computation. In Proceedings
of the 14th International Conference on World Wide Web (WWW), pages 575–582, 2005.

[32] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing
order to the Web. Technical report, Stanford Digital Library Technologies Project, 1998.

[33] S. Pandit and C. Olston. Navigation-Aided Retrieval. In Proceedings of the 16th Interna-
tional Conference on World Wide Web (WWW), pages 391–400, 2007.

[34] J. X. Parreira, D. Donato, S. Michel, and G. Weikum. Efficient and decentralized PageRank
approximation in a Peer-to-Peer Web search network. In Proceeding of the 32th Interna-
tional Conference on Very Large Data Bases (VLDB), pages 415–426, 2006.

[35] R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and application of a metric on
semantic nets. IEEE Transactions on Systems, Man and Cybernetics, 19(1):17–30, 1989.

[36] M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral marketing. In
Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 61–70, 2002.

[37] M. A. Serrano, A. G. Maguitman, M. Boguñá, S. Fortunato, and A. Vespignani. Decoding
the structure of the WWW: A comparative analysis of Web crawls. ACM Transactions on
the Web (TWEB), 1(2), 2007.

[38] M. Strube and S. P. Ponzetto. WikiRelate! computing semantic relatedness using
Wikipedia. In Proceedings of the 21th National Conference on Artificial Intelligence
(AAAI), pages 1419–1424, 2006.

[39] Y. Wang and D. J. DeWitt. Computing PageRank in a distributed Internet search engine
system. In Proceeding of the 30th International Conference on Very Large Data Bases
(VLDB), pages 420–431, 2004.

35

