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Abstract 

This paper solves a type of Linear Ordering Problem (LOP) which arises in VLSI 

interconnect design. Let ( ) 2, :f x y →  be symmetric and 2Df ∈ , satisfying 

( ) ( ), , 0f x y x f x y x∂ ∂ ×∂ ∂ >  and ( )2 , 0f x y x y∂ ∂ ∂ < . The LOP solved comprises n 

objects, each associated with a real value parameter ,   1ir i n≤ ≤ , and a cost associated 

any two objects defined by ( ) ( ) ( ),   if  1,   1 ,i jf r r i j i j nπ π− = ≤ ≤ , and zero otherwise. 

We show that the permutation π  which minimizes the total cost ( ) ( )( )1
11

,n
i ii

f r rπ π
−

+=∑  is 

determined upfront by the relations between the parameter values ir . Such permutation is 

called “symmetric hill”. It generalizes a family of well known problems arising in 

interconnect design of VLSI circuits where objects are parallel wires and the cost reflects 

various design metrics such as delay, power consumption or cross-coupling noise. 

 

1. Introduction and motivation 

Let ( ) 2, :f x y →  be symmetric and 2Df ∈ , satisfying ( ) ( ), , 0f x y x f x y x∂ ∂ ×∂ ∂ >  

and ( )2 , 0f x y x y∂ ∂ ∂ < . In the rest of the paper ( ),f x y  will assume these properties 

without further mention. Let ( )1,..., nr r be a sequence of n real non negative numbers 

associated with n objects, let Π  be the set of all permutations { } { }: 1,..., 1,...,n nπ → , and 

we denote by ( ) ( )( )1 ,..., nr rπ π the sequence obtained by applyingπ to the original set. This 

paper explores the problem of finding *π ∈Π which minimizes the sum of costs defined 

for any two adjacent objects: 
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( ) ( ) ( )( )1
11

,n
i ii

F f r rπ ππ −

+=
= ∑ .                                                                                  (1) 

The problem in (1) is a type of Linear Ordering Problem (LOP) which is well known and 

used in economy and other applications. It has been studied extensively in the literature 

[1][2][3][4][5]. Given a n n×  matrix of weights ( )ijC c= , LOP aims at finding a 

permutation π  which maximizes the expression ( ) ( )
1

1 1

n n
i ji j i

cπ π
−

= = +∑ ∑ . LOP is NP-

complete. The cost in (1) is derived from a function of two variables satisfying  

( ) ( ), , 0f x y x f x y x∂ ∂ ×∂ ∂ >  and ( )2 , 0f x y x y∂ ∂ ∂ < .  It is  defined for two adjacent 

objects of the permutation, namely ( ) ( ) 1,   1 ,i j i j nπ π− = ≤ ≤ , and is zero otherwise. 

 

Equation (1) generalizes a family of well known VLSI interconnects design problems 

aiming at minimizing wire delay, dynamic power consumption and crosstalk noise. An 

interconnect model is shown in Fig 1. There, logic gates called drivers drive signals that 

propagate along interconnecting wires. These signals stimulate other logic circuits, called 

receivers, connected at the opposite end of the wires. Cross-coupling parasitic 

capacitance which is the dominant cause for delay, power consumption and crosstalk 

noise interference occurs only between adjacent wires. On both sides of the bus there are 

shielding wires connected to ground. The terms ( )1,i if r r+ in (1) result from the cross-

coupling capacitance, and they take the form 1i ir r++ in the above mentioned problems. 

The goal is therefore to determine the order of wires within the bus and obtain their 

adjacencies such that (1) is minimized. 

 

The authors of [6] claimed by intuition that different orderings of the signal wires in Fig. 

1 may yield different amounts of dynamic power consumption, and then proposed some 

monotonic order of the signals to reduce the power.  Similarly, the authors of [7] 

proposed an intuitive monotonic order aiming at reducing the noise interference. It was 

shown in [8] and [9] that both the total delay and power consumption occurring in the bus 

are governed by an expression of the form: 
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( ) 1
1 1 11
, ..., i n

n i i ni
F r r r r r r= −

+=
= + + +∑ .                                                                (2) 

The parameters 1,..., nr r are derived from the resistances of the drivers in Fig. 1 and the 

parameters of manufacturing process technology.  Notice that (2) is a special case of (1), 

We could add two objects such that 0 1 0nr r += = and then replace the first and last terms in 

right hand side of (2) by 0 1r r+ and 1n nr r ++ , respectively. 

 

The problem of how to permute the signals in the bus such that the expression in (2) is 

minimized was addressed in [8]. It was shown that for the square root function a 

“symmetric hill” order is optimal. This paper proves that the optimality of symmetric hill 

order exists for a broad range of functions, where square root is just a particular case. The 

technique of this proof can be used to derive different orders of objects (permutations) for 

different optimization objectives of interest. We’ll discuss this further in the concluding 

section. 

 

2. Minimizing a general objective function 

We assume without loss of generality that the original set of objects is ordered such 

that 1 2 nr r r> > > and associate the identity permutation ( )i iπ =  with the original 

sequence ( )1,..., nr r . Let us modify the equation in (1) for the sake of proof convenience 

into a cyclical sum as follows:  

( ) ( ) ( )( )( )1 mod1
,n

i i ni
F f r rπ ππ +=

= ∑ .                                                                          (3) 

This doesn’t change the original problem as we could add an artificial ( )1n th+  zero 

object. Assume further that n is odd, since if it was even we could add another zero 

object. In the rest of the discussion we’ll drop the modulo notation but keep in mind that 

summation is cyclical. 

 

Lemma 1: Let , ,   and  a b c d be nonnegative real numbers satisfying a b c d> > > . Then: 

( ) ( ) ( ) ( ), , , ,f a b f c d f a c f b d+ < + , and                                                                      (4) 
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( ) ( ) ( ) ( ), , , ,f a c f b d f a d f b c+ < + .                                                                             (5) 

Proof: Let the absolute value of 0  and  0h k< < be sufficiently small. It follows from 

Taylor’s formula that: 

( ) ( ) ( ) ( ) ( ) ( )2 2 2
2 2

2 2

, , , , ,1, ( , ) 2
2

f x y f x y f x y f x y f x y
f x h y k f x y h k h hk k

x y x x y y
⎡ ⎤∂ ∂ ∂ ∂ ∂

− − = − − + + +⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦
,  (6) 

( ) ( ) ( ) ( )2
2

2

, ,1, ,
2

f x y f x y
f x y k f x y k k

y y
∂ ∂

− = − +
∂ ∂

, and                                               (7) 

( ) ( ) ( ) ( )2
2

2

, ,1, ,
2

f x y f x y
f x h y f x y h h

x x
∂ ∂

− = − +
∂ ∂

.                                                      (8) 

 

Substitution of ,  ,  a x b y c x h= = = −  and d y k= − obtains ( ) ( ), ,f a b f x y= , 

( ) ( ), ,f c d f x h y k= − − , ( ) ( ), ,f a d f x y k= −  and ( ) ( ), ,f c b f x h y= − . Substitution of (6), 

(7) and (8) yields ( ) ( ) ( ) ( ), , , ,f a d f c b f a b f c d⎡ ⎤ ⎡ ⎤+ − + =⎣ ⎦ ⎣ ⎦  ( )2 ,
2 0

f x y
hk

x y
∂

<
∂ ∂

 

which proves (4). 

 

In order to prove (5) we substitute ,  ,  ,  a x b x h c y d y k= = − = = − and obtain 

( ) ( ), ,f a c f x y= , ( ) ( ), ,f b d f x h y k= − − , ( ) ( ), ,f a d f x y k= −  and ( ) ( ), ,f b c f x h y= − . 

Substitution of (6), (7) and (8) yields 

( ) ( ) ( ) ( ), , , ,f a c f b d f a d f b c⎡ ⎤ ⎡ ⎤+ − + =⎣ ⎦ ⎣ ⎦
( )2 ,

2 0
f x y

hk
x y

∂
<

∂ ∂
 which proves (5). ☻ 

 

Lemma 2: In any permutation *π ∈Π which minimizes (3) ( )* 2π and ( )* 3π must be 

adjacent to ( )* 1π  on its two opposite sides, namely ( ) ( ) ( ) ( )* * * *1 2 1 3 1π π π π− = − = , 

implying that the terms ( )1 2,f r r  and ( )1 3,f r r  must exist in the minimal sum: 

( ) ( ){ }* minF F
π

π π
∈Π

= .                                                                                                      (9) 
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Proof: Let *π  satisfy (9) and assume on the contrary that ( )* 2π is not adjacent to ( )* 1π , 

say ( ) ( )* *2 1 1π π> + . Consider the non empty subsequence ( ) ( )* *1 1,..., 2π π+ . Let us 

transform *π into **π by reverting (flipping) the order of the elements in that subsequence 

into ( ) ( )* *2 ,..., 1 1π π + . The element adjacencies in **π agree with *π except those 

interacting with ( )* 2π  and ( )* 1 1π + . Evaluating ( )**F π  and then subtracting 

from ( )*F π , all identical terms are canceled out except terms involving ( )* 2π  

and ( )* 1 1π + , yielding: 

( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )

* * ** **

* * * * * * * *

* **
1 11 1

1 1 1 2 2 1 1 1 2 1 1 2

0 , ,

, , , ,

n n
i i i ii i

F F f r r f r r

f r r f r r f r r f r r

π π π π

π π π π π π π π

π π + += =

+ + + +

> − = − =

+ − +

∑ ∑
. 

 It follows that  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )* * * * * * * *1 2 1 1 2 1 1 1 1 2 2 1, , , ,f r r f r r f r r f r r
π π π π π π π π+ + + ++ > + .                                  (10) 

 

On the other hand the initial setting 1 2 nr r r> > >  implies ( ) ( )* *1 1 1
r r
π π +

> , ( ) ( )* *1 2 1
r r
π π +

> , 

( ) ( )* *2 1 1
r r
π π +

>  and ( ) ( )* *2 2 1
r r
π π +

> . Setting ( )* 1
a r

π
= , ( )* 2

b r
π

= , ( ) ( ){ }* *1 1 2 1
max ,c r r

π π+ +
= and 

( ) ( ){ }* *1 1 2 1
min ,d r r

π π+ +
= , the conditions of Lemma 1 are satisfied and equation (4)  yields 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )* * * * * * * *1 2 1 1 2 1 1 1 1 2 2 1, , , ,f r r f r r f r r f r r
π π π π π π π π+ + + ++ < + , which contradicts (10).  Notice 

that the setting of c and d as max and min is allowed since f is symmetric. In conclusion 

there exists ( ) ( )* *1 2 1π π− = . 

 

It can be shown similarly that ( ) ( )* *1 3 1π π− = , where 3r and 2r  reside on the opposite 

sides of 1r . Notice that the cyclical order of the objects yields two subsequences in 

*π between ( ) ( )* *1   and 2  π π , and two between ( ) ( )* *1   and 3  π π , thus is enabling the 

selection of two disjoint subsequences for inversion. ☻ 
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Theorem 1: Let ( ) 2, :f x y →  be symmetric and 2Df ∈ , satisfying 

( ) ( ), , 0f x y x f x y x∂ ∂ ×∂ ∂ >  and ( )2 , 0f x y x y∂ ∂ ∂ < . Given ( )1,..., nr r  a sequence of n  

non negative real numbers satisfying 1 2 nr r r> > > , the permutation: 

( )*

1         is even
2
2          is odd
2

n i i
i

n i i
π

+ +⎧
⎪⎪= ⎨ + −⎪
⎪⎩

,                                                                                      (11) 

satisfies: 

( ) ( ) ( )( )*
11

min ,n
i ii

F f r rπ ππ
π +=∈Π

= ∑ .                                                                       (12) 

 

Proof: The proof follows by induction. We use the convention that in the cyclical order 

of the optimal permutation even indices are added one by one counterclockwise on one 

side of the maximal object 1r , while odd indices are added one by one clockwise on its 

opposite side. Since the sequence is cyclical, we set arbitrarily the 

value ( ) ( )* 1 1 2nπ = + , which is consistent with (11). Lemma 2 proved that ( )* 2π and 

( )* 3π must be adjacent to ( )* 1π on its two opposite sides. This also satisfies (11) since 

( ) ( )* 2 3 2nπ = + and ( ) ( )* 3 1 2nπ = − , obtaining the successiveness of ( ) ( )* *2 ,  1π π  

and ( )* 3π .  

 

Let p n<  be the smallest index of the original sequence for which ( )* pπ  does not 

satisfy (11). Assume without loss of generality that p is even. It follows from the initial 

setting that all even elements from 2r  to 2pr − satisfy 1 2 4 2pr r r r −> > > > .  In *π   they are 

positioned successively counterclockwise and satisfy ( ) ( ) ( ) ( )* * * *1 2 4 2p
r r r r
π π π π −

> > > >  by 

induction. Similarly, all odd elements between 3r  and 1pr −  satisfy 1 3 5 1pr r r r −> > > > in 

the initial setting, and are positioned by induction successively clockwise such 

that ( ) ( ) ( ) ( )* * * *1 3 5 1p
r r r r
π π π π −

> > > > .  
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Consider the non empty subsequence ( ) ( )* *2 1,...,p pπ π− + . Let us transform *π into 

**π by reverting (flipping) the order of the elements in the subsequence 

into ( ) ( )* *,..., 2 1p pπ π − + . As in the proof of Lemma 2 we’ll look at ( ) ( )* **F Fπ π− , 

which from the optimality of *π must be non positive, and then obtain a contradiction. 

 

There exist two cases. In the first case ( )* pπ and ( )* 1pπ − are not adjacent. This implies 

equation (4) of Lemma 1. Usage of same proof as in Lemma 2 yields ( ) ( )* **F Fπ π> , 

which contradicts *π being optimal. In the second case ( )* pπ and ( )* 1pπ − are adjacent, 

namely ( ) ( )* * 1 1p pπ π= − −  ( 1p −  is odd), so conditions of Lemma 2 are not satisfied. 

It follows however from the induction hypothesis 

that ( ) ( ) ( ) ( )( ) ( )* * * * *2 1 1 1 2 1p p p p p
r r r r r
π π π π π− − − − − +

> > = > . Setting ( )* 2p
a r

π −
= , ( )* 1p

b r
π −

= , ( )* 1 1p
c r

π − −
=  

and ( )* 2 1p
d r

π − +
= , yields a b c d> > > , so the situation of Lemma 2 is not satisfied and 

equation (5) holds. We conclude again that ( ) ( )* **F Fπ π>  which is a contradiction.☻ 

 

Figure 2 illustrates the symmetric hill optimal permutation proved by Theorem 1 to 

minimize the functional sum of cyclically ordered adjacent elements. It has one peak 

(maximum) and one valley (minimum) located oppositely to each other, while all 

elements are evenly distributed on both sides. 

 

3. Conclusions 

This existence of a solution for a family of LOP has been proven. In these problems the 

cost associated with any two objects obeys a very general functional form that was found 

useful in VLSI interconnect design. Only adjacent objects contribute to the total cost and 

their contribution depends on some function ( ),f x y  where x and y are values of a 

parameter of the objects. For a broad range of problems the optimal solution is obtained 

by a unique permutation of the objects called symmetric hill. This order can be derived 
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directly from the problem setting since it depends only on the given set of parameter 

values for the objects.  

 

The technique used in this paper can be applied to other objective functions, thus yielding 

different permutations. The authors believe that under the same functional requirements, 

LOP aiming at maximization will yield a monotonic jigsaw permutation, which is open 

for a proof. Furthermore, the idea that the cost associated with two objects satisfies some 

function may be applicable to other permutation problems such as quadratic assignment. 
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Figure 1: Typical VLSI interconnect bus. Drivers are shown on the left side and receivers 
on the right side. The bus is shielded on its two sides. A parasitic cross-coupling 
capacitance is incurring between any adjacent signals. 
 

 
Figure 2: Symmetric Hill Order. The largest elements reside at the hill, while the smallest 
ones reside at the valley. 
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