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Abstract 

The problem of optimal space allocation among interconnecting wires of 

VLSI chips, in order to minimize their switching power consumption is 

solved. Necessary and sufficient conditions for the existence of optimal 

space allocation are derived, stating that every wire must be in equilibrium 

of its line-to-line weighted capacitance density on its two opposite sides. 

Two proofs are presented, one based on convexity of the dynamic power 

objective, and another based on a graph representation of the problem. The 

notion of power density is introduced and it is proven that power is minimal 

if and only if its density is uniformly distributed across the entire layout. 

This condition is shown to be equivalent to all paths of the layout graph 

having the same length and all cuts having the same flow.  An 

implementation which has been used in the design of a recent commercial 

high-end microprocessor is presented, and implications on circuit timing are 

discussed. 

 

1. Introduction 

The power consumed by VLSI systems is a significant factor in the design of 

new microprocessors and other products. The main reason for increased 

power dissipation is the growing logic complexity, with integration of 

multiple computational cores on a single die. The dissipation of power has 

become a major concern because of the growing awareness to environmental 
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heating, the drive to deliver lighter mobile computers with longer battery 

life, and the emerging demand for very low power portable consumer 

electronic products.  Hence, new design methods for reducing power are 

sought by the industry, and every opportunity to contribute to the power 

saving is considered. 

 

Power reduction was addressed at various design levels [1][2], from 

architecture and system level through RTL synthesis, signal encoding, 

circuit implementation and layout implementation, which is the focus of this 

paper.  The interconnect power dissipated because of charging and 

discharging wire capacitances is a dominant component in processors [3]. A 

typical breakdown of dynamic power dissipation of a high-end 

microprocessor designed in 65 nanometer process technology is illustrated in 

Fig. 1, indicating that global wires at the top metal layers generate 20% of 

the total dynamic power, and half of this power is due to cross-coupling 

between adjacent wires at the same layer. We show in this paper how it can 

be significantly reduced by optimizing inter-wire spacing in the layout. 

 

Commercial routing tools and manual artwork of mask designers tend to 

produce congested wires. Tools and humans do not typically take advantage 

of the entire area available for layout implementation. This is quite natural, 

since routing is usually a sequential process. Therefore, the more area is 

saved at any routing step, the better is the chance to complete all required 

interconnections [4]. However, this approach results in non-uniform area 

utilization, leaving islands of “white areas” in the layout. Unfortunately, 

such inefficiency can be observed only after the routing job is done, as 

shown in Fig. 2. 
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Based on this observation, we propose to eliminate the white space by 

spreading-out wires in a post processing algorithm, thus increasing and 

balancing inter-wire spaces in order to reduce capacitances and save power. 

It is assumed that interconnects have already been routed (manually or by 

some CAD tool), and their relative location is not subject to any change. It is 

also assumed that wire widths have been set to satisfy signal delay and other 

design goals such as reliability.  

 

Design optimization by wire spacing has been discussed by many authors, 

for different purposes: Signal delay optimization [5] [6] [7] [8], power 

consumption minimization [9], cross-coupling noise reduction [10] [11] and 

yield enhancement [29], are just a few. The works in [9] [10] [11] address 

power minimization by local optimization. The optimization approach of 

this paper is somewhat reminiscent of that in [11] in the sense that they both 

rely on the convexity of line-to-line cross-coupling capacitance. However, 

unlike [11] which treats the problem locally, this paper looks at the entire 

layout at once, and finds a provable global optimal solution. 

 

The authors in [11] used convexity arguments to prove the existence of 

minimum cross-coupling noise of a single net, followed by an effective 

method to find that minimum without solving explicitly any cross-coupling 

noise equations. They further proposed improvement of noise immunity by 

local perturbations of signal wires. Cross-coupling noise, which is a “local” 

phenomenon, imposes a local optimization problem.  In contrast, dynamic 

power consumption is a cumulative effect, thus a global solution is required, 

which is the essence of this paper. Another difference is that the solution in 
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[11] is of two-dimensional routing and is suitable for channel and switchbox 

routing styles. This paper addresses the simultaneous optimization of the 

entire top-level microprocessor routing comprising many thousands of nets. 

Wire spacing optimization of the global routing layers in a processor is a 

collection of several, almost independent, one-dimensional problems. We 

take advantage of the one-dimensionality and the independency to obtain a 

robust and effective global optimization approach. 

 

The rest of the paper is organized as follows. In the next section the circuit 

and layout model is presented. A necessary and sufficient power 

minimization condition is proven in section 3. In section 4 a graph model of 

wire spacing and line-to-line capacitance is introduced, yielding a graph-

theoretical necessary and sufficient condition for global minimum power. 

The electrical meaning of this condition is discussed. Section 5 presents an 

algebraic solution of the problem based on the graph and network flow 

model. Section 6 presents an iterative algorithm that guarantees convergence 

to optimum. Results obtained for a recent high-end microprocessor designed 

in 65 nanometer process technology are presented in Section 7. Satisfaction 

of timing constraints and process technology design rules are discussed in 

section 8. 

 

2. Interconnect modeling assumptions 

The interconnecting wires of high metal layers typically run in alternating 

orthogonal directions, e.g. wires residing in even layers are vertical and 

wires in odd layers are horizontal, as shown in Fig. 3.  Sometimes wires 

going in the main layer direction are connected by short jogs in the 
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perpendicular direction. Such jogs are rarely used in high metal layers and 

they are ignored in the optimization discussion. 

 

The switching of signals between voltage levels corresponding to logic 0 and 

1 is the reason for dissipated interconnect power [12]. The interconnect 

power associated with a logic signal is proportional to its total capacitance 

and to its average amount of switching as compared to the clock signal, 

called the signal’s activity factor [13]. 

 

Spacing optimization is carried out at each layer independently of the other 

layers as follows: Let the vertical wires of an even layer be subject to 

optimization. Connectivity must be maintained under any horizontal shift of 

vertical wires. As shown in Fig. 3, shifting wires in one layer doesn’t affect 

spacing of the orthogonal wires in the layers above it and below it. Although 

the length of horizontal wires in layers 

l

1l −  and 1l +  may slightly 

change, their variations are assumed negligible for any practical 

consideration. Odd layers behave similarly. 

 

The fundamental model we use to derive optimal spacing conditions is 

shown in Fig. 4. There, a few wires run in parallel and the entire bundle is 

shielded on both sides by wires connected to power supplies, which are not 

allowed to move.  Shielding wires do not make logical transitions; hence 

they do not consume any power.   

 

Switching power consumed by a signal wire is associated with its 

capacitance to ground planes (representing the adjacent metal layers) and 

with line-to-line capacitance to other wires as shown in Fig. 4. We say that 
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two wires are "visible" to each other if they have some common span (See 

Fig. 5). For a given wire, only line-to-line capacitance to visible wires has 

influence on wire power. The progression of VLSI process technology has 

made this line-to-line term dominant over others [14] [15], and its 

importance is expected to grow in future generations [16]. The line-to-line 

capacitance between two adjacent wires is proportional to some power of 

their common span where they are "visible" to each other, and inversely 

proportional to some positive power of their space to each other [11]. 

 

Every signal iσ assumes some activity factor iα ranging from 0iα =  if it 

never switches (e.g., shields or power delivery network), to 1iα = , if it 

switches twice at every cycle (e.g., clocks). The power contributed by the 

line-to-line capacitance between iσ and jσ  depends on iα , 
jα and the 

Miller Coupling Factor (MCF) between iσ and jσ . According to Miller's 

theorem the simultaneous switching of two signals in identical and opposite 

directions yields MCF of 0 or 2, respectively, or -1 to 3 if worst-case 

transition slopes are assumed [30]. For calculating cumulative average 

power over many transitions, an average MCF of 1 is assumed. Under this 

assumption the power contributed by the line-to-line capacitance between 

iσ and jσ  is proportional to ji αα + .  

 

Let  be  vertical wires, where and are leftmost 

and rightmost shields and

0 1 1, ,..., ,n nI I I I + 2n+ 0I 1nI +

0 1 , 10, ,..., 0n nα α α α += =  their corresponding 

activity factors. A partial order is defined on wires as follows.  ≺ 0 ,..., nI I +1
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We say that if and  satisfy: 1) the intersection of their vertical 

span is non empty, 2) 

i jI I≺ iI jI

ix and jx , the abscissas of and , respectively, 

satisfy

iI iI

i jx x< , and and  are visible to each other. This is a left-to-right 

topological order of the wires, and in the rest of the paper we’ll assume that 

they are ordered. Wire spacing optimizations preserve the initial order of the 

wires. 

iI iI

 

We assume that the widths 0 1 ,, , ..., n nw w w w 1+ of the wires are predefined and 

thus are not subject to change in the optimization.  This assumption matches 

VLSI design practice, where wire widths are set very early in the design 

flow according to signal propagation delay goals. Optimal spacing, however, 

is more opportunistic and is addressed late in the design.  There, all 

interconnects are already implemented with their specified space, so the 

unused “white area” can be redistributed among wires in order to reduce 

their line-to-line capacitance.  

 

Let be the common span of  and in which they are visible to each 

other. If  and are not visible to each other is undefined, but for the 

mathematical discussion we set it to be identically zero. The span may 

consist of several segments since two wires can be visible and hidden from 

each other several times. The space 

ijl iI jI

iI jI ijl

ijl

j ix x−  between   and  is defined if 

and only if . It needs to satisfy the following constraint, which 

accounts for the predefined wire widths and the minimum wire spacing 

dictated by the process technology: 

iI jI

0ijl >
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( ) 2 ,      j i j i min i jx x w w S I I− − + ≥ ≺ .                                                    (1) 

 

Inequality (1) means that the order of two visible wires is not allowed to 

change and they must be apart of each other in at least , called minimum 

spacing rule. 

minS

 

The line-to-line capacitance associated with and is given by  ijc
iI

jI

( ) 2ij ij j i j ic l x x w w
γηκ ⎡= − − +⎣ ⎤⎦ .                                                                 (2) 

The factor depends only on process technology, while κ 1η ≥  and 1γ ≥ . 

Various papers used different values of η  andγ  . A setting of 1η =  and 1γ =  

is assumed in [17], [18] and [19].  Other authors use the setting 1η =  and 

1.34γ = [20] [21]. Similar to [11], the results of this paper are applicable for 

any setting of the above parameters. 

 

The total switching power ( )crossP x  resulting from line-to-line capacitance 

is therefore proportional to: 

( ) ( ) ( )
( )0 1 0 1 2

j i ijcross

j i ij

i n i j n i n i j n
j i j i

l
P x c

x x w w

η

γ

α α
α α κ

≤ ≤ < ≤ + ≤ ≤ < ≤ +

+
∝ + =

⎡ ⎤− − +⎣ ⎦
∑ ∑ ∑ ∑ .              (3) 

The goal is to find ( 1,..., nx x x= ) that minimizes (3). Recall that 0I and 

1nI + are fixed, hence we assume that 0 0x = and 1nx A+ = . 

 

3. Necessary and sufficient condition for minimal power 

Lemma 1: The minimum of (3) subject to (1) is global. 
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Proof: Let us define ( ) 2ij j i j is x x w w= − − +  to be the spacing between 

two visible wires.  Substitution ijs into (1) and (3) yields the following 

minimization problem: 

( )
0 1

minimize:    j i ij ij

i n i j n

l sη γκ α α
≤ ≤ < ≤ +

+∑ ∑ ,                                               (4) 

subject to:    ,    ij min i js S I≥ ≺ I ,                                                              (5a) 

                     ( ) 2 0,    ij j i j i i js x x w w I I− + + + = ≺ , and,                    (5b) 

                     0 ,    1ix A i< < ≤ ≤ n .                                                         (5c) 

The objective function (4) is convex (see appendix of [11]) and same are the 

constraints (5a)-(5c). Consequently there is one minimum which is global 

[22].☻ 

 

Consider now the abscissa ix of a wire whose width is . 

Denote its left and right visible wires by 

iI iw 1 i n≤ ≤

,

l

i jI and ,

r

i jI , respectively, where 

the superscript designates left and right sides of and in the subscript is 

varying. We use the same indexing notation for the corresponding abscissas, 

widths, lengths of wires overlap and activity factors. 

iI j

 

Let us ignore for the moment the requirement (5a) of minimum spacing, and 

replace it by , which still guarantees the partial order preservation in 

(5b). Although it is not feasible for VLSI layout, it simplifies the 

characterization of the optimal spacing yielding minimum power. We’ll 

0ijs >
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return to (5a) and take it into account in the real implementation of wire 

spacing. Formally, (5a) is replaced by 

0,    ij i js I I> ≺ .                                                                                      (5d) 

  

We may assume that there exist no  and iI I≺ j 0i jα α= = such that 

is enclosed (nested) iniI jI . Mathematically it creates an undefined 

solution (since then 0i jα α+ = , and the denominator of terms in (6) below 

can be arbitrarily small). However, if this was the case in layout, it means 

that there are two shielding wires residing one next to the other, while one is 

shielding completely the other. Consequently the smaller (nested) one is 

redundant and could be dropped. 

 

Theorem 1 (necessary and sufficient condition for minimal interconnect 

power): A necessary and sufficient condition so that the switching power 

expression in (4) is minimized subject to the constraints (5b)-(5d) is that 

every wire ,1iI i n≤ ≤ satisfies: 

( ) ( )
( )

( ) ( )
( )

, , , ,

1 1

, , , ,

l l r r

i j i i j i k i i k

l l r rj k
i i j i i j i k i i i k

l l

x x w w x x w w

η η

γ γ

α α α α
+ +

+ +
=

⎡ ⎤ ⎡− − + − − +⎣ ⎦ ⎣
∑ ∑

⎤
⎦

.                       (6) 

Summation on left and right hand sides of (6) is taken on all left and right 

visible wires, respectively. 

 

Proof: By substitution of (5b) into (4) it follows that the power consumed by 

wire  is proportional to: iI
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( ) ( )
( )

( ) ( )
( )

, , , ,

, , , ,

l l r r

i j i i j i k i i k

l l r rj j
i i j i i j i k i i i k

l l

x x w w x x w w

η η

γ γ

α α α α+ +
+

⎡ ⎤ ⎡− − + − − +⎣ ⎦ ⎣
∑ ∑

⎤
⎦

,                             (7) 

 

The minimum of (4) is obtained at an internal point of the 

region 0,    ij i js I I> ≺ , defined by (5d). Otherwise, there would be 

some . This however will result (4) going to infinity, hence not a 

minimum. 

0ijs =

 

Since the minimum is obtained at an internal point, and by lemma 1 the 

minimum is global, a necessary and sufficient condition to minimize (4) is 

that its derivative by the abscissa of every wire is zero. Differentiation of (7) 

by ix yields (6).☻ 

 

The physical interpretation of Theorem 1 is that it is necessary and sufficient 

for minimum interconnect power that every wire will be in equilibrium, 

where the sum of its left side weighted capacitors derivatives is equal to that 

of the right side. 

 

Notice that equilibrium property is preserved for any cross capacitance 

model that is a convex function of wires’ abscissas. If the model in (2) is 

replaced by a more general, then (6) will take the form: 

( ) ( ), , , ,

, ,

, ,

( , , ) ( , , )i i j i j i i k i kl r

i i j i i k

j ki j i k

C x x l C x x l

x x
α α α α

∂ ∂
+ = +

∂ ∂∑ ∑ , 

where  is the cross-capacitance function. ( , ,i j ijC x x l )
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Solving (6) for all wires together with the constraints (5b)-(5d) involves a 

large number of nonlinear equations and linear inequalities. Its solution for a 

typical VLSI layout can be very tedious. The next section presents two 

alternative solutions which address all nets simultaneously, yielding the 

optimal solution. 

 

4. Graph representation of power minimization 

This section presents a planar graph model of the problem, which projects 

the “local equilibrium” necessary and sufficient condition of Theorem 1 into 

a global consequence related to the entire layout. Such consequence leads 

into two different algorithms. The first is an algebraic solution. The other is 

a combinatorial iterative algorithm. Both of them yield the optimal solution. 

 

Let us build a wire visibility graph and show how minimal power 

consumption can be captured by satisfaction of some properties of that 

graph. Spacing visibility graph ( , , )G U E ξ is a directed graph whose 

verticesU correspond to wires and arcs E correspond to spacing between 

wires visible to each other. An arc Ee ij ∈  connecting with 

exists if ( is residing left to and they are visible to each 

other, namely  and ). In this definition is a planar directed 

acyclic graph having one source and one sink

Uu i ∈

Uu j ∈ i jI I≺ iI jI

0ijl > 0ijs > G

0u 1nu + , corresponding to 

and0I
1nI + , respectively. The blue vertices and arcs in Fig. 5 illustrate the 

graph overlaying the original layout. 
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An arc is assigned with the real positive numberije ( ) 2ij ij i js w wξ = + +  

which is the distance between the centerlines of andiI
jI . In this setting, 

the length of all paths from source-to-sink is equal the distance from the 

leftmost to the rightmost wire, which is the block width A . Let { }kγΓ = be 

the set of all source to sink paths of ( , , )G U E ξ , then 

( ) 2 ,  
ij k ij k

ij ij i j ke e
s w w A

γ γ
ξ

∈ ∈
= + + = ∈∑ ∑    γ Γ .                                  (8) 

 

It follows from planarity of G that there exists a dual graph ( , , )H V F η , 

illustrated in Fig. 5 in red color. We call it weighted capacitance derivative 

graph. It is defined as follows. Define a source and sink vertices and sink 

of H, located in the infinite faces of G. The vertices of H are assigned 

each inside a distinct face of G. Let F be the arcs of H.  Such a graph 

representation occurs in floor planning. A study of their algebraic properties 

can be found in [23]. 

0v

1nv +

 

To every dual arc crossing the primal arc Ff ij ∈ Eeij ∈ we assign the 

following weight: 

( ) ( ) 1

ij ij i j ijl
η γη α α += + s .                                                                       (9) 

The expression in (9) is the absolute value of the derivative of  by any of 

the abscissas or

ijc

ix jx , weighted by the activity factors of the wires forming 

the space ijs . 
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The direction of an arc ijf F∈ is set such that a counterclockwise rotation 

of towards by the angle ijf ije πρ < leads to overlap of arc heads, as shown 

in Fig. 5.  The graph ( , , )H V F η thus defined is also directed and acyclic, 

having one source and one sink. Fig. 5 illustrates the overlay of the dual 

graphs. 

 

In the above representation the topology of G is invariant of the abscissas of 

the wires, as long as the left to right relations between visible wires are 

maintained. The interpretation of paths in H is of vertically stacked 

capacitors, and the path length is the sum of weighted capacitors derivatives. 

 

It follows from the invariance of G’s topology under repositioning wires and 

duality that H’s topology is also invariant. This implies that any vertical 

stack of capacitors, corresponding to a source-to-sink path in H is preserved 

in layout, regardless of the abscissas of 0 , ..., n 1I I + . This is shown in Fig. 6, 

where H is overlaying the layout and the gray areas are the line-to-line 

capacitances. Notice that a face of H always encloses a vertex in G 

corresponding to a vertical wire. The left (right) side path corresponds to the 

vertical stack of capacitors on its left (right) side as illustrated in Fig. 6.  

 

All source-to-sink paths of H can be ordered “left to right” by applying a 

depth-first traversal which expands all the paths from to [24]. Paths are 

exhausted such that any two successively issued paths 

0v
m

v

δ ′ andδ ′′ are 

constructed as follows. Both paths emanate from and share the same arcs 

up to , where they split into two sub-paths 

0v

rv δρ ′⊂′ and δρ ′′⊂′′ extending 
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between and . At rv sv sv δ ′ andδ ′′ merge again up to , as illustrated in 

Fig. 7. The physical interpretation of 

m
v

ρ′and ρ′′ is of the left and right side 

stacked capacitors shown in Fig. 6. 

 

Lemma 2: All source-to-sink paths in H are critical (having same length) if 

and only if for every internal face the left and right sub-paths have the same 

length. 

 

Proof: Fig. 7 illustrates the proof. Let all source-to-sink paths in H be 

critical. Assume on the contrary that there exists an internal face of H which 

left and right sub-paths have different lengths. Then, two successive source-

to-sink paths must exist in the above defined order; one is longer than the 

other, since except the two distinct sub-paths they share common arcs, hence 

a contradiction. 

 

Conversely, let left and right sub-paths of any face of H have the same 

length. Assume on the contrary that not all source-to-sink paths in H are 

critical. There exist then two successive source-to-sink paths δ ′ andδ ′′  

whose lengths are different. Paths δ ′ andδ ′′ coincide in all their arcs, except 

in those arcs forming δρ ′⊂′ and δρ ′′⊂′′ , which are the left and right sides 

of  an internal face in H. But then these must have different lengths, a 

contradiction. ☻ 

 

Theorem 2 (necessary and sufficient condition for minimum interconnects 

power): The total interconnect switching power in a layout is minimized if 

and only if all paths in the weighted capacitance derivative graph are critical. 
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Proof: According to Lemma 2 all paths in H are critical if and only if the left 

and right paths of any internal face have same length. The weights of H’s 

arcs are the derivatives of line-to-line capacitances. Consequently, the sums 

of derivatives of line-to-line capacitances stacked on the two opposite sides 

of every wire are equal to each other. By Theorem 1 this equality is a 

necessary and sufficient condition for minimal interconnect switching 

power. ☻ 

 

Let { }k
δ∆ = be the set of all source to sink paths of ( , , )H V F η , then 

according to Theorem 2 there exists at minimum a positive real number B 

satisfying: 

( ) 1 ,  
ij k ij k

ij ij i j ij kf f
l s B

γ
δ δ
η α α δ+

∈ ∈
= + =∑ ∑    ∈∆ .                               (10) 

 

A consequence of Theorem 2 is that at optimum, weighted line-to-line 

capacitance density is uniformly distributed across the whole layout. 

Consider an imaginary vertical line scanning the layout from left to right.  

Define  to be the cumulative line-to-line capacitance from the left side 

of the block, and 

( )C x

( ) ( )c x dC x dx=  be its derivative, 

namely ( )
0

( )
x

C x c d
ξ

ξ
ξ ξ

=

=
= ∫ . In this terminology, with the interpretation 

of a vertical scan-line as a source to sink path in H , it follows from Theorem 

2 that: 
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Corollary 1 (necessary and sufficient condition for minimum power): The 

total interconnect switching power consumed in a layout is minimized if and 

only if its underlying line-to-line weighted capacitance density is constant. 

 

5. Algebraic solution for power minimization 

Let K and L be the coefficient matrices of (8) and (10), respectively. Then, 

combining the two in one matrix representation, they can be rewritten as: 

0

0

K A

L B

ξ
η
⎛ ⎞ ⎛ ⎞⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

,                                                                                      (11) 

where A and B are corresponding vectors of the right hand side constants A 

and B in (8) and (10). 

 

Although the number of paths can grow exponentially with the number of 

arcs, and hence the number of rows of the combined matrix in (11), we show 

in the sequel that a far smaller number of equations is sufficient. The graphs 

defined for the power minimization are similar to those used for floorplan 

area minimization in [23], where the rank of such a matrix was studied in 

[25]. Following is a citation and adoption to our terminology. 

 

Let denote the number of wires in G and wireN spaceN  the number of line-to-

line capacitors. By [25] there exists: 

rank | | | | 1 2space wireK E U N N= − + = − +  .                                                     (12) 

 

It follows from the duality of G and H that their number of arcs is equal, 

hence | | . Moreover, the number of vertices in H is equal to 

the number of faces in G. By Euler’s formula for planar graphs, stating 

| | 1spaceF E N= = +
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that # # # 2faces arcs vertices= − +  there 

exists | | . Similarly to (12), there exists for H: | | | | 2 3space wireV E U N N= − + = − +

rank | | | | 1 1wireL F V N= − + = −                                                                   (13) 

 

Summing the ranks in (12) and (13) we conclude that the rank of the 

combined matrix in (11) equals 1spaceN + . Hence the number of independent 

equations is linear in the size of the layout. 

 

There’s still the question of how to effectively derive the equations. 

To this end we’ll interpret (8) and (10) as network cuts and flows [26]. It 

follows from the duality that there is a one to one correspondence between 

paths in G and cuts in H and vice versa. Let us exchange the weights of dual 

arcs in 

1spaceN +

( ), ,G U E ξ and ( ), ,H V F η , thus creating new graphs 

( ), ,G U E η′ and ( ), ,H V F ξ′ . Then, the lengths equality of all paths in G 

translates to equality of all cut flows in H ′and similarly for H and .  G′

 

The equality of all cut flows in a graph implies that the total length of in-

coming arcs of a vertex is equal to the total length of its out-going arcs. This 

holds for both H ′andG , thus yielding | |′ |U V |+  vertex equations. 

Substituting  and |  which have been used in finding the rank of (11) 

yields a total of equations, which can replace (8) and (10). 

|U | |V

3spaceN +

  

6. Iterative algorithms for power minimization 

Though (11) is linear in ξ andη , and the number of equations is linear in the 

size of the problem, there’s still the nonlinearity relation to the abscissas x of 
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the wires. So instead of solving the equations explicitly, we’ll use a simple 

and efficient, yet robust iterative algorithm. An iterative solution was used in 

[11] to find the optimal spacing of a single wire. Here we deal with a global 

problem involving thousands of wires simultaneously. It has been 

implemented and successfully used for power reduction in the design of a 

commercial 65 nanometer high-end microprocessor. Power reduction results 

are shown in Section 7. 

 

The iterative algorithm is based on the equilibrium condition for minimum 

stated in Theorem 1. An iterative algorithm which utilizes vacant areas of 

layout in order to enhance manufacturing yield has been used by a 

commercial tool [27]. It is based on the balancing algorithm described in 

[28], where the speed of convergence is analyzed. This paper adopts the 

same algorithm with appropriate modifications to address power reduction. 

 

The algorithm works on one wire at a time while maintaining a global view 

of the other wires. It repositions a wire between its left and right visible 

wires, such that the equilibrium in (6) is achieved. According to Theorem 1, 

at a non minimum point there exists at least one wire which is not in 

equilibrium. We then shift it to the abscissa x which satisfies (6). Article [28] 

proved that such iterations converge to a configuration where all wires are in 

equilibrium, namely (6) is satisfied for all wires.  

 

The path lengths expressed in the constraints (8) are by definition invariant 

under repositioning of a single wire. Since initially the layout is legal, thus 

satisfying (8), it is automatically satisfied through the entire iterations.  
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It has yet to be seen that the repositioning of a single wire indeed reduces the 

total power. Considering (3), the only affected terms are those which involve 

the shifted wire and its left and right visible ones. These terms are expressed 

in (7). This amount of power appears only once in (3) and its value after 

repositioning has been lowered, hence the net power change is negative. We 

can conclude in the following theorem: 

 

Theorem 3: The iterative algorithm which equilibrate wires one at a time 

converges to the global minimum of switching power. 

 

Proof: The infinite sequence of power values obtained by the iterative 

algorithm is positive and monotonic decreasing, hence converging to a limit 

where all wires are in equilibrium. Theorem 1 ensures that this limit is 

indeed the global minimum. ☻  

 

Following is the pseudo code of the algorithm. 

1. initialization: for every wire calculate “distance” from equilibrium by 

equation (6) 

2. put all wires into a heap 

3. while top of heap is greater than some predefined 0ε >  do { 

4.       solve equation (6) for the wire at the top of the heap 

5.       locate the wire at abscissa found in line4 

6.       re-enter top wire to heap 

7.       for every visible wire do { 

8.             update “distance” from equilibrium by equation (6) 

9.             re-enter the wire into heap 

10.      } 
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11. } 

12. retain connectivity by stretching all orthogonal wires according to the 

shift made to the vertical wire they connect to 

 

A few implementation and complexity comments follow. In order to ensure 

fast convergence of the iterative algorithm, wires are put into a heap [24] in 

decreasing order of their distance from equilibrium.  This is implemented in 

lines 1 and 2 of pseudo code. Assuming that the number of visible wires of 

any wire is bounded, which is the practical situation in VLSI layout, 

equilibration calculations consume ( )1O time per wire. Building the heap 

consumes ( )logO n n time. 

 

The equilibration of the top wire modifies the equilibrium of other wires 

visible to it. In the outer loop at line 3 wires are popped from the top of the 

heap one at a time, repositioned at their equilibrium abscissa in line 5 and 

then re-entered to the heap in line 6 (they are located at the bottom by 

definition since their distance from equilibrium is zero). This takes 

( )logO n time. 

 

The inner loop in lines 7-10 handles all the wires visible to the previous top 

wire that just has been re-entered into heap. Their distance from equilibrium 

is recalculated and their location in the heap is updated accordingly by re-

entering. Assuming that the number of visible wires of any wire is bounded, 

this operation also consumes ( )logO n time. 
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Once the convergence criterion in line 3 is met, it follows by the very 

definition of a heap that all wires are at ε  distance from equilibrium or less.  

The dependency of run time on ε has been analyzed in [28]. Finally, line 12 

retains layout connectivity. 

 

So far constraint in (1) has been ignored. Practical layout must account 

for it of course. The iterative algorithm supports it as follows. Once the 

equilibrium position of the wire is found by solving (6), it is checked 

whether is violated. If this is the case then the wire stops at  “wall”. 

The iterative algorithm still yields the minimum, though it may now be 

achieved at the boundary of the feasibility region rather than at an internal 

point as assumed in the proof of Theorem 1. The optimality can be verified 

from Lemma 1. 

minS

minS min
S

 

7. Experimental results 

A pictorial example of real spacing optimization is shown in Fig.8, where 

next to every wire its corresponding activity factor is written. As shown in 

Fig. 8(b) the optimization algorithm distributed the spacing according to the 

relative weight of wires’ activities. 

 

The iterative algorithm presented in Section 6 was applied to the entire 

global routing layers in a 65 nanometer high-end microprocessor. Due to the 

large size of the data, the routing of that processor is divided into five 

portions. Optimization was then applied to every portion separately while 

maintaining boundary conditions to obtain proper interface and connectivity. 
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All top-level metal layers from 5
th

 to 8
th

 were optimized, while all 

connectivity and design rules were perfectly maintained.  

 

Results are summarized in Table 1. Fig. 9 shows the breakdown and 

optimization obtained for each portion of global routing and each metal 

layer.  The total dynamic power charged to global interconnects was reduced 

by 16.8%, which according to [3] and Fig. 1 is 1.68% of the total dynamic 

power consumption. In a real industrial design environment where the 

algorithm was deployed, such a reduction is very significant.   

 

The difference in power reduction among the various portions is explained 

by differences in signal activities, metal density and existing wire spaces at 

each portion. 

 

Portion 

No. 

Power before 

(% of total) 

Improvement 

(% relative) 

Improvement 

(% of total) 

1 58.82 14.2 8.35 

2 16.89 20.9 3.53 

3 11.55 21.6 2.50 

4 6.66 17.8 1.18 

5 6.08 20.5 1.25 

Total 100  16.81 

 

Table 1: Power reduction obtained for entire global routing  

 

8. Maintaining delay constraints while minimizing power 
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The optimal line-to-line spacing which minimizes power is not necessarily 

optimal for delay. Although the improvement in cross capacitance will 

statistically work in favor of reducing delays, the changes may also result in 

max and min delay violations. The wire spacing described in this paper was 

applied at the finals stage of a design where timing was already stable. We 

therefore couldn’t allow delay violations. Two different approaches to tackle 

this problem are described. The first one is preventive and avoids any delay 

violation. It was the practice used for the design mentioned in this paper. 

The other is a corrective approach which fixes violations after they have 

occurred. 

 

Fig. 10 shows the wire spacing flow which prevents delay violations. 

Spacing is optimized first and all parasitics are modified accordingly. A 

timing simulation then discovers max and min delay violations. Spacing 

optimization is executed again on the original input data, excluding wires 

identified as sources of violations, together with their other visible wires. 

These are not allowed to move. Another timing simulation then takes place 

in order to check whether other delay violations popped. The optimization-

simulation iterations continue until convergence. Usually two iterations 

suffice. In this flow some power saving is sacrificed in favor of avoiding 

delay violations.  

 

A more aggressive, but more complicated approach is to restore all the 

original delays by post-resizing drivers in order to fix max and min delay 

violations.  The top-level interconnects which are the subject of optimization 

can be views as a driver-receiver pair, where the wire resides at top-level 

while its driver and receiver belong to some lower-level functional blocks. 

 24



Fixing of max and min delay problems works in opposite directions. Driver 

upsizing which fixes max delay violation may cost some layout area and 

increase dynamic power consumption. Driver downsizing to correct min 

delay violation has an opposite effect. In what follows we’ll be more 

pessimistic and consider the impact of fixing all delay changes rather than 

just max and min delay violations. 

 

As a first step we need to express driver size sensitivity to delay change. A 

simplified Elmore delay model [12] of the driver-receiver pair in Fig. 11 is 

given by ( ) ( )( )1 1D R a L W C b L W cL S S′ ′′= + + + +                          

where R is driver’s resistance, L is wire length and W is its width, C is the 

capacitive load of the receiver, S ′ and S′′are the spaces on the two sides of 

the interconnecting wire, and a, b and c are process technology parameters. 

The sensitivity is then given by ( ) ( ) (1 )dR dD R D aL WR= + .                                      

 

The sensitivity depends therefore on wire length and width, process 

technology sheet resistance and driver’s resistance. Fig. 11 plots the change 

in percents that needs to take place by driver size in order to restore the 

delay for one percent of delay change, as a function of driver size. We 

simulated minimum width wires of several top-level metal layers with 

appropriate sheet resistance of 65 nanometer process technology. Several 

lengths L=500 mµ , 1000 mµ  and 3000 mµ  were measured for driver’s 

resistance varying from 50  to1.Ω 5kΩ . Fig. 11 shows the results for the worst 

metal layer. As shown in the plot, driver size is more sensitive in longer 

interconnect, and strong (low resistance) drivers are more sensitive than 

weak (high resistance) ones. As an example, a change of 10% of delay 

 25



incurred at a signal with a driver of 100Ω  and wire length of 1000 mµ  is 

recovered by a change of 20% in driver size. 

 

The histogram in Fig. 12 illustrates the distribution of delay change incurred 

in the top-level interconnects as a result of spacing optimization. As can be 

clearly seen, for about 80% of the interconnects the amount of change is 

negligible and falls in the range of simulation accuracy. We have therefore 

to restore the delays of 20% of the top-level interconnects. Recall that this is 

still worst case analysis since the delay change of majority of those doesn’t 

result in max or min delay violation. 

 

In order to calculate the amount of driver size changes implied by delay 

restoration, the histogram in Fig. 12 is combined with the driver size 

sensitivity in Fig. 11, thus yielding a distribution of driver size change 

shown in Fig. 13. This data is further used to calculate the amount of power 

growth resulting from resizing (both upsizing and downsizing), which 

eventually yielded 0.1% of the total chip power consumption. Recalling that 

Table 1 yielded 1.68% power save, we are left with 1.58% net power saving. 

 

9. Conclusions  

This paper solved the problem of optimizing wire spacing in order to 

minimize the interconnect switching power incurred in global routing metal 

layers of VLSI systems. A mathematically provable algorithm based on 

necessary and sufficient conditions and power density interpretation has 

been proposed. It was applied in a 65namometer process technology high-

end microprocessor design and yielded considerable dynamic power 

reduction. The technique is applicable as a post-processing step after 
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detailed routing, and the achievable power saving depends on the density 

and style of the original layout.  

 

Signal delays are treated as constraints, but they can be optimized by 

modifying the power optimization techniques and then offer a systematic 

exploration in the power-delay design space. Yet, further dynamic power 

reduction is potentially possible by optimizing of wire spacing in the 

underlying lower-level functional blocks. Unfortunately in recent process 

technologies of 45nanometer and beyond the spacing design rules of low-

level metal layers have been drastically changed from continuous to discrete. 

Though the continuous methods can be used to obtain approximated 

solution, discrete optimization techniques are more appropriate, which are 

currently explored by the authors.   
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Figure 1: Breakdown of dynamic power into local blocks and global 

interconnects. As can be seen, the cross capacitances between global wires at 

the top routing layers contribute 10% of the total dynamic power. 
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Figure 2: A clip of 20 m 28 mµ µ×฀ ฀of 7
th

 metal layer routing taken from a 

process technology high-end microprocessor. The wide wires are VCC 

/ VSS and are fixed. The narrow wires are signals routed automatically. The 

figure demonstrates the amount of white space found in layout and its 

inefficient distribution among signal wires. 

65 mn฀
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jog 

metal n+1 

via n 

  metal n 

via n-1 

metal n 

driver / receiver 

Figure 3:  Typical interconnect patterns: A driver transmits a signal which 

propagates through interconnecting wires on various layers. Consecutive 

layers route wires in alternating orthogonal directions. Connections from 

layer to layer are made by vias. Some wires may have jogs. 
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Figure 4: Fundamental cross coupling and ground capacitance. Wires run in 

parallel and the entire bundle is shielded on both sides by wires connected to 

ground. 
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v0

u0 un+1

ρ

 
 

Figure 5: Spacing visibility graph overlaying its corresponding layout. Blue 

vertices and arcs comprise the primal graph corresponding to wires and their 

spacing. Red vertices and arcs comprise its dual graph corresponding to 

capacitances between visible wires. The preservation of the direction of 

ρ results in directed acyclic dual. 
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C03

 
 

Figure 6: Cross-capacitance layout model with corresponding spacing 

visibility graph, and its weighted capacitance derivative dual. Gray areas 

correspond to line-to-line capacitors. Faces of the dual graph correspond to 

capacitors residing on the two sides of a signal wire. 
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Figure 7: Proof of Theorem 2. Two “left to right” ordered path from to 
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Figure 8: A clip of real spacing optimization and spacing distribution 

implied by activity factors. 
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Figure 9: breakdown and optimization obtained for each portion of global 

routing and each metal layer. 
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Figure 10: Power optimization flow which prevents delay violations. 
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Fig. 11: Driver size sensitivity to delay change. 
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Fig. 12: Distribution of delay changes incurred by power minimization. The 

right tail corresponds to delay increase which may cause max delay 

violations. The left tail corresponds to delay decrease which may cause min 

delay violations. 
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Fig. 13: Driver resizing distribution for recovering delay changes incurred 

by power minimization. The right tail is driver upsizing while the left tail is 

driver downsizing. 
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