

IRWIN AND JOAN JACOBS

CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

Fork Sequent ia l Consistency is

Blocking

Christ ian Cachin, I dit Keidar and

Alexander Shraer

CCI T Report # 6 9 7

April 2 0 0 8

Electronics
Computers
Communications

DEPARTMENT OF ELECTRICAL ENGINEERING

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL

Fork Sequential Consistency is Blocking

Christian Cachin∗ Idit Keidar† Alexander Shraer†

May 14, 2008

Abstract

We consider an untrusted server storing shared data on behalf of clients. We show that no storage

access protocol can on the one hand preserve sequential consistency and wait-freedom when the

server is correct, and on the other hand always preserve fork sequential consistency.

1 Introduction

We examine an online collaboration facility providing storage and data sharing functions for remote

clients that do not communicate directly [3, 4, 13, 14]. Specifically, we consider a server that implements

single-writer multi-reader registers. The storage server may be faulty, potentially exhibiting Byzantine

faults [10, 8, 11, 2]. When the server is correct, strong liveness, namely wait-freedom [5], should be

guaranteed, as a client editing a document does not want to be dependent on another client, which could

even be in a different timezone [14]. In addition, although read/write operations of different clients

may occur concurrently, consistency of the shared data should be provided. Specifically, we consider a

service that, when the server is correct, provides sequential consistency, which ensures that clients have

the same view of the order of read/write operations, which also respects the local order of operations

occurring at each client [7]. Sequential consistency provides clients with a convenient abstraction of a

shared storage space. It allows for more efficient implementations than stronger consistency conditions

such as linearizability [6], especially when the system is not synchronized [1].

In executions where the server is faulty, liveness obviously cannot be guaranteed. Moreover, with a

Byzantine server, ensuring sequential consistency is also impossible [2]. Still, it is possible to guarantee

weaker semantics, in particular so-called forking consistency notions [8, 10]. These ensure that when-

ever the server causes the views of two clients to differ in a single operation, the two clients never again

see each other’s updates after that. In other words, if an operation appears in the views of two clients,

these views are identical up to this operation.

Originally, fork-linearizability was considered [8, 10, 2]. In this paper, we examine the weaker fork

sequential consistency condition, recently introduced by Oprea and Reiter [11], who showed that this

new condition is sufficient for certain applications. However, to date, no fork-sequentially-consistent

storage protocol has been proposed. In fact, Oprea and Reiter suggested this as a future research direc-

tion [11]. Furthermore, Cachin et al. [2] showed that the stronger notion of fork-linearizability does not

allow for wait-free implementations, but conjectured that such implementations might be possible with

fork sequential consistency. Surprisingly, we prove here that no storage access protocol can provide fork

sequential consistency at all times and also be sequentially consistent and wait-free whenever the server

is correct. This generalizes the impossibility result of Cachin et al. [2], and requires a more elaborate

proof.

∗IBM Research, Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland. cca@zurich.ibm.com
†Department of Electrical Engineering, Technion, Haifa 32000, Israel. {idish@ee, shralex@tx}.technion.ac.il

1

lesley
Text Box
CCIT Report #697 April 2008

In this paper we require only sequentially consistent semantics when the server is correct. Though

one may also consider stronger semantics, such as linearizability, for this case, as our goal is to prove an

impossibility result, it suffices to address sequential consistency. Our impossibility result a fortiori rules

out the existence of protocols with stronger semantics as well.

2 Definitions

System model. We consider an asynchronous distributed system consisting of n clients C1, . . . , Cn,

a server S, and asynchronous FIFO reliable channels between the clients and S (there is no direct

communication between clients). The clients and the server are collectively called parties. System

components are modeled as deterministic I/O Automata [9]. An automaton has a state, which changes

according to transitions that are triggered by actions. A protocol P specifies the behaviors of all parties.

An execution of P is a sequence of alternating states and actions, such that state transitions occur

according to the specification of system components.

All clients follow the protocol, and any number of clients can fail by crashing. The server might be

faulty and deviate arbitrarily from the protocol, exhibiting so-called “Byzantine” faults [12]. A party

that does not fail in an execution is correct. The protocol emulates a shared functionality F to the clients,

defined analogously to shared-memory objects.

Events, operations, and histories. Clients interact with the functionality F via operations provided

by F . As operations take time, they are represented by two events occurring at the client, an invocation

and a response. An operation is complete if it has a response. For a sequence of events σ, complete(σ)
is the maximal subsequence of σ consisting only of complete operations.

A history is a sequence of requests and responses of F occurring in an execution. An operation o

precedes another operation o′ in a sequence of events σ, denoted o <σ o′, whenever o completes before

o′ is invoked in σ. Two operations are concurrent if neither one of them precedes the other. A sequence

of events is sequential if it does not contain concurrent operations. A sequence of events π preserves

the real-time order of a history σ if for every two operations o and o′ in π, if o <σ o′ then o <π o′. For

a sequence of events π, the subsequence of π consisting of events occurring at client Ci is denoted by

π|Ci
. For a sequential π, the prefix of π ending with operation o is denoted by πo.

An execution is admissible if the following two conditions hold: (1) the sequence of events at each

client consists of alternating invocations and matching responses, starting with an invocation; and (2) the

execution is fair. Fairness means, informally, that the execution does not halt prematurely when there

are still steps to be taken or messages to be delivered (we refer to the standard literature for a formal

definition of admissibility and fairness [9]).

Read/write registers. A functionality F is defined via a sequential specification, which indicates the

behavior of F in sequential executions.

The basic functionality we consider is a read/write register X . A register stores a value v from a

domain X and offers read and write operations. Initially, a register holds a special value ⊥ 6∈ X . When a

client Ci invokes a read operation, the register responds with a value v, denoted readi(X) → v. When Ci

invokes a write operation with value v, denoted writei(X, v), the response of X is an acknowledgment,

denoted by OK. The sequential specification requires that each read operation from X return the value

written by the most recent preceding write operation, if there is one, and the initial value otherwise. We

assume that the values written to every particular register are unique, i.e., no value is written more than

once. This can easily be implemented by including the identity of the writer and a sequence number

together with the stored value.

2

In this paper, we consider single-writer/multi-reader (SWMR) registers, where for every register,

only a designated writer may invoke the write operation, but any client may invoke the read operation.

Sequential consistency. One of the most important consistency conditions for concurrent access is

sequential consistency [7], which preserves the real-time order only for operations by the same client.

This is in contrast to linearizability, which must preserve the real-time order for all operations.

Definition 1 (Sequential consistency [7]). A history σ is sequentially consistent w.r.t. a functionality

F if it can be extended (by appending zero or more response events) to a history σ′, and there exists a

sequential permutation π of complete(σ′) such that:

1. For every client Ci, the sequence π|Ci
preserves the real-time order of σ; and

2. The operations of π satisfy the sequential specification of F .

Intuitively, sequential consistency requires that every operation takes effect at some point and occurs

somewhere in the permutation π. This guarantees that every write operation is eventually seen by all

clients. In other words, if an operation writes v to a register X , there cannot be an infinite number of

subsequent read operations from register X that return a value written to X prior to v.

Wait-freedom. A shared functionality needs to ensure liveness. A common requirement is that clients

are able to make progress independently of the actions or failures of other clients. A notion that formally

captures this idea is wait-freedom [5].

Definition 2 (Wait-free history). A history σ is wait-free if every operation by a correct client in σ is

complete.

Fork sequential consistency. The notion of fork sequential consistency [11] requires, informally,

that when an operation is observed directly or indirectly by multiple clients, then the history of events

occurring before the operation is the same at these clients. For instance, when a client reads a value

written by another client, the reader is assured to be consistent with the writer up to its write operation.

Definition 3 (Fork sequential consistency). A history σ is fork-sequentially-consistent w.r.t. a func-

tionality F if it can be extended (by appending zero or more response events) to a history σ′, such that

for each client Ci there exists a subsequence σi of complete(σ′) and a sequential permutation πi of σi

such that:

1. All complete operations in σ|Ci
are contained in σi;

2. For every client Cj , the sequence πi|Cj
preserves the real-time order of σ;

3. The operations of πi satisfy the sequential specification of F ; and

4. (No-join) For every o ∈ πi ∩ πj , it holds that πo
i = πo

j .

A permutation πi satisfying these properties is called a view of Ci.

Note that a view πi of Ci contains at least all those operations that either occur at Ci or are apparent

from Ci’s interaction with F . A fork-sequentially-consistent history in which some permutation π of

complete(σ′) is a possible view of all clients is sequentially consistent.

We are now ready to define a fork-sequentially-consistent storage service. It should guarantee se-

quential consistency and wait-freedom when the server is correct, and fork sequential consistency oth-

erwise.

3

Definition 4 (Wait-free fork-sequentially-consistent Byzantine emulation). A protocol P is a wait-

free fork-sequentially-consistent Byzantine emulation of a functionality F on a Byzantine server S if P

satisfies the following conditions:

1. If S is correct, the history of every admissible execution of P is sequentially consistent w.r.t. F

and wait-free; and

2. The history of every admissible execution of P is fork sequentially consistent w.r.t. F .

We show next that wait-free fork-sequentially-consistent Byzantine emulations of SWMR registers

are impossible.

3 Impossibility of Wait-Freedom with Fork Sequential Consistency

Theorem 1. There is no wait-free fork-sequentially-consistent Byzantine emulation of n ≥ 2 SWMR

registers on a Byzantine server S.

Proof. Towards a contradiction assume that there exists such a protocol P . Then in any admissible

execution of P with a correct server, every operation of a correct client completes. We next construct

three executions α, β, and γ of P , shown in Figures 1–3. All three executions are admissible, since

clients issue operations sequentially, and every message sent between two correct parties is eventually

delivered. There are two clients C1 and C2, which are always correct, and access two SWMR registers

X1 and X2. Protocol P describes the asynchronous interaction of the clients with S; this interaction is

depicted in the figures only when necessary.

Execution α. In execution α, the server is correct. The execution is shown in Figure 1 and begins

with four operations by C2: first C2 executes a write operation with value v1 to register X2, denoted w1

2
,

then an operation reading register X1, denoted r1

2
, then an operation writing v2 to X2, denoted w2

2
, and

finally again a read operation of X1, denoted r2

2
. Since S and C2 are correct and P is wait-free with a

correct server, all operations of C2 eventually complete.

Figure 1: Execution α, where S is correct.

Execution α continues as follows. C1 starts to execute a single write operation with value u to X1,

denoted w1. Every time a message is sent from C1 to S during this operation, and as long as no read

operation by C2 from X1 returns a value different from ⊥, the following steps are repeated in order, for

i = 3, 4, . . . :

(a) The message from C1 is delayed by the asynchronous network;

(b) C2 executes an operation writing vi to X2, denoted wi
2
;

4

(c) C2 executes an operation reading X1, denoted ri
2
; and

(d) the delayed message from C1 is delivered to S.

Note that wi
2

and ri
2

complete by the assumptions that P is wait-free and that S is correct. For the same

reason, operation w1 eventually completes. After w1 completes, and while C2 does not read any non-⊥
value from X1, C2 continues to execute alternating operations wi

2
and ri

2
, writing vi to X2 and reading

X1, respectively. This continues until some read returns a non-⊥ value. Because S is correct, eventually

some read of X1 is guaranteed to return u 6= ⊥ by sequential consistency of the execution. We denote

the first such read by rz
2
. This is the last operation of C2 in α. If messages are sent from C1 to S after

the completion of rz
2
, they are not delayed.

Note that the prefix of α up to the completion of r3

2
is indistinguishable to C2 from an execution in

which no client writes to X1, and therefore r1

2
, r2

2
, and r3

2
return the initial value ⊥. Hence, z ≥ 4.

We denote the point of invocation of wz−1

2
in α by t0. It is marked by a dotted line. Executions β

and γ constructed below are identical to α before t0, but differ from α starting at t0.

Figure 2: Execution β, where S is correct.

Execution β. We next define execution β, shown in Figure 2, in which the server is also correct.

Execution β is identical to α up to the end of rz−2

2
(before t0), but then C2 halts. In other words,

the last two write-read pairs of C2 in α are missing in β. Operation w1 is invoked in β like in α

and begins after the completion of r2

2
(notice that r2

2
is in β since z ≥ 4). Because the protocol is

wait-free with the correct server, operation w1 completes. Afterwards, C1 repeatedly reads X2 until

vz−2 is returned. Because the execution is sequentially consistent with the correct server, a read of

X2 eventually returns vz−2. We denote the i-th read operation of C1 by ri
1

and the read operation that

returns vz−2 by rl
1
.

Execution γ. The third execution γ is shown in Figure 3; here, the server is faulty. Execution γ

proceeds just like the common prefix of α and β before t0, and client C1 invokes w1 in the same way

as in α and in β. From t0 onward, the server simulates β to C1. This is easy because S simply hides

from C1 all operations of C2 starting with wz−1

2
. The server also simulates α to C2. We next explain

how this is done. Notice that in α, the server receives at most one message from C1 between t0 and the

completion of rz
2
, and this message is sent before t0 by construction of α. If such a message exists in α,

then in γ, which is identical to α before t0, the same message is sent by C1. Therefore, the server has

all information needed to simulate α to C2 and rz
2

returns u.

Thus, γ is indistinguishable from α to C2 and indistinguishable from β to C1. However, we next

show that γ is not fork-sequentially-consistent. Consider the sequential permutation π2 required by the

definition of fork sequential consistency, i.e., the view of C2. As the real-time order of C2’s operations

5

Figure 3: Execution γ, where S is faulty and simulates α to C2 and β to C1.

and the sequential specification of the registers must be preserved in π2, and since r1

2
, ..., rz−1

2
return ⊥

but rz
2

returns u, we conclude that w1 must appear in π2 and is located after rz−1

2
but before rz

2
. Because

w1 is one of C1’s operations, it also appears in π1. By the no-join property, the sequence of operations

preceding w1 in π2 must be the same as the sequence preceding w1 in π1. In particular, wz−1

2
and wz−2

2

appear in π1 before w1, and wz−2

2
precedes wz−1

2
. Since the real-time order of C1’s operations must be

preserved in π1, operation w1 and, hence, also wz−1

2
, appears in π1 before rl

1
. But since wz−1

2
writes

vz−1 to X2 and rl
1

reads vz−2 from X2, this violates the sequential specification of X2 (vz−2 is written

only by wz−2

2
). This contradicts the assumption that P guarantees fork sequential consistency in all

executions.

4 Conclusions

When clients store their data on an untrusted server, strong guarantees should be provided whenever

the server is correct, and forking conditions when the server is faulty. Since it was discovered that

fork-linearizability does not allow for protocols that are wait-free in all executions where the server is

correct [2], the weaker condition of fork sequential consistency was expected to be a promising direction

to remedy this shortcoming [2, 11]. In this paper we proved that this is not the case, and in fact, fork

sequential consistency suffers from the same limitation.

References

[1] H. Attiya and J. L. Welch. Sequential consistency versus linearizability. ACM Transactions on Computer

Systems, 12(2):91–122, 1994.

[2] C. Cachin, A. Shelat, and A. Shraer. Efficient fork-linearizable access to untrusted shared memory. In Proc.

26st ACM Symposium on Principles of Distributed Computing (PODC), pages 129–138, 2007.

[3] Collabnet, Inc. Subversion project. http://subversion.tigris.org/, Last accessed Apr. 2008.

[4] Google, Inc. Google Docs. http://docs.google.com/, Last accessed Apr. 2008.

[5] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Systems,

11(1):124–149, Jan. 1991.

[6] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects. ACM

Transactions on Programming Languages and Systems, 12(3):463–492, July 1990.

[7] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE

Transactions on Computers, 28(9):690–691, 1979.

6

[8] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure untrusted data repository (SUNDR). In Proc. 6th

Symp. on Operating Systems Design and Implementation (OSDI), pages 121–136, 2004.

[9] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco, 1996.

[10] D. Mazières and D. Shasha. Building secure file systems out of Byzantine storage. In Proc. 21st ACM

Symposium on Principles of Distributed Computing (PODC), pages 108–117, 2002.

[11] A. Oprea and M. K. Reiter. On consistency of encrypted files. In Proc. 20th Intl. Symp. on Distributed

Computing (DISC), volume 4167 of Lecture Notes in Computer Science, pages 254–268, 2006.

[12] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal of the ACM,

27(2):228–234, Apr. 1980.

[13] Wikipedia. List of file systems, distributed file systems section. http://en.wikipedia.org/wiki/

List_of_file_systems#Distributed_file_systems, Last accessed Apr. 2008.

[14] J. Yang, H. Wang, N. GU, Y. Liu, C. Wang, and Q. Zhang. Lock-free consistency control for web 2.0

applications. In Proc. 17th Intl. Conference on World Wide Web (WWW), 2008.

7

