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Beyond Bandlimited Sampling: Nonlinearities,

Smoothness and Sparsity

Y. C. Eldar and T. Michaeli

Digital applications have developed rapidly over the last few decades. Since many sources of information

are of analog or continuous-time nature, discrete-time signal processing (DSP) inherently relies on sampling a

continuous-time signal to obtain a discrete-time representation. Consequently, sampling theories lie at the heart of

signal processing applications and communication systems. A few examples are sampling rate conversion between

audio formats and for software radio [1], biomedical imaging [2], lens distortion correction, super-resolution of

image sequences and more.

To accommodate high operating rates while retaining low computational cost, efficient analog-to-digital (ADC)

and digital-to-analog (DAC) converters must be developed. Many of the limitations encountered in current con-

verters is due to a traditional assumption that the sampling stage must acquire the data at the Shannon-Nyquist

rate, corresponding to twice the signal bandwidth [3], [4], [5]. To avoid aliasing, a sharp low-pass filter must be

implemented prior to sampling. The reconstructed signal is also a bandlimited function, generated by integer shifts

of the sinc interpolation kernel.

A major drawback of this paradigm is that many natural signals are better represented in alternative bases other

than the Fourier basis [6], [7], [8], or possess further structure in the Fourier domain. In addition, ideal point-wise

sampling, as assumed by the Shannon theorem, cannot be implemented. More practical ADCs introduce a distortion

which should be accounted for in the reconstruction process. Finally, implementing the infinite sinc interpolating

kernel is difficult, since it has slow decay. In practice, much simpler kernels are used such as linear interpolation.

Therefore there is a need to develop a general sampling theory that will accommodate an extended class of

signals beyond bandlimited functions, and will account for the nonideal nature of the sampling and reconstruction

processes.

Sampling theory has benefited from a surge of research in recent years, due in part to the intense research in

wavelet theory and the connections made between the two fields. In this survey we present several extensions of

the Shannon theorem, that have been developed primarily in the past two decades, which treat a wide class of

input signals as well as nonideal sampling and nonlinear distortions. This framework is based on viewing sampling

in a broader sense of projection onto appropriate subspaces, and then choosing the subspaces to yield interesting
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new possibilities such as pointwise sampling of non bandlimited signals, and perfect compensation of nonlinear

effects.

Our focus here is on shift-invariant settings in which both sampling and reconstruction are obtained by filtering

operations, and the sampling grid is uniform. However, all the results herein can be extended to arbitrary Hilbert

space settings [9], [10], [11], [12] including finite-dimensional spaces, spaces that are not shift invariant and

nonuniform sampling. Our exposition is based on a Hilbert-space interpretation of sampling techniques, and relies

on the concepts of bases and projections. This perspective has been motivated in the context of sampling in the

excellent review by Unser [8]. Here we consider a similar setting and compliment the paper of Unser by surveying

further progress made in this area in recent years.

We begin by presenting a broad class of sampling theorems for signals confined to an arbitrary subspace in

the presence of non-ideal sampling, and nonlinear distortions. Surprisingly, many types of nonlinearities that are

encountered in practice do not posses any technical difficulty and can be completely compensated for. Next, we

develop minimax recovery techniques that best approximate an arbitrary smooth input signal. These methods can

also be used to reconstruct a signal using a given interpolation kernel that is easy to implement, with only a

minor loss in signal quality. To further enhance the quality of the interpolated signal, we discuss fine grid recovery

techniques in which the system rate is increased during reconstruction. As we show, the algorithms we develop

can all be extended quite naturally to the recovery of random signals. These additional aspects extend the existing

sampling framework and incorporate more realistic sampling and interpolation models.

Before proceeding with the detailed development, we note that another topic in the context of sampling that has

gained growing attention recently is that of reconstructing signals that are known to be sparse in some domain.

This class of problems is the underlying of the emerging field of compressed sensing [13], [14]. However, this

framework has focused primarily on sampling of discrete signals and reconstruction techniques from a finite number

of samples, while our interest here is on sampling and reconstructing analog continuous-time signals from uniform

samples. Some exceptions are the work in [15], [16] which describe examples of compressed sensing for analog

signals, and the work on finite-rate of innovation [17], [18]. In the last section of this article, we very briefly touch

on this important area.

I. SAMPLING AND RECONSTRUCTION SETUP

The traditional Shannon sampling theorem (also attributed to Nyquist, Whittaker and Kotelnikov) states that a

signal x(t) bandlimited to π/T can be recovered from its uniform samples at time instances nT . The reconstruction

is obtained by filtering with a sinc interpolation kernel:

x(t) =
1

T

∞
∑

n=−∞

x(nT )sinc(t/T − n),

where sinc(t) = sin(πt)/(πt). Although widely used, this theorem relies on three fundamental assumptions that

are rarely met in practice. First, natural signals are almost never perfectly bandlimited. Second, the sampling

device is usually not ideal, i.e., it does not produce the exact values of the signal at the sampling locations. A

common situation is that the ADC integrates the signal, usually over small neighborhoods around the sampling
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TABLE I: Different scenarios treated in this review

Unconstrained Reconstruction Predefined Interpolation Kernel Fine Grid Interpolation

Subspace Priors Section II-A, II-B Section II-C Section II-D

Smoothness Priors Section III-A Section III-B Section III-C

Stochastic Priors Section IV-A Section IV-B Section IV-B

TABLE II: Design objective in each scenario

Unconstrained Reconstruction Predefined Interpolation Kernel Fine Grid Interpolation

Subspace Priors Perfect reconstruction Minimum error Minimum error

Smoothness Priors Consistency/minimax Consistency/minimax Consistency/minimax

Stochastic Priors MSE MSE MSE

points. Moreover, nonlinear distortions are often introduced during the sampling process. Finally, the use of the

sinc kernel for reconstruction is often impractical due to its very slow decay.

To design interpolation methods that are adapted to practical scenarios, there are several issues that need to be

properly addressed:

1) The sampling mechanism should be adequately modelled;

2) Relevant prior knowledge on the class of input signals should be accounted for;

3) Limitations should be imposed on the reconstruction algorithm in order to ensure robust and efficient recovery.

In this review we treat each of these three essential components of the sampling scheme. We focus on several models

for each of the ingredients, which commonly arise in signal processing, image processing and communication

systems. The setups we overview are summarized in Table I, and are detailed in the ensuing subsections. The

design objective used in each scenario is indicated in Table II. As we discuss further below, the different priors

dictate distinct objectives. For example, when the only information we have about the signal is that it is smooth,

then the error cannot be minimized uniformly over all signals, and alternative design strategies are needed.

A. Sampling Process

1) Linear Distortion: In the Shannon sampling theorem, x(t) is bandlimited to π/T and thus an equivalent

strategy is to first filter the signal with a low-pass filter (LPF) with cut-off π/T and then uniformly sample the

output. This interpretation is depicted in Fig. 1 with s(−t) = sinc(t/T ) being the impulse response of the LPF.

The samples c[n] can be expressed as

c[n] =

∫

∞

t=−∞

x(t)s(t − nT )dt
△
= 〈x(t), s(t − nT )〉, (1)

where 〈y(t), h(t)〉 denotes the L2(R) inner product between two finite-energy continuous-time signals. For sim-

plicity, throughout the paper we assume a sampling interval of T = 1.
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s(−t)

t = nT

x(t) c[n]

Fig. 1: A shift invariant sampling scheme. Filtering the signal x(t) prior to taking ideal and uniform samples, can

be restated as L2 inner-products between the input x(t) and s(t). Shannon’s paradigm corresponds to the special

choice s(−t) = sinc(t/T ).

s(−t)

t = nT

x(t) c[n]
M

y(t)

Fig. 2: A nonlinear and shift invariant sampling scheme. Prior to sampling with the functions {s(t − nT )} the

amplitudes of the signal x(t) are distorted by the nonlinear mapping M .

In practical applications the sampling is not ideal. Therefore, a more appealing setting is to let s(t) be an

arbitrary sampling function. This allows to incorporate imperfections in the ideal sampler into the function s(t)

[19], [11], [20], [9]. As an example, typically the ADC averages the signal over a small interval rather than

outputting point-wise signal values. This distortion can be taken into account by modifying s(t) to include the

integration.

2) Nonlinear Distortion: A more complicated situation arises when the sampling process includes nonlinear

distortions. One simple approach to model nonlinearities is to assume that the signal is distorted by a memoryless,

nonlinear invertible mapping prior to sampling by s(−t), as in Fig. 2. This rather straightforward model is general

enough to capture many systems of practical interest. Nonlinearities appear in a variety of setups and applications of

digital signal processing including power electronics [21] and radiometric photography [22]. As another example,

CCD image sensors introduce nonlinear distortions when excessive light intensity causes saturation. In some cases,

nonlinearity is insinuated deliberately in order to increase the possible dynamic range of the signal while avoiding

amplitude clipping, or damage to the ADC [23].

B. Signal Priors

In essence, the Shannon sampling theorem states that if x(t) is known a priori to lie in the space of bandlimited

signals, then it can be perfectly recovered from uniformly-spaced ideal samples. Clearly, the question of whether

or not x(t) can be recovered from its samples depends on the prior knowledge we have on the class of input

signals. In this review we depart from the traditional bandlimited assumption and discuss signal priors that appear

more frequently in signal processing and communication scenarios.

1) Subspace Priors: Our first focus is on signal spaces that are shift-invariant (SI). A SI subspace A of the

space L2 of bounded norm signals, with generator a(t), is the space of signals that can be expressed as linear
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combinations of shifts of a(t):

x(t) =
∞

∑

n=−∞

b[n]a(t − n), (2)

where b[n] is an arbitrary norm-bounded sequence. Note that b[n] does not necessarily correspond to samples of

the signal, i.e., x(n) 6= b[n] in general. Choosing a(t) = sinc(t) results in the space of π-bandlimited signals.

However, a much broader class of signal spaces can be defined including spline functions [8]. In these cases a(t)

can be easier to handle numerically than the sinc function.

A spline f(t) of order N is a piecewise polynomial with the pieces combined at knots, such that the function is

continuously differentiable N − 1 times. It can be shown that any spline of order N with knots at the integers can

be generated using (2) by a B-spline of order N which is the function obtained by the (N + 1)-fold convolution

of the unit square

b(t) =







1 0 < t < 1;

0 otherwise.
(3)

Signals of the type (2) are also encountered when the analog signal to be sampled has originated from a digital

source. For example, in communication systems, signals of this form are produced by pulse amplitude modulation

transmitters. Extensive research in this field has been devoted to design receivers that undo the effect of inter-

symbol interference, caused by the overlap of the pulses a(t − n). Here we provide a geometric interpretation of

this problem, which leads to insight into which classes of signals can be perfectly recovered from their samples.

This viewpoint also allows to incorporate various constraints on the reconstruction method.

We note that although the discussion in this article is limited to SI subspaces, the results we present our valid

in more general subspaces as well [9], [24].

2) Smoothness Priors: Subspace priors are very useful because, as we will see, they often can be utilized to

perfectly recover x(t) from its samples. However, in many practical scenarios our knowledge about the signal

is much more limited and can only be formulated in very general terms. An assumption prevalent in image

processing, is that natural signals are smooth in some sense. Here we focus on approaches that quantify the extent

of smoothness using the L2 norm ‖Lx(t)‖, where L is usually chosen as some differential operator. The appeal of

these models stems from the fact that they lead to linear recovery procedures. This is in contrast with smoothness

measures such as total variation which result in nonlinear interpolation techniques.

The class of “smooth” signals is much reacher than its subspace counterpart. Consequently, it is often impossible

to distinguish between one “smooth” signal and another based solely on their samples. In other words, the sampling

process inevitably entails information loss. Since perfect recovery cannot be attained in this scenario, we focus on

two alternative criteria: consistency (or least-squares) and a worst case (minimax) design.

3) Stochastic Priors: The last family we consider in detail are stochastic priors. In this category, the signal

x(t) is modelled as a wide-sense stationary (WSS) random process with known power spectral density (PSD), a

viewpoint prominent in the field of statistical signal processing. The design criterion here is the minimization of

the mean-squared error (MSE) given the signal samples. The theory of sampling random signals has developed

in parallel lines to its deterministic counterpart [5]. Interestingly, the stochastic setting leads to reconstruction
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w(t) x̂(t)
d[n]

∞
∑

n=−∞

δ (t − nT )

h[n]c[n]

Fig. 3: Reconstruction using a digital compensation filter h[n] and interpolation kernel w(t).

techniques which are very similar to the methods arising from the smoothness priors. This provides an interesting

equivalence between the smoothness operator L and the PSD of x(t) in the random setup. Furthermore, we show

that the study of statistical priors also sheds some light on the origin of artifacts, which are commonly encountered

in traditional interpolation methods.

4) Sparsity Priors: In the last section we very briefly touch on sparsity priors. This class of functions lead to

nonlinear reconstruction algorithms that have a very different structure than the linear interpolation methods in the

majority of this paper. Since the treatment of these priors differs substantially from the rest of the review, we only

point to several basic recovery techniques and results in this emerging area. A more detailed discussion merits a

separate paper.

C. Reconstruction Methods

For a sampling theorem to be practical, it must take into account constraints that are imposed on the interpolation

method. One aspect of the Shannon sampling theorem which renders it unrealizable, is the use of the sinc

interpolation kernel. Due to its slow decay, the evaluation of x(t) at a certain time instance t0, requires using

a large number of samples located far away from t0. In many applications, reduction of computational load is

achieved by employing much simpler methods, such as linear interpolation. In these cases the sampling scheme

should be modified to compensate for the chosen non-ideal kernel.

1) Unconstrained Reconstruction: The first setup we consider is unconstrained recovery. Here, we design

interpolation methods that are best adapted to the underlying signal prior according to the objectives in Table II,

without restricting the reconstruction mechanism. In these scenarios, it is sometimes possible to obtain perfect

recovery, as in the Shannon sampling theorem. The unconstrained reconstruction methods under the different

scenarios treated in this paper (besides the case in which there are nonlinear distortions) all have a joint structure,

depicted in Fig. 3. Here w(t) is the impulse response of a continuous-time filter, which serves as the interpolation

kernel, while h[n] represents a discrete-time filter used to process the samples prior to reconstruction. Denoting the

output of the discrete-time filter by d[n], the input to the filter w(t) is a modulated impulse train
∑

n d[n]δ(t−n)

and the filter’s output is given by

x̂(t) =
∞

∑

n=−∞

d[n]w(t − n). (4)

The optimal interpolation kernels resulting from such considerations may be derived in the frequency domain

but typically do not admit a closed form in the time domain. This limits the applicability of this approach to
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situations where the kernel needs to be calculated only on a discrete set of points. In this case, the discrete Fourier

transform (DFT) can be used to approximate the desired values. Consequently, apart from the case in which w(t)

is a spline, these methods seem to have been used e.g., in the image processing community, only as a means of

enlarging an image by an integer factor. More general geometrical transformations, such as rotation, lens distortion

correction and scaling by an arbitrary factor, are typically not tackled using these methods.

2) Predefined Kernel: To overcome the difficulties in implementing the unconstrained solutions, we may resort

to a system that uses a predefined interpolation kernel which is easy to implement. In this setup, the only freedom

is in the design of the digital correction filter h[n] in Fig. 3, which may be used to compensate for the non-ideal

behavior of the pre-specified kernel w(t) [19], [9], [12], [24], [11]. The filter h[n] is selected to optimize a criterion

matched to the signal prior.

By restricting the reconstruction to the form (4), we are essentially imposing that the recovered signal x̂(t) lie

in the SI space generated by the pre-specified kernel w(t). The class of SI spaces is very general and includes

many signal spaces that lead to highly efficient interpolation methods. For example, by appropriate choice of w(t)

the family of splines can be described using (4). B-splines have been used for interpolation in the mathematical

literature since the pioneering work of Schonberg [25]. In signal processing applications the use of B-splines gained

popularity due to the work of Unser et. al. that showed how B-spline interpolation can be implemented efficiently

[26], [27]. In particular, interpolation using splines of order up to 3 is very common in image processing. This

is due to their tendency to efficiently represent smooth signals and the relatively low computational complexity

needed for their evaluation at arbitrary locations.

3) Fine Grid Interpolation: The constraint to a predefined interpolation kernel may lead to severe degradation

in the reconstruction. This emphasizes the fundamental trade-off between performance and implementation consid-

erations. A common way to improve the performance of a reconstruction algorithm is to first upsample the digital

signal and then apply some simple interpolation method on the resulting finer grid. This is a widely practiced

approach for sampling rate conversion, where usually a rectangular or triangular interpolation filter is used [28].

Under mild conditions on the interpolation kernel, this approach allows to approximate the optimal unconstrained

solution arbitrarily well by using a fine enough grid. This, of course, comes at the cost of computational complexity.

In practice, it is not the asymptotic behavior that interests us, but rather optimizing the performance for a fixed

setup. Thus, given a fixed over-sampling factor K ≥ 1 and an interpolation filter w(t), we would like to design a

multirate system that processes the samples c[n] and produces fine-grid expansion coefficients d[n] such that the

reconstruction

x̂(t) =
∞

∑

n=−∞

d[n]w
(

t −
n

K

)

(5)

well approximates x(t). This setup is depicted in Fig. 4. Besides extending the discussion to general interpolation

filters, we also relax the standard assumption that the input signal is bandlimited. Instead, we design a correction

system that is best adapted to the prior we have on the input signal.

The interpolation methods corresponding to the different scenarios discussed above are summarized in Table III.
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w(t) x̂(t)

d[n]

∞
∑

n=−∞

δ
(

t − nT

K

)

h[n]c[n] K

Fig. 4: Fine grid reconstruction using an upsampler followed by a digital compensation filter h[n] and interpolation

kernel w(t). The rate of the sequence d[n] is K times larger than that of c[n].

TABLE III: Methods for signal recovery

Unconstrained Reconstruction Predefined Interpolation Kernel Fine Grid Interpolation

Subspace Priors
Linear sampling: (12)

Nonlinear distortion: (20), (21), (22)
(23) (24)

Smoothness Priors (28), (27)
Consistent: (32)

Minimax: (34)
(38)

Stochastic Priors (39), (40) (41)

II. SUBSPACE PRIORS

We begin by treating the setting in which the input signal x(t) is known to lie in a given SI subspace. We

show that when the reconstruction method is not restricted, these priors allow for perfect recovery of x(t) from

its nonideal samples both in the linear setting of Fig. 1 as well as in the presence of nonlinear distortions as in

Fig. 2. Specifically, for any sampling function s(t) there are a broad class of subspace priors under which x(t)

can be perfectly reconstructed. Conversely, for any given class of functions there are many choices of s(t) that

will allow for perfect recovery. These filters only have to satisfy a rather mild requirement. The surprising fact is

that these results are valid even when a memoryless, invertible nonlinearity is inserted prior to sampling, as long

as the nonlinearity does not vary too fast.

In the second part of this section, we extended the discussion to constrained reconstruction scenarios. In these

cases perfect recovery is often impossible, as the restriction narrows down the set of candidate signals which the

system can output. However, we will show that it is often possible to produce a reconstruction that minimizes the

norm of the error.

Throughout this section x(t) is assumed to lie in a subspace A generated by a(t) (see (2)). In order for A to

be well defined and the corresponding sampling theorems to be stable, the functions {a(t−n)} should generate a

Riesz basis or a frame [7]. To simplify the exposition we focus throughout on the case in which these functions

are linearly independent and therefore form a basis. However, all the results extend easily to the case in which

they are linearly dependent. In essence, a Riesz basis is a set of linearly independent vectors that ensures stable

expansions, namely a small modification of the expansion coefficients results in a small modification of the signal

(see Box C). In order for a(t) to generate a Riesz basis the continuous-time Fourier transform (CTFT) of a(t)
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S⊥

S

A

PSx

x

Fig. 5: A unique element in A which is consistent with the samples in S can be recovered from the known samples.

must satisfy

α ≤
∞

∑

k=−∞

|A(ω − 2πk)|2 ≤ β a.e. ω, (6)

for some constants α > 0 and β < ∞. The term in the middle of (6) is the discrete-time Fourier transform (DTFT)

of the sampled correlation function raa[n] = 〈a(t), a(t − n)〉. More details on the CTFT and DTFT are given in

Box A. In particular, the functions {a(t − n)} form an orthonormal basis if and only if α = β = 1 in (6).

A. Unconstrained Reconstruction with Linear Sampling

In the setup of Fig. 1 the input signal x(t) is sampled by a set of sampling functions {s(t−n)}. We denote by

S the space spanned by these sampling functions so that any f(t) in S is of the form f(t) =
∑

n d[n]s(t−n) for

some bounded-norm sequence d[n]. We assume throughout that s(t) satisfies the Riesz basis condition (6).

In order to understand what class of signals can be reconstructed from these samples we first observe that

knowing the samples c[n] is equivalent to knowing the orthogonal projection of x(t) onto S, which we denote by

xS(t) = PSx(t) (see Box B). Indeed,

c[n] = 〈x(t), s(t − n)〉 = 〈x(t), PSs(t − n)〉 = 〈PSx(t), s(t − n)〉, (7)

where we used the fact that PSs(t − n) = s(t − n). Since the functions s(t − n) span S, and xS lies in S, it is

clear that xS can be reconstructed from the samples c[n]. An immediate consequence is that if x(t) lies in S so

that x(t) = xS(t), then it can be perfectly recovered.

This geometric interpretation implies that the question of reconstruction from c[n] is equivalent to asking which

signals can be recovered from knowledge of their orthogonal projection onto S. At first glance it may seem like

only signals in S may be reconstructed since the projection zeros out any component in S⊥. However, a closer

inspection reveals that if we know in advance that x(t) lies in a space A with suitable properties (which we will

define below), then there is a unique vector in A with the given projection onto S. As depicted in Fig. 5, in this

case we can draw a vertical line from the projection until we hit the space A and in such a way obtain the unique

vector in A that is consistent with the given samples. Thus perfect recovery is possible for a broad class of signals

beyond those that lie in S.
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We next discuss how to recover x(t) explicitly using a discrete-time filter as in Fig. 3. We first note that the

orthogonal projection PSx(t) can be obtained from the samples c[n] by using the scheme in Fig. 3 with w(t) = s(t)

and h[n] chosen as the impulse response of the filter with DTFT [29], [8]

H(ejω) =
1

∑

∞

k=−∞
|S(ω − 2πk)|2

, (8)

where S(ω) is the CTFT of s(t). Note that the Riesz basis condition (6) guarantees that (8) is well defined.

Efficient implementation of (8), and the filters we introduce in the sequel, is possible in spline spaces, based on

the results of [8], [26], [27].

To show that the output of the resulting system is PSx(t) note that if x(t) is in S⊥, then the output will be zero

since in this case c[n] is the zero sequence. On the other hand, if x(t) ∈ S, then we can write x(t) =
∑

n b[n]s(t−n)

for some sequence b[n]. Using the Fourier relations given in Box A it follows that

C(ejω) = B(ejω)
∞

∑

k=−∞

|S(ω − 2πk)|2. (9)

Therefore, d[n] = b[n] and x̂(t) = x(t). Consequently, if x(t) lies in S to begin with, then this scheme will ensure

perfect reconstruction. If in addition s(t) has the partition of unity property, i.e.,
∑

n s(t − n) = 1 for all t, then

it can be shown that by selecting the sampling period T sufficiently small, any input signal that is norm bounded

can be approximated as close as desired by this scheme [8].

The denominator in (8) is the DTFT of the sampled correlation function rss[n] = 〈s(t), s(t − n)〉. Therefore,

if the functions {s(t − n)} form an orthonormal basis, then rss[n] = δ[n] and H(ejω) = 1. In this case no

pre-processing of the samples is necessary prior to reconstruction. This is precisely the setting of the Shannon

sampling theorem: it is easy to verify that the functions s(t−n) = sinc(t−n) form an orthonormal basis [?], [8].

To extend recovery beyond the space S, suppose that x(t) lies in a known subspace A. Clearly in order to be

able to reconstruct x(t) from the given samples we need that A and S⊥ are disjoint since any signal y(t) in the

intersection of A and S⊥ will yield zero samples and therefore cannot be recovered. Intuitively, we also need A

and S to have the same number of degrees of freedom. These requirements can be made precise by assuming a

direct sum condition L2 = A⊕S⊥ where ⊕ denotes a sum of two subspaces that intersect only at the zero vector.

This implies that A and S⊥ are disjoint, and together span the space of L2 signals. In the SI setting this condition

translates into a simple requirement on the CTFT of the generators a(t) and s(t) [30]:

∣

∣φSA

(

ejω
)
∣

∣ > α, (10)

for some constant α > 0, where

φSA

(

ejω
)

,

∞
∑

k=−∞

S∗(ω − 2πk)A(ω − 2πk), (11)

and (·)∗ denotes the complex conjugate. The function φSA(ejω) is the DTFT of the sampled cross-correlation

sequence rsa = 〈s(t), a(t − n)〉 (See Box A). Under this condition, reconstruction can be obtained by choosing

w(t) = a(t) and [19], [12], [24], [11], [9]

H(ejω) =
1

φSA (ejω)
. (12)
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When A = S, the filter (12) coincides with (8).

To see that the filter (12) ensures perfect recovery for signals in A, note that any x(t) ∈ A can be written as

x(t) =
∑

n b[n]a(t − n). Using the relations in Box A it can be shown that the sequence of samples will have a

DTFT given by

C(ejω) = B(ejω)φSA(ejω), (13)

from which the result follows. In addition, for any x(t) ∈ S⊥ we have immediately that x̂(t) = 0 since c[n] will be

the zero sequence. Consequently, the resulting system implements an oblique projection EAS⊥ with range space

A and null space S⊥ [31] (see Box B). Indeed this is the unique operator satisfying EAS⊥x(t) = x(t) for any

x(t) in A, and EAS⊥x(t) = 0 for x(t) in S⊥.

It is also interesting to interpret the proposed sampling scheme as a basis expansion. Since any signal in A

can be recovered from the corrected samples d[n] = c[n] ∗ h[n] via x(t) =
∑

n d[n]a(t − n), we may view this

sequence as the coefficients in a basis expansion. To obtain the corresponding basis we note that by combining

the effects of the sampler s(t) and the correction filter h[n] of (12), the sequence of samples can be equivalently

expressed as d[n] = 〈x(t), v(t − n)〉 where v(t) =
∑

n h[n]s(t − n). In the Fourier domain,

V (ω) = H(ejω)S(ω). (14)

Therefore, we conclude that any x(t) ∈ A can be written as

x(t) =

∞
∑

n=−∞

〈x(t), v(t − n)〉a(t − n). (15)

It can be easily verified that the functions {v(t − n)} form a Riesz basis for S, and 〈v(t − n), a(t − m)〉 = δmn

where δmn = 1 if m = n and 0 otherwise. Therefore, these functions are the oblique dual basis of {a(t−n)} in S

[11], [12], [24], [30], [32], [33] (see Box C). When A = S, we recover the conventional dual basis functions. In

this case {v(t−n)} forms a basis for S that is dual to the original basis {s(t−n)}: 〈v(t − n), s(t − m)〉 = δnm.

This provides a concrete method for constructing a dual of a given basis {a(t− n)} in any subspace S satisfying

the direct sum condition L2 = A⊕ S⊥.

To conclude our discussion so far, we have seen that a signal x(t) in a SI subspace A generated by a(t), can

be reconstructed from its generalized samples in Fig. 1 using any choice of s(t) for which (10) is satisfied. Thus

for a given SI space, there is a broad variety of sampling filters we can select from. By choosing the functions

appropriately, a variety of interesting sampling theories can be constructed, such as pointwise sampling of non-

bandlimited signals, bandlimited sampling of nonbandlimited functions, and many more. An example is given

below.

Despite the fact that any sampling function s(t) satisfying (10) can be used to sample x(t) in the space A

generated by a(t), in the presence of noise out of A, the choice of sampling kernel will effect the reconstructed

signal. More specifically, we have seen that the output of Fig. 3 with w(t) = a(t) and h[n] given by (12) is

equal to the oblique projection xE(t) = EAS⊥x(t). When x(t) ∈ A, then xE(t) = x(t) for any choice of S⊥,

or equivalently any sampling function s(t) in Fig. 3 satisfying (10). However, if x(t) does not lie entirely in
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A, for example due to noise, then different functions s(t) will result in different approximations xE(t) ∈ A.

A natural question is given an interpolation kernel a(t), which choice of sampling function s(t) will lead to a

reconstruction x̂(t) that is closest to x(t)? If we measure the error using the squared-norm ‖x̂(t) − x(t)‖2 where

‖f(t)‖2 = 〈f(t), f(t)〉, then the choice s(t) = a(t) minimizes the error. This follows from the projection theorem

which states that the orthogonal projection onto A is the closest vector in A to an arbitrary input x(t) [34]:

arg min
v(t)∈A

‖x(t) − v(t)‖2 = PAx(t). (16)

Therefore, since x̂(t) is always in A the smallest error will result when x̂(t) = PAx(t) which can be achieved

only if the sampling function s(t) generates A. In addition, in contrast to the orthogonal projection, an oblique

projection can increase the norm of the noise at the input (see Box B). In practice however we may prefer other

choices that are easier to implement at the expense of a slight increase in error [19], [9].

We conclude this subsection with a non-intuitive example in which a non-bandlimited signal is filtered with a

LPF prior to sampling, and still can be perfectly reconstructed from the resulting samples. Suppose that the signal

x(t) is formed by exciting an RC circuit with a modulated impulse train
∑

n d[n]δ(t − n), as shown in Fig. 6.

The impulse response of the RC circuit is known to be a(t) = τ−1 exp{−t/τ}u(t), where u(t) is the unit step

function and τ = RC is the time constant. Therefore

x(t) =
1

τ

∞
∑

n=−∞

d[n] exp{−(t − n)/τ}u(t − n). (17)

Clearly, x(t) is not bandlimited. Now, suppose that x(t) is filtered by an ideal low-pass filter s(t) = sinc(t) and

then sampled at times t = n to obtain the sequence c[n]. Intuitively, there seems to be information loss in the

sampling process since the entire frequency content of x(t) outside [−π, π] is zeroed out. This can be seen in

the lower right-hand plot in Fig. 6. However, it is easily verified that condition (10) is satisfied in this setup and

therefore perfect recovery is possible. The digital correction filter (12) in this case can be shown to be

h[n] =







1 n = 0;

τ
n
(−1)n n 6= 0.

(18)

Thus, to reconstruct x(t) we need to excite an identical RC circuit with an impulse train modulated by the sequence

d[n] = h[n] ∗ c[n].

B. Unconstrained Reconstruction with Nonlinear Distortion

Suppose now that as in the previous section x(t) lies in a subspace A and (10) is satisfied. However, prior to

sampling by s(−t) the signal is distorted by a memoryless, nonlinear and invertible mapping M(x) as in Fig. 2. A

naive approach to recover the signal x(t) from its samples is to first apply M−1 to the sample sequence c[n] leading

to a sequence d[n], and then reconstruct x(t) from the samples d[n] using standard reconstruction techniques [35].

However, if the samples c[n] are not ideal namely are not pointwise evaluations of x(t), then this approach is

suboptimal in general.

A surprising result developed in [36] is that if the nonlinearity is invertible and does not change too fast, then

it does not introduce theoretical difficulties. More specifically, under the same direct sum condition (10) we had
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t = nT

x(t) d[n]
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C∞
∑

n=−∞

δ(t − nT )
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T
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signal generator sampling

x(t)R
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t
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d[n]
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X(ω)
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π

Fig. 6: A non-bandlimited signal x(t), formed by exciting an RC-circuit with a modulated impulse train, is sampled

after passing through an ideal low-pass filter. Although a large portion of the frequency content is lost due to the

filtering operation (bottom right), perfect recovery is still possible by digitally filtering the samples c[n] and using

the result to re-excite an identical RC-circuit.

in the linear sampling case, and bounds on the derivative of the nonlinearity, there is a unique signal x(t) with

the given samples c[n]. Therefore, it is enough to seek a recovery x̂(t) that is consistent in the sense that it yields

the samples c[n] after it is reinjected into the system:
∫

∞

−∞
s(t − n)M (x̂(t)) dt = c[n]. Any such signal must be

equal to x(t) due to the uniqueness property.

Since x(t) ∈ A, we can write x(t) =
∑

n d[n]a(t − n) for some sequence d[n]. Thus, our problem reduces to

finding a sequence d[n] which minimizes the consistency cost function

f(d) = ‖c[n] − ĉ[n]‖ℓ2
, (19)

with

ĉ[n] =

∫

∞

−∞

s(t − n)M

(

∞
∑

m=−∞

d[m]a(t − m)

)

dt, (20)

where we know that the minimal value of f(d) is 0. Since M is nonlinear, the cost function (19) is in general

non-convex. Therefore optimization algorithms for minimizing (19) might trap a stationary point, and not the

global minimum which we seek. Surprisingly, it can be shown [36] that under the direct sum condition and the

derivative bounds on M , any stationary point of (19) is also a unique global minimum. Therefore, any algorithm

designed to trap a stationary point automatically leads to perfect recovery. In Fig. 7 we show a block diagram
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s(−t)

t = nT

ĉk[n]
M

a(t)
x̂k(t)

dk[n]

∞
∑

n=−∞

δ (t − nT )

αkgk[l,m]dk+1[n]

c[n]

reconstruction sampling

correction

ek[n]
−

+
+

+

Fig. 7: One iteration of the nonlinear recovery algorithm. The expansion coefficients at the kth iteration, dk[n], are

used to synthesize an estimate of the signal, x̂k(t). This estimate goes through the sampling process to produce

the corresponding samples ck[n]. The error with respect to the measured samples, ek[n] = c[k] − ĉk[n], is then

used to update the estimate.

of an iterative approach which is derived by applying a Newton method on (19). This same algorithm can also

be obtained from an approximate projection onto convex sets strategy, and a linearization approach; see [36] for

more details.

At each iteration, the algorithm of Fig. 7 works as follows. Denote by dk[n] the expansion coefficients at the

kth iteration. Then dk+1[n] is calculated as

dk+1[n] = dk[n] + αk

∞
∑

m=−∞

gk[n,m]ek[m], (21)

where αk is the step size, ek[m] = c[n]−ĉk[n] is the error-in-samples sequence with ĉk[n] denoting the approximate

samples at stage k obtained via (20) with d[n] = dk[n], and gk[l, m] is a linear system which is the inverse of

hk[l, m] =

∫

∞

−∞

s(t − l)M ′

(

∞
∑

n=−∞

dk[n]a(t − n)

)

a(t − m)dt. (22)

Note that hk[l, m] is not shift invariant in general and therefore it cannot be inverted in the frequency domain to

obtain gk[l, m]. In practice, though, one usually analyzes a finite set of samples c[n], 0 ≤ n ≤ N − 1. Assuming

that c[n] = 0 outside this range, the matrix {gk[l,m]} for 0 ≤ l, m ≤ N − 1 can be obtained by inverting the

corresponding matrix {hk[l,m]}.

We now demonstrate the effectiveness of the algorithm in a scenario similar to that of Fig. 6. Specifically, suppose

that, as in Fig. 6, x(t) is known to be of the form (17), and we are given the samples c[n] =
∫ n

n−1 arctan (x(t)) dt.

Thus, the nonlinear mapping here is M(x) = arctan(x) and the sampling filter is a rectangular window of size 1.

On the left hand side of Fig. 8, it can be seen that the samples c[n] seem to constitute a rather poor representation

of the signal. Consequently, if one ignores the nonlinearity and uses the techniques developed in the previous

section, i.e., filtering with H(ejω) of (12), then the reconstruction error is large (dotted line). Another simple
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Fig. 8: A signal x(t) lying in a shift invariant space was linearly sampled after passing through a memoryless

nonlinear system. Reconstruction techniques that ignore the nonlinear distortion or the linear sampler, fail to

perfectly reconstruct x(t) (left). However x(t) can be perfectly recovered using the algorithm presented here

(right).

approach is to first invert the nonlinearity and then filter the corrected samples c̃[n] = tan(c[n]) with H(ejω) of

(12) (dashed line). Neither of these methods result in perfect recovery. On the right hand side of Fig. 8 we show

the result of applying the algorithm presented here, which leads to perfect reconstruction of x(t) from the nonideal

samples c[n].

C. Constrained Reconstruction

Up until now we specified the sampling process but did not restrict the reconstruction or interpolation kernel

w(t) in Fig. 3. In many applications this kernel is fixed in advance due to implementation issues. For example, in

image processing applications kernels with small supports are often used. These include nearest neighbor, bilinear,

bicubic, lanczos and splines. The interpolation kernel w(t) can also represent the pixel shape of an image display.

In order to obtain stable reconstruction, we concentrate in the sequel on cases in which w(t) satisfies the Riesz

basis condition (6). In particular, it can be easily shown that B-splines all satisfy this requirement.

Given a sampling function s(−t) and a fixed interpolation kernel w(t) an important question is how to design

the digital filter h[n] in Fig. 3 so that the output x̂(t) is a good approximation of the input signal x(t) in some

sense. Clearly, x̂(t) will always lie in the space W , spanned by the generator w(t). This is because for every

choice of the sequence d[n], x̂(t) has the form x̂(t) =
∑

n d[n]w(t − n). Therefore, if x(t) does not lie in W to

begin with, then x̂(t) cannot be equal x(t). Since x̂(t) is constrained to lie in W , it follows from the projection

theorem (16) that the minimal error approximation to x(t) is obtained when x̂(t) = PWx(t). The question is

whether this solution can be generated from the samples c[n]. In general, the answer is negative without sufficient

prior knowledge on the signal [9]. However, when x(t) lies in a subspace satisfying (10), PWx(t) can be obtained
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by filtering the sample sequence with

H
(

ejω
)

=
φWA

(

ejω
)

φSA (ejω)φWW (ejω)
, (23)

where φWA

(

ejω
)

, φSA

(

ejω
)

and φWW

(

ejω
)

are as in (11) with the corresponding substitution of the filters W (ω),

A(ω) and S(ω). In this case, the output of the system of Fig. 3 is given by PWEAS⊥x(t) [9]. Consequently, if

x(t) ∈ A, then EAS⊥x(t) = x(t) and the minimal squared-error approximation PWx(t) is achieved.

To understand this result geometrically, note that we have already seen in the previous subsection that under the

direct sum condition, any vector x(t) ∈ A can be recovered from the samples c[n]. This is illustrated in Fig. 5.

Here, however, we are constrained to obtain a solution in W . But, since we can determine x(t), we can also

compute PWx(t), which is the minimal squared-error approximation in W .

D. Dense Grid Recovery

The situation in which x(t) can be completely determined from its samples but cannot be reproduced by the

system is somewhat frustrating. Moreover, the error caused by restricting the recovered signal to lie in W may

be very large if W is substantially different from A. One way to bridge the gap between the unconstrained and

constrained recovery techniques is to increase the interpolation rate, namely produce a reconstruction of the form

x̂(t) =
∑

∞

=−∞
d[n]w(t − n/K), for some integer K > 1. This strategy is legitimate as we are still using a

predefined interpolation kernel w(t), which may be easy to implement. Thus, we effectively introduce a tradeoff

between complexity and performance.

The motivation for this approach can be understood from a geometric viewpoint. As we increase the interpolation

rate K, the reconstruction space W spanned by the functions {w (t − n/K)} becomes “larger” and consequently

“closer” to A. In some cases, there exists a factor K for which W contains A, thus recovering the possibility of

perfect reconstruction.

In order for the reconstruction to be stable, we focus on the case in which the functions {w (t − n/K)} form

a Riesz basis. This requirement is satisfied if and only if there exists constants 0 < α ≤ β < ∞ such that

α ≤
∑

∞

l=−∞
|W (ω − 2πlK)|2 ≤ β is satisfied almost everywhere.

Similarly to the case in which K = 1, it can be shown that when x(t) is in A, the minimal squared error solution

x̂(t) = PWx(t) can be attained with the system depicted in Fig. 4. The frequency response of the correction filter

h[n], which operates on the up-sampled data, is given by

H(ejω) =
K−1
∑

n=0

K−1
∑

m=0

φWA

(

ej(Kω+2πm)
)

e
2πjmn

K

φSA (ejKω)φWW

(

ej(Kω+2πm)
) , (24)

where φSA(ejω) is defined in (11).

III. SMOOTHNESS PRIORS

Up until now we considered the setting in which the input signal x(t) is constrained to a subspace. We now

treat a more general and less restrictive formulation of the sampling problem in which our prior knowledge on the

signal is that it is smooth in some sense. Here we model the extent of smoothness of x(t) as the L2 norm of the
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output of the continuous-time filter L(ω) with x(t) as its input. For example, the filter L(ω) can be chosen as a

differential operator L(ω) = (1 + ω2)γ for some choice of γ. We denote this quantity in operator form as ‖Lx‖.

For simplicity, we assume that L(ω) > α > 0 almost everywhere for some α, although the results extend to the

non-invertible case as well.

Unlike subspace priors, a one-to-one correspondence between smooth signals and their sampled version does

not exist since smoothness is a far less restrictive constraint than confining the signal to a subspace. This renders

perfect recovery or even error norm minimization impossible. Indeed, it can be shown that there is no single choice

of x̂(t) that minimizes ‖x̂(t)− x(t)‖2 over all smooth signals x(t). This is true even when x̂(t) is constrained to

lie in a subspace W . This is because the sample sequence c[n] is no longer sufficient to determine the orthogonal

projection PW x̂(t) [9]. Therefore, below, we focus on alternative approaches for designing the reconstruction

system.

A. Unconstrained Reconstruction

To approximate x(t) from its samples, based solely on the knowledge that it is smooth, we consider two design

techniques. The first consists in finding the smoothest signal which gives rise to the measured samples c[n] [19].

The second is a minimax strategy in which the system is designed to yield the best approximation for the worst-case

signal among inputs that are consistent with the samples and are smooth to some extent [9].

1) Smoothest Approximation: In this approach we require that the reconstructed signal x̂(t) is smooth and

consistent with the samples. The consistency requirement means that x̂(t) should yield the same samples c[n]

when reinjected into the system:

〈x̂(t), s(t − n)〉 = c[n] = 〈x(t), s(t − n)〉 for all n. (25)

The simplest strategy to produce a consistent smooth reconstruction is to minimize the smoothness ‖Lx‖ subject

to the consistency requirement:

x̂(t) = arg min
x(t)

‖Lx(t)‖ subject to S{x(t)} = c. (26)

The notation S{x(t)} denotes the sequence of samples 〈s(t − n), x(t)〉 and c stands for the sequence {c[n]}. It

can be shown that the solution to (26) has the form of Fig. 3 where now the reconstruction kernel is

W̃ (ω) =
S(ω)

|L(ω)|2
, (27)

and

H(ejω) =
1

φSW̃ (ejω)
. (28)

As we have seen in the previous section, the filter (28) corresponds to the choice that leads to perfect recon-

struction for signals x(t) ∈ W̃ (see (8)). Thus, this approach can be viewed as first determining the optimal space

given by (27), and then finding the unique signal in W̃ that is consistent with the given samples.

As a special case, we may choose to produce the minimal norm consistent reconstruction x̂(t) by letting L be the

identity operator I . This leads to w(t) = s(t) and H(ejω) is then given by (8). Consequently, x̂(t) is the orthogonal
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projection onto the sampling space, x̂(t) = PSx(t). This can also be seen by noting that any reconstruction x̂(t)

which yields the samples c[n] has the form x̂(t) = PSx(t) + v(t) where v(t) is an arbitrary vector in S⊥. Thus

the minimal norm approximation corresponds to the choice v(t) = 0.

2) Minimax Recovery: The reconstruction error ‖x̂(t)−x(t)‖2 of any recovery method depends on the unknown

original signal x(t). This renders the problem of comparing between interpolation methods complicated. Indeed,

one algorithm may be better than another for certain input signals and worse for others. The next approach we

discuss is based on optimizing the squared-error performance for the worst input signal.

The prior information we have can be used to construct a set V of all possible input signals:

V = {x(t) : S{x(t)} = c, ‖Lx(t)‖ ≤ U}, (29)

were U > 0 is some finite constant. The set consists of signals that are consistent with the samples and are

relatively smooth. We now seek the reconstruction that minimizes the worst-case error over V:

min
x̂(t)

max
x(t)∈V

‖x̂(t) − x(t)‖2. (30)

It can be shown that the optimal solution does not depend on the constant U . Furthermore, the minimax solution

interestingly coincides with the smoothest approximation method, i.e., the optimal interpolation kernel and digital

compensation filter are given by (27) and (28) respectively.

Although the two approaches we discussed are equivalent in the unrestricted setting, the minimax strategy allows

more flexibility in incorporating constraints on the reconstruction, as we show in the next subsection. Furthermore,

it tends to outperform the consistency approach when further restrictions are imposed as we will demonstrate via

several examples.

Figure 9 compares the minimax approach with bicubic interpolation in the context of image enlargement. The

regularization operator was taken to be L(ω) =
(

(0.1π)2 + ‖ω‖2
)1.3

, where ω denotes the 2D frequency vector.

In this example the minimax recovery is superior to the commonly used bicubic method in terms of peak signal

to noise ratio (PSNR), defined as PSNR = 10 log10(2552/MSE) with MSE denoting the empirical squared-error

average over all pixel values. In terms of visual quality, the minimax reconstruction is sharper and contains enhanced

textures.

B. Constrained Reconstruction

We next treat the problem of approximating x(t) from its samples c[n] using a pre-specified interpolation kernel

w(t). Similar to the unrestricted scenario, the two main approaches in this setup are consistent reconstruction [19],

[8], [11], [12], [24] and minimax recovery [9], [37]. However, here the solutions no longer coincide. Both of these

methods can be interpreted in terms of projections onto the spaces W and S that figure in the problem setting.

Whereas the first approach leads to an oblique projection, the second strategy involves orthogonal projections

which render it more robust to noise [38], [39].
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Fig. 9: The Mandrill image was down-scaled by a factor of 3 using a rectangular sampling filter. The low resolution

image was then enlarged back to its original dimensions using two interpolation methods. The bicubic interpolation

kernel leads to a blurry reconstruction (left) with PSNR of 24.18dB. The minimax method leads to a sharper

reconstruction (right) with PSNR of 24.39dB.

1) Consistent Reconstruction: In order to incorporate the constraint on the interpolation kernel, we extend (26)

to include the restriction x(t) ∈ W:

x̂(t) = arg min
x(t)

‖Lx(t)‖ subject to S{x(t)} = c, x(t) ∈ W. (31)

Recall that under the direct sum condition (10) with W playing the role of A, there is a unique signal in W

satisfying S{x(t)} = c, which is equal to the oblique projection EWS⊥x(t). Since there is only one signal in

the constraint set of problem (31), the smoothness measure in the objective does not play a role. The oblique

projection can be obtained by processing the samples c[n] using the filter

H(ejω) =
1

φSW (ejω)
. (32)

Comparing with (12), we see that this is precisely the filter that yields perfect recovery when we know that

x(t) ∈ W . When the direct sum condition is not satisfied, there can be several consistent solutions so that the

objective in (31) is needed in order to select one output among all possibilities [40], [41].

2) Minimax Recovery: A drawback of the consistency approach is that the fact that x(t) and x̂(t) yield the

same samples does not necessarily imply that x̂(t) is close to x(t). Indeed, for an input x(t) not in W , the norm

of the resulting reconstruction error x̂(t) − x(t) can be made arbitrarily large, if S is close to W⊥. Furthermore,

as we have seen, the consistency method essentially ignores the smoothness prior.

In order to directly control the reconstruction error ‖x̂(t)− x(t)‖2, we suggest modifying the minimax strategy

of the previous subsection to include the restriction x(t) ∈ W . Therefore, our minimax design criterion is now:

min
x̂(t)∈W

max
x(t)∈V

‖x̂(t) − x(t)‖2, (33)
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where V is the set of relatively-smooth consistent signals given by (29).

It turns out that the criterion (33) is too conservative and results in the trivial solution x̂(t) = 0 [9]. To

counterbalance the conservative behavior of the minimax approach, instead of minimizing the worst-case squared-

norm error, we now consider minimizing the worst-case regret [42]. The regret is defined as the difference between

the squared-norm error and the smallest possible error that can be achieved with a reconstruction in W , namely

‖PW⊥x(t)‖2. This error is attained when x̂(t) = PWx(t), which in general cannot be computed from the sequence

of samples c. Since the regret depends in general on x(t), it cannot be minimized for all x(t). Instead we consider

minimizing the worst-case regret over all possible values of x(t) that are consistent with the given samples, which

results in the problem

min
x̂(t)∈W

max
x(t)∈V

{

‖x̂(t) − x(t)‖2 − ‖PW⊥x(t)‖2
}

, (34)

with V given by (29). Expressing x(t) as x(t) = PWx(t)+PW⊥x(t) and recalling that x̂(t) ∈ W it is easy to see

that (34) is equivalent to

min
x̂(t)∈W

max
x(t)∈V

‖x̂(t) − PWx(t)‖2 . (35)

The solution to (35) can be shown to be the projection onto W of the unconstrained minimax recovery given

by (27) and (28). This reconstruction can be obtained by digitally filtering the samples c[n] with the filter

H(ejω) =
φWW̃

(

ejω
)

φSW̃ (ejω)φWW (ejω)
, (36)

where W̃ (ω) is given by (27).

In Fig. 10 we demonstrate the difference between the consistent and minimax-regret methods in an image-

enlargement task. The setup is the same as that of Fig. 9 only now the reconstruction filter is constrained to be a

triangular kernel corresponding to linear interpolation. It can be seen that the error of the minimax regret recovery

is only 0.7dB less than the unconstrained minimax shown in Fig. 9. The consistent approach, on the other hand, is

much worse both in terms of PSNR and in terms of visual quality. Its tendency to over-enhance high frequencies

stems from the fact that it ignores the smoothness prior.

Many of the interesting properties of the minimax-regret recovery can be best understood by examining the case

where our only prior on the signal is that it is norm-bounded, i.e., when L is the identity operator I . This scenario

was thoroughly investigated in [9]. Setting L(ω) = 1 in (28), the correction filter becomes

H(ejω) =
φSW

(

ejω
)

φSS (ejω)φWW (ejω)
. (37)

Applying the Cauchy-Schwartz inequality to the numerator of (37) and to the denominator of (32), it is easy to

see that the magnitude of the minimax regret filter (37) is smaller than that of the consistent filter (32) at all

frequencies. This property renders the minimax regret approach more resistant to noise in the samples c[n]. This

is because perturbations in x̂(t) caused by perturbations in c[n] are always smaller in the minimax regret method

than in the consistent approach.

Apart for robustness to digital noise, a disruption which takes place after the signal was sampled, the minimax

regret method is also more resistant to perturbations in the continuous-time signal x(t). To see this note that the
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Fig. 10: The Mandrill image was down-scaled by a factor of 3 using a rectangular sampling filter. The low resolution

image was then enlarged back to its original dimensions using the consistent and minimax regret methods. The

consistent approach over-enhances the high frequencies (left) and results in a PSNR of 22.51dB. The minimax

regret method leads to a smoother reconstruction (right) with PSNR of 23.69dB.

minimax regret reconstruction is given by x̂(t) = PWPSx(t). Thus, the norm of x̂(t) is necessarily bounded by

that of x(t). Furthermore, it is easy to show that the resulting reconstruction error is always bounded by twice the

norm of x(t): ‖x̂(t) − x(t)‖2 ≤ 2‖x(t)‖2. In contrast, the consistent recovery is given by the oblique projection

x̂(t) = EWS⊥x(t), which may increase the norm of x(t). Consequently, the error of the consistent reconstruction

can, in some cases, grow without bound.

In Fig. 11 we illustrate the minimax regret reconstruction geometrically for the case L = I . We have seen already

that knowing the samples c[n] is equivalent to knowing xS(t) = PSx(t). In addition, our recovery is constrained

to lie in the space W . As illustrated in the figure, the minimax regret solution is a robust recovery scheme by

which the signal is first orthogonally projected onto the sampling space, and then onto the reconstruction space.

Note that in the case in which x(t) is known to lie in S, it follows from the previous section that the minimal

error can be obtained by using (23) with A(ω) = S(ω). The resulting filter coincides with the minimax regret

filter of (37). This implies that the regret approach minimizes the squared-error over all x(t) ∈ S.

An interesting feature of the minimax regret solution is that it does not depend on the norm bound U . Therefore,

x̂(t) = PWPSx(t) minimizes the worst-case regret error over all bounded inputs x(t), regardless of the norm of

x(t). Furthermore, the regret recovery method does not require the direct-sum condition L2 = W ⊕S⊥, which is

necessary in the development of the unique consistent approach.

In [9] tight bounds on the error resulting from each of the methods are developed and compared. We omit the

technical details here and only summarize the main conclusions. We first recall that if we know a priori that x(t)

lies in a subspace A such that L2 = A ⊕ S⊥, then the filter (23) will yield the minimal error approximation of

x(t) and therefore is optimal in the squared-norm sense. When A = S this strategy reduces to the minimax regret
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Fig. 11: Comparison of minimax regret reconstruction (PWPSx(t)) and consistent reconstruction (EWS⊥x(t)) for

two different choices of W . The minimax strategy is preferable when W is ‘far’ from S (left); Both methods lead

to errors on the same order of magnitude when W is ‘close’ to S (right).

method, while if A = W , then we obtain the consistent reconstruction.

When no prior subspace knowledge is given, then the regret approach is preferable if the spaces S and W are

sufficiently far apart, or if x(t) has enough energy in S. These results are intuitive as illustrated geometrically

in Fig. 11. In Fig. 11(a) we depict the consistent and regret reconstruction when W is far from S. As can be

seen in the figure, in this case the error resulting from the consistent solution is large with respect to the regret

approximation error. In Fig. 11(b), W and S are close, and the errors have roughly the same magnitude.

C. Minimax Dense Grid Reconstruction

We now extend the minimax regret approach to the dense-grid recovery setup of Fig. 4, in which the interpolation

is performed using a predefined kernel w(t) on a grid with n/K spacings. To treat this scenario within the

minimax-regret framework, we need to solve problem (33) with the appropriate reconstruction space, namely

W = span{w(t − n/K)}. The corresponding correction filter can be shown to be

H(ejω) =
K−1
∑

n=0

K−1
∑

m=0

φWW̃

(

ej(Kω+2πm)
)

e
2πjmn

K

φSW̃ (ejKω)φWW

(

ej(Kω+2πm)
) , (38)

where W̃ (ω) is given by (27).

To understand the necessity of fine grid interpolation, note that there is no analytic expression for the optimal

unconstrained kernel (27) in the time domain. In rate conversion situations, where the output rate is an integer

multiple of the input rate, the kernel w(t) needs to be calculated only on a discrete set of points. This is because

x̂(n/K) =
∑

m d[m]w(n/K −m), where K is the over-sampling factor. To approximate the sequence {w(n/K)}

on a finite set of indices, one can sample the expression
∑

l W (ω−2πlK) on a finite set of frequencies and apply

the inverse DFT. However, if x̂(t) needs to be evaluated at arbitrary locations, then this method cannot be used.

In the previous subsection we have seen that this problem can be tackled by using a predefined interpolation

kernel for which a formula exists. An alternative approach is to first evaluate the optimal kernel (27) on a dense

grid of instances and then use nearest neighbor or linear interpolation to obtain the values at the desired locations.

This is called first and second order approximation [28]. Note, however, that this method does not take into account
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Fig. 12: Comparison of first order approximation to the unconstrained optimal filter and dense grid minimax regret.

The Mandrill image was enlarged by a factor of π/e in both methods. The reconstruction filter in both techniques

is a triangular kernel corresponding to linear interpolation.

the non-optimal interpolation to be performed in the second stage. This is in contrast to the dense grid approach

presented here. Filter (38) shapes the spectrum of the up-sampled sequence in a way that compensates for the

non-optimal kernel to follow.

In Fig. 12 we compare the minimax-regret dense grid reconstruction approach and first order approximation to

the unconstrained filter. To emphasize the differences, we used both methods to enlarge an image by a non-rational

factor of π/e. It is clearly seen that the first-order approximation approach produces a blurry reconstruction whereas

in the minimax method the edges are sharp and the textures are better preserved.

IV. STOCHASTIC PRIORS

In this section we treat signal priors of stochastic nature. Specifically, the input x(t) is modelled as a WSS

random process whose PSD is Λxx(ω). Our goal is to linearly estimate x(t) given the samples c[n]. As we will see,

the schemes resulting from these considerations have strong connections to the minimax methods of the previous

section. In addition, this viewpoint also offers a nice explanation to reconstruction artifacts, frequently encountered

in applications.

A. Unconstrained Reconstruction

We begin by examining the situation where there are no limitations on the reconstruction mechanism. In the

deterministic setting with a smoothness prior we could not minimize the squared-error ‖x̂(t) − x(t)‖2 for all

smooth x(t), and therefore instead discussed a minimax method. In contrast, in the stochastic setting we can use
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the PSD of x(t) in order to minimize the MSE E[|x(t)− x̂(t)|2] for every t, which depends only on the statistics

of x(t) and not on the signal itself.

Our approach is to minimize the MSE by linearly processing the samples c[n]. As opposed to the common

Wiener filtering problem, where both the input and output are either continuous- or discrete-time signals, here we

are interested in estimating the continuous-time signal x(t) based on equidistant samples of y(t) = x(t) ∗ s(−t).

Consequently, we refer to this as the hybrid Wiener filtering problem.

It turns out that the reconstruction x̂(t) minimizing the MSE can be implemented by the block diagram in Fig. 3

with the interpolation kernel [43], [44], [45], [46]

W (ω) = S(ω)Λxx(ω), (39)

and digital correction filter

H(ejω) =
1

∑

∞

k=−∞
|S(ω − 2πk)|2Λxx(ω − 2πk)

. (40)

It is interesting to observe that (39) and (40) are identical to (27) and (28) with Λxx(ω) = |L(ω)|−2. Therefore, the

smoothness operator in the deterministic case corresponds to the whitening filter of the input x(t) in the stochastic

setting.

B. Constrained Reconstruction

We now treat the more practical constrained setting in which the interpolation filter is fixed in advance.

Unfortunately, in this case, it turns out that for a general given interpolation kernel, there is no digital correction

filter that can minimize the MSE for every t [47]. In fact, the filter minimizing the MSE at a certain time instance

t0 also minimizes the MSE at times {t0 + n} for all integer n, but not over the whole continuum. Therefore,

error measures other than the pointwise MSE must be considered. Before treating the problem of choosing an

appropriate criterion, we first discuss how this time dependence phenomenon is related to artifacts which are

commonly encountered in certain interpolation methods.

The signal x(t) in our setup is assumed to be WSS and, as a consequence, the sequence of samples c[n] is a

discrete WSS random process as is the output d[n] of the digital correction filter in Fig. 4. The reconstruction x̂(t)

is formed by modulating the shifts of the kernel w(t) by the WSS discrete-time process d[n]. Assuming that the

PSD of d[n] is positive everywhere, signals of this type are not stationary unless w(t) is π–bandlimited [48]. In

practice, the interpolation kernels in use have a finite (and usually small) support, and thus are not bandlimited.

In these cases, the periodic correlation in x̂(t) often degrades the quality of the reconstruction, as subjectively

perceived by the visual or auditory system.

Note that despite the fact that natural signals are rarely stationary to begin with, it is still relevant to study how

an interpolation algorithm reacts to stationary signals. In fact, if an interpolation scheme outputs a cyclostationary

signal when fed with a stationary input, then it will commonly produce reconstructions with degraded subjective

quality also when applied to real world signals, as demonstrated in Fig. 13. Note, however, that periodic structure

in a recovered signal is not necessarily related to the MSE. For example, the optimal unrestricted kernel (39) is

usually not bandlimited and thus leads to periodic structure in x̂(t).

June 16, 2008 DRAFT



25

(a) Original low resolution image

(b) Rectangular kernel

(c) Bicubic kernel

(d) Sinc kernel

Fig. 13: Periodic structure in an interpolated signal is a phenomena related to the effective bandwidth of the

interpolation kernel. The larger the portion of its energy outside [−π, π], the stronger the periodic correlation. The

three images on the right were obtained by scaling a patch of the original image by a factor of 5 using three

different methods. The portion of energy in the range [−π, π] of the kernels is: rectangular - 61%, bicubic - 91%,

sinc - 100%. Suppressed periodic correlation, however, does not necessarily imply that the reconstruction error is

small.

The non stationary behavior of x̂(t) is the reason why the pointwise MSE can generally not be minimized for

every t. Two alternative error measures that have been proposed are the sampling-period-average-MSE and the

projected MSE.

The sampling-period-average-MSE utilizes the fact that the MSE is periodic, and integrates it over one period

[49], [48]:

MSEA = E

[
∫ t0+1

t0

|x(t) − x̂(t)|2dt

]

. (41)

It turns out that the minimization of the average MSE leads to a correction filter independent of t0 [48]. The

second approach makes use of the fact that the best possible approximation to x(t) in W is PWx(t). Therefore

this method aims at minimizing the projected MSE, defined as the MSE with respect to the optimal approximation

in W [47]:

MSEP = E
[

|PWx(t) − x̂(t)|2
]

. (42)
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Interestingly, both error measures (41) and (42) lead to the same digital correction filter, which is given by [48],

[47]

H(ejω) =
φWW̃

(

ejω
)

φSW̃ (ejω)φWW (ejω)
, (43)

where here W̃ (ω) = S(ω)Λxx(ω). This is also the solution obtained by the minimax regret criterion (see (36))

where |L(ω)|−2 replaces the spectrum Λxx(ω). Therefore, here again, L(ω) plays the role of the whitening filter

of x(t).

The average MSE criterion (41) can also be used to handle the dense grid recovery setup of Fig. 4. The

minimization of the average MSE, in this case, leads to the corresponding minimax regret solution with Λxx(ω) =

|L(ω)|−2.

V. SPARSITY PRIORS

Before concluding this review, we briefly address sampling of sparse signals, a topic that has gained considerable

interest in recent years.

Throughout the review we focused mainly on linear interpolation techniques which were sufficient to recover,

or properly approximate, many classes of signals. An important case where nonlinear methods are necessary is

when the prior on the signal is not a subspace but rather a sparsity constraint. For example, we may know that

the signal has the form

x(t) =
N−1
∑

k=1

akg(t − tk) (44)

for some coefficients ak and time instances tk. Such a signal is said to have a sparse representation since only a

few parameters are needed to specify it [17], [18]. If the values tk are known then this is just a subspace prior.

The more interesting scenario is when the times tk need to be estimated along with the coefficients ak. Several

sampling strategies to deal with these signal classes have been suggested under the name of finite rate of innovation

sampling. It turns out that roughly 2N samples are enough to recover the entire signal with proper post-processing.

Another important class of sparse signals are signals whose frequency transform (or any other transform) have

a multiband structure. In this case the Fourier transform consists of a finite number N of bands, each of length at

most B. If the band locations are known, then this corresponds to a subspace prior and the methods discussed in

this review can be used to recover the signal from its samples. A very interesting question is whether the signal

can be recovered at a rate lower than the Nyquist rate when the band locations are unknown. Such a sampling

scheme is refereed to as blind since it does not exploit knowledge of the band locations in the sampling and

reconstruction stages.

At first site it may seem that since the band locations are unknown, the signal can have energy over the entire

Nyquist frequency range, and therefore lower than Nyquist sampling will not be sufficient to recover the signal.

Surprisingly, it turns out that this reasoning is in fact incorrect. In practice such classes of signals can be sampled

at a rate much lower than the Nyquist rate, without impairing the ability to perfectly recover the signals [15]. The

tradeoff is that the reconstruction involves nonlinear processing of the samples. In fact, it can be proven that the
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minimal sampling rate at which such signals can be processed is twice the sum of the frequency bands, which is

typically significantly smaller than twice the highest frequency, corresponding to the Nyquist rate. When the band

locations are known, the minimal sampling rate is exactly the sum of the bands, refereed to as the Landau rate.

Thus, the price for constructing a blind system is only a factor of two.

The techniques developed to sample and reconstruct such classes of signals are based on ideas and results from

the emerging field of compressed sensing [13], [14]. However, while the latter deals with sampling of finite vectors,

the multiband problem is concerned with analog sampling. By using several tools, developed in more detail in

[16], [50], it is possible to extend the essential ideas of compressed sensing to the analog domain. This broader

framework combines ideas presented in this review with traditional compressed sensing tools in order to treat more

general classes of signals, such as signals that lie in a union of shift-invariant spaces, i.e.,

x(t) =
K

∑

k=1

∞
∑

n=−∞

d[n]ak(t − n), (45)

for a set of generators ak(t) where only M < K out of the sequences d[n] are not identically zero. This model

subsumes the bandlimited class of functions as a special case.

APPENDIX A

BOX A: DISCRETE AND CONTINUOUS FOURIER TRANSFORMS

In this box we review the main properties of the discrete and continuous Fourier transforms used throughout

the paper.

The continuous-time Fourier transform (CTFT) of a signal x(t) in L2 is defined as

X(ω) =

∫

∞

−∞

x(t)e−jωtdt. (46)

We use the convention that upper case letters denote Fourier transforms. The discrete-time Fourier transform

(DTFT) of a sequence x[n] in ℓ2 is defined by

X(ejω) =

∞
∑

n=−∞

x[n]e−jωn. (47)

The DTFT is 2π-periodic; to emphasize this fact we use the notation X(ejω).

The DTFT of the sampled sequence y(t = n) is related to the CTFT of y(t) by

Y (ejω) =
∞

∑

k=−∞

Y (ω − 2πk). (48)

In the reverse direction, if the sequence d[n] is used to create a continuous-time signal f(t) =
∑

n d[n]y(t − n),

then

F (ω) = D(ejω)Y (ω). (49)

An important sequence encountered in signal recovery problems is the sampled cross correlation ras[n] =

〈a(t), s(t − n)〉. This sequence can be obtained by sampling the output of the filter s(−t) with a(t) as its input.

An immediate consequence from (48) is that the DTFT of ras[n] can be expressed as

φSA(ejω) =
∞

∑

k=−∞

S∗(ω − 2πk)A(ω − 2πk), (50)
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Fig. 14: Decomposition of a vector x into two components using an orthogonal projection (left) and an oblique

projection (right).

where (·)∗ denotes the complex conjugate. The set {a(t−n)} is orthonormal if each function a(t−n) is orthonormal

to all of its integer shifts. This is equivalent to requiring that raa[n] = δ[n] where

δ[n] =







1 n = 0;

0 otherwise.
(51)

From (50) we conclude that {a(t − n} is an orthonormal sequence if and only if

φaa(e
jω) =

∞
∑

k=−∞

|A(ω − 2πk)|2 = 1. (52)

APPENDIX B

BOX B: PROJECTIONS IN HILBERT SPACES

A projection E in a Hilbert space H is a linear operator from H onto itself that satisfies the property

E2 = E. (53)

The importance of projection operators is that they map the entire space H onto the range space R(E), and leave

vectors in this subspace unchanged. Furthermore, property (53) implies that every vector in H can be uniquely

written as the combination of a vector in R(E) and a vector in the null space N (E), i.e., we have the direct sum

decomposition H = R(E)⊕N (E). This is illustrated in Fig. 14 for two different projection operators. Therefore,

a projection is completely determined by its range space and null space.

An orthogonal projection P is a Hermitian projection operator. In this case the range space R(P ) and null space

N (P ) are orthogonal. Therefore, an orthogonal projection is completely determined by its range space. We use

the notation PV to denote an orthogonal projection with range V = R(PV).

An oblique projection EVW is an operator satisfying the projection property (53) that is not Hermitian. Its range

space is given by V so that EVWx = x for any x ∈ V , and its null space is given by W so that EVWx = 0 for

any x ∈ W .

When decomposing the space using an orthogonal projection, the vectors comprising the decomposition are

orthogonal, since R(P ) and N (P ) are orthogonal spaces. This is not true when using an oblique projection, as

June 16, 2008 DRAFT



29

illustrated in Fig. 14. Another important feature of the orthogonal projection is that the norm of the projection is

never larger than the original norm:

‖PVx‖ ≤ ‖x‖. (54)

This inequality does not necessarily hold for an oblique projection. In fact, the norm of the oblique projection

can be much larger than the signal norm. Consequently, algorithms relying on the oblique projection can cause a

significant increase in the noise if it is not constrained to the range space of the projection. On the other hand,

orthogonal projections are more stable in the presence of noise due to (54).

APPENDIX C

BOX C: BASIS EXPANSIONS

A Schauder basis for a complex Hilbert space H is a countable set of vectors {xn} in H such that every vector

x ∈ H can be written uniquely as a series

x =

∞
∑

n=−∞

c[n]xn (55)

with scalars c[n]. For example, the set of complex exponentials xn(t) = exp{jωnt} defined over t ∈ [−π, π] is

a Schauder basis for the space L2[−π, π] of square integrable functions over [−π, π]. In this basis, the expansion

coefficients c[n] of a function x(t) are its Fourier coefficients.

A countable set of vectors {xn} in H is a Riesz basis for H if it is complete and there exist two constants

α > 0 and β < ∞ such that

α
∑

n

|c[n]|2 ≤

∥

∥

∥

∥

∥

∑

n

c[n]xn

∥

∥

∥

∥

∥

2

≤ β
∑

n

|c[n]|2, ∀c ∈ ℓ2. (56)

Riesz bases have the desired stability property, namely that a slight change in the expansion coefficients c[n] is

ensured to entail only a small change in x. Consequently, these bases are important in ensuring stable sampling

schemes.

An important question is how to obtain the expansion coefficients c[n] of a vector x. If the basis {xn} is

orthonormal (i.e., 〈xm, xn〉 = δmn) then c[n] = 〈x, xn〉. This follows from taking the inner products of both sides

of (55) with xm and exploiting the orthogonality property. To determine the expansion coefficients when using a

general non-orthogonal basis, we follow a similar route using the biortohognal vectors, or dual basis x̃n. The dual

basis of xn is the unique basis of H that satisfies the property

〈xm, x̃n〉 = δmn. (57)

Taking the inner products of both sides of (55) with respect to x̃m, we find that

c[n] = 〈x, x̃n〉. (58)

If xn is a Riesz basis, then so is its biorthogonal basis.

When the set of vectors {xn} span only a subspace U of H, there may be many choices of biorthogonal bases

in H satisfying (57). Intuitively, the biorthogonal basis vectors should span a subspace with the same number of
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degrees of freedom as U . A formal statement of this observation is that given any subspace V satisfying the direct

sum condition H = U ⊕ V⊥, there exists a unique set of vectors {x̃n} lying in V which constitute a biorthogonal

basis for {xn}. This set is called the oblique dual basis of {xn} in V [11], [12], [24], [30], [32], [33]. The vectors

{x̃n} satisfy (57) and form a basis for V , that satisfy the Riesz condition given that {xn} is a Riesz basis. In each

subspace V there is only one dual basis. The canonical dual basis refers to the choice U = V . This concept can

also be extended to sets of vectors that are linearly dependent, leading to oblique dual frames.
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