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Abstract 
This paper evaluates new techniques to improve 

performance and efficiency of Chip MultiProcessors 

(CMP) for workloads consisting of multiple 

multithreaded applications. Multithreaded 

applications contain serial phases (single thread) and 

parallel phases (many threads). While scheduling 

threads, current techniques do not differentiate 

between these two phases, resulting in sub-optimal 

usage of the multiprocessor resources. In this paper, 

we propose a new thread scheduling mechanism 

which takes into account the different requirements of 

each phase, granting higher priority to applications 

during their critical-serial phases. The advantages of 

the proposed scheduling mechanism, shown by 

analytical and experimental evaluation, are threefold. 

First, system throughput and power efficiency are 

improved by making better use of the available 

multiprocessor computing power. Some of the 

benchmarks show system throughput improvements of 

as much as 16%. Second, fairness in resource 

allocation between the applications is improved by as 

much as 26%. Third, the jitter in execution runtimes 

in different runs of the same set of applications is 

reduced by up to 88%. The analysis is performed for 

asymmetric multiprocessors, where some of the 

computing cores are faster than others, as well as for 

symmetric multiprocessors in which all cores are 

identical. All experiments in this paper are performed 

in a real environment, consisting of full benchmarks 

running on a real multiprocessor and operating 

system. 

1 Introduction 

Multithreaded applications can take advantage of 
the added computing ability offered by today's 
multiprocessors by executing in parallel on many 
cores. With an ever-increasing core population 

embedded in state-of-the-art systems ‎[15], the use of 
multithreading in applications is expected to increase. 
In this paper, we strive to improve system 
performance as measured by several metrics when 
scheduling multiple multithreaded applications in 
parallel on asymmetric multiprocessors (where some 
computing cores are faster than others), as well as on 
symmetric multiprocessors (where all cores are 
identical). 

When examining multithreaded applications, one 
can identify two types of execution phases, serial 
phases and parallel phases. In serial phases only one 
thread is active, whereas parallel phases are 
comprised of many concurrently active threads. 
Typically, data preparation for the parallel phases and 
inherently sequential calculations are done in the 
serial phases. The heavy independent calculations are 
performed in the parallel phases. 

When two multithreaded applications are run 
simultaneously, the serial thread of one application 
may be available for execution together with the 
parallel threads of the other application. Fig. 1 shows 
an example of the four possible joint states of two 
multithreaded applications. The vertical axis 
represents time, advancing from top to bottom. At 
each point in time, the number of active threads for 
each application is shown.  

 

(P,S)

(S,S)

(P,P)

(S,P)

App-A App-B

t P=Parallel, S=Serial
 

Fig. 1. Illustration of joint states of two sample 

applications running simultaneously.  
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Current operating system schedulers, such as the 
Linux scheduler ‎[1], are not aware of the phases of 
the running applications. When multiple 
multithreaded applications are run in parallel, this 
lack of awareness results in lower throughput, jitter in 
applications’ runtimes, and unfairness between 
applications. These undesired characteristics may 
happen because the serial phases, which are critical 
bottlenecks for the applications, compete for CPU 
time with the many concurrently executing parallel 
threads. If these serial phases were executed quickly, 
the application’s bottlenecks would be freed, allowing 
the application to take advantage of the 
multiprocessor resources by using many threads. 

In this paper, we propose to add another dimension 
to the current scheduling policy by using information 
about the parallel and serial phases of the 
applications. Our proposed scheduler monitors the 
number of active threads in each application, and 
hence it can identify and grant higher priority to serial 
threads.  

Fig. 2 shows the four possible joint-states of two 
applications executing in parallel: (Serial, Serial: S,S), 
(Serial, Parallel: S,P), (Parallel, Serial: P,S), and 
(Parallel, Parallel: P,P), as well as the possible 
transitions among them. The large arrows on state 
transition arcs denote the most likely transition. The 
proposed scheduler, shown in Fig. 2 (b), favors the 
serial thread, thus increasing the probability for 
transition from (S,P) and (P,S) states to (P,P) state. 
Current OS schedulers, however, treat the serial and 
parallel threads equally, thereby lengthening the time 
required for the serial application to transition into its 
parallel phase. Current OS schedulers therefore favor 
the transition from (S,P) and (P,S) to (S,S) state.  As a 
result of the reduced time spent in (S,S), which is the 
only state in which the multiprocessor has idle cores, 
the proposed scheduler is expected to improve 
throughput.  

 

S,S

P,S S,P

P,P

Baseline

(a) (b)

S,S

P,S S,P

P,P

Proposed

 
Fig. 2. Illustration of the four possible joint states 

of two applications running in parallel.  

Similarly to the symmetric case, when two 
multithreaded programs run on asymmetric 
multiprocessors, serial phases should be favored over 
parallel phases by being assigned to run on the faster 

cores. 
In this paper, we propose a scheduler that grants 

higher priority to applications in their serial phases in 
order to increase the multiprocessor throughput, 
improve fairness and reduce the jitter in execution 
runtimes. The expected improvements are quantified 
by a simple analytical model. We validate our 
proposed techniques by experiments running on a real 
symmetric CMP with a current version of the Linux 
operating system, with multiple multithreaded 
applications executing in parallel. We also validate 
our techniques on asymmetric structures that are 
emulated on the real symmetric CMP, with the 
addition that serial threads are granted higher priority 
to run on faster cores.  

2 Related Work 

There are various papers addressing scheduling of 
single-threaded applications on 
asymmetric/heterogeneous multiprocessors, which are 
based on sampling of runtime performance on the 
different core types. Kumar et al. ‎[11] have proposed 
a scheduler for multiple single-threaded applications 
on a heterogeneous multiprocessor. Bower et al. ‎[6] 
have shown the impact on thread scheduling in 
symmetric multiprocessors that become 
heterogeneous during runtime due to frequency 
scaling, process variations and physical faults. Winter 
et al. ‎[20] explored thread assignment algorithms for 
single-thread applications on such multiprocessors. 

Other papers address the scheduling problem for a 
single multithreaded application running on an 
asymmetric multiprocessor ‎[3]‎[5]‎[10]‎[13]. 
Grochowski et al. ‎[3]‎[10] have proposed a static 
scheduling mechanism, implemented at the 
application level, which schedules the serial phases of 
applications on the high performance core. They have 
shown significant performance improvements over 
symmetric designs with the same power consumption. 
Balakrishnan et al. ‎[5] proposed a dynamic scheduler 
for a single multithreaded application on a 
heterogeneous multiprocessor. They have shown that 
by scheduling the serial phases on the high 
performance core, performance increases and the 
jitter in runtimes of different executions is reduced. 
We extend these methods ‎[3]‎[5]‎[10] for multiple 
multithreaded programs, while addressing the 
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scheduling problem that arises when there are more 
threads than cores in the multiprocessor.  

Fedorova et al. ‎[8] proposed a scheduling algorithm 
that reduces completion time jitter of single threaded 
applications on heterogeneous multiprocessors. This 
was done by granting each thread equal CPU time on 
each core of the heterogeneous multiprocessor, at the 
expense of many thread migrations. Their algorithm 
does not, however, take advantage of the asymmetric 
structure, which allows the acceleration of critical 
path threads. 

Many papers explore fairness and throughput in 
SMT architectures ‎[9]‎[12]‎[17]‎[18]. We use and 
extend their throughput and fairness metrics for 
asymmetric multiprocessors. Mutlu et al. ‎[14] have 
shown that fair allocation of memory accesses in 
DRAM controllers can have a big impact on overall 
throughput and fairness between applications. Chen et 
al. ‎[7] have shown that thread assignment in 
multiprocessors should take into account cache 
sharing effects between threads. The concepts we 
present in this paper may co-exist synergistically with 
these methods. 

3 Emulation Environment 

All measurements in this paper are performed on 
an 8-core multiprocessor consisting of four dual-core 
2.66MHz XEON processors with 8GB of memory, 
and with SMT disabled. The operating system used is 
Linux 2.6.18, and is referred to in this paper as the 
baseline scheduler. Our benchmarks include the entire 
SPEC-OMP2001 ‎[4] suite with the medium reference 
input sets, with the exception of “galgel” because of 
compilation difficulties in our setup.  

OpenMP offers various scheduling options for its 
parallel constructs ‎[16]. We altered the default 
OpenMP scheduling policy from static, in which each 
thread receives an identical portion of the workload, 
to dynamic, in which each thread consumes a 
predefined small subset of the workload, and then 
requests additional work. This is similar to what was 
done in ‎[5] and ‎[13]. 

Since the SPEC-OMP2001 benchmarks are highly 
parallel and represent only a small fraction of the 
application space, in this paper we also measure a 
synthetic benchmark written by the authors. The 
synthetic benchmark mimics applications with an 
adjustable ratio of parallel to serial code. It allows us 
to get accurate results within a short runtime, making 
it practical for exploring various scheduling options 
for various combinations of applications running 

together in the system. The synthetic benchmark 
consists of a loop of a mathematical calculation which 
fits entirely in the cache. During the course of its 
execution, the benchmark switches randomly between 
serial phases, in which there is only one active thread, 
and parallel phases, in which there are n threads, 
equal to the number of cores in the multiprocessor. 

We model and label multithreaded programs by 
the ratio of parallel and serial instructions they 
contain, divided by the computing power of the 
multiprocessor on which they are run. In the 
following equation, IP denotes the number of dynamic 
instructions executed in the parallel phases, IS denotes 
the number of dynamic instructions executed in the 
serial phases, n denotes the number of cores in the 
multiprocessor, and the normalization factor k is 
chosen so that one of the ratios equals one, and the 
other is greater than or equal to one. The labeling is 
dependent on the number of cores, in order to hint the 
amount of time spent in the parallel and serial phases. 

( , ) ,Parallel
Parallel Serial Serial

I
ratio ratio k kI

n

   
 

 (1) 

For example, a benchmark labeled (1:1) on a 
symmetric CMP with no synchronization and 
scheduling overheads will spend roughly equal time 
in its parallel phases and in its serial phases. 
Completely parallel applications are labeled as (∞:1), 
whereas completely serial applications are labeled as 
(1:∞). 

The synthetic benchmark may be tuned so that in 
the long run it would mimic the parallelism behavior 
of applications, ranging from completely parallel 
applications (∞:1) to completely serial applications 
(1:∞). Each measurement of the synthetic benchmark 
lasts 60 seconds, after which the benchmark reports 
the total number of iterations it has completed in that 
time frame. The pseudo-code of the synthetic 
benchmark is detailed in Fig. 3. 

 
while (time<60 seconds) { 

 parallel_iterations = random(); 

serial_iterations = parallel_iterations * ratioSerial / (ratioparallel * Ncores); 

 in each thread { // fork 

  if (calculated_iterations < parallel_iterations) { 

   for (i=0;i<CHUNK;i++) 

    perform_calculation(); 

   calculated_iterations += CHUNK; //shared variable 

  } 

} //join 

 for (i=0;i<serial_iterations;i++,calculated_iterations++) 

  perform_calculation(); 

} 

print “performance=”,calculated_iterations/(time-start_time) 

Fig. 3. Pseudo-code of the synthetic benchmark. 
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4 Methodology 

This research is focused on the interactions 
between multiple multithreaded applications. All 
measurements in this paper, except where stated 
otherwise, are therefore performed for two 
applications running in parallel. We focus on three 
metrics: performance, fairness, and jitter.  

Measuring the performance improvement of 
multiple applications running in parallel in different 
environments, for example, environments with the 
same hardware but with different OS schedulers, is 
not trivial ‎[19]. The task is even harder when these 
applications are also multithreaded. Alameldeen et al. 
‎[2] have shown that the throughput metric of IPC used 
in uniprocessors is not accurate for multithreaded 
programs in multicore architectures. One of the 
reasons is that threads in a multithreaded program use 
polling when waiting for sibling threads, resulting in 
different number of committed instructions in 
different executions of the same program. The 
accurate throughput metric in multithreaded programs 
is therefore the amount of actual work performed 
divided by the execution time. 

Measuring the throughput of two synthetic 
benchmarks running simultaneously is done by 
summing the number of iterations completed in each 
benchmark during a predefined benchmark time. The 
SPEC-OMP benchmarks, however, must run until 
completion, since they report their accurate progress 
only when done.  

One way of measuring performance of a scheduler 
for multithreaded applications is to run two 
applications and wait for both to finish: 

1 2max( , )completion Benchmark Benchmarkt t t   (2) 

This method is demonstrated in Fig. 4, and is 
similar to the “Last” method described in ‎[19]. While 
measuring with this method, we found that in many 
cases one application finished its execution well 
before the other. Since we want to measure the 
interactions between applications, the time segment in 
which only one application is active becomes 
irrelevant, but it does affect the results.  

Another option for measuring is to repeat short 
applications in order to equalize the runtimes, such as 
repeating application “A” in Fig. 4 twice. Equalizing 
runtimes, however, requires large numbers of 
iterations of long benchmarks. Additionally, while 
runtimes may be equal in one environment, such as 
the same system with a modified thread scheduler, 
they may be completely different in another. 

 

A

B

tB1 = tcompletion

t

Benchmark-1

Benchmark-2

tB2
 

Fig. 4. Example of two multithreaded benchmarks 

running in parallel ‎[19]. 

 
We handle the throughput measurement problem by 

running two benchmarks that perform the same work, 
each comprised of two applications that are run in a 
different order, as shown in Fig. 5. Since the work of 
the two benchmarks is the same, the runtimes are 
closer than in the previous methods. As a result, the 
effects of our new scheduling mechanisms can be 
evaluated more reliably than in the other methods 
‎[19]. 

A

B

B

A

t

Benchmark-1

Benchmark-2
tA1

tA2

tB1 = tcompletion

Fig. 5. Example of two multithreaded benchmarks 

running in parallel, each comprising two 

applications in a different order, allowing for 

closer benchmark execution times tB1 and tB2. 

 
 The second metric evaluated in this paper is 
fairness. When two applications are executed in 
parallel, their runtimes are longer than when each 
application runs alone on the multiprocessor:  

, ||

,

A A B

A

A A

Performance
speedup

Performance
  (3) 

The speedup values are actually less than one, 
representing a slowdown of application A because of 
sharing the system resources with application B. If 
both applications exhibit the same relative speedup, 
the system is said to be fair ‎[9]‎[17]. If, however, each 
application exhibits a different relative speedup, the 
system is unfair. In this paper, we use the fairness 
metric detailed in ‎[9], which is defined as the 
minimum ratio of speedups of the applications. For 
two applications, fairness is defined as follows: 
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min ,A B

B A

speedup speedup
F

speedup speedup

 
  

 
 (4) 

 Fairness as defined above can be in the range of 0 
to 1, corresponding to completely unfair and to 
completely fair, respectively. As shown in Fig. 5, we 
measured the SPEC-OMP2001 benchmarks by 
executing both applications twice but in a different 
order. The speedup of application A in equation (3) is 
therefore the time required to execute the application 
alone on the multiprocessor, divided by the average 
duration of application A in the configuration shown 
in Fig. 5:  

 
,

1 20.5

A alone

A

A A

t
speedup

t t



 

 (5) 

 The third metric is jitter in execution runtimes. In 
the ideal case, consecutive executions of the same 
applications in the same environment are expected to 
yield similar execution times. Balakrishnan et al. ‎[5] 
have already shown, however, that operating system 
schedulers in asymmetric multiprocessors present 
unpredictable application runtimes for a single 
multithreaded application. In this paper, we quantify 
runtime jitter by measuring the standard deviation of 
the normalized execution times of the workload in N 
experiments of the same benchmark:  

2

,

1 ,

1
1

N
A n

A

n A avg

t
Jitter

N t

 
   

 
  (6) 

5 Analysis 

In this section, we analyze the performance, 
fairness and jitter metrics for two multithreaded 
applications, AppA and AppB, running in parallel. 
These applications have one active thread in their 
serial phases and n active threads in their parallel 
phases, which is also equal to the number of cores in 
the multiprocessor. The applications may differ in 
their parallel/serial ratios. We validate the analysis by 
measurements on a real multiprocessor with a modern 
OS. 

Consider the example of an asymmetric 
multiprocessor with n cores: one is large with higher 
performance, whereas all others are small and with 
lower performance, as in ‎[13]. The large core's 
performance is higher than the small cores' 
performance by the factor a. For simplicity, we 
assume that the performance factor a is identical for 
all workloads. In this section, the performance figures 

are normalized to the performance of one thread on 
one small core. 

We assume for this analysis that there is equal 
probability for threads to run on any core of the 
multiprocessor. The average performance of a serial 
thread on an idle asymmetric multiprocessor is 
therefore given by:  

1 1 1
1serial S

n n a
Perf P a

n n n

  
       (7) 

The performance of a parallel application when 
running on an idle asymmetric multiprocessor is as 
follows: 

1parallel P SPerf P n a n P       (8) 

We consider the case where two concurrently 
running applications have n active threads in their 
parallel phases. When both applications are serial, the 
scheduler has three options for scheduling. In the first 
option, both applications are scheduled on small 
cores. In the second and third options, one application 
is scheduled to run on the large core, and the other 
application is scheduled to run on a small core. There 
is also a fourth option in which both applications can 
run on the large core. This would make sense for large 
values of a (a≥2), which would allow better 
performance than would be achieved by scheduling 
each of the threads alone on their own small core. For 
simplicity, we assume that a is sufficiently small 
(1≤a<2) in our analysis. The maximum performance 
in this case will be achieved when the serial 
application runs on the large core:

 
( , ),maxS SPerf a

 
 (9) 

The minimum speedup will be achieved when the 
serial application runs on the small core:

 
( , ),min 1S SPerf 

 
 (10) 

Given the probabilities for each of the discussed 
cases, the applications will exhibit the following 
average performance: 

( , ),

1 1 1 1
1 1

1 1

1

S S avg

S

Perf

n n
a

n n n n

n a
P

n



              
 



 (11) 

Thus, in the state (S,S) in the baseline scheduler, 
each application is indifferent to the existence of the 
other in the average case. 

When both applications are in their parallel phases, 
there are exactly 2n  running threads that compete for 
n  cores. In this case there are three scheduling 
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options. In the first option, the scheduler schedules 
one thread of each application on the large core, and 
all other cores run two threads each. In the second and 
third options, only one application is scheduled to the 
large core. 

When two threads share the same core, we assume 
that each has access to half of the computing 
resources of that core. The maximum performance for 
a parallel application will therefore be achieved when 
two threads of the parallel application are scheduled 
on the large core: 

( , ),max

1 1 2 2

2 2 2 2
P P

n a a n a
Perf

   
     (12) 

 The minimum speedup will be achieved when all 
threads of the parallel application are scheduled on 
the small cores: 

( , ),min

1 1

2 2 2 2
P P

n a a n
Perf

 
   

 

(13) 

The parallel applications will therefore exhibit the 
following average speedup: 

( , ),

1 2 2

2 2 1 2

1 1
2

2 2 1 2 2 2 1 2

1 1

2 2

P P avg

P

n n n a
Perf

n n

n n n a n n n

n n n n

n a
P

      
             

 


 (14) 

When one of the applications is serial and the other 
is parallel, there are 1n   threads that are to be 

scheduled on  n  cores. Out of the 1n   threads, 

exactly two threads will share a single core, and 1n   
threads will each have their own cores. On the 
asymmetric multiprocessor, the maximum 
performance will be achieved when the serial 
application runs alone on the large core:  

( , ),maxS PPerf a
 

 (15) 

The minimum performance will be achieved when 
the serial application is run on a small core along with 
one of the threads of the parallel application: 

( , ),min

1

2
S PPerf 

 
 (16) 

 For simplicity, we assume that all threads have 
equal probability to execute on the two-thread core 
and on the one-thread core. The probability of the 
serial thread sharing its core with another thread is 

therefore   1
2 1n

 , and the probability that this core 

is the large core is 1n . The average performance of 

the serial thread when running concurrently with a 
parallel application is thus: 

( , ),

2 1 1 1

1 2 2

1 1 1 1
1

1 1 1

S P avg

S

a n
Perf

n n n

n n n a n
a P

n n n n n

        
            

 (17) 

When a parallel application is running on an 
asymmetric multiprocessor concurrently with a serial 
thread, the maximum performance is achieved when 
the serial thread is scheduled together with one of the 
parallel threads on one of the small cores: 

( , ),max
3

2P SPerf n a  

 

 (18) 

The minimum performance is achieved when the 
serial thread is scheduled alone on the large core: 

( , ),min 1P SPerf n 

 

 (19) 

The average performance of the parallel application 
when running simultaneously with a serial application 
is given by: 

( , ),

2 1 1 3( 1 ) ( )
2 21

1 1 1
( 1) ( 2 )

1 1

P S avg

P

Perf

nan n a
n n n

n n n
n n a P

n n n n



           
           

 (20) 

 The average speedup, calculated according to (3), 
and the maximum and minimum values in each state 
are shown in Table 1. 

 

Table 1 – Baseline scheduler: Speedups (Min, 

Average, Max) for application “A” on the 

asymmetric multiprocessor. n=Number of cores. 

a=Performance of the large core. 
Case 
(A,B) 

Minimum 
Speedup 

Average 
Speedup 

Maximum 
Speedup 

Maximum / 
Minimum 

S,S 
1

n

n a   1  
1

n
a

n a 
 a  

S,P 
1

2 1

n

n a   
( 1)

n

n 
 

1

n
a

n a 
 2a  

P,S 
1

1

n

n a


   ( 1)

n

n 
 

3
2

1

n a

n a

 

 
 

3
2
1

n a

n

 


 

P,P  2 1

n

n a 
 

1

2
  

2 2

2 1

n a

n a

 
 

 
2 2n a

n

 
 

 
The number of phase shifts between parallel and 

serial phases in an application, their timing, as well as 
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the length of each phase, may differ in different 
applications. When two applications with long phases 
are executed in parallel, the initial scheduling made 
by operating system schedulers at the beginning of the 
long phases therefore has a great impact on 
performance. For example, an initial scheduling might 
place the serial thread of an application together with 
one of the parallel threads of another application. If 
the phases are long, the serial application will exhibit 
a significant slowdown for a long period of time. 

In order to verify the predicted speedups in Table 1, 
we measured a fully parallel synthetic benchmark 
running simultaneously with a fully serial synthetic 
benchmark. Using the affinity property in Linux, we 
were able to emulate multiprocessors with less than 
the eight physical cores our multiprocessor contains, 
by confining our benchmarks to a predefined set of 
cores. Since the results are sensitive to the initial state 
of the scheduler, the different threads of the 
application were first scheduled to randomly-chosen 
cores, and were then migrated to other cores by the 
Linux kernel load balancing mechanism.  

The results for 50 runs for each symmetric 
multiprocessor configuration (a=1) are shown in Fig. 
6. The horizontal axis is the number of cores and the 
number of threads in the parallel application, whereas 
the vertical axis is the speedup of the serial 
application. The average measured speedups are close 
to the theoretical predictions and converge to 1 as n 
increases. The differences between the theoretical and 
measured values are caused by the different initial 
scheduling made by the baseline scheduler in 
comparison with the assumed initial scheduling in the 
theoretical equations. The error bars in Fig. 6 show 
that the range of possible speedups is between 0.5 and 
1, in accordance with our expectations. The other 
three states in Table 1: (S,S), (P,S), and (P,P), were 
measured in the same manner and were also in line 
with the analytic predictions. 

Fairness is calculated according to (4), and is 
summarized in Table 2. When two applications are in 
their serial phase, in the worst case the fairness is 
given by dividing the minimum and maximum 
speedups of the state (S,S). 

When one application is serial and the other is 
parallel, there are two cases for fairness. In the first 
case, the serial application exhibits the minimum 
performance shown in (16), and the parallel 
application exhibits its maximum performance shown 
in (18). The fairness in this state in the worst case is 
therefore given by dividing the minimum speedup in 
the state (S,P) by the maximum speedup in state (P,S). 
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Fig. 6. Symmetric multiprocessor (a=1): The 

measured speedup of the serial synthetic 
benchmark (1:∞) when run in conjunction with 

the parallel synthetic benchmark (∞:1).  
 
When the serial application exhibits the maximum 

performance shown in (15), the parallel application 
exhibits its minimum performance shown in (19). The 
fairness of this state in the worst case is therefore 
given by dividing the minimum performance in state 
(P,S) by the maximum performance in state (S,P). 

When both applications are in their parallel phases, 
the fairness in the worst case is given by dividing the 
minimum speedup by the maximum speedup in the 
state (P,P). 

 

Table 2 – Worst case fairness equations for the 

baseline scheduler. 

(S,S) 
(S,P),(P,S) 

case 1 
(S,P),(P,S) 

case 2 
(P,P) 

1

a
 32( )

2

n

n a 
 1n

an


 

2 2

n

n a 
 

 
The results from Table 1 and the worst case fairness 

equations in Table 2 indicate that as the ratio between 
the performance of the cores in the asymmetric 
multiprocessor increases (a), the fairness in the worst 
case decreases and the jitter between runtimes 
increases. 

The analysis in this section reveals that in current 
operating system schedulers, which are not 
application phase aware, applications may exhibit 
different speedups owing to the interactions between 
the applications in their different phases. Applications 
in their serial phase may be slowed down by a factor 
of up to two on symmetric multiprocessors when 
running simultaneously with applications in their 
parallel phase. As a result, these schedulers are unfair 
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and may produce jitter in execution runtimes of 
applications. 

6 Proposed Scheduling Algorithm 

We propose a new thread scheduling algorithm that 
aims to improve performance, improve fairness and 
reduce the jitter in execution runtimes. The proposed 
algorithm grants higher scheduling priority to the 
serial threads. As a result, when a serial thread is 
executed concurrently with a parallel application, the 
serial thread is always granted a core for itself. The 
scheduling mechanism results in the minimum and 
maximum speedups shown in Table 3.   

 
Table 3 – Minimum and maximum speedups of 

application A for the proposed scheduler on 

asymmetric multiprocessors. 
Case 
(A,B) 

Minimum 
Speedup 

Average 
Speedup 

Maximum 
Speedup 

Maximum / 
Minimum 

S,S 
1

n

n a   1 
1

n
a

n a 
 a  

S,P 
1

n
a

n a   1

n
a

n a 
 

1

n
a

n a 
 1  

P,S 
1

1

n

n a


   

1

1

n

n a


 

 
1

1

n

n a


 

 1  

P,P  2 1

n

n a 
 

1

2
  

2 2

2 1

n a

n a

 
 

 
2 2n a

n

 
 

 
In state (S,S) on the asymmetric multiprocessor, 

there are two active serial threads but only one of 
them is granted the large core. This presents jitter in 
execution times, which could be avoided for example 
by the method proposed by Fedorova et al. ‎[8] at the 
expense of thread migrations. Another possible 
method is to grant priority for computing power per 
application and not per thread. Exploration of this 
issue is left for future work. State (P,P) is similar, and 
the jitter in this state could also be avoided by the 
same methods. In the states (S,P) and (P,S), the 
minimum and maximum speedups are identical. 

For the symmetric case (a=1), our analysis predicts 
identical minimum and maximum execution times for 
each state, so that jitter will be minimized and fairness 
between applications will improve. 

The Linux scheduler has been extended to detect 
whether an application is in its parallel phase or in its 
serial phase. This is done by keeping track of the 
number of ready threads in each thread group, and is 
performed in O(1) time whenever a thread changes its 

ready state. A thread group is considered parallel 
when it has more than two ready threads. We chose 
two as the threshold since we noticed that an Open-
MP application would frequently switch between one 
and two active threads.  

The scheduler was also extended to grant higher 
priority to serial threads. In Linux, each thread has a 
property named dynamic priority. When the dynamic 
priority figure of a thread is lower, the thread is 
granted more CPU time. The priority was therefore 
boosted by subtracting ten ‎[1] from the dynamic 
priority property of the thread. 

When at least two applications are in their parallel 
phases, and each has a number of active threads that is 
at least equal to or larger than the number of cores in 
the system, the applications compete with each other 
without any throughput gains. This competition 
results in many unnecessary context switches that 
thrash the cache and lower the overall throughput of 
the system. In order to avoid this situation, our 
proposed scheduler boosts the priority of the 
application that was the first to enter its parallel 
phase. We call this mechanism “seniority boost”, as 
the scheduler chooses the senior application and 
boosts its priority. As a result, the application with the 
seniority boost is expected to finish its parallel phase 
sooner, while the system exhibits fewer context 
switches. When one of the applications finishes its 
parallel phase, the system transitions to one of the 
joint states (P,S) or (S,P) and the seniority boost is 
terminated. In order to avoid starvation, following a 
specific timeout in state (P,P) the seniority boost is 
removed and applied to the other application. 

Apart from the above, the baseline Linux 
scheduler's thread migration policy has been revised. 
Threads whose applications become serial are 
automatically rescheduled on the idlest core and 
granted more priority. In asymmetric configurations, 
the high priority given to these threads will usually 
result in migration to the high performance core. 

The asymmetric multiprocessor is emulated by 
changing the frequency (duty cycle) of seven out of 
eight cores in our symmetric multiprocessor, as done 
in ‎[5] and ‎[10]. In our case, we chose 2a  , so the 
frequency of seven of the eight cores was halved. 
Additionally, we configured the scheduler to treat the 
large core as having more performance by using the 
Linux CPU group property “cpu_power”. As a result, 
the scheduler attempts to schedule more work on the 
large core than on the small cores. 

In order to verify the performance equations for the 
proposed scheduler, we measured a fully parallel 
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synthetic benchmark running in parallel with a fully 
serial synthetic benchmark. The results for 50 runs for 
each symmetric multiprocessor configuration are 
shown in Fig. 7. The speedup converged to one as 
predicted in Table 3, and the jitter was eliminated, in 
comparison with Fig. 6. The other three states were 
measured as well in the same manner and were also in 
line with the analytic predictions. The results for 
asymmetric multiprocessors were also in line with our 
expectations, with the average, minimum and 
maximum performance figures all converging to a. 

0.98

0.985

0.99

0.995

1

1.005

3 4 5 6 7 8

S
p

e
e

d
u

p

Number of Cores

Serial Application Speedup Under The Proposed Scheduler

Avg (Proposed)

Theoretical (Min, Avg, Max)

 
Fig. 7. The measured speedup of a serial 

application when running in conjunction with a 

parallel application under the proposed scheduler 

on symmetric multiprocessors.  

7 Experimental Results  

The idle time percentage measured in the synthetic 
benchmarks decreased as expected, from 20% to 
17.2% (reduction by 14%) in the symmetric 
configuration, and from 25.6% to 22.8% (reduction 
by 10.9%). As a result, throughput improved by 3% 
and 4.5% respectively for the symmetric and 
asymmetric configurations, as shown in Table 4 for 
the asymmetric multiprocessor.   

 

Table 4 – Asymmetric multiprocessors (a=2): The 

speedup of two concurrently running synthetic 

benchmarks when the proposed scheduler is used 

in comparison with the baseline Linux scheduler. 

 
(∞:1)

(∞:1) 1% (8:1)

(8:1) -1% 1% (4:1)

(4:1) -1% 1% 1% (2:1)

(2:1) 0% -1% 4% 4% (1:1)

(1:1) -2% 1% 3% 4% 7% (1:2)

(1:2) 0% 1% 3% 5% 8% 7% (1:4)

(1:4) -2% 2% 0% 6% 9% 11% 8% (1:8)

(1:8) -2% 1% 3% 8% 7% 15% 18% 3% (1:∞)
(1:∞) -2% 2% 3% 6% 12% 16% 17% 10% 12%

AVG -1% 1% 2% 4% 5% 7% 8% 7% 8%

Average speedup of all dual benchmarks: +4.5%  

Fig. 8 shows a contour graph of the speedup in the 
symmetric multiprocessor, with peak speedup at 
benchmarks (1:1) in parallel to (1:1). Speedups 
decrease monotonically when moving away from this 
peak.  
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Fig. 8. Symmetric multiprocessor (a=1): The 

speedup of two concurrently running synthetic 

benchmarks when the proposed scheduler is used 

in comparison with the baseline Linux scheduler. 

 
The average fairness and jitter metrics improved as 

well, as detailed in Table 5. The high fairness in the 
asymmetric configuration in the baseline scheduler 
was achieved due to the awareness of the baseline 
scheduler for the asymmetry, as explained in section 
‎5. This awareness allowed the scheduler to schedule 
more work on the large core, thereby granting similar 
computing power to all threads.  

The jitter shown in Table 5 is multiplied by 1000, 
and was reduced on average by 60% in the symmetric 
case and by 35% in the asymmetric case. 

 

Table 5 – The average fairness and jitter metrics 

with the baseline and proposed schedulers, for the 

synthetic benchmarks. 

Fairness Jitter Fairness Jitter

Baseline 75.9% 9.07            87.5% 38.74          

Proposed 90.7% 3.66            88.7% 25.12          

Improvement 19.5% 59.7% 1.4% 35.1%

Scheduler

Symmetric Asymmetric

 
 
Table 6 shows the speedup for the SPEC-OMP2001 

benchmarks with the proposed scheduler, in 
comparison with the baseline Linux scheduler. The 
measurements were performed according to the 
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method shown in Fig. 5. The speedup exhibited by the 
highly parallel SPEC-OpenMP benchmarks averaged 
1.5% in the symmetric multiprocessor, and 3.5% in 
the asymmetric multiprocessor, as shown in Table 6 
for the asymmetric multiprocessor.  

 

Table 6 – The speedup of two concurrently 

running SPEC-OMP2001 benchmarks with the 

proposed scheduler in comparison with the 

baseline Linux scheduler in the asymmetric 

configuration. 

 
wup

wupwise 2% swi

swim 8% 1% mgr

mgrid 4% 4% 4% app

applu 2% -2% 3% 1% equ

equake 3% 0% 4% 0% 0% aps

apsi 12% 15% 7% 12% 9% 16% gaf

gafort 1% 3% 2% -2% 2% 7% 0% fma

fma3d 1% 5% 3% -3% 0% 9% 3% 3% art

art 2% 0% 4% 3% -1% 15% -1% 2% -1% amm

ammp 3% 1% 4% -2% 4% 13% 0% 4% 1% 1%

average 4% 3% 4% 1% 2% 11% 1% 3% 2% 3%

Average speedup of all dual benchmarks: 3.5%  
 
The average fairness and jitter metrics for the 

SPEC-OMP benchmarks are shown in Table 7. The 
jitter, measured on 5 runs of “equake” & “art” as an 
example, was almost eliminated in the symmetric case 
and was halved in the asymmetric case. 

 

Table 7 – The average fairness and jitter metrics 

with the baseline and proposed schedulers, for the 

SPEC-OMP benchmarks. 

Fairness Jitter Fairness Jitter

Baseline 79.6% 1.13            49.3% 1.90            

Proposed 78.5% 0.13            62.1% 0.94            

Improvement -1.4% 88.1% 25.9% 50.5%

Scheduler

Symmetric Asymmetric

 
 
The SPEC-OMP2001 benchmarks are highly 

parallel applications, corresponding roughly to the 
(∞:1) and (8:1) synthetic benchmarks. Their speedups 
are therefore similar, in the ranges 1-3% for the 
symmetric case and 3-4% for the asymmetric case. 
According to the synthetic benchmark results, we 
predict that applications with lower parallelism will 
exhibit higher throughput using our proposed 
scheduler. 

8 Conclusions and Future Work 

In this paper, we proposed a new scheduling 
mechanism that favors serial phases of applications 
over parallel phases. When running two multithreaded 
scientific applications (SPEC-OMP2001) on 
symmetric as well as on asymmetric multiprocessors, 

analytical and experimental results showed 
improvements in all metrics; the jitter in execution 
runtimes decreased by as much as 88%, throughput in 
some cases increased by more than 16%, and the 
fairness metric improved by up to 26%.  

The experiments in this paper were performed on a 
real system, using official benchmarks and a modern 
operating system (Linux kernel 2.6.18) with our 
extensions. The exhibited performance improvements 
therefore are system-wide, taking into account all 
factors such as cache contention, memory subsystem, 
as well as a complete software stack and operating 
system. The concepts presented in this paper could 
easily be implemented in today’s state of the art 
multiprocessor operating systems, as implemented in 
our experimental system, and could show immediate 
performance gains. 

This work provides insights into a multitude of 
future research issues in the area of multithreaded 
application handling in CMP. While our results 
indeed show improvements, some benchmarks were 
significantly faster whereas others exhibited a 
slowdown with our proposed scheduler. In future 
work, this phenomenon should be explored more 
deeply, possibly resulting in an adaptive mechanism 
that could improve throughput even further. 

The analysis in this paper could be extended to take 
into account the distribution of phase-changing during 
the runtime of applications. Additionally, the way 
multithreaded programs were modeled in this paper, 
having either one active thread or n active threads, 
could be extended to include the whole range from 
one to n. Such extensions could later be used to 
improve system metrics even further, even on current 
symmetric architectures. 

With regards to asymmetric configurations, the 
analysis in this paper could be extended to support 
various configurations of asymmetric multiprocessors, 
such as more than two types of cores. Additionally, 
the analysis could take into account different 
speedups for different applications on each core type. 
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