

IRWIN AND JOAN JACOBS

CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

Mult iple Mult ithread Applicat ions

on Asym m etric and Sym m etric

Chip Mult iProcessors

Tom er Y. Morad, Avinoam Kolodny,

Uri C. W eiser

CCI T Report # 7 0 1

August 2 0 0 8

DEPARTMENT OF ELECTRICAL ENGINEERING

Electronics
Computers

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL Communications

Page 1 of 11

Abstract
This paper evaluates new techniques to improve

performance and efficiency of Chip MultiProcessors

(CMP) for workloads consisting of multiple

multithreaded applications. Multithreaded

applications contain serial phases (single thread) and

parallel phases (many threads). While scheduling

threads, current techniques do not differentiate

between these two phases, resulting in sub-optimal

usage of the multiprocessor resources. In this paper,

we propose a new thread scheduling mechanism

which takes into account the different requirements of

each phase, granting higher priority to applications

during their critical-serial phases. The advantages of

the proposed scheduling mechanism, shown by

analytical and experimental evaluation, are threefold.

First, system throughput and power efficiency are

improved by making better use of the available

multiprocessor computing power. Some of the

benchmarks show system throughput improvements of

as much as 16%. Second, fairness in resource

allocation between the applications is improved by as

much as 26%. Third, the jitter in execution runtimes

in different runs of the same set of applications is

reduced by up to 88%. The analysis is performed for

asymmetric multiprocessors, where some of the

computing cores are faster than others, as well as for

symmetric multiprocessors in which all cores are

identical. All experiments in this paper are performed

in a real environment, consisting of full benchmarks

running on a real multiprocessor and operating

system.

1 Introduction

Multithreaded applications can take advantage of
the added computing ability offered by today's
multiprocessors by executing in parallel on many
cores. With an ever-increasing core population

embedded in state-of-the-art systems ‎[15], the use of
multithreading in applications is expected to increase.
In this paper, we strive to improve system
performance as measured by several metrics when
scheduling multiple multithreaded applications in
parallel on asymmetric multiprocessors (where some
computing cores are faster than others), as well as on
symmetric multiprocessors (where all cores are
identical).

When examining multithreaded applications, one
can identify two types of execution phases, serial
phases and parallel phases. In serial phases only one
thread is active, whereas parallel phases are
comprised of many concurrently active threads.
Typically, data preparation for the parallel phases and
inherently sequential calculations are done in the
serial phases. The heavy independent calculations are
performed in the parallel phases.

When two multithreaded applications are run
simultaneously, the serial thread of one application
may be available for execution together with the
parallel threads of the other application. Fig. 1 shows
an example of the four possible joint states of two
multithreaded applications. The vertical axis
represents time, advancing from top to bottom. At
each point in time, the number of active threads for
each application is shown.

(P,S)

(S,S)

(P,P)

(S,P)

App-A App-B

t P=Parallel, S=Serial

Fig. 1. Illustration of joint states of two sample

applications running simultaneously.

Multiple Multithreaded Applications on Asymmetric
and Symmetric Chip MultiProcessors

Tomer Y. Morad† Avinoam Kolodny† Uri C. Weiser†

†Department of Electrical Engineering
Technion, Haifa, Israel

{tomerm@tx, kolodny@ee, uri.weiser@ee}.technion.ac.il

lesley
Text Box
CCIT REPORT #701 August 2008

Page 2 of 11

Current operating system schedulers, such as the
Linux scheduler ‎[1], are not aware of the phases of
the running applications. When multiple
multithreaded applications are run in parallel, this
lack of awareness results in lower throughput, jitter in
applications’ runtimes, and unfairness between
applications. These undesired characteristics may
happen because the serial phases, which are critical
bottlenecks for the applications, compete for CPU
time with the many concurrently executing parallel
threads. If these serial phases were executed quickly,
the application’s bottlenecks would be freed, allowing
the application to take advantage of the
multiprocessor resources by using many threads.

In this paper, we propose to add another dimension
to the current scheduling policy by using information
about the parallel and serial phases of the
applications. Our proposed scheduler monitors the
number of active threads in each application, and
hence it can identify and grant higher priority to serial
threads.

Fig. 2 shows the four possible joint-states of two
applications executing in parallel: (Serial, Serial: S,S),
(Serial, Parallel: S,P), (Parallel, Serial: P,S), and
(Parallel, Parallel: P,P), as well as the possible
transitions among them. The large arrows on state
transition arcs denote the most likely transition. The
proposed scheduler, shown in Fig. 2 (b), favors the
serial thread, thus increasing the probability for
transition from (S,P) and (P,S) states to (P,P) state.
Current OS schedulers, however, treat the serial and
parallel threads equally, thereby lengthening the time
required for the serial application to transition into its
parallel phase. Current OS schedulers therefore favor
the transition from (S,P) and (P,S) to (S,S) state. As a
result of the reduced time spent in (S,S), which is the
only state in which the multiprocessor has idle cores,
the proposed scheduler is expected to improve
throughput.

S,S

P,S S,P

P,P

Baseline

(a) (b)

S,S

P,S S,P

P,P

Proposed

Fig. 2. Illustration of the four possible joint states

of two applications running in parallel.

Similarly to the symmetric case, when two
multithreaded programs run on asymmetric
multiprocessors, serial phases should be favored over
parallel phases by being assigned to run on the faster

cores.
In this paper, we propose a scheduler that grants

higher priority to applications in their serial phases in
order to increase the multiprocessor throughput,
improve fairness and reduce the jitter in execution
runtimes. The expected improvements are quantified
by a simple analytical model. We validate our
proposed techniques by experiments running on a real
symmetric CMP with a current version of the Linux
operating system, with multiple multithreaded
applications executing in parallel. We also validate
our techniques on asymmetric structures that are
emulated on the real symmetric CMP, with the
addition that serial threads are granted higher priority
to run on faster cores.

2 Related Work

There are various papers addressing scheduling of
single-threaded applications on
asymmetric/heterogeneous multiprocessors, which are
based on sampling of runtime performance on the
different core types. Kumar et al. ‎[11] have proposed
a scheduler for multiple single-threaded applications
on a heterogeneous multiprocessor. Bower et al. ‎[6]
have shown the impact on thread scheduling in
symmetric multiprocessors that become
heterogeneous during runtime due to frequency
scaling, process variations and physical faults. Winter
et al. ‎[20] explored thread assignment algorithms for
single-thread applications on such multiprocessors.

Other papers address the scheduling problem for a
single multithreaded application running on an
asymmetric multiprocessor ‎[3]‎[5]‎[10]‎[13].
Grochowski et al. ‎[3]‎[10] have proposed a static
scheduling mechanism, implemented at the
application level, which schedules the serial phases of
applications on the high performance core. They have
shown significant performance improvements over
symmetric designs with the same power consumption.
Balakrishnan et al. ‎[5] proposed a dynamic scheduler
for a single multithreaded application on a
heterogeneous multiprocessor. They have shown that
by scheduling the serial phases on the high
performance core, performance increases and the
jitter in runtimes of different executions is reduced.
We extend these methods ‎[3]‎[5]‎[10] for multiple
multithreaded programs, while addressing the

Page 3 of 11

scheduling problem that arises when there are more
threads than cores in the multiprocessor.

Fedorova et al. ‎[8] proposed a scheduling algorithm
that reduces completion time jitter of single threaded
applications on heterogeneous multiprocessors. This
was done by granting each thread equal CPU time on
each core of the heterogeneous multiprocessor, at the
expense of many thread migrations. Their algorithm
does not, however, take advantage of the asymmetric
structure, which allows the acceleration of critical
path threads.

Many papers explore fairness and throughput in
SMT architectures ‎[9]‎[12]‎[17]‎[18]. We use and
extend their throughput and fairness metrics for
asymmetric multiprocessors. Mutlu et al. ‎[14] have
shown that fair allocation of memory accesses in
DRAM controllers can have a big impact on overall
throughput and fairness between applications. Chen et
al. ‎[7] have shown that thread assignment in
multiprocessors should take into account cache
sharing effects between threads. The concepts we
present in this paper may co-exist synergistically with
these methods.

3 Emulation Environment

All measurements in this paper are performed on
an 8-core multiprocessor consisting of four dual-core
2.66MHz XEON processors with 8GB of memory,
and with SMT disabled. The operating system used is
Linux 2.6.18, and is referred to in this paper as the
baseline scheduler. Our benchmarks include the entire
SPEC-OMP2001 ‎[4] suite with the medium reference
input sets, with the exception of “galgel” because of
compilation difficulties in our setup.

OpenMP offers various scheduling options for its
parallel constructs ‎[16]. We altered the default
OpenMP scheduling policy from static, in which each
thread receives an identical portion of the workload,
to dynamic, in which each thread consumes a
predefined small subset of the workload, and then
requests additional work. This is similar to what was
done in ‎[5] and ‎[13].

Since the SPEC-OMP2001 benchmarks are highly
parallel and represent only a small fraction of the
application space, in this paper we also measure a
synthetic benchmark written by the authors. The
synthetic benchmark mimics applications with an
adjustable ratio of parallel to serial code. It allows us
to get accurate results within a short runtime, making
it practical for exploring various scheduling options
for various combinations of applications running

together in the system. The synthetic benchmark
consists of a loop of a mathematical calculation which
fits entirely in the cache. During the course of its
execution, the benchmark switches randomly between
serial phases, in which there is only one active thread,
and parallel phases, in which there are n threads,
equal to the number of cores in the multiprocessor.

We model and label multithreaded programs by
the ratio of parallel and serial instructions they
contain, divided by the computing power of the
multiprocessor on which they are run. In the
following equation, IP denotes the number of dynamic
instructions executed in the parallel phases, IS denotes
the number of dynamic instructions executed in the
serial phases, n denotes the number of cores in the
multiprocessor, and the normalization factor k is
chosen so that one of the ratios equals one, and the
other is greater than or equal to one. The labeling is
dependent on the number of cores, in order to hint the
amount of time spent in the parallel and serial phases.

(,) ,Parallel
Parallel Serial Serial

I
ratio ratio k kI

n

   
 

 (1)

For example, a benchmark labeled (1:1) on a
symmetric CMP with no synchronization and
scheduling overheads will spend roughly equal time
in its parallel phases and in its serial phases.
Completely parallel applications are labeled as (∞:1),
whereas completely serial applications are labeled as
(1:∞).

The synthetic benchmark may be tuned so that in
the long run it would mimic the parallelism behavior
of applications, ranging from completely parallel
applications (∞:1) to completely serial applications
(1:∞). Each measurement of the synthetic benchmark
lasts 60 seconds, after which the benchmark reports
the total number of iterations it has completed in that
time frame. The pseudo-code of the synthetic
benchmark is detailed in Fig. 3.

while (time<60 seconds) {

 parallel_iterations = random();

serial_iterations = parallel_iterations * ratioSerial / (ratioparallel * Ncores);

 in each thread { // fork

 if (calculated_iterations < parallel_iterations) {

 for (i=0;i<CHUNK;i++)

 perform_calculation();

 calculated_iterations += CHUNK; //shared variable

 }

} //join

 for (i=0;i<serial_iterations;i++,calculated_iterations++)

 perform_calculation();

}

print “performance=”,calculated_iterations/(time-start_time)

Fig. 3. Pseudo-code of the synthetic benchmark.

Page 4 of 11

4 Methodology

This research is focused on the interactions
between multiple multithreaded applications. All
measurements in this paper, except where stated
otherwise, are therefore performed for two
applications running in parallel. We focus on three
metrics: performance, fairness, and jitter.

Measuring the performance improvement of
multiple applications running in parallel in different
environments, for example, environments with the
same hardware but with different OS schedulers, is
not trivial ‎[19]. The task is even harder when these
applications are also multithreaded. Alameldeen et al.
‎[2] have shown that the throughput metric of IPC used
in uniprocessors is not accurate for multithreaded
programs in multicore architectures. One of the
reasons is that threads in a multithreaded program use
polling when waiting for sibling threads, resulting in
different number of committed instructions in
different executions of the same program. The
accurate throughput metric in multithreaded programs
is therefore the amount of actual work performed
divided by the execution time.

Measuring the throughput of two synthetic
benchmarks running simultaneously is done by
summing the number of iterations completed in each
benchmark during a predefined benchmark time. The
SPEC-OMP benchmarks, however, must run until
completion, since they report their accurate progress
only when done.

One way of measuring performance of a scheduler
for multithreaded applications is to run two
applications and wait for both to finish:

1 2max(,)completion Benchmark Benchmarkt t t  (2)

This method is demonstrated in Fig. 4, and is
similar to the “Last” method described in ‎[19]. While
measuring with this method, we found that in many
cases one application finished its execution well
before the other. Since we want to measure the
interactions between applications, the time segment in
which only one application is active becomes
irrelevant, but it does affect the results.

Another option for measuring is to repeat short
applications in order to equalize the runtimes, such as
repeating application “A” in Fig. 4 twice. Equalizing
runtimes, however, requires large numbers of
iterations of long benchmarks. Additionally, while
runtimes may be equal in one environment, such as
the same system with a modified thread scheduler,
they may be completely different in another.

A

B

tB1 = tcompletion

t

Benchmark-1

Benchmark-2

tB2

Fig. 4. Example of two multithreaded benchmarks

running in parallel ‎[19].

We handle the throughput measurement problem by

running two benchmarks that perform the same work,
each comprised of two applications that are run in a
different order, as shown in Fig. 5. Since the work of
the two benchmarks is the same, the runtimes are
closer than in the previous methods. As a result, the
effects of our new scheduling mechanisms can be
evaluated more reliably than in the other methods
‎[19].

A

B

B

A

t

Benchmark-1

Benchmark-2
tA1

tA2

tB1 = tcompletion

Fig. 5. Example of two multithreaded benchmarks

running in parallel, each comprising two

applications in a different order, allowing for

closer benchmark execution times tB1 and tB2.

 The second metric evaluated in this paper is
fairness. When two applications are executed in
parallel, their runtimes are longer than when each
application runs alone on the multiprocessor:

, ||

,

A A B

A

A A

Performance
speedup

Performance
 (3)

The speedup values are actually less than one,
representing a slowdown of application A because of
sharing the system resources with application B. If
both applications exhibit the same relative speedup,
the system is said to be fair ‎[9]‎[17]. If, however, each
application exhibits a different relative speedup, the
system is unfair. In this paper, we use the fairness
metric detailed in ‎[9], which is defined as the
minimum ratio of speedups of the applications. For
two applications, fairness is defined as follows:

Page 5 of 11

min ,A B

B A

speedup speedup
F

speedup speedup

 
  

 
 (4)

 Fairness as defined above can be in the range of 0
to 1, corresponding to completely unfair and to
completely fair, respectively. As shown in Fig. 5, we
measured the SPEC-OMP2001 benchmarks by
executing both applications twice but in a different
order. The speedup of application A in equation (3) is
therefore the time required to execute the application
alone on the multiprocessor, divided by the average
duration of application A in the configuration shown
in Fig. 5:

 
,

1 20.5

A alone

A

A A

t
speedup

t t




 (5)

 The third metric is jitter in execution runtimes. In
the ideal case, consecutive executions of the same
applications in the same environment are expected to
yield similar execution times. Balakrishnan et al. ‎[5]
have already shown, however, that operating system
schedulers in asymmetric multiprocessors present
unpredictable application runtimes for a single
multithreaded application. In this paper, we quantify
runtime jitter by measuring the standard deviation of
the normalized execution times of the workload in N
experiments of the same benchmark:

2

,

1 ,

1
1

N
A n

A

n A avg

t
Jitter

N t

 
   

 
 (6)

5 Analysis

In this section, we analyze the performance,
fairness and jitter metrics for two multithreaded
applications, AppA and AppB, running in parallel.
These applications have one active thread in their
serial phases and n active threads in their parallel
phases, which is also equal to the number of cores in
the multiprocessor. The applications may differ in
their parallel/serial ratios. We validate the analysis by
measurements on a real multiprocessor with a modern
OS.

Consider the example of an asymmetric
multiprocessor with n cores: one is large with higher
performance, whereas all others are small and with
lower performance, as in ‎[13]. The large core's
performance is higher than the small cores'
performance by the factor a. For simplicity, we
assume that the performance factor a is identical for
all workloads. In this section, the performance figures

are normalized to the performance of one thread on
one small core.

We assume for this analysis that there is equal
probability for threads to run on any core of the
multiprocessor. The average performance of a serial
thread on an idle asymmetric multiprocessor is
therefore given by:

1 1 1
1serial S

n n a
Perf P a

n n n

  
      (7)

The performance of a parallel application when
running on an idle asymmetric multiprocessor is as
follows:

1parallel P SPerf P n a n P      (8)

We consider the case where two concurrently
running applications have n active threads in their
parallel phases. When both applications are serial, the
scheduler has three options for scheduling. In the first
option, both applications are scheduled on small
cores. In the second and third options, one application
is scheduled to run on the large core, and the other
application is scheduled to run on a small core. There
is also a fourth option in which both applications can
run on the large core. This would make sense for large
values of a (a≥2), which would allow better
performance than would be achieved by scheduling
each of the threads alone on their own small core. For
simplicity, we assume that a is sufficiently small
(1≤a<2) in our analysis. The maximum performance
in this case will be achieved when the serial
application runs on the large core:

(,),maxS SPerf a

 (9)

The minimum speedup will be achieved when the
serial application runs on the small core:

(,),min 1S SPerf 

 (10)

Given the probabilities for each of the discussed
cases, the applications will exhibit the following
average performance:

(,),

1 1 1 1
1 1

1 1

1

S S avg

S

Perf

n n
a

n n n n

n a
P

n



              
 



 (11)

Thus, in the state (S,S) in the baseline scheduler,
each application is indifferent to the existence of the
other in the average case.

When both applications are in their parallel phases,
there are exactly 2n running threads that compete for
n cores. In this case there are three scheduling

Page 6 of 11

options. In the first option, the scheduler schedules
one thread of each application on the large core, and
all other cores run two threads each. In the second and
third options, only one application is scheduled to the
large core.

When two threads share the same core, we assume
that each has access to half of the computing
resources of that core. The maximum performance for
a parallel application will therefore be achieved when
two threads of the parallel application are scheduled
on the large core:

(,),max

1 1 2 2

2 2 2 2
P P

n a a n a
Perf

   
    (12)

 The minimum speedup will be achieved when all
threads of the parallel application are scheduled on
the small cores:

(,),min

1 1

2 2 2 2
P P

n a a n
Perf

 
   

(13)

The parallel applications will therefore exhibit the
following average speedup:

(,),

1 2 2

2 2 1 2

1 1
2

2 2 1 2 2 2 1 2

1 1

2 2

P P avg

P

n n n a
Perf

n n

n n n a n n n

n n n n

n a
P

      
             

 


 (14)

When one of the applications is serial and the other
is parallel, there are 1n  threads that are to be

scheduled on n cores. Out of the 1n  threads,

exactly two threads will share a single core, and 1n 
threads will each have their own cores. On the
asymmetric multiprocessor, the maximum
performance will be achieved when the serial
application runs alone on the large core:

(,),maxS PPerf a

 (15)

The minimum performance will be achieved when
the serial application is run on a small core along with
one of the threads of the parallel application:

(,),min

1

2
S PPerf 

 (16)

 For simplicity, we assume that all threads have
equal probability to execute on the two-thread core
and on the one-thread core. The probability of the
serial thread sharing its core with another thread is

therefore   1
2 1n

 , and the probability that this core

is the large core is 1n . The average performance of

the serial thread when running concurrently with a
parallel application is thus:

(,),

2 1 1 1

1 2 2

1 1 1 1
1

1 1 1

S P avg

S

a n
Perf

n n n

n n n a n
a P

n n n n n

        
            

 (17)

When a parallel application is running on an
asymmetric multiprocessor concurrently with a serial
thread, the maximum performance is achieved when
the serial thread is scheduled together with one of the
parallel threads on one of the small cores:

(,),max
3

2P SPerf n a  

 (18)

The minimum performance is achieved when the
serial thread is scheduled alone on the large core:

(,),min 1P SPerf n 

 (19)

The average performance of the parallel application
when running simultaneously with a serial application
is given by:

(,),

2 1 1 3(1) ()
2 21

1 1 1
(1) (2)

1 1

P S avg

P

Perf

nan n a
n n n

n n n
n n a P

n n n n



           
           

 (20)

 The average speedup, calculated according to (3),
and the maximum and minimum values in each state
are shown in Table 1.

Table 1 – Baseline scheduler: Speedups (Min,

Average, Max) for application “A” on the

asymmetric multiprocessor. n=Number of cores.

a=Performance of the large core.
Case
(A,B)

Minimum
Speedup

Average
Speedup

Maximum
Speedup

Maximum /
Minimum

S,S
1

n

n a  1
1

n
a

n a 
 a

S,P
1

2 1

n

n a 
(1)

n

n 

1

n
a

n a 
 2a

P,S
1

1

n

n a


  (1)

n

n 

3
2

1

n a

n a

 

 

3
2
1

n a

n

 



P,P  2 1

n

n a 

1

2
  

2 2

2 1

n a

n a

 
 

2 2n a

n

 

The number of phase shifts between parallel and

serial phases in an application, their timing, as well as

Page 7 of 11

the length of each phase, may differ in different
applications. When two applications with long phases
are executed in parallel, the initial scheduling made
by operating system schedulers at the beginning of the
long phases therefore has a great impact on
performance. For example, an initial scheduling might
place the serial thread of an application together with
one of the parallel threads of another application. If
the phases are long, the serial application will exhibit
a significant slowdown for a long period of time.

In order to verify the predicted speedups in Table 1,
we measured a fully parallel synthetic benchmark
running simultaneously with a fully serial synthetic
benchmark. Using the affinity property in Linux, we
were able to emulate multiprocessors with less than
the eight physical cores our multiprocessor contains,
by confining our benchmarks to a predefined set of
cores. Since the results are sensitive to the initial state
of the scheduler, the different threads of the
application were first scheduled to randomly-chosen
cores, and were then migrated to other cores by the
Linux kernel load balancing mechanism.

The results for 50 runs for each symmetric
multiprocessor configuration (a=1) are shown in Fig.
6. The horizontal axis is the number of cores and the
number of threads in the parallel application, whereas
the vertical axis is the speedup of the serial
application. The average measured speedups are close
to the theoretical predictions and converge to 1 as n
increases. The differences between the theoretical and
measured values are caused by the different initial
scheduling made by the baseline scheduler in
comparison with the assumed initial scheduling in the
theoretical equations. The error bars in Fig. 6 show
that the range of possible speedups is between 0.5 and
1, in accordance with our expectations. The other
three states in Table 1: (S,S), (P,S), and (P,P), were
measured in the same manner and were also in line
with the analytic predictions.

Fairness is calculated according to (4), and is
summarized in Table 2. When two applications are in
their serial phase, in the worst case the fairness is
given by dividing the minimum and maximum
speedups of the state (S,S).

When one application is serial and the other is
parallel, there are two cases for fairness. In the first
case, the serial application exhibits the minimum
performance shown in (16), and the parallel
application exhibits its maximum performance shown
in (18). The fairness in this state in the worst case is
therefore given by dividing the minimum speedup in
the state (S,P) by the maximum speedup in state (P,S).

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

3 4 5 6 7 8

S
p

e
e

d
u

p

Number of Cores

Serial App. Speedup Under The Baseline Scheduler

Avg (Baseline)

Max (Theoretical)

Avg (Theoretical)

Min (Theoretical)

Fig. 6. Symmetric multiprocessor (a=1): The

measured speedup of the serial synthetic
benchmark (1:∞) when run in conjunction with

the parallel synthetic benchmark (∞:1).

When the serial application exhibits the maximum

performance shown in (15), the parallel application
exhibits its minimum performance shown in (19). The
fairness of this state in the worst case is therefore
given by dividing the minimum performance in state
(P,S) by the maximum performance in state (S,P).

When both applications are in their parallel phases,
the fairness in the worst case is given by dividing the
minimum speedup by the maximum speedup in the
state (P,P).

Table 2 – Worst case fairness equations for the

baseline scheduler.

(S,S)
(S,P),(P,S)

case 1
(S,P),(P,S)

case 2
(P,P)

1

a
 32()

2

n

n a 
 1n

an



2 2

n

n a 

The results from Table 1 and the worst case fairness

equations in Table 2 indicate that as the ratio between
the performance of the cores in the asymmetric
multiprocessor increases (a), the fairness in the worst
case decreases and the jitter between runtimes
increases.

The analysis in this section reveals that in current
operating system schedulers, which are not
application phase aware, applications may exhibit
different speedups owing to the interactions between
the applications in their different phases. Applications
in their serial phase may be slowed down by a factor
of up to two on symmetric multiprocessors when
running simultaneously with applications in their
parallel phase. As a result, these schedulers are unfair

Page 8 of 11

and may produce jitter in execution runtimes of
applications.

6 Proposed Scheduling Algorithm

We propose a new thread scheduling algorithm that
aims to improve performance, improve fairness and
reduce the jitter in execution runtimes. The proposed
algorithm grants higher scheduling priority to the
serial threads. As a result, when a serial thread is
executed concurrently with a parallel application, the
serial thread is always granted a core for itself. The
scheduling mechanism results in the minimum and
maximum speedups shown in Table 3.

Table 3 – Minimum and maximum speedups of

application A for the proposed scheduler on

asymmetric multiprocessors.
Case
(A,B)

Minimum
Speedup

Average
Speedup

Maximum
Speedup

Maximum /
Minimum

S,S
1

n

n a  1
1

n
a

n a 
 a

S,P
1

n
a

n a  1

n
a

n a 

1

n
a

n a 
 1

P,S
1

1

n

n a


 

1

1

n

n a


 

1

1

n

n a


 

 1

P,P  2 1

n

n a 

1

2
  

2 2

2 1

n a

n a

 
 

2 2n a

n

 

In state (S,S) on the asymmetric multiprocessor,

there are two active serial threads but only one of
them is granted the large core. This presents jitter in
execution times, which could be avoided for example
by the method proposed by Fedorova et al. ‎[8] at the
expense of thread migrations. Another possible
method is to grant priority for computing power per
application and not per thread. Exploration of this
issue is left for future work. State (P,P) is similar, and
the jitter in this state could also be avoided by the
same methods. In the states (S,P) and (P,S), the
minimum and maximum speedups are identical.

For the symmetric case (a=1), our analysis predicts
identical minimum and maximum execution times for
each state, so that jitter will be minimized and fairness
between applications will improve.

The Linux scheduler has been extended to detect
whether an application is in its parallel phase or in its
serial phase. This is done by keeping track of the
number of ready threads in each thread group, and is
performed in O(1) time whenever a thread changes its

ready state. A thread group is considered parallel
when it has more than two ready threads. We chose
two as the threshold since we noticed that an Open-
MP application would frequently switch between one
and two active threads.

The scheduler was also extended to grant higher
priority to serial threads. In Linux, each thread has a
property named dynamic priority. When the dynamic
priority figure of a thread is lower, the thread is
granted more CPU time. The priority was therefore
boosted by subtracting ten ‎[1] from the dynamic
priority property of the thread.

When at least two applications are in their parallel
phases, and each has a number of active threads that is
at least equal to or larger than the number of cores in
the system, the applications compete with each other
without any throughput gains. This competition
results in many unnecessary context switches that
thrash the cache and lower the overall throughput of
the system. In order to avoid this situation, our
proposed scheduler boosts the priority of the
application that was the first to enter its parallel
phase. We call this mechanism “seniority boost”, as
the scheduler chooses the senior application and
boosts its priority. As a result, the application with the
seniority boost is expected to finish its parallel phase
sooner, while the system exhibits fewer context
switches. When one of the applications finishes its
parallel phase, the system transitions to one of the
joint states (P,S) or (S,P) and the seniority boost is
terminated. In order to avoid starvation, following a
specific timeout in state (P,P) the seniority boost is
removed and applied to the other application.

Apart from the above, the baseline Linux
scheduler's thread migration policy has been revised.
Threads whose applications become serial are
automatically rescheduled on the idlest core and
granted more priority. In asymmetric configurations,
the high priority given to these threads will usually
result in migration to the high performance core.

The asymmetric multiprocessor is emulated by
changing the frequency (duty cycle) of seven out of
eight cores in our symmetric multiprocessor, as done
in ‎[5] and ‎[10]. In our case, we chose 2a  , so the
frequency of seven of the eight cores was halved.
Additionally, we configured the scheduler to treat the
large core as having more performance by using the
Linux CPU group property “cpu_power”. As a result,
the scheduler attempts to schedule more work on the
large core than on the small cores.

In order to verify the performance equations for the
proposed scheduler, we measured a fully parallel

Page 9 of 11

synthetic benchmark running in parallel with a fully
serial synthetic benchmark. The results for 50 runs for
each symmetric multiprocessor configuration are
shown in Fig. 7. The speedup converged to one as
predicted in Table 3, and the jitter was eliminated, in
comparison with Fig. 6. The other three states were
measured as well in the same manner and were also in
line with the analytic predictions. The results for
asymmetric multiprocessors were also in line with our
expectations, with the average, minimum and
maximum performance figures all converging to a.

0.98

0.985

0.99

0.995

1

1.005

3 4 5 6 7 8

S
p

e
e

d
u

p

Number of Cores

Serial Application Speedup Under The Proposed Scheduler

Avg (Proposed)

Theoretical (Min, Avg, Max)

Fig. 7. The measured speedup of a serial

application when running in conjunction with a

parallel application under the proposed scheduler

on symmetric multiprocessors.

7 Experimental Results

The idle time percentage measured in the synthetic
benchmarks decreased as expected, from 20% to
17.2% (reduction by 14%) in the symmetric
configuration, and from 25.6% to 22.8% (reduction
by 10.9%). As a result, throughput improved by 3%
and 4.5% respectively for the symmetric and
asymmetric configurations, as shown in Table 4 for
the asymmetric multiprocessor.

Table 4 – Asymmetric multiprocessors (a=2): The

speedup of two concurrently running synthetic

benchmarks when the proposed scheduler is used

in comparison with the baseline Linux scheduler.

(∞:1)

(∞:1) 1% (8:1)

(8:1) -1% 1% (4:1)

(4:1) -1% 1% 1% (2:1)

(2:1) 0% -1% 4% 4% (1:1)

(1:1) -2% 1% 3% 4% 7% (1:2)

(1:2) 0% 1% 3% 5% 8% 7% (1:4)

(1:4) -2% 2% 0% 6% 9% 11% 8% (1:8)

(1:8) -2% 1% 3% 8% 7% 15% 18% 3% (1:∞)
(1:∞) -2% 2% 3% 6% 12% 16% 17% 10% 12%

AVG -1% 1% 2% 4% 5% 7% 8% 7% 8%

Average speedup of all dual benchmarks: +4.5%

Fig. 8 shows a contour graph of the speedup in the
symmetric multiprocessor, with peak speedup at
benchmarks (1:1) in parallel to (1:1). Speedups
decrease monotonically when moving away from this
peak.

∞:1

8:1

4:1

2:1

1:1

1:2

1:4

1:8

1:∞

∞:1 8:1 4:1 2:1 1:1 1:2 1:4 1:8 1:∞

S
y

n
th

e
ti

c
B

e
n

ch
m

a
rk

 "
A

"

Synthetic Benchmark "B"

Fig. 8. Symmetric multiprocessor (a=1): The

speedup of two concurrently running synthetic

benchmarks when the proposed scheduler is used

in comparison with the baseline Linux scheduler.

The average fairness and jitter metrics improved as

well, as detailed in Table 5. The high fairness in the
asymmetric configuration in the baseline scheduler
was achieved due to the awareness of the baseline
scheduler for the asymmetry, as explained in section
‎5. This awareness allowed the scheduler to schedule
more work on the large core, thereby granting similar
computing power to all threads.

The jitter shown in Table 5 is multiplied by 1000,
and was reduced on average by 60% in the symmetric
case and by 35% in the asymmetric case.

Table 5 – The average fairness and jitter metrics

with the baseline and proposed schedulers, for the

synthetic benchmarks.

Fairness Jitter Fairness Jitter

Baseline 75.9% 9.07 87.5% 38.74

Proposed 90.7% 3.66 88.7% 25.12

Improvement 19.5% 59.7% 1.4% 35.1%

Scheduler

Symmetric Asymmetric

Table 6 shows the speedup for the SPEC-OMP2001

benchmarks with the proposed scheduler, in
comparison with the baseline Linux scheduler. The
measurements were performed according to the

Page 10 of 11

method shown in Fig. 5. The speedup exhibited by the
highly parallel SPEC-OpenMP benchmarks averaged
1.5% in the symmetric multiprocessor, and 3.5% in
the asymmetric multiprocessor, as shown in Table 6
for the asymmetric multiprocessor.

Table 6 – The speedup of two concurrently

running SPEC-OMP2001 benchmarks with the

proposed scheduler in comparison with the

baseline Linux scheduler in the asymmetric

configuration.

wup

wupwise 2% swi

swim 8% 1% mgr

mgrid 4% 4% 4% app

applu 2% -2% 3% 1% equ

equake 3% 0% 4% 0% 0% aps

apsi 12% 15% 7% 12% 9% 16% gaf

gafort 1% 3% 2% -2% 2% 7% 0% fma

fma3d 1% 5% 3% -3% 0% 9% 3% 3% art

art 2% 0% 4% 3% -1% 15% -1% 2% -1% amm

ammp 3% 1% 4% -2% 4% 13% 0% 4% 1% 1%

average 4% 3% 4% 1% 2% 11% 1% 3% 2% 3%

Average speedup of all dual benchmarks: 3.5%

The average fairness and jitter metrics for the

SPEC-OMP benchmarks are shown in Table 7. The
jitter, measured on 5 runs of “equake” & “art” as an
example, was almost eliminated in the symmetric case
and was halved in the asymmetric case.

Table 7 – The average fairness and jitter metrics

with the baseline and proposed schedulers, for the

SPEC-OMP benchmarks.

Fairness Jitter Fairness Jitter

Baseline 79.6% 1.13 49.3% 1.90

Proposed 78.5% 0.13 62.1% 0.94

Improvement -1.4% 88.1% 25.9% 50.5%

Scheduler

Symmetric Asymmetric

The SPEC-OMP2001 benchmarks are highly

parallel applications, corresponding roughly to the
(∞:1) and (8:1) synthetic benchmarks. Their speedups
are therefore similar, in the ranges 1-3% for the
symmetric case and 3-4% for the asymmetric case.
According to the synthetic benchmark results, we
predict that applications with lower parallelism will
exhibit higher throughput using our proposed
scheduler.

8 Conclusions and Future Work

In this paper, we proposed a new scheduling
mechanism that favors serial phases of applications
over parallel phases. When running two multithreaded
scientific applications (SPEC-OMP2001) on
symmetric as well as on asymmetric multiprocessors,

analytical and experimental results showed
improvements in all metrics; the jitter in execution
runtimes decreased by as much as 88%, throughput in
some cases increased by more than 16%, and the
fairness metric improved by up to 26%.

The experiments in this paper were performed on a
real system, using official benchmarks and a modern
operating system (Linux kernel 2.6.18) with our
extensions. The exhibited performance improvements
therefore are system-wide, taking into account all
factors such as cache contention, memory subsystem,
as well as a complete software stack and operating
system. The concepts presented in this paper could
easily be implemented in today’s state of the art
multiprocessor operating systems, as implemented in
our experimental system, and could show immediate
performance gains.

This work provides insights into a multitude of
future research issues in the area of multithreaded
application handling in CMP. While our results
indeed show improvements, some benchmarks were
significantly faster whereas others exhibited a
slowdown with our proposed scheduler. In future
work, this phenomenon should be explored more
deeply, possibly resulting in an adaptive mechanism
that could improve throughput even further.

The analysis in this paper could be extended to take
into account the distribution of phase-changing during
the runtime of applications. Additionally, the way
multithreaded programs were modeled in this paper,
having either one active thread or n active threads,
could be extended to include the whole range from
one to n. Such extensions could later be used to
improve system metrics even further, even on current
symmetric architectures.

With regards to asymmetric configurations, the
analysis in this paper could be extended to support
various configurations of asymmetric multiprocessors,
such as more than two types of cores. Additionally,
the analysis could take into account different
speedups for different applications on each core type.

Acknowledgements

We thank Avi Mendelson and Andrey Gelman for
their insightful comments. We also thank Andrey
Gelman and Niv Aibester for their help in setting up
the emulation environment.

References

[1] J. Aas. “Understanding the Linux 2.6.8.1 CPU scheduler.”
SGI, 2005, http://josh.trancesoftware.com/linux/

http://josh.trancesoftware.com/linux/

Page 11 of 11

[2] A.R. Alameldeen and D.A. Wood. “IPC Considered Harmful
for Multiprocessor Workloads.” In IEEE Micro, Jul-Aug
2006.

[3] M. Annavaram, E. Grochowski, and J. Shen. “Mitigating
Amdahl’s Law Through EPI Throttling.” In Proc. of the 35th
ISCA, June 2005.

[4] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W.B.
Jones, and B. Parady. “SPEComp: A New Benchmark Suite
for Measuring Parallel Computer Performance.” In Proc. of
WOMPAT 2001.

[5] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. “The
Impact of Performance Asymmetry in Emerging Multicore
Architectures.” In Proc. of the 35th ISCA, June 2005.

[6] F.A. Bower, D.J. Sorin, and L.P. Cox. “The Impact of
Dynamically Heterogeneous Multicore Processors on Thread
Scheduling.” IEEE Micro, May/June 2008.

[7] S. Chen, P.B. Gibbons, M. Kozuch, V. Liaskovitis, A.
Ailamaki, G.E. Blelloch, B. Falsafi, L. Fix, N. Hardavellas,
T.C. Mowry, and C. Wilkerson. “Scheduling Threads for
Constructive Sharing on CMPs.” In Proc. of ACM SPAA
2007.

[8] A. Fedorova, D. Vengerov, and D. Doucette. “Operating
System Scheduling On Heterogeneous Core Systems.” In
Proc. of the Operating System support for Heterogeneous
Multicore Architectures (OSHMA) workshop, 16th PACT,
September 2007.

[9] R. Gabor, S. Weiss, and A. Mendelson. “Fairness and
Throughput in Switch on Event Multithreading.” In Proc. of
the 39th Annual IEEE/ACM International Symposium on
Microarchitecture, 2006.

[10] E. Grochowski, R. Ronen, J. Shen, and H. Wang. “Best of
Both Latency and Throughput.” In Proc. of the 22nd ICCD,
October 2004.

[11] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi, and K.
Farkas. “Single-ISA Heterogeneous Multi-core Architectures
for Multithreaded Workload Performance.” In Proc. of the
31st ISCA, June 2004.

[12] K. Luo, J. Gummaraju, and M. Franklin. “Balancing
throughput and fairness in SMT processors.” In Proc. of the
ISPASS, pages 164–171, 2001.

[13] T.Y. Morad, U.C. Weiser, A. Kolodny, M. Valero, and E.
Ayguadé. “Performance, Power Efficiency, and Scalability of
Asymmetric Cluster Chip Multiprocessors.” In Computer
Architecture Letters, vol. 4, 2005.

[14] O. Mutlu and T. Moscibroda. “Stall-Time Fair Memory
Access Scheduling for Chip Multiprocessors.” In Proc. of the
27th PODC, 2008.

[15] K. Olukotun and L. Hammond. “The future of
microprocessors.” In ACM Queue, vol. 3, no. 7, 2005.

[16] OpenMP Architecture Review Board. “OpenMP Application
Program Interface.” http://www.openmp.org, version 2.5,
May 2005.

[17] S.E. Raasch and S. K. Reinhardt. “Applications of Thread
Prioritization in SMT Processors.” In Proc. 1999 Workshop
on Multithreaded Execution And Compilation, 1999.

[18] A. Snavely, D. Tullsen, and G. Voelker. “Symbiotic
jobscheduling with priorities for a simultaneous
multithreading processor.” In proc. of the 2002 ACM
SIGMETRICS, 2002.

[19] J. Vera, F.J. Cazorla, A. Pajuelo, O.J. Santana, E. Fernández
and M. Valero. “FAME: Fairly MEasuring Multithreaded
Architectures”. IEEE-ACM PACT Conference, Parallel
Architectures and Compilation Techniques. Brasov,
Romania, September 15-19, 2007.

[20] J.A. Winter and D.H. Albonesi. “Scheduling Algorithms for
Unpredictably Heterogeneous CMP Architectures.” In proc.
of the 38th DSN, June 2008.

http://www.openmp.org/

