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Uncertainty Relations for Analog Signals

Yonina C. Eldar

Abstract

In the past several years there has been a surge of research investigating various aspects of sparse representations

and compressed sensing. Most of this work has focused on the finite-dimensional setting in which the goal is to

decompose a finite-length vector into a given finite dictionary. Underlying many of these results is the conceptual

notion of an uncertainty principle: a signal cannot be sparsely represented in two different bases. Here, we extend

these ideas and results to the analog, infinite-dimensional setting by considering signals that lie in a finitely-

generated shift-invariant (SI) space. This class of signals is rich enough to include many interesting special cases

such as multiband signals and splines. By adapting the notion of coherence defined for finite dictionaries to infinite

SI representations, we develop an uncertainty principle similar in spirit to its finite counterpart. We demonstrate

tightness of our bound by considering a bandlimited low-pass comb that achieves the uncertainty principle. Building

upon these results and similar work in the finite setting, we show how to find a sparse decomposition in an

overcomplete dictionary by solving a convex optimization problem. The distinguishing feature of our approach

is the fact that even though the problem is defined over an infinite domain with infinitely many variables and

constraints, under certain conditions on the dictionary spectrum our algorithm can find the sparsest representation

by solving a finite dimensional problem.

I. INTRODUCTION

Uncertainty relations date back to the work of Weyl and Heisenberg who showed that a signal cannot be localized

simultaneously in both time and frequency. This basic principle was then extended by Landau, Pollack, Slepian

and later Donoho and Stark to the case in which the signals are not restricted to be concentrated on a single

interval [1]–[4]. The uncertainty principle has deep philosophical interpretations. For example, in the context of

quantum mechanics it implies that a particle’s position and momentum cannot be simultaneously measured. In

harmonic analysis it imposes limits on the time-frequency resolution [5].

Recently, there has been a surge of research into discrete uncertainty relations in more general finite-dimensional

bases [6]–[8]. This work has been spurred in part by the relationship between sparse representations and the emerg-

ing field of compressed sensing [9], [10]. In particular, several works have shown that discrete uncertainty relations
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can be used to establish uniqueness of sparse decompositions in different bases representations. Furthermore, there

is an intimate connection between uncertainty principles and the ability to recover sparse expansions using convex

programming [6], [7], [11].

The vast interest in representations in redundant dictionaries stems from the fact that the flexibility offered by

such systems can lead to decompositions that are extremely sparse, namely use only a few dictionary elements.

However, finding a sparse expansion in practice is in general a difficult combinatorial optimization problem. Two

fundamental questions that are at the heart of overcomplete representations are how sparse a given signal can

be represented, and whether this sparse expansion can be found in a computationally efficient manner. In recent

years, several key papers have addressed both of these questions in a discrete setting, in which the signals to be

represented are finite-length vectors [6]–[8], [10]–[14].

The discrete generalized uncertainty principle for pairs of orthonormal bases states that a vector in R
N cannot

be simultaneously sparse in two orthonormal bases. The number of non-zero representation coefficients is bounded

below by the inverse coherence [6], [7], which is defined as the largest absolute inner product between vectors

in each basis [6], [15]. The uncertainty relation was then used to establish conditions under which a convex ℓ1

optimization program can recover the sparsest possible decomposition in a dictionary consisting of both bases [6],

[7], [11]. These basic results where later generalized in [12]–[14] to representations in arbitrary dictionaries and

to other efficient reconstruction algorithms [14].

The classical uncertainty principle is concerned with expanding a continuous-time analog signal in the time

and frequency domains. However, the generalizations outlined above are mainly focused on the finite-dimensional

setting. In this paper, our goal is to extend these recent ideas and results to the analog domain by first deriving

uncertainty relations for more general classes of analog signals and arbitrary analog dictionaries, and then suggesting

concrete algorithms to decompose a continuous-time signal into a sparse expansion in an infinite-dimensional

dictionary.

In our development, we focus our attention on continuous-time signals that lie in shift-invariant (SI) subspaces of

L2 [16]–[18]. Such signals can be expressed in terms of linear combinations of shifts of a finite set of generators:

x(t) =

N
∑

ℓ=1

∑

n∈Z

aℓ[n]φℓ(t − nT ), (1)

where φℓ(t), 1 ≤ ℓ ≤ N are the SI generators, aℓ[n] are the expansions coefficients, and T is the sampling period.

Clearly, x(t) is characterized by infinitely many coefficients aℓ[n]. Therefore, the finite results which provide

bounds on the number of non-zero expansion coefficients in pairs of bases decompositions are not immediately

relevant here. Instead, we characterize analog sparsity as the number of active generators that comprise a given

representation, where the ℓth generator is said to be active if aℓ[n] is not identically zero.

Starting with expansions in two orthonormal bases, we show that the number of active generators in each
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representation obeys an uncertainty principle similar in spirt to that of finite decompositions. The key to establishing

this relation is in defining the analog coherence between the two bases, by replacing the inner product in the finite

setting by the largest spectral value of the sampled cross-correlation between basis elements in the analog case.

The similarity between the finite and infinite cases can also be seen by examining settings in which the uncertainty

bound is tight. In the discrete setting, the lower uncertainty limit is achieved by decomposing a Dirac comb into

the spike and Fourier bases, which are maximally incoherent [4]. To generalize this result to the analog setting

we first develop an analog spike-Fourier pair and prove that it is maximally incoherent. The analog spike basis is

obtained by modulations of the basic low-pass filter (LPF), which is maximally spread in frequency. In the time

domain, these signals are given by shifts of the sinc function, whose samples generate shifted spikes. The discrete

Fourier basis is replaced by an analog Fourier basis, in which the elements are described by frequency shifts of

a narrow LPF in the continuous-time frequency domain. Tightness of the uncertainty relation is demonstrated by

expanding a comb of narrow LPFs in both bases.

We next address the problem of sparse decomposition in an overcomplete dictionary, corresponding to using

more than N generators in (1). In the finite setting, it can be shown that under certain conditions on the dictionary,

a sparse decomposition can be found using computationally efficient algorithms such as orthogonal matching

pursuit [19], [20] and ℓ1 optimization [7], [9], [11], [21]. However, directly generalizing these results to the analog

setting is challenging. Although in principle we can define an ℓ1 optimization program similar in spirt to its

finite counterpart, it will involve infinitely many variables and constraints and therefore it is not clear how to

solve it in practice. Instead, we develop an alternative approach that leads to a finite-dimensional convex problem

whose solution can be used to find the analog sparse decomposition exactly, by exploiting recent results on analog

compressed sensing [22]–[24]. Our algorithm is based on a three-stage process: In the first step we sample the

analog signal in a lossless manner and formulate the decomposition problem in terms of sparse signal recovery

from SI samples. In the second stage, we exploit results on infinite measurement models (IMV) and multiple

measurement vectors (MMV) [24]–[27] in order to determine the sparsity pattern, namely the indices of the active

generators, by solving a finite-dimensional convex optimization problem. Finally, we use this information in order

to simultaneously solve the resulting infinite set of equations by inverting a finite matrix [25]. The importance of

the first step is in converting our decomposition problem into an IMV so that we can apply results obtained in

that context. As we show, this is possible when the sampled cross-correlation between the two sets of orthonormal

generators is constant in frequency up to a possible frequency-dependant normalization factor. Finally, we indicate

how these results can be extended to more general classes of dictionaries.

The remainder of the paper is organized as follows. In Section II we review the generalized discrete uncertainty

principle and introduce the class of analog signals we will focus on. The analog uncertainty principle is formulated

and proved in Section III. In Section IV we consider a detailed example illustrating the analog uncertainty relation
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and its tightness. In particular we introduce the analog version of the maximally incoherent spike-Fourier pair.

Sparse decompositions in two orthonormal analog bases are discussed in Section V. These results are extended to

arbitrary dictionaries in Section VI.

In the sequel, we denote signals in L2 by lower case letters e.g., x(t), and SI subspaces of L2 by A. Vectors

in R
N are written as boldface lowercase letters e.g., x, and matrices as boldface uppercase letters e.g., A. The

ith element of a vector x is denoted xi. The identity matrix of appropriate dimension is written as I. For a given

matrix A, AH is its conjugate transpose, Aℓ is its ℓth column, and Aℓ is the ℓth row. The standard Euclidean

norm is denoted ‖x‖2 =
√

xHx, ‖x‖1 =
∑

i |xi| is the ℓ1 norm of x, and ‖x‖0 is the cardinality of x namely the

number of non-zero elements. The complex conjugate of a complex number a is denoted a. The Fourier transform

of a signal x(t) in L2 is defined as X(ω) =
∫ ∞
−∞ x(t)e−jωtdt. We use the convention that upper case letters

denote Fourier transforms. The discrete-time Fourier transform (DTFT) of a sequence x[n] in ℓ2 is defined by

X(ejω) =
∑∞

n=−∞ x[n]e−jωn. To emphasize the fact that the DTFT is 2π-periodic we use the notation X(ejω).

II. PROBLEM FORMULATION

A. Discrete Uncertainty Principles

The generalized uncertainty principle in concerned with pairs of representations of a vector x ∈ R
N in two

different orthonormal bases [6], [7]. Suppose we have two orthonormal bases for R
N : {φℓ, 1 ≤ ℓ ≤ N} and

{ψℓ, 1 ≤ ℓ ≤ N}. Any vector x in R
N can then be decomposed uniquely in terms of each one of these vector

sets:

x =

N
∑

ℓ=1

aℓφℓ =

N
∑

ℓ=1

bℓψℓ. (2)

Since the bases are orthonormal, the expansion coefficients are given by aℓ = φH
ℓ x and bℓ = ψH

ℓ x. Denoting by

Φ,Ψ the matrices with columns φℓ, ψℓ respectively, (2) can be written as x = Φa = Ψb, with a = ΦHx and

b = ΨHx.

The uncertainty relation sets limits on the sparsity of the decomposition for any vector x ∈ R
N . Specifically, let

A = ‖a‖0 and B = ‖b‖0 denote the number of non-zero elements in each one of the expansions. The generalized

uncertainty principle [6], [7] states that

1

2
(A + B) ≥

√
AB ≥ 1

µ(Φ,Ψ)
, (3)

where µ(Φ,Ψ) is the coherence between the bases Φ and Ψ and is defined by

µ(Φ,Ψ) = max
ℓ,r

|φH
ℓ ψr|. (4)

The coherence measures the similarity between basis elements. This definition was introduced in [15] to heuris-

tically characterize the performance of matching pursuit, and later used in [6], [7], [12], [14] in order to analyze
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the basis pursuit algorithm.

It can easily be shown that 1/
√

N ≤ µ(Φ,Ψ) ≤ 1 [6]. The upper bound follows from the Cauchy-Schwarz

inequality and the fact that the bases elements have norm 1. The lower bound is the result of the fact that the

matrix M = ΦHΨ is unitary and consequently MHM = IN . This in turn implies that the sum of the squared

elements of M is equal to N . Since there are N2 variables, the value of each one cannot be smaller than 1/
√

N .

The lower bound of 1/
√

N can be achieved, for example, by choosing the two orthonormal bases as the spike

(identity) and Fourier bases [4]. With this choice, the uncertainty relation (3) becomes

A + B ≥ 2
√

AB ≥ 2
√

N. (5)

Assuming
√

N is an integer, the relations in (5) can all be satisfied with equality by choosing x as a Dirac comb

with spacing
√

N , resulting in
√

N non-zero elements. This follows from the fact that the Fourier transform of

x is also a Dirac comb with the same spacing and therefore x can be decomposed both in time and in frequency

into
√

N basis vectors.

As we discuss in Section V, the uncertainty principle provides insight into how sparse a signal x can be

represented in an overcomplete dictionary consisting of Φ and Ψ. It also sheds light on the ability to compute

such decompositions using computationally efficient algorithms. Most of the research to date on sparse expansions

has focused on the discrete setting in which the goal is to represent a finite-length vector x in R
N in terms of

a given dictionary using as few elements as possible. First general steps towards extending the notions and ideas

underlying sparse representations and compressed sensing to the analog domain have been developed in [22], [24].

Here we would like to take a further step in this direction by extending the discrete uncertainty relations to the

analog domain.

B. Shift-Invariant Signal Expansions

In order to develop a general framework for analog uncertainty principles we first need to describe the set of

signals we consider. A popular model in signal and image processing are signals that lie in SI spaces. A finitely

generated SI subspace in L2 is defined as [16]–[18]:

A =

{

x(t) =
N

∑

ℓ=1

∑

n∈Z

aℓ[n]φℓ(t − nT ) : aℓ[n] ∈ ℓ2

}

. (6)

The functions φℓ(t) are referred to as the generators of A. Examples of SI spaces include multiband signals

[22] and spline functions [25], [28]. Expansions of the type (6) are also encountered in communication systems,

when the analog signal is produced by pulse amplitude modulation. In the Fourier domain, we can represent any
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x(t) ∈ A as

X(ω) =

N
∑

ℓ=1

Aℓ(e
jωT )Φℓ(ω), (7)

where

Aℓ(e
jωT ) =

∑

n∈Z

aℓ[n]ejωnT (8)

is the DTFT of aℓ[n] at frequency ωT , and is 2π/T periodic.

In order to guarantee a unique stable representation of any signal in A by a sequence of coefficients aℓ[n], the

generators φℓ(t) are typically chosen to form a Riesz basis for L2. This means that there exists constants α > 0

and β < ∞ such that

α‖a‖2 ≤
∥

∥

∥

∥

∥

N
∑

ℓ=1

∑

n∈Z

aℓ[n]φℓ(t − nT )

∥

∥

∥

∥

∥

2

≤ β‖a‖2, (9)

where ‖a‖2 =
∑N

ℓ=1

∑

n∈Z
|aℓ[n]|2, and the norm in the middle term is the standard L2 norm. Condition (9)

implies that any x(t) ∈ A has a unique and stable representation in terms of the sequences aℓ[n]. By taking

Fourier transforms in (9) it follows that the generators φℓ(t) form a Riesz basis if and only if [17]

αI ¹ Mφφ(ejω) ¹ βI, a.e. ω, (10)

where

Mφφ(ejω) =











Rφ1φ1
(ejω) . . . Rφ1φm

(ejω)
...

...
...

Rφmφ1
(ejω) . . . Rφmφm

(ejω)











, (11)

and for any two functions φ(t), ψ(t) with Fourier transforms Φ(ω),Ψ(ω),

Rφψ(ejω) =
1

T

∑

k∈Z

Φ

(

ω

T
− 2π

T
k

)

Ψ

(

ω

T
− 2π

T
k

)

. (12)

Note that Rφψ(ejω) is the DTFT of the cross correlation sequence rφψ[n] = 〈φ(t − nT ), ψ(t)〉, where the inner

product on L2 is defined as

〈s(t), x(t)〉 =

∫ ∞

t=−∞
s(t)x(t)dt. (13)

In Section VI we consider overcomplete signal expansions in which more than N generators φℓ(t) are used to

represent a signal x(t) in A. In this case (9) can be generalized to allow for stable overcomplete decompositions

in terms of a frame for A. The vectors {φℓ(t), 1 ≤ ℓ ≤ M} form a frame for A if there exist constants α > 0 and

β < ∞ such that

α‖x(t)‖2
2 ≤

M
∑

ℓ=1

∑

n∈Z

|〈φℓ(t − nT ), x(t)〉|2 ≤ β‖x(t)‖2
2 (14)
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for all x(t) ∈ A, where ‖x(t)‖2
2 = 〈x(t), x(t)〉.

Our main interest is in expansions of a signal x(t) in a SI subspace A of L2 in terms of orthonormal bases for

A. The generators {φℓ(t)} of A form an orthonormal basis if

〈φℓ(t − nT ), φr(t − mT )〉 = δnmδℓr, (15)

for all ℓ, r and n,m, where δnm = 1 if n = m and 0 otherwise. Since 〈φℓ(t − nT ), φr(t − mT )〉 =

〈φℓ(t − (n − m)T ), φr(t)〉, (15) is equivalent to

〈φℓ(t − nT ), φr(t)〉 = δn0δℓr. (16)

Taking the Fourier transform of (16), the orthonormality condition can be expressed in the Fourier domain as

Rφℓφr
(ejω) = δℓr. (17)

Given an orthonormal basis {φℓ(t − nT )} for A, the unique representation coefficients aℓ[n] in (6) can be

computed as aℓ[n] = 〈φℓ(t − nT ), x(t)〉. This can be seen by taking the inner product of x(t) in (6) with φℓ(t−mT )

and using the orthogonality relation (15). Evidently, computing the expansion coefficients in an orthonormal

decomposition is straightforward. There is also a simple relationship between the energy of x(t) and the energy

of the coefficient sequence in this case, as incorporated in the following proposition:

Proposition 1: Let {φℓ(t), 1 ≤ ℓ ≤ N} generate an orthonormal basis for a SI subspace A, and let x(t) =
∑N

ℓ=1

∑

n∈Z
aℓ[n]φℓ(t − nT ). Then

‖x(t)‖2 =
T

2π

∫ 2π

T

0

N
∑

ℓ=1

∣

∣Aℓ(e
jωT )

∣

∣

2
dω, (18)

where ‖x(t)‖2
2 = 〈x(t), x(t)〉 and Aℓ(e

jω) is the DTFT of aℓ[n].

Proof: See Appendix I.

C. Analog Problem Formulation

In the finite-dimensional setting, sparsity is defined in terms of the number of non-zero expansion coefficients

in a given basis. In an analog decomposition of the form (1), there are in general infinitely many coefficients so

that it is not immediately clear how to define the notion of analog sparsity.

In our development, analog sparsity is measured by the number of generators needed to represent x(t). In other

words, some of the sequences aℓ[n] in (1) may be identically zero, in which case

x(t) =
∑

|ℓ|=A

∑

n∈Z

aℓ[n]φℓ(t − nT ), (19)
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where the notation |ℓ| = A means a sum over at most A elements. Evidently, sparsity is defined by the energy of

the entire sequence aℓ[n] and not be the values of the individual elements.

In general, the number of zero sequences depends on the choice of basis. Suppose we have an alternative

representation

x(t) =
∑

|ℓ|=B

∑

n∈Z

bℓ[n]ψℓ(t − nT ), (20)

where {ψℓ(t)} also generate an orthonormal basis for A. An interesting question is whether there are limitations

on A and B. In other words, can we have two representations that are simultaneously sparse so that both A and

B are small? This question is addressed in the next section and leads to an analog uncertainty principle, similar

to (3). In Section IV we prove that the relation we obtain is tight, by constructing an example in which the lower

limits are satisfied.

As in the discrete-setting we expect to be able to use fewer generators in a SI expansion by allowing for an

overcomplete dictionary. In particular, if we expand x(t) using both sets of orthonormal bases we may be able to

reduce the number of sequences in the decomposition beyond what can be achieved using each basis separately. The

problem is how to find a sparse representation in the joint dictionary in practice. Even in the discrete setting this

problem is NP-complete. However, results of [7], [12]–[14] show that under certain conditions a sparse expansion

can be determined by solving a convex optimization problem. Here we have an additional essential complication

due to the fact that the problem is defined over an infinite domain so that it has infinitely many variables and

infinitely many constraints. In Section V we show that despite the combinatorial complexity and infinite dimensions

of the problem, under certain conditions on the bases functions, we can recover a sparse decomposition by solving

a finite-dimensional convex optimization problem.

III. UNCERTAINTY RELATIONS IN SI SPACES

We begin by developing an analog of the discrete uncertainty principle for signals x(t) in SI subspaces.

Specifically, we show that the minimal number of sequences required to express x(t) in terms of any two

orthonormal bases has to satisfy the same inequality (3) as in the discrete setting, with an appropriate modification

of the coherence measure.

Theorem 1: Suppose we have a signal x(t) ∈ A where A is a subspace of L2. Let {φℓ(t), 1 ≤ ℓ ≤ N} and

{ψℓ(t), 1 ≤ ℓ ≤ N} denote two orthonormal generators of A so that x(t) can be expressed in both bases with

coefficient sequences aℓ[n], bℓ[n]:

x(t) =
∑

|ℓ|=A

∑

n∈Z

aℓ[n]φℓ(t − nT ) =
∑

|ℓ|=B

∑

n∈Z

bℓ[n]ψℓ(t − nT ). (21)
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Then,

1

2
(A + B) ≥

√
AB ≥ 1

µ(Φ, Ψ)
, (22)

where

µ(Φ, Ψ) = max
ℓ,r

ess sup
ω

∣

∣Rφℓψr
(ejω)

∣

∣ , (23)

and Rφψ(ejω) is defined by (12).

The coherence µ(Φ, Ψ) of (23) is a generalization of the notion of discrete coherence (4) defined for

finite-dimensional bases. To see the analogy, note that Rφψ(ejω) is the DTFT of the correlation sequence

rφψ[n] = 〈φ(t − nT ), ψ(t)〉. On the other hand, the finite-dimensional coherence can be written as µ(Φ,Ψ) =

maxℓ,r |φ̂
H

ℓ ψ̂r|, where x̂ is the discrete Fourier transform of x.

Proof: Without loss of generality, we assume that ‖x(t)‖2 = 1. Since {φℓ(t)} and {ψℓ(t)} both generate

orthonormal bases, we have from Proposition 1 that

1 =
T

2π

∫ 2π

0

A
∑

ℓ=1

|Aℓ(e
jω)|2dω =

T

2π

∫ 2π

0

B
∑

ℓ=1

|Bℓ(e
jω)|2dω. (24)

Using the norm constraint and expressing X(ω) once in terms of Φℓ(ω) and once in terms of Ψℓ(ω):

1 =
1

2π

∫ ∞

−∞
|X(ω)|2dω

=
1

2π

∫ ∞

−∞

A
∑

ℓ=1

B
∑

r=1

Aℓ(e
jωT )Br(e

jωT )Φℓ(ω)Ψr(ω)dω

=
T

2π

∫ 2π

T

0

A
∑

ℓ=1

B
∑

r=1

Aℓ(e
jωT )Br(e

jωT )Rφℓψr
(ejω)dω

≤ T

2π

∫ 2π

T

0

A
∑

ℓ=1

B
∑

r=1

∣

∣Aℓ(e
jωT )

∣

∣

∣

∣Br(e
jωT )

∣

∣

∣

∣Rφℓψr
(ejω)

∣

∣ dω

≤ µ(Φ, Ψ)T

2π

∫ 2π

T

0

A
∑

ℓ=1

∣

∣Aℓ(e
jωT )

∣

∣

B
∑

r=1

∣

∣Br(e
jωT )

∣

∣ dω, (25)

where the second equality follows from rewriting the integral over the entire real line as the sum of integrals over

intervals of length 2π/T as in (99) in Appendix I, and the second inequality is a result of (23). Applying the

Cauchy-Schwarz inequality to the integral in (25) we have

∫ 2π

T

0

A
∑

ℓ=1

∣

∣Aℓ(e
jωT )

∣

∣

B
∑

r=1

∣

∣Br(e
jωT )

∣

∣ dω

≤





∫ 2π

T

0

(

A
∑

ℓ=1

∣

∣Aℓ(e
jωT )

∣

∣

)2

dω

∫ 2π

T

0

(

B
∑

ℓ=1

∣

∣Bℓ(e
jωT )

∣

∣

)2

dω





1/2

. (26)
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Using the same inequality we can upper bound the sum in (26):

(

A
∑

ℓ=1

∣

∣Aℓ(e
jωT )

∣

∣

)2

≤ A
A

∑

ℓ=1

∣

∣Aℓ(e
jωT )

∣

∣

2
. (27)

Combining with (26) and (25) leads to

1 ≤ µ(Φ,Ψ)
√

AB

[

T

2π

∫ 2π

T

0

A
∑

ℓ=1

∣

∣Aℓ(e
jωT )

∣

∣

2
dω

T

2π

∫ 2π

T

0

B
∑

ℓ=1

∣

∣Bℓ(e
jωT )

∣

∣

2
dω

]1/2

= µ(Φ,Ψ)
√

AB, (28)

where we used (24). Using the well-known relation between the arithmetic and geometric means completes the

proof.

An interesting question is how small µ(Φ, Ψ) can be made by appropriately choosing the bases. From Theorem 1

the smaller µ(Φ, Ψ), the stronger the restriction on the sparsity in both decompositions. As we will see in Section V,

such a limitation is helpful in recovering the true sparse coefficients. In the finite setting we have seen that

1/
√

N ≤ µ(Φ,Ψ) ≤ 1 [6]. The next theorem shows that the same bounds hold in the analog case.

Theorem 2: Let {φℓ(t), 1 ≤ ℓ ≤ N} and {ψℓ(t), 1 ≤ ℓ ≤ N} denote two orthonormal generators of a SI

subspace A ⊂ L2 and let µ(Φ, Ψ) = maxℓ,r ess sup
∣

∣Rφℓψr
(ejω)

∣

∣, where Rφψ(ejω) is defined by (12). Then

1√
N

≤ µ(Φ,Ψ) ≤ 1. (29)

Proof: We begin by proving the upper bound, which follows immediately from the Cauchy-Schwarz inequality

and the orthonormality of the bases:

∣

∣Rφℓψr
(ejω)

∣

∣ ≤
(

Rφℓφℓ
(ejω)Rψrψr

(ejω)
)1/2

= 1, (30)

where the last equality is a result of (17). Therefore, µ(Φ, Ψ) ≤ 1.

To prove the lower bound, note that since φℓ(t) is in A for each ℓ, we can express it as

φℓ(t) =
N

∑

r=1

∑

n∈Z

aℓ
r[n]ψr(t − nT ) (31)

for some coefficients aℓ
r[n], or in the Fourier domain,

Φℓ(ω) =
N

∑

r=1

Aℓ
r(e

jωT )Ψr(ω). (32)

Since ‖φℓ(t)‖ = 1 and {ψr(t)} are orthonormal, we have from Proposition 1 that

T

2π

∫ 2π

T

0

N
∑

r=1

∣

∣

∣
Aℓ

r(e
jωT )

∣

∣

∣

2
dω = 1, 1 ≤ ℓ ≤ N. (33)
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Now, using (32) and the orthonormality condition (17) it follows that

µ(Φ, Ψ) ≥
∣

∣Rφℓψr
(ejω)

∣

∣

=

∣

∣

∣

∣

∣

N
∑

s=1

A
ℓ
s(e

jω)Rψsψr
(ejω)

∣

∣

∣

∣

∣

=
∣

∣

∣
Aℓ

r(e
jω)

∣

∣

∣
. (34)

Therefore,
∫ 2π

0

N
∑

ℓ,r=1

∣

∣Rφℓψr
(ejω)

∣

∣

2
dω =

N
∑

ℓ=1

∫ 2π

0

N
∑

r=1

∣

∣

∣
Aℓ

r(e
jω)

∣

∣

∣

2
dω = 2πN. (35)

If µ(Φ,Ψ) < 1/
√

N , then, |Rφℓψr
(ejω)| < 1/

√
N a.e. on ω and

∫ 2π

0

N
∑

ℓ,r=1

∣

∣Rφℓψr
(ejω)

∣

∣

2
dω < 2πN, (36)

which contradicts (35).

It is easy to see that the lower bound in (29) is achieved if Rφℓψr
(ejω) = 1/

√
N for all ℓ, r and ω. In this case

the uncertainty relation (22) becomes

A + B ≥ 2
√

AB ≥ 2
√

N. (37)

As discussed in Section II, in the discrete setting with
√

N an integer, the inequalities in (37) are achieved using the

spike-Fourier basis and x equal to a Dirac comb. In the next section we show that equality in (37) can be satisfied

in the analog case as well using a pair of bases that is analogous to the spike-Fourier pair, and a bandlimited

signal x(t) equal to a low-pass comb.

IV. ACHIEVING THE UNCERTAINTY PRINCIPLE

A. Minimal Coherence

Consider the space A of signals bandlimited to (−πN/T, πN/T ]. As we show below, any signal in A can be

expressed in terms of N SI generators. We would like to choose two orthonormal bases, analogous to the spike-

Fourier pair in R
N , for which the coherence achieves its lower limit of 1/

√
N . To this end, we first highlight the

essential properties of the spike-Fourier bases in R
N , and then choose an analog pair with similar characteristics.

The basic properties of the spike-Fourier pair are illustrated in Fig. 1. The first element of the spike basis, φ1,

is equal to a constant in the discrete Fourier domain, as illustrated in the left-hand side of Fig. 1. The remaining

basis vectors are generated by shifts in time, or modulations in frequency, as depicted in the bottom part of the

figure. In contrast, the first vector of the Fourier basis is sparse in frequency: it is represented by a single frequency

component as illustrated in the right-hand side of the figure. The rest of the basis elements are obtained by shifts

in frequency.
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01 N-1

01 N-1

1
( )k

2 ( 1) /

1
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j k N
k e

01 N-1

01 N-1

1
( )k

1
( )k

Fig. 1. Discrete Fourier-domain representation of the spike-Fourier bases in R
N . The left-hand side is the discrete Fourier transform of

the spike basis. The right-hand side represents the discrete Fourier transform of the Fourier basis.

We now construct two orthonormal bases for A with minimal coherence by mimicking these properties in the

continuous-time Fourier domain. Since we are considering the class of signals bandlimited to πN/T , we only treat

this frequency range. As we have seen, the basic element of the spike basis occupies the entire frequency spectrum.

Therefore, we choose our first analog basis signal φ1(t) to be constant over the frequency range (−πN/T, πN/T ].

The remaining basis elements are generated by shifts in time of φ1(t) or modulations in frequency:

Φℓ(ω) =







√

T
N e−jω(ℓ−1)T/N , ω ∈ (−πN/T, πN/T ];

0, otherwise,
(38)

corresponding to

φℓ(t) =

√

N

T
sinc((t − (ℓ − 1)T ′)/T ′), (39)

with T ′ = T/N . The normalization constant is chosen to ensure that the basis vectors have unit norm. We refer to

{φℓ(t−nT )} as the analog spike basis. Note that the samples of φℓ(t) at times nT ′ create a shifted spike, further

justifying the analogy. The Fourier transform of the analog spike basis is illustrated in the left-hand side of Fig. 2.

To construct the second orthonormal basis, we choose ψ1(t) to be sparse in frequency, as in the discrete case.

The remaining elements are obtained by shifts in frequency. Since we have N generators, we divide the interval

(−πN/T, πN/T ] into equal sections of length 2π/T , and choose each Ψℓ(ω) to be constant over the corresponding

interval, as illustrated in Fig. 2. More specifically, let

Iℓ = {ω : ω ∈ (π(2ℓ − (N + 2))/T, π(2ℓ − N)/T ]}, (40)
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Fig. 2. Continuous Fourier-domain representation of the analog spike-Fourier bases in A. The left-hand side is the Fourier transform of

the spike basis. The right-hand side represents the Fourier transform of the Fourier basis.

be the ℓth interval. Then

Ψℓ(ω) =







√
T , ω ∈ Iℓ;

0, otherwise.
(41)

The analog pair of bases {Φℓ(ω), Ψℓ(ω)} is referred to as the analog spike-Fourier pair. In order to complete the

analogy with the discrete spike-Fourier bases we need to show that both analog sets are orthonormal and generate

A, and that their coherence is equal to 1/
√

N . The latter follows immediately by noting that

Φℓ(ω)Ψr(ω) =







T√
N

e−jω(r−1)T/N , ω ∈ Iℓ;

0, otherwise.
(42)

Since the length of Iℓ is 2π/T , replicas at distance 2π/T will not overlap. Therefore, |Rφℓψr
(ejω)| = 1/

√
N , and

µ(Φ,Ψ) = 1/
√

N .

It is also easy to see that {ψℓ(t), 1 ≤ ℓ ≤ N} generate A since any x(t) ∈ A can be expressed in the form

(6) (or (7)) by choosing Aℓ(e
jωT ) = X(ω) for ω ∈ Iℓ. Note, that if X(ω) is zero on one of the intervals Iℓ,

then Aℓ(e
jω) will also be zero, leading to the multiband structure studied in [22]. Since the intervals on which

Ψℓ(ω) are non-zero do not overlap, the basis is also orthogonal. Finally, orthonormality follows from our choice

of scaling.

Proving that {φℓ(t)} generate an orthonormal basis is a bit more tricky. To see that these functions span A note

that from Shannnon’s sampling theorem, any function x(t) bandlimited to π/T ′ with T ′ = T/N can be written as

x(t) =
∑

n∈Z

x(nT ′) sinc((t − nT ′)/T ′). (43)
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Expressing (43) as

x(t) =
N

∑

ℓ=1

∑

n∈Z

aℓ[n] sinc((t − (ℓ − 1)T ′ − nT ))/T ′)

=

√

T

N

N
∑

ℓ=1

∑

n∈Z

aℓ[n]φℓ(t − nT ), (44)

with aℓ[n] = x((ℓ − 1)T ′ + nT ), we see that {φℓ(t)} generate A. To show orthonormality of the basis, note that

Rψℓψr
(ejω) =

1

N
ejω(ℓ−r)/N

N−1
∑

k=0

e−j2πk(ℓ−r)/N = δrℓ, (45)

where we used the relation
N−1
∑

k=0

e−j2πk(ℓ−r)/N = Nδrℓ. (46)

B. Tightness of the Uncertainty Relation

Given any signal x(t) in A, the uncertainty relation for the analog spike-Fourier pair states that the number of

non-zero sequences in the spike and Fourier bases must satisfy (37). We now show that when
√

N is an integer,

these inequalities can be achieved with equality with an appropriate choice of x(t), so that the uncertainty principle

is tight. To determine such a signal x(t), we again mimic the construction in the discrete case.

As we discussed in Section II, when using the finite Fourier-spike pair, we have equalities in (37) when x ∈ R
N

is a Dirac comb with
√

N non-zero values, equally spaced, as illustrated in the left-hand side of Fig. 3. This

follows from the fact that the Dirac comb has the same form in both time and frequency. To construct a signal in

A satisfying the analog uncertainty relation, we replace each Fourier-domain Dirac in the discrete setting by a LPF

of width 2π/T in the analog Fourier domain. To ensure that there are
√

N non-zero intervals in (−πN/T, πN/T ],

the frequency spacing between the LPFs is set to 2π
√

N/T , as depicted in the right-hand side of Fig. 3. Clearly

such a signal can be represented in frequency by
√

N basis functions Ψm(ω), with m =
√

N(ℓ − 1) + 1. It

therefore remains to show that x(t) can also be expanded in time using
√

N signals φm(t).

2 /T

0 N-1N N N N

T

N

T

2 /N T 2N N

Fig. 3. Discrete and analog signals satisfying the uncertainty principle with equality. The left-hand side is the discrete Fourier transform

of the Delta comb. The right-hand side represents the analog Fourier transform of the LPF comb.

To write x(t) of Fig. 3 in time, note that X(ω) is equal to the product of a LPF with cut-off πN/T and a

periodic train of LPFs with width 2π/T and period 2π
√

N/T . Such a periodic function can be expressed in time
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as

y(t) =
∑

n∈Z

a(t)δ(t − (n/
√

N)T ) =
∑

n∈Z

a(n/
√

N)δ(t − (n/
√

N)T ) (47)

where a(t) is the inverse Fourier transform of a LPF with width 2π/T , centered at −π(N − 1)/T . Therefore,

x(t) =

(

∑

n∈Z

a(n/
√

N)δ(t − (n/
√

N)T )

)

∗ sinc(tN/T )

=
∑

n∈Z

a(n/
√

N) sinc((t − (n/
√

N)T )/T ′), (48)

with T ′ = T/N . Defining n = r
√

N + s we can replace the sum in (48) over n by the sum over r and s, where

r ranges over all integers and s over the integers in the range [0,
√

N − 1]. This leads to the expansion

x(t) =

√
N−1
∑

s=0

∑

r∈Z

a(r + s/
√

N) sinc((t − (r + s/
√

N)T )/T ′)

=

√

T

N

√
N

∑

s=1

∑

r∈Z

a(r + (s − 1)/
√

N)φ√
N(s−1)+1(t − rT ), (49)

in which only
√

N generating functions φℓ(t) are used.

We conclude that the signal x(t) of (48) can be expressed in terms of shifts of
√

N basis vectors φℓ(t) or
√

N

vectors ψℓ(t), and therefore achieves the lower uncertainty limit.

V. RECOVERY OF SPARSE REPRESENTATIONS

A. Discrete Representations

One of the important implications of the discrete uncertainty principle is its relation with sparse approximations

[6], [7], [13], [14]. Given two orthonormal bases Φ,Ψ for R
N an interesting question is whether one can reduce

the number of non-zero expansion coefficients required to represent x by decomposing x ∈ R
N in terms of the

concatenated dictionary

D =
[

Φ Ψ

]

. (50)

In many cases such a representation can be much sparser than the decomposition in either of the bases alone.

The difficulty is in actually finding a sparse expansion x = Dγ in which γ has as few non-zero components as

possible. Since D has more columns than rows, the set of equations x = Dγ is underdetermined and therefore x can

have multiple representations γ. Finding the sparsest choice can be translated into the combinatorial optimization

problem

min
γ

‖γ‖0 s. t. x = Dγ. (51)
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Clearly, (51) is NP-complete in general and cannot be solved efficiently. The surprising result of [6], [7], [11] is

that if the coherence µ(Φ,Ψ) between the two bases is small enough with respect to the sparsity of γ, then the

sparsest possible γ is unique and can be found by the basis pursuit algorithm in which the non-convex ℓ0 norm

is replaced by the convex ℓ1 norm:

min
γ

‖γ‖1 s. t. x = Dγ. (52)

Proposition 2: Let D = [Φ Ψ] be a dictionary consisting of two orthonormal bases with coherence µ(Φ,Ψ) =

maxℓ,r |φH
ℓ ψr|. If a vector x has a sparse decomposition in D such that x = Dγ and ‖γ‖0 < 1/µ(Φ,Ψ) then this

representation is unique, namely there cannot be another γ ′ with ‖γ ′‖0 < 1/µ(Φ,Ψ) and x = Dγ ′. Furthermore,

if

‖γ‖0 <

√
2 − 0.5

µ(Φ,Ψ)
, (53)

then the unique sparse representation can be found by solving the ℓ1 optimization problem (52).

As detailed in [6], [7], the proof of Proposition 2 follows from the generalized discrete uncertainty principle.

Another useful result on dictionaries with low coherence is that every set of k ≤ 2/µ(Φ,Ψ) − 1 columns are

linearly independent [13, Theorem 6]. This result can be stated in terms of the Kruskal-rank of D [29], which is

the maximal number q such that every set of q columns of D is linearly independent.

Proposition 3: Let D = [Φ Ψ] be a dictionary consisting of two orthonormal bases with coherence µ(Φ,Ψ).

Then σ(D) ≥ 2/µ(Φ,Ψ) − 1 where σ(D) is the Kruskal rank of D.

B. Analog Representations

We would now like to generalize these recovery results to the analog setup. However, it is not immediately clear

how to extend the finite ℓ1 basis pursuit algorithm of (52) to the analog domain.

To set up the analog sparse decomposition problem, suppose we have a signal x(t) that lies in a space A, and

let {φℓ(t − nT )}, {ψℓ(t − nT )} be two orthonormal generators of A with 1 ≤ ℓ ≤ N . Our goal is to represent

x(t) in terms of the joint dictionary {dℓ(t − nT ), 1 ≤ ℓ ≤ 2N} with

dℓ(t) =







φℓ(t), 1 ≤ ℓ ≤ N ;

ψℓ−N (t), N + 1 ≤ ℓ ≤ 2N,
(54)

using as few non-zero sequences as possible. Denoting by γ[n] the vector at point-n whose elements are γℓ[n],

our problem is to choose the vector sequence γ[n] such that

x(t) =
2N
∑

ℓ=1

∑

n∈Z

γℓ[n]dℓ(t − nT ), (55)

and γℓ[n] is identically zero for the largest possible number of indices ℓ. We can count the number of non-zero
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sequences by first computing the ℓ2-norm of each sequence. Clearly, γℓ[n] is equal 0 for all n if and only if its

ℓ2 norm ‖γℓ[n]‖2 = (
∑

n |γ2
ℓ [n]|)1/2 is zero. Therefore, the number of non-zero sequences γℓ[n] is equal to ‖c‖0

where cℓ = ‖γℓ[n]‖2. For ease of notation, we denote ‖γ‖2,0 = ‖c‖0, and similarly ‖γ‖2,1 = ‖c‖1. Finding the

sparsest decomposition (55) can then be written as

min
γ

‖γ‖2,0 s. t. x(t) =
2N
∑

ℓ=1

∑

n∈Z

γℓ[n]dℓ(t − nT ). (56)

Problem (56) is the analog version of (51). However, in addition to being combinatorial as its finite counterpart,

(56) also has infinitely many variables and constraints.

In order to extend the finite-dimensional decomposition results to the analog domain, there are two main questions

we need to address:

1) Is there a unique sparse representation for any input signal in a given dictionary?

2) How can we compute a sparse expansion in practice, namely solve (56), despite the combinatorial complexity

and infinite dimensions?

The uniqueness condition of Proposition 2 can be readily extended to the analog case, since its proof is based on

the uncertainty relation (3) which is identical to (22) with the appropriate modification to the coherence measure.

Proposition 4: Suppose that a signal x(t) ∈ A has a sparse representation in the joint dictionary {dℓ(t− nT )}
of (54) which consists of two orthonormal bases {φℓ(t−nT ), ψℓ(t−nT )} for 1 ≤ ℓ ≤ N . If ‖γ‖2,0 < 1/µ(Ψ,Φ)

where µ(Ψ, Φ) is the coherence defined by (23), then this representation is unique.

The second more fundamental question is how to find a unique sparse representation when it exists. We may

attempt to develop a solution by replacing the ℓ0 norm in (56) by an ℓ1 norm, as in the finite-dimensional case.

This leads to the convex program

min
γ

‖γ‖2,1 s. t. x(t) =
2N
∑

ℓ=1

∑

n∈Z

γℓ[n]dℓ(t − nT ). (57)

However, in practice, it is not clear how to solve (57) since it is defined over an infinite set of variables γℓ[n], and

has infinitely many constraints (for all t).

In Section V-D we show that (56) can be converted into an equivalent finite-dimensional problem when Mφψ(ejω)

of (11) can be written as

Mφψ(ejω) = AZ(ejω). (58)

Here A is a fixed matrix independent of ω, and Z(ejω) is an invertible diagonal matrix with diagonal elements

Zℓ(e
jω). The columns of A are normalized such that ess sup Zℓ(e

jω) = 1 for all ℓ. As an example, consider the

case in which A is the space of signals bandlimited to πN/T , as in Section IV. Then φℓ(t), ψℓ(t) defined by (38),

(41) satisfy (58) with A = (T/
√

N)I and Zℓ(e
jω) = exp{−jω(ℓ − 1)T/N}.
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Our main result is that under the condition (58) we can convert (56) into a multiple measurement vector (MMV)

problem in which our goal is to represent a set of m vectors x1, . . . ,xm using a finite-dimensional dictionary

D = [I A] with common sparsity, namely the non-zero elements in the expansion of the m vectors are all supported

on a fixed location set. In order to develop these results, in the next section we review the MMV model and a

recently developed generalization to the case in which it is desirable to jointly decompose infinitely many vectors

xi in terms of a given dictionary D. This extension is referred to as the infinite measurement model (IMV) [23].

In Section V-D we show how these ideas can be used to find the sparsest decomposition in a SI subspace when

(58) holds, by first solving a finite-dimensional convex optimization problem.

C. MMV and IMV Models

The basic results of [7], [12], [13] on expansion in dictionaries consisting of two orthonormal bases can be

generalized to the MMV problem in which we would like to jointly decompose m vectors xi, 1 ≤ i ≤ m in a

dictionary D. Denoting by X the matrix with columns xi, our goal is to seek a matrix Γ with columns γi such

that X = DΓ and Γ has as few non-zero rows as possible. In this case, not only is each representation vector γi

sparse, but in addition the vectors share a joint sparsity pattern. The results in [26], [27], [30] establish that under

the same conditions as Proposition 2, the unique Γ can be found by solving an extension of the ℓ1 program:

min
Γ

‖s(Γ)‖1 s. t. X = DΓ. (59)

Here s(Γ) is a vector whose ℓth element is equal to ‖Γℓ‖ where Γℓ is the ℓth row of Γ, and the norm is an

arbitrary vector norm. When Γ is equal to a single vector γ, ‖Γℓ‖ = |γℓ| for any choice of norm and (59) reduces

to the standard ℓ1 optimization problem (52).

Proposition 5: Let X be an N × m matrix with columns xi, 1 ≤ i ≤ m that have a joint sparse representation

in the dictionary D = [Φ Ψ] consisting of two orthonormal bases, so that X = DΓ with ‖s(Γ)‖0 = k. If

k < 1/µ(Φ,Ψ) where µ(Φ,Ψ) = maxℓ,r |φH
ℓ ψr|, then this representation is unique. Furthermore, if

k <

√
2 − 0.5

µ(Φ,Ψ)
, (60)

then the unique sparse representation can be found by solving (59) with any vector norm.

The MMV model has been recently generalized to the IMV case in which there are infinitely many vectors x

of length N , and infinitely many coefficient vectors γ:

x(λ) = Dγ(λ), λ ∈ Λ, (61)

where Λ is some set whose cardinality can be infinite. In particular, Λ may be uncountable, such as the set of

frequencies ω ∈ [−π, π). The k-sparse IMV model assumes that the vectors {γ(λ)}, which we denote for brevity
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by γ(Λ), share a joint sparsity pattern, so that the non-zero elements are all supported on a fixed location set of

size k [23]. This model was first introduced in [22] in the context of blind sampling of multiband signals, and

later analyzed in more detail in [23].

A major difficulty with the IMV model is that it is not clear in practice how to determine the entire solution set

γ(Λ) since there are infinitely many equations to solve. Thus, using an ℓ1 optimization, or a greedy approach, are

not immediately relevant here. A possible suboptimal strategy is to convert the problem into an MMV by solving

(61) only over a finite choice of values λ. However, clearly this approach cannot guarantee that the equations will

be satisfied for all λ. Instead, it was shown in [23] that (61) can be converted to a finite MMV without loosing

any information by a set of operations that are grouped under a block refereed to as the continuous-to-finite (CTF)

block. The essential idea is to first recover the support of γ(Λ), namely the non-zero location set, by solving a

finite MMV, and then reconstruct γ(Λ) from the data x(Λ) and the knowledge of the support, which we denote

by S. The reason for this separation is that once S is known, the linear relation of (61) becomes invertible when

the coherence is low enough.

To see this, let DS denote the matrix containing the subset of the columns of D whose indices belong to S.

The system of (61) can then be written as

x(λ) = DSγS(λ), λ ∈ Λ, (62)

where the superscript γS(λ) is the vector that consists of the entries of γ(λ) in the locations S. Since γ(Λ) is

k-sparse, |S| ≤ k. In addition, from Proposition 3 it follows that if µ(Φ,Ψ) < 1/k then every k columns of D

are linearly independent. Therefore DS consists of linearly independent columns implying that (DS)†DS = I,

where (DS)† =
(

DH
S DS

)−1
DH

S is the Moore-Penrose pseudo-inverse of DS . Multiplying (62) by (DS)† on the

left gives

γS(λ) = (DS)†x(λ), λ ∈ Λ. (63)

The elements in γ(λ) not supported on S are all zero. Therefore (63) allows for exact recovery of γ(Λ) once the

finite set S is correctly identified.

In order to determine S by solving a finite-dimensional problem we exploit the fact that span(x(Λ)) is finite,

since x(λ) is of length N . Therefore, span(x(Λ)) has dimension at most N . In addition, it is shown in [23] that

if there exists a solution set γ(Λ) with sparsity k, and the matrix D has Kruskal rank σ(D) ≥ 2k, then every

finite collection of vectors spanning the subspace span(x(Λ)) contains sufficient information to recover S exactly.

Therefore, to find S all we need is to construct a matrix V whose range space is equal to span(x(Λ)). We are

then guaranteed that the linear system

V = DU (64)
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has a unique k-sparse solution U whose row support is equal S. This result allows to avoid the infinite structure of

(61) and to concentrate on finding the finite set S by solving the single MMV system of (64). The solution can be

determined using an ℓ1 relaxation of the form (59) with V replacing X, as long as the conditions of Proposition 5

hold, namely the coherence is small enough with respect to the sparsity.

In practice, a matrix V with column span equal to span(x(Λ)) can be constructed by first forming the matrix

Q =
∫

λ∈Λ x(λ)xH(λ)dλ, assuming that the integral exists. Every V satisfying Q = VVH will then have a column

span equal to span(x(Λ)) [23]. In particular, the columns of V can be chosen as the eigenvectors of Q multiplied

by the square-root of the corresponding eigenvalues.

We summarize the steps enabling a finite-dimensional solution to the IMV problem in the following theorem.

Theorem 3: Consider the system of equations (61) where D = [Φ Ψ] is a dictionary consisting of two

orthonormal bases with coherence µ(Φ,Ψ) = maxℓ,r |φH
ℓ ψr|. Suppose (61) has a k-sparse solution set γ(Λ)

with support set S. If the Kruskal rank σ(D) ≥ 2k, then γ(Λ) is unique. In addition, let V be a matrix whose

column-space is equal to span(x(Λ)). Then, the linear system V = DU has a unique k-sparse solution U whose

row support is equal to S. Denoting by DS the columns of D whose indices belong to S, the non-zero elements

γS(λ) are given by γS(λ) = (DS)†x(λ). Finally, if

k <

√
2 − 0.5

µ(Φ,Ψ)
, (65)

then σ(D) ≥ 2k and the unique sparse U can be found by solving (59) with any vector norm.

D. Analog Dictionaries

We now return to the analog decomposition problem (56) and show how to exploit the results presented in

the previous section on IMV models in order to find the sparsest SI expansion by solving a finite-dimensional

problem. Our approach is comprised of three steps:

1) Convert (56) into an IMV system.

2) Use the reduction from IMV to MMV in order to find the active generators dℓ(t), ℓ ∈ S.

3) Invert the system of equations over S to find the sparse decomposition, namely the smallest number of

non-zero sequences γℓ[n].

The last two steps were detailed in the previous section. It remains to show how (56) can be transformed into an

IMV.

Problem (56) does not have the form of an IMV since the signal to be decomposed x(t) is not a set of finite-

dimensional vectors and the dictionary is not described by a finite matrix. However, as we now show, using

several manipulations it can be converted into an IMV model. We begin by noting that since {φℓ(t)} generate an
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orthonormal basis for A, x(t) is uniquely determined by the N sequences of samples

cℓ[n] = 〈φℓ(t − nT ), x(t)〉 = r(nT ), (66)

where r(t) is the convolution r(t) = φ(−t) ∗ x(t). Indeed, orthonormality of {φℓ(t)} immediately implies that

x(t) =

N
∑

ℓ=1

∑

n∈Z

cℓ[n]φℓ(t − nT ). (67)

Therefore, constraining x(t) is equivalent to imposing restrictions on the expansion coefficients cℓ[n]. Taking the

inner products on both sides of (56) with respect to φℓ(t − nT ) leads to

cr[m] =
2N
∑

ℓ=1

∑

n∈Z

γℓ[n]〈φr(t − mT ), dℓ(t − nT )〉

=
2N
∑

ℓ=1

∑

n∈Z

γℓ[n]arℓ[m − n], (68)

where arℓ[n] = 〈φr(t − nT ), dℓ(t)〉. Taking the Fourier transform of (68) results in

Cr(e
jω) =

2N
∑

ℓ=1

Γℓ(e
jω)Arℓ(e

jω), 1 ≤ r ≤ N. (69)

Thus, instead of finding γℓ[n] to satisfy the constraints in (56) we can alternatively seek the smallest number of

functions Γℓ(e
jω) that satisfy (69).

To simplify (69) we use the definition (54) of dℓ(t). Since 〈φr(t − nT ), φℓ(t)〉 = δrℓδn0 and the Fourier transform

of 〈φr(t − nT ), ψℓ(t)〉 is equal to Rφrψℓ
(ejω), (69) can be written as

Cr(e
jω) = Γr(e

jω) +

2N
∑

ℓ=N+1

Γℓ(e
jω)Rφrψℓ

(ejω). (70)

Denoting by c(ejω), γ(ejω) the vectors with elements Cℓ(e
jω), Γℓ(e

jω) respectively, we can express (70) as

c(ejω) =
[

I Mφψ(ejω)
]

γ(ejω). (71)

Our sparse recovery problem (56) is therefore equivalent to

minγ ‖γ(ejω)‖2,0

s. t. c(ejω) =
[

I Mφψ(ejω)
]

γ(ejω).
(72)

The minimization in (72) is very similar to the IMV problem (61). Indeed, we seek a set of vectors γ with

joint sparsity that have the smallest number of non-zero rows, and satisfy an infinite set of linear matrix relations.

However, in contrast to (61), the matrix here depends on ω. Therefore, Theorem 3 cannot be applied since it is

not clear what matrix figures in the finite MMV representation. Nonetheless, if Mφψ(ejω) has the form (58), then
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(72) can be converted to a finite MMV problem. Indeed, let the first N elements of γ(ejω) be denoted by a(ejω)

and the remaining N elements by b(ejω). Then (72) becomes

mina,d ‖a(ejω)‖2,0 + ‖d(ejω)‖2,0

s. t. c(ejω) =
[

I A

]





a(ejω)

d(ejω)



 ,
(73)

where d(ejω) = Z(ejω)b(ejω), and we used the fact that since Z(ejω) is diagonal and invertible, ‖b(ejω)‖2,0 =

‖d(ejω)‖2,0 so that the two vector sequences have the same sparsity. Problem (73) has the required IMV form. It

can be solved by first finding the sparsest matrix U that satisfies C = [I A]U where the columns of C form a

basis for the span of {c(ejω),−π ≤ ω ≤ π}. To determine U we consider the convex program

min
U

‖s(U)‖1 s. t. C =
[

I A

]

U. (74)

Let S denote the rows in U that are not identically zero and let γS [n] be the corresponding sequences γℓ[n], ℓ ∈ S.

Then

γS(ejω) =





I

Z−1
S′ (ejω)



 (DH
S DS)−1DH

S c(ejω), (75)

where S′ denotes the rows in S between N + 1 and 2N . The remaining sequences γℓ, ℓ /∈ S are identically zero.

Proposition 5 provides conditions under which (74) will find the sparsest representation assuming that A is a

unitary matrix. These conditions are stated in terms of the coherence µ(I,A). In order to apply these results to our

problem, we need to relate the coherence µ(I,A) to that of the continuous-time orthonormal bases µ(Φ,Ψ), and

to establish that A is unitary. It is easy to see that µ(I,A) = µ(Φ, Ψ). This follows immediately from the fact that

µ(I,A) = maxi,j |Aij |, and µ(Φ, Ψ) = maxi,j supω |[AZ(ejω)]ij |. Since supω |Zℓ(e
jω)| = 1, µ(I,A) = µ(Φ, Ψ).

The next proposition establishes that A is a unitary matrix.

Proposition 6: Let {φℓ(t)}, {ψℓ(t)} be two generators of orthonormal bases for the SI subspace A. Let A =

Mφψ(ejω)Z−1(ejω) where Mφψ(ejω) is defined by (11) and Z(ejω) is an invertible diagonal matrix satisfying

max |Zℓ(e
jω)| = 1. Then AHA = I.

Proof: See Appendix II.

We summarize our results on analog sparse decompositions in the following theorem.

Theorem 4: Let {φℓ(t), 1 ≤ ℓ ≤ N} and {ψℓ(t), 1 ≤ ℓ ≤ N} denote two orthonormal generators of a subspace

A of L2 with coherence µ(Ψ, Φ). Let x(t) be a signal in A and suppose there exists sequences aℓ[n], bℓ[n] such

that

x(t) =

N
∑

ℓ=1

∑

n∈Z

(aℓ[n]φℓ(t − nT ) + bℓ[n]ψℓ(t − nT )) (76)

with k = ‖a‖2,0 + ‖b‖2,0 satisfying k < (
√

2 − 0.5)/µ(Φ,Ψ). Let Mφψ(ejω) be the cross-correlation matrix
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defined by (11) and suppose that it can be written as Mφψ(ejω) = AZ(ejω), where Z(ejω) is an invertible

diagonal matrix with diagonal elements Zℓ(e
jω) satisfying maxω Zℓ(e

jω) = 1. Then, the sequences aℓ[n] and bℓ[n]

can be found by solving

minΓ1,Γ2

‖s(Γ1)‖1 + ‖s(Γ2)‖1

s. t. C =
[

I A

]





Γ1

Γ2



 .
(77)

Here C is chosen such that its columns form a basis for the range of {c(ejω), ω ∈ (−π, π]} where the ℓth

component of c(ejω) is the Fourier transform at frequency ω of cℓ[n] = 〈φℓ(t − nT ), x(t)〉, and s(Γi) is a vector

whose ℓth element is equal to ‖Γℓ
i‖ where the norm is arbitrary. Let S1, S2 denote the rows of Γ1,Γ2 that are not

identically equal 0, and define DS = [IS1
AS2

]. Then the non-zero sequences aℓ[n], bℓ[n], ℓ ∈ S are given in the

Fourier domain by




aS(ejω)

bS(ejω)



 =





I

Z−1
S2

(ejω)



 (DH
S DS)−1DH

S c(ejω). (78)

In Theorem 4 the sparse decomposition is determined from the samples cℓ[n] = 〈φℓ(t − nT ), x(t)〉. However,

the theorem also holds when cℓ[n] is replaced by any sequence of samples 〈hℓ(t − nT ), x(t)〉 with hℓ(t) being an

orthonormal basis for A such that both Mhφ(ejω) and Mhψ(ejω) are constant up to a diagonal matrix:

Mhφ(ejω) = A1Z1(e
jω), Mhψ(ejω) = A2Z2(e

jω). (79)

In this case the matrix [I A] in (77) should be replaced by the matrix [A1 A2]. Once we find the sparsity set S,

the sequences that are not zero can be found as in (78) however now the identity in the first matrix is replaced by

the appropriate rows of Z−1
1 (ejω).

VI. EXTENSION TO ARBITRARY DICTIONARIES

Until now we discussed the case of a dictionary comprised of 2 orthonormal bases. The theory we developed

can easily be extended to treat the case of an arbitrary dictionary comprised of sequences dℓ(t) that form a frame

(14) for A. These results follow from combining the approach of the previous section with the corresponding

statements in the discrete setting developed in [12]–[14].

Specifically, suppose we would like to decompose a vector x ∈ R
N in terms of a dictionary D with columns

dℓ using as few vectors as possible. This corresponds to solving

min
γ

‖γ‖0 s. t. x = Dγ. (80)

Since (80) has combinatorial complexity, we would like to replace it with a computationally efficient algorithm.
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If D has low coherence, where in this case the coherence is defined by

µ(D) = max
ℓ 6=r

|dH
ℓ dr|

‖dℓ‖‖dr‖
, (81)

then we can determine the sparsest solution γ by solving the ℓ1 problem

min
γ

‖γ‖1 s. t. x = Dγ. (82)

The coherence of a dictionary measures the similarity between dictionary elements and is equal to 0 if and only

if the dictionary consists of orthonormal vectors. A general lower bound on the coherence of a matrix D of size

N × m is [14] µ(D) ≥ [(m − N)/(N(m − 1))]1/2. The same results holds true for the corresponding MMV

model, and are incorporated in the following proposition [12]–[14], [26]:

Proposition 7: Let D be an arbitrary dictionary with coherence µ(D) given by (81). Then the Kruskal rank

satisfies σ(D) > 1/µ(D) − 1. Furthermore, if there exists a choice of coefficients Γ such that X = DΓ and

‖s(Γ)‖0 <
1

2

(

1 +
1

µ(D)

)

, (83)

then the unique sparse representation can be found by solving (59).

We now apply Proposition 7 to the analog design problem. Suppose we have a signal x(t) that lies in a space

A, and let {dℓ(t − nT ), 1 ≤ ℓ ≤ m} denote an arbitrary frame for A with m > N . As an example, consider the

space A of signals bandlimited to (−πN/T, πN/T ], which was introduced in Section IV. As we have seen, this

space can be generated by the N functions

φℓ(t) =
1√
T ′ sinc((t − (ℓ − 1)T ′)/T ′), 1 ≤ ℓ ≤ N, (84)

with T ′ = T/N . Suppose now that we consider the functions

φℓ(t) =
1√
T

sinc((t − (ℓ − 1)T )/T ), 1 ≤ ℓ ≤ m, (85)

where T = T/m and m > N . Using similar reasoning as that used to establish the basis properties of the

generators (84), it is easy to see that φℓ(t) constitute an orthonormal basis for the space of signals bandlimited to

(−πm/T, πm/T ] which is larger than A. Filtering each one of the basis signals with a LPF with cut-off πN/T

will result in a redundant set of functions

dℓ(t) =
1√
T ′ sinc((t − (ℓ − 1)T )/T ′), 1 ≤ ℓ ≤ m, (86)

that form a frame for A [31], [32].

Our goal is to represent a signal x(t) in A using as few sequences dℓ(t) as possible. More specifically, our
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problem is to choose the vector sequence γ[n] such that

x(t) =
m

∑

ℓ=1

∑

n∈Z

γℓ[n]dℓ(t − nT ), (87)

and ‖γ‖2,0 is minimized.

To derive an infinite-dimensional alternative to (82) let {hℓ(t)} generate an orthonormal basis for A. Then x(t)

is uniquely determined by the N sampling sequences

cℓ[n] = 〈hℓ(t − nT ), x(t)〉 = r(nT ), (88)

where r(t) is the convolution r(t) = h(−t) ∗ x(t). Therefore, x(t) satisfies (87) only if

cr[m] =
m

∑

ℓ=1

∑

n∈Z

γℓ[n]arℓ[n], (89)

where arℓ[n] = 〈hr(t − nT ), dℓ(t)〉. In the Fourier domain (89) becomes

Cr(e
jω) =

m
∑

ℓ=1

Γℓ(e
jω)Arℓ(e

jω) =
m

∑

ℓ=1

Γℓ(e
jω)Rhrdℓ

(ejω). (90)

Denoting by c(ejω), γ(ejω) the vectors with elements Cℓ(e
jω), Γℓ(e

jω) respectively we can write (90) as

c(ejω) = Mhd(e
jω)γ(ejω). (91)

Therefore, our problem is to find the sparsest set of γ(ejω) that satisfies (91).

In order to solve the sparse decomposition problem we assume that {hℓ(t)} are chosen such that

Mhd(e
jω) = W(ejω)AZ(ejω), (92)

where A is a fixed matrix independent of ω, and Z(ejω) is an invertible diagonal matrix with diagonal elements

Zℓ(e
jω) satisfying ess sup Zℓ(e

jω) = 1, and W(ejω) is an arbitrary invertible matrix. Going back to the bandlimited

frame (86) it can be easily seen that with hℓ(t) = φℓ(t), (92) is satisfied. Indeed,

Hℓ(ω)Dr(ω) =







T
N ejω(ℓ−1)T/Ne−jω(r−1)T/m, ω ∈ (−πN/T, πN/T ];

0, otherwise.
(93)

Therefore,

Rhℓdr
(ejω) = ejω(ℓ−1)/Ne−jω(r−1)/mf(ℓ, r), (94)

where f(ℓ, r) is a function only of the indices ℓ, r and not the frequency ω. Choosing Zℓ(e
jω) = e−jω(r−1)/m and

W(ejω) as a diagonal matrix with diagonal elements Wℓ(e
jω) = ejω(ℓ−1)/N leads to the representation (92).
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When Mhd(e
jω) has the form (92), the system of equations (91) becomes

d(ejω) = AZ(ejω)γ(ejω) = Aa(ejω), (95)

where we denoted d(ejω) = W−1(ejω)c(ejω), a(ejω) = Z(ejω)γ(ejω) and used (92). Clearly, ‖a(ejω)‖2,0 =

‖γ(ejω)‖2,0 because Z(ejω) is invertible and diagonal. Therefore, the sparse decomposition problem is equivalent

to finding a(ejω) satisfying (95) and such that ‖a(ejω)‖2,0 is minimized.

As in the previous section, the sparsest a(ejω) can be determined by first converting (95) to a finite MMV

problem, in which we seek the sparsest matrix U that satisfies C = AU where the columns of C form a basis for

the span of {W−1(ejω)c(ejω),−π ≤ ω ≤ π}. The matrix U can be determined by solving the convex problem

min
U

‖s(U)‖1 s. t. C = AU. (96)

From Proposition 7 it follows that the unique sparse matrix U can be recovered as long as µ(A) satisfies (83).

Once we determine the non-zero rows S in U, we can find the non-zero sequences γS [n] by noting that from

Proposition 7 the columns AS of A corresponding to S are linearly independent. Therefore,

γS(ejω) = Z−1
S (ejω)(AH

S AS)−1AH
S W−1(ejω)c(ejω). (97)

We have outlined a concrete method to find the sparsest representation of a signal x(t) in A in terms of

an arbitrary dictionary. In our proposed approach, the reconstruction is performed with respect to the samples

cℓ[n] = 〈hℓ(t − nT ), x(t)〉. We may alternatively view our algorithm as a method to reconstruct x(t) from these

samples assuming the knowledge that x(t) has a sparse decomposition in the given dictionary. Thus, our results

can also be interpreted as a reconstruction method from a given set of samples, and in that sense compliment the

results of [24].

Although we assumed that hℓ(t) generate an orthonormal basis, similar results hold when cℓ[n] is replaced by a

sequence of samples 〈hℓ(t − nT ), x(t)〉 with hℓ(t) being any frame for A such that Mhd(e
jω) = W(ejω)AZ(ejω).

VII. CONCLUSION

In this paper, we extended the recent line of work on generalized uncertainty principles to the analog domain,

by considering sparse representations in SI bases. We showed that there is a fundamental limit on the ability

to sparsely represent an analog signal in an infinite-dimensional SI space in two orthonormal bases. The sparsity

bound is similar to that obtained in the finite-dimensional discrete setting: In both cases the joint sparsity is limited

by the inverse coherence of the bases. However, while in the finite setting, the coherence is defined as the maximal

absolute inner product between elements from each basis, in the analog problem the coherence is the maximal

absolute value of the sampled cross-spectrum between the signals.
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As in the finite domain, we can show that the uncertainty relation we develop is tight by providing a concrete

example in which it is achieved. Our example mimics the finite setting by considering the class of bandlimited

signals as the signal space. This leads to a Fourier representation that is defined over a finite, albeit continuous,

interval. Within this space we can achieve the uncertainty limit by considering a bandlimited train of LPFs. This

choice of signal resembles the Dirac comb which is known to achieve the uncertainty principle in the discrete

setting.

Finally, we treated the problem of sparsely representing an analog signal in an overcomplete dictionary. Building

upon the uncertainty principle and some of the recent works in the area of compressed sensing for analog signals,

we showed that under certain conditions on the Fourier domain representation of the dictionary, the sparsest

representation can be found by solving a finite-dimensional convex optimization problem. The fact that sparse

decompositions can be found by solving a convex optimization problem has been established in many previous

works in compressed sensing in the finite setting. The additional twist here is that even though the problem has

infinite dimensions, it can be solved exactly by a finite dimensional program. This is possible by first sampling the

analog signal in a lossless manner. Exploiting the Fourier domain representation of the dictionary together with

recent results on infinite measurement models, the problem is converted to finite dimensions.

In this paper we focused on the case in which the sampled cross-correlation between the signals is constant in

frequency (up to a normalization factor). A very interesting direction to pursue in future work is extending the

results developed herein to the more general setup of arbitrary dictionaries. The difficulty that arises is that in this

case it is not clear how to covert the problem to an IMV model.

APPENDIX I

PROOF OF PROPOSITION 1

To prove the proposition, note that

∫ ∞

−∞
|x(t)|2dt =

1

2π

∫ ∞

−∞
|X(ω)|2 dω

=
1

2π

∫ ∞

−∞

∣

∣

∣

∣

∣

N
∑

ℓ=1

Aℓ(e
jωT )Φℓ(ω)

∣

∣

∣

∣

∣

2

dω, (98)

where the last equality follows from (7). To simplify (98) we rewrite the integral over the entire real line, as the

sum of integrals over intervals of length 2π/T :

∫ ∞

−∞
X(ω)dω =

∫ 2π

T

0

∞
∑

k=−∞
X

(

ω − 2π

T
k

)

, (99)
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for all X(ω). Substituting into (98) and using the fact that Aℓ(e
jωT ) is 2π/T -periodic, we obtain

∫ ∞

−∞
|x(t)|2dt =

=
1

2π

∫ 2π

T

0

∞
∑

k=−∞

∣

∣

∣

∣

∣

N
∑

ℓ=1

Aℓ(e
jωT )Φℓ

(

ω − 2π

T
k

)

∣

∣

∣

∣

∣

2

dω

=
T

2π

∫ 2π

T

0

N
∑

ℓ=1

N
∑

r=1

Aℓ(e
jωT )Ar(e

jωT )Rφℓφr
(ejω)dω

=
T

2π

∫ 2π

T

0

N
∑

ℓ=1

∣

∣Aℓ(e
jωT )

∣

∣

2
dω, (100)

where we used (17).

APPENDIX II

PROOF OF PROPOSITION 6

To prove that A is unitary, note that since {φℓ(t − nT )} is an orthonormal basis for A, any x(t) in A can be

written as

x(t) =
N

∑

ℓ=1

∑

n∈Z

〈φℓ(t − nT ), x(t)〉φℓ(t − nT ). (101)

In particular,

ψm(t) =
N

∑

ℓ=1

∑

n∈Z

〈φℓ(t − nT ), ψm(t)〉φℓ(t − nT ). (102)

Taking the Fourier transform of (102), we have

Ψm(ω) =
N

∑

ℓ=1

φℓ(ω)Rφℓψm
(ejωT ). (103)

Now,

δmr = Rψmψr
(ejω) =

N
∑

ℓ=1

Rφℓψm
(ejω)Rφℓψr

(ejω)

= [Mφψ(ejω)]Hm[Mφψ(ejω)]r, (104)

where [C]r denotes the rth column of C. It follows from (104) that the matrix Mφψ(ejω) is unitary for all ω.

Since A = Mφψ(ejω)Z(ejω), AHA = ZH(ejω)Z(ejω). Finally, using the fact that maxZℓ(e
jω) = 1, we conclude

that AHA = I.
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