

IRWIN AND JOAN JACOBS

CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

Data Associat ion in Mult i

Target Tracking Using Cross

Entropy Based Algorithm s

Daniel Sigalov and Nahum

Shim kin

CCI T Report # 7 0 3

Septem ber 2 0 0 8

Electronics
Computers
Communications

DEPARTMENT OF ELECTRICAL ENGINEERING

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL

1

Data Association in Multi Target Tracking

Using Cross Entropy Based Algorithms

Daniel Sigalov and Nahum Shimkin

Abstract

Multiple-target tracking (MTT) in the presence of spurious measurements poses difficult compu-

tational challenges related to the measurement-to-track data association problem. Different approaches

have been proposed to tackle this problem, including various approximations and heuristic optimiza-

tion tools. The Cross Entropy (CE) and the related Parametric MinxEnt (PME) methods are recent

optimization heuristics that have proved useful in many combinatorial optimization problems. They are

akin to evolutionary algorithms in that a population of solutions is evolved, however generation of

new solutions is based on statistical methods of sampling and parameter estimation. In this work we

apply the Cross-Entropy method and its recent MinxEnt variant to the multi-scan version of the data

association problem in the presence of misdetections, false alarms, and unknown number of targets. We

formulate the algorithms, explore via simulation their efficiency and performance compared to other

recently proposed techniques, and show that they obtain state-of-the-art performance in hard scenarios.

Index Terms

Target tracking, data association, combinatorial optimization, Kalman filtering, cross-entropy method,

Monte-Carlo methods

I. INTRODUCTION

Multiple-target tracking (MTT) is an essential component of surveillance-related systems. A

general formulation of the problem assumes an unknown and varying number of targets that are

continuously moving in a given region. In the single-sensor version, the states of these targets

are sampled by the sensor and the noisy measurements are provided to the tracking system. The

detection probability is not perfect and the targets may go undetected at some sampling intervals.

In addition, there are spurious reports of possible targets, or clutter measurements which arise

independently of the targets of interest. A primary task of the MTT system is data association,

The authors are with the Department of Electrical Engineering, Technion – Israel Institute of Technology, 32000. {dansigal@tx,

shimkin@ee}.technion.ac.il

lesley
Text Box
CCIT REPORT #703 September 2008

2

namely, partitioning the measurements into disjoint sets, each generated by a single source (target

or clutter). The secondary goal is estimation of the states based on the measurements originating

from the targets of interest. The data association problem may be formulated in several ways.

In single scan data association the raw measurements are processed one scan at a time and

the target states are updated accordingly. Alternatively, several sets of measurements may be

collected and processed together in batch mode – this is the multi scan data association. For an

illustration see Fig. 4.

Several methods exist to handle the data association problem. These may be roughly grouped

into two types: Bayesian and non-Bayesian. Among the Bayesian methods, there is the well

known Joint Probabilistic Data Association Filter (JPDA) [1], which is a single scan filter where

the states of existing targets are to be updated based on the latest set of measurements (scan).

Data association is handled by summing over the probabilities of all feasible partitions, where no

two targets can share a measurement and each target may be a source of at most one measurement

per scan. A shortcoming of the basic JPDA is its inability to initiate and terminate tracks. In

addition, calculating the probabilities of all feasible events is NP-hard [2] in the number of

targets and measurements and the calculation becomes intractable even for a moderate size of

the problem. Another well known approach is the multiple hypotheses tracker (MHT) [3], in

which each hypothesis associates past observations with targets and, as a new set of observations

arrives, a new set of hypotheses is formed by augmenting the previous ones. The hypothesis with

the highest posterior is returned as a solution. The MHT is capable of initiating and terminating

tracks. However, the number of hypotheses involved in the calculation grows exponentially over

time. Thus, in order to overcome the complexity, several pruning and clustering methods are

used at the expense of optimality.

The non-Bayesian approach is characterized by hard measurement-to-track association, such

that some cost function is maximized. The problem may then be reformulated as an integer

programming problem [4] or, more precisely, as a multidimensional assignment problem, which

is NP-hard when the number of sets (scans) to be assigned is greater than or equal to 3 [5].

Therefore, for the multi scan data association, one should invoke some approximations schemes

for the multidimensional assignment such as Lagrangian relaxation techniques [6]. Note, however,

that when there are only two sets of data to be assigned, there exist exact, polynomial time

solutions which have been combined with particle filter based algorithms in the context of

3

multi-target tracking [7]. Additionally, an algorithm for assigning a set of measurements to the

set of predicted target states using the competitive Hopfield neural network was proposed in the

recent work [8]. Nonetheless, the simulations presented therein included relatively small tracking

scenarios.

Another option to solve the multi scan data association problem is by utilizing stochastic search

methods. In [9] the problem was solved by applying the Markov Chain Monte Carlo (MCMC)

method to obtain the partition with maximum posterior. Using the Metropolis algorithm, the

authors proposed a set of moves for modifying a partition of the measurements, such that

sampling from the posterior distribution was possible after a few thousands of moves. They

showed a remarkable performance of the algorithm in comparison to the MHT method in terms

of accuracy of the solution and running time. However, the algorithm is still susceptible to getting

trapped in a strong local maxima. Such behavior is typical of local search algorithms.

The main contribution of this paper is the development of feasible algorithms that solve the

multi scan data association problem and are capable of initiating and terminating a varying

number of tracks. While the general setup and problem definition are very similar to those in

[9], the solution approach is different. We invoke the Cross Entropy (CE) method [10] and the

related Parametric MinxEnt (PME) method [11] in order to obtain the partition with the highest

posterior. CE based schemes are approaches for combinatorial and continuous optimization,

and (originally) for estimation of rare-events probabilities. They are inherently global search

methods and, therefore, may reduce the risk of getting stuck in shallow local maxima. The

main idea is representing the solution space with a set of parameters and defining a probability

distribution on these parameters. Then, two successive steps are iterated – sampling from the

existing distribution, and updating this distribution using a subset of elite (better-valued) samples.

The underlying principle of solution improvement is thus akin to evolutionary optimization

algorithms (see, e.g. [12]), but the solution generation mechanism is different, and the whole

scheme has very few meta-parameters that need to be tuned. The resulting Cross Entropy Data

Association (CEDA) and Parametric MinxEnt Data Association (PMEDA) algorithms are applied

here to challenging tracking scenarios, and show improved performance relative to current state-

of-the-art techniques.

The structure of this paper is as follows. We formally state the (discrete-time) general multiple-

target tracking problem in section II. In section III we outline the CE and PME methods

4

for combinatorial optimization. In section IV we present general purpose CEDA and PMEDA

algorithms for multiple target tracking. The algorithms are applied in simulation to dense tracking

scenarios and their performance is compared with several popular algorithms in section VI.

II. PROBLEM DEFINITION

A. Preliminaries

Consider a surveillance scenario of duration T ∈ Z
+. There are K targets moving around

the surveillance region R for some duration [tki , t
k
f] ⊂ [1, T] for k = 1, . . . , K where K is

an unknown integer. The volume of R is V and it is scanned periodically by a single sensor

having scan period Ts normalized to one time unit. The notation [ti, tj] should be interpreted as

{ti, ti + 1, ..., tj}.

B. Target Model

In this subsection we describe the target modeling commonly used in the target tracking

literature (see e.g. [13]). Each target k starts at a random position in R at time tki , moves

around R until tkf and disappears. An existing target may disappear at each sampling time with

probability pz and persists with probability 1−pz. The number of new targets arising at each time

in R is modeled to have a Poisson distribution with a parameter λbV , where λb is the birth rate of

new targets per unit time and volume. The initial position of a new target is uniformly distributed

over R. We describe the motion of a target by the discrete-time dynamics F : R
d → R

d, where

d is the dimension of the state variable, and xt ∈ R
d is the state at time t. The target k moves

according to xk
t+1 = F (xk

t , w
k
t), t = tki , . . . , t

k
f − 1 where wk

t ∈ R
d are white noise processes. In

this work, we consider the same linear dynamical model for each target, namely, if a target is

observed ℓ times at ti, i = 1, ..., ℓ, its dynamic model may be expressed as:

xti+1
= A(ti+1, ti)xti + G(ti+1, ti)wti , (1)

where wti is a white Gaussian noise with covariance matrix Q. A and G are matrices of

appropriate sizes, with entries determined by the sampling interval (ti, ti+1) for each i.

C. Sensor and Measurement Models

We assume that a single sensor scans the surveillance region periodically with scan time Ts

of one time unit. Noisy observations of the position of each target are obtained with detection

5

probability Pd. In addition, the sensor generates false alarms, whose number is assumed to have

a Poisson distribution with parameter λfV , where λf is the false alarm rate per unit time per

unit volume. The origin of each observation (i.e. target or false alarm) is not a-priori known,

since each observation is assumed to carry only the cartesian position and the corresponding

time tag.

Let nt be the number of observations at time t, including both noisy observations and false

alarms. Let y
j
t ∈ R

m denote the j-th observation at time t for j = 1, . . . , nt, where m is the

dimensionality of each observation vector. Each target generates a unique observation at each

sampling time if it is detected. We assume a linear observation model, namely, an arbitrary

observation at time ti, y
j
ti , is generated as follows:

y
j
ti =











C(ti)xti + vti , y
j
ti is object originated

ut, otherwise

, (2)

where vti ∈ R
m is a white Gaussian noise independent of wti with covariance matrix R, C is

a matrix of appropriate size, and ut ∼ Unif(R) is the random process of false alarms, assumed

to be uniformly distributed in space.

D. Solution Space and Optimization Criteria

Dealing with hard (as opposed to soft) data association we seek for a partition of the mea-

surements into disjoint sets. One of these sets is the collection of false alarms and the others

are collections of measurements originating from the same target – one set per target. Let

Yt =
{

y
j
t : j = 1, . . . , nt

}

be the set of observations at time t, and Y1:T =
⋃

t∈{1,...,T} Yt be the

set of all observations. Ω is defined to be the set of partitions of Y1:T such that, for ω ∈ Ω:

1) ω = {τ0, τ1, . . . , τK},

2)
⋃K

k=0 τk = Y1:T and τi ∩ τj = ∅ for i 6= j,

3) τ0 is considered as the set of false alarms and τk, k ≥ 1 is considered as the kth track –

a set of measurements that are attributed to the kth target1

τi =
{

yi1
t1 , y

i2
t2 , . . . , y

j
tj | j ∈ Z

+, t1 < t2 < . . . < tj

}

.

1We shall refer to the above set of measurements as a track, although usually a track is the estimated trajectory, that is after

filtering (or smoothing) out the measurement noise.

6

4) |τk ∩ Yt| ≤ 1 for k = 1, . . . , K and t = 1, . . . , T . That is, each measurement belongs to

one track at most.

5) |τk| ≥ 2 for k = 1, . . . , K, where |τk| denotes the cardinality of τk. That is, a track must

contain at least two measurements.

We make two additional assumptions as part of the problem formulation.

A. The maximal velocity of any target is bounded by a known constant vmax.

B. The number of consecutive missing observations of any track is bounded by a known

constant dmax. This assumption may be used as a criterion to distinguish an event of a

new targets appearance from an event of a continuation of an existing track.

For further discussion of the last two restrictions the reader is referred to [9].

Any partition ω in Ω is said to be valid or feasible. Once a partition ω ∈ Ω is chosen, the

tracks τ1, . . . , τK ∈ ω and the set of false alarms τ0 ∈ ω are completely determined. We thus

face a problem of choosing the best (in some appropriate sense) partition ω∗ given the set of

observations Y1:T . This is the so-called measurement oriented approach to data association.

A natural criterion for this approach is the Maximum a-Posteriori probability [3], [9], [13].

That is, looking for the optimal partition ω∗ in the MAP sense:

ω∗ = arg max
ω∈Ω

P {ω | Y1:T} . (3)

E. The Posterior Probability

Expressions for the posterior probability P {ω | Y1:T} are commonly used in the target tracking

literature [1], [3], [9], [13]. The following expression can be easily obtained from that of [13].

However, for completeness we provide its derivation in the Appendix. The final expression reads,

P {ω | Y1:T} =
1

Z0

∏

τ∈ω\{τ0}

|τ |
∏

i=2

N (τ(ti); ŷti(τ), Bti(τ)) (4)

·
T

∏

t=1

pzt

z (1 − pz)
mt−1−zt · P dt

d (1 − Pd)
utλat

b λ
ft

f ,

where Z0 is a constant that does not depend on ω, N (x; µ, Σ) is the Gaussian density with

mean µ and covariance Σ evaluated at x, τ(ti) is the i-th measurement associated with track

τ , ŷti(τ) is the i-th predicted measurement obtained from the standard Kalman applied to the

measurements associated with track τ , and Bti(τ) is the corresponding innovation covariance.

7

III. BACKGROUND ON CE AND PME

A. The CE Method for Combinatorial Optimization

Let X be a finite set of elements and S(·) be a performance function defined on X . Our goal

is to find the maximum of S(·) over X . Namely,

S(x∗) = γ∗ = max
x∈X

S(x). (5)

A convenient way to introduce the CE method is from the parameter estimation perspective.

When solving optimization problems using the CE method, one searches for a probability

distribution concentrated near the global extremum of the objective function. Assume we can

define a parameterized probability density function f(x;v) on the set x ∈ X . The goal is to

construct a sequence of parameter vectors v1,v2, such that f(x;vt) becomes concentrated

around the global optimum x
∗ as t increases. This goal is achieved by sampling from f(x;vt)

and constructing the next parameter vector vt+1 as the Maximum Likelihood estimate of the

distribution parameter based on the elite samples. Namely,

v̂t+1 = arg max
v

ln f(X̃1, ..., X̃Nρ;v), (6)

where X̃1, ..., X̃Nρ are the Nρ elite samples, achieving the best performance in the current set,

and f(X̃1, ..., X̃Nρ;v) is the joint density evaluated at X̃1, ..., X̃Nρ. The new parameter vector

defines a new distribution from which we can sample again and repeat the procedure. Instead

of updating the parameter vector vt directly via the solution of (6) one may use the smoothed

update which reduces the probability that some components of vt will become degenerate at

early stages,

v̂t = αṽt + (1 − α)v̂t−1, 0 ≤ α ≤ 1, (7)

where ṽt is the solution obtained from (6). The whole procedure is summarized in Alg. 1. The

stopping criteria in step 5 of Alg. 1 may be lack of significant improvement for several iterations,

or convergence to a degenerate distribution.

Assume now that X = (X1, ..., Xn) is a random vector such that each Xi is a discrete random

variable that can assume a finite number of values {a1, ..., am}. The important observation that

makes the CE method very easy to apply to various optimization problems, such as the Traveling

Salesperson and MaxCut [5], [10], is that in this case there is a simple componentwise analytical

8

Algorithm 1 The CE Algorithm for Optimization.

1: Define v̂0 = u. Set t = 1 (level counter)

2: Generate X1, . . . ,XN from f(·;vt−1) and compute the sample (1 − ρ)-quantile γ̂t of the

performances.

3: Find the MLE of the new parameter vt based on the set of the elite samples. Namely, solve

(6).

4: Smooth the estimate via (7).

5: If stopping criteria are met - stop, otherwise set t = t + 1 and reiterate from step 2.

solution to (6) that reads [10]

v̂jk =

∑N
i=1 1{Xij=ak}1{S(Xi)≥γ̂t}

∑N
i=1 1{S(Xi)≥γ̂t}

, (8)

where Xij is the j-th element of the i-th sample Xi drawn from f(x,vt−1) and 1{A} is the

indicator function of A. Namely, the updated value of each parameter is the relative frequency

of the appearance of the corresponding value in the current elite sample.

B. The PME Method for Combinatorial Optimization

Recall that the goal of the CEM was to find a “good” sampling density concentrated near the

global optimum of the problem at hand. Another option is to consider the (single constrained)

Minimum Cross Entropy (MinxEnt) program that reads

min
f(x)

{

D(f |h) =

∫

ln
f(x)

h(x)
f(x) dx = Ef

[

ln
f(X)

h(X)

]}

(9)

subject to the first moment constraint:

EfS(X) = γ,

∫

f(x) dx = 1,

∫

h(x) dx = 1, (10)

where f and h are n-dimensional pdf’s, S(x) is the known performance function, x ∈ R
n, and γ

is a performance close to the optimal γ∗ in (5). Assuming h(·) is a known pdf that incorporates

all the available prior information, the problem is to find the closest to h(x) density f(·) in the

Kullback-Leibler sense subject to the moment constraint. If no prior information is available,

h(x) is taken to be uniform. We shall restrict ourselves to the discrete distributions f(x) and

h(x) parameterized by parameter vectors v,u respectively – f(x,v) and h(x,u). The solution

of the MinxEnt program is [14]

f(x,v∗) =
h(x,u) exp {−S(x)λ}

Eu [exp {−S(X)λ}]
, (11)

9

where λ is a constant (temperature) obtained from the following equation

Eu [S(X) exp {−S(X)λ}]

Eu [exp {−S(X)λ}]
= γ, (12)

and X ∼ h(x,u). For γ = γ∗, the optimal temperature is λ∗ = −∞ and the optimal density

f∗(x) is a Dirac delta function located at x
∗. Given a successful choice of γ and obtaining

the corresponding value of λ we could, in principle approximate the optimal x
∗ by generating

samples from (11). However, sampling from such distribution is not a trivial task. In fact, no

efficient methods are known to exist [15]. Thus, we shall approximate the distribution (11) as a

product of marginal densities which will allow easy sampling similarly to the basic CE method.

Note that if h(x,u) is a discrete (multidimensional) distribution with finite support, then so

is f(x,v∗) and, consequently, all its marginal distributions. Thus, all these distributions are

completely determined by their parameters which may be calculated as follows. Assuming as

before, that X = (X1, ..., Xn) is a random vector such that each Xi is a discrete random variable

that can assume a finite number of values {a1, ..., am}, then the PME estimator of

vjk , P {Xj = ak} = Ev

[

1{Xj=ak}

]

is [11]

v̂jk =

∑N
i=1 1{Xij=ak} exp {−S(Xi)λ}

∑N
i=1 exp {−S(Xi)λ}

. (13)

It is readily seen that (13) is essentially the same as (8) with indicators 1{S(Xi)≥γ̂t} being replaced

by exponentials exp {−S(Xi)λ}. The optimal “temperature” parameter λ is obtained from the

(numerical) solution of the stochastic version of (12) such that the single constraint in (9) is

satisfied:
∑N

i=1 S(Xi) exp {−S(Xi)λ}
∑N

i=1 exp {−S(Xi)λ}
= γ. (14)

Similarly to the CE method, we invoke a multi-stage procedure where a sequence of refer-

ence parameters {vt, t ≥ 0}, a sequence of levels {γt, t ≥ 1} and a sequence of temperatures

{λt, t ≥ 1} are generated. As before, we shall use the latest available information for the prior

density. Namely, at stage t, h(x,u) = f(x,vt). The whole optimization procedure is summarized

in Algorithm 2. For both CE and PME optimization routines we expect the parameter vectors to

converge to degenerate ones, such that by sampling from the final distribution we shall always

obtain optimal or near-optimal solutions. Unlike CE, all samples are used to update the parameters

10

Algorithm 2 The PME Algorithm for Optimization.

1: Define v̂0 = u. Set t = 1 (level counter).

2: Generate X1, . . . ,XN from f(·; v̂t−1) and compute the performance mean from γ̂t =

Ev̂t−1
S(X).

3: Use the same sample X1, . . . ,XN and solve the stochastic program (14). Denote the solution

by λ̂t.

4: Update v̂t componentwise via (13).

5: If stopping criteria are met - stop, otherwise set t = t + 1 and reiterate from step 2.

in the PME method (although modifications are possible) and the solution for λ in (14) requires

a line-search procedure and usually cannot be done analytically. We thus expect each iteration

of the PME method to be slower than its CE counterpart. All “tuning” methods used for CE,

such as smoothing and stopping rules, are directly applicable here as well.

IV. CE BASED DATA ASSOCIATION

In this section we develop a family of CE-based algorithms to solve the multi-scan multi-target

tracking problem. Since the only difference between the CE and PME methods for combinatorial

optimization is the updating scheme of the parameters, we shall describe both methods together

and explain the differences when needed. In order to apply the CE and PME methods to our

problem we must specify the parameterized family of pdfs {f(·;v)} and the procedure for

sampling the solutions from it. A convenient framework is to encode the optimization problem

as a graph and to introduce the randomization on the graph’s edges or nodes [10].

A. The Connectivity Graph

Let n =
∑T

t=1 |Yt| = |Y1:T | be the total number of observations (both noisy detections and

false alarms). We define G = (V,E) to be the basic connectivity graph of the problem, where

the set of nodes V = Y1:T is the set of all measurements as defined above, and the graph edges

are

E = {(yt1 , yt2) | yt1 , yt2 ∈ Y, t1 < t2, ‖yt2 − yt1‖ ≤ (t2 − t1)vmax, t2 − t1 ≤ dmax}. (15)

This graph connects every node (measurement) with any other node that can be an immediate

successor in a feasible track, subject to speed and separation constraints. A feasible track, which

11

is a set of observations with increasing time tags, is represented as a path in G, that is

τ =
{

yi, i = 1, 2, . . . , j | (yi, yi+1) ∈ E, i = 1, . . . , j − 1
}

.

The nodes of the graph represent measurements (both noisy detections and false alarms), and

the edges represent the possible event that their endpoints are successive measurements from

the same target. Note that a node y that has no incoming and outgoing edges is a false alarm

by default, and may be removed from the graph and permanently added to the set of false

alarms τ0. Henceforth, we shall assume that all such nodes have been removed from the graph.

We identify each valid partition of the measurements with the corresponding partition of the

graph nodes. Thus, the goal is to find a partition of the the graph nodes into a set of vertex-

disjoint paths {τi, i ≥ 1} (which will represent tracks) and a set of isolated nodes τ0 (which will

represent false alarms) such that the posterior P {ω | Y1:T}, defined in (4), is maximized. Let

S(ω) = P {ω | Y1:T} denote the cost of a partition ω ∈ Ω.

In the discussion below we shall denote the graph nodes as ni, i = 1, ..., |V |. When no

confusion occurs we shall use the notation i, i = 1, . . . , |V | to refer to ni. We shall assume that

the nodes are ordered according to the time stamps of the corresponding measurements. Namely,

if ni1 and ni2 belong to scans t1 and t2 respectively, such that t2 > t1, then i2 > i1. The ordering

of the nodes representing measurements within the same scan is arbitrary. An edge between

node ni and node nj (or, equivalently, between i and j) will be denoted (i, j). An example of

the connectivity graph is shown in Fig. 1(a).

B. Distribution of Feasible Partitions

Recall that we need to define a probability distribution on the set of feasible partitions Ω,

parameterized by a parameter vector v. This vector will comprise of the following elements:

• pb(i), i ∈ V : The probability that measurement i, or equivalently node i in the connectivity

graph G = (V,E), is an initial node in some path (including a single-node path, namely a

false alarm).

• pf (i), i ∈ V : The probability that a path that reaches node i terminates at it.

• pij , (i, j) ∈ E: The probability that node j follows node i in a path that goes through i.

All probabilities are naturally required to be in [0, 1]. In addition, we require that

pf (i) +
∑

j:(i,j)∈E

pij = 1, ∀ i ∈ V.

12

This means that a path going through node i has probability 1 of either continuing to a neigh-

boring node j or terminating in i. The probabilities {pf (i), i ∈ V } and {pij, (i, j) ∈ E} define

a stochastic matrix P which reads

P =





















0 p12 p13 . . . pf (1)

0 0 p23 . . . pf (2)
...

...
...

. . .
...

0 0 0 . . . pf (|V |)

0 0 0 . . . 1





















(16)

(the last line corresponds to an absorbing final state f which terminates each path). The proba-

bility of a single path τ = (i1, . . . , im) in G will thus be proportional to

Ppath(τ) , pb(i1)

(

m−1
∏

l=1

pil,il+1

)

pf (im). (17)

Denoting by B the set of initial nodes of the paths {τ1, ..., τK} in a partition ω = {τ0, τ1, ..., τK},

the probability of a feasible partition ω can now be specified as

f(ω;v) =
1

Z1

K
∏

k=1

Ppath(τk)
∏

i/∈B

(1 − pb(i)), (18)

where Z1 is a normalization constant that does not depend on ω. The probability of infeasible

partitions is identically set to zero.

The probability distribution (18) on the set of feasible partitions Ω is best interpreted through

the following sampling process (the actual sampling process we use will be described later in

subsection IV-D). For each node i = 1, ..., |V |, an independent Bernoulli random variable with

success probability pb(i) is drawn and determines whether that node is a first node in a path.

If it is, we start a random walk from i according to the transition probabilities {pij} in (16),

until the terminal state f is reached. These paths correspond to the K tracks {τ1, ..., τK}. All

nodes that were not visited in any of these paths are classified as false alarms and allocated to

τ0. The resulting partition ω is a valid sample if ω ∈ Ω. If ω is not a feasible partition (i.e., it

has intersecting paths or paths below the minimal required length), it is rejected and the above

procedure is repeated until a feasible partition is reached.

13

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

s7 s8 s9 s10 s11 s12

s1 s2 s3 s4 s5 s6

(a) The Connectivity Graph

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

s7

s8

s9

s10

s11

s12

s1

s2

s3

s4

s5

s6

f

(b) The Augmented Connectivity Graph

Figure 1. An example of the connectivity graph (a) and of the ACG (b). Solid circles represent the actual measurements. Node

i is denoted as ni. Dashed circles are the nodes added to the connectivity graph to obtain the ACG.

C. The Augmented Connectivity Graph

It will be convenient for illustration and implementation purposes to incorporate in a single

graph all the relevant options (and their probabilities), including track initiation and termination.

This will be done by augmenting the basic connectivity graph by introducing new nodes and

edges. In order to incorporate the possibility of termination of a target, we introduce an additional

“sink” node f that represents termination of a track. Each other node ni in the basic connectivity

graph is connected to f by a directed edge represents the event that ni corresponds to the last

detection of the target prior to termination. In order to handle target initiation in arbitrary time

and place, we introduce additional n ‘start’ nodes into the graph – one for each original node

of the basic graph. These will be labeled s1, s2, ..., sn. Each new node si has an outgoing edge

leading to the corresponding node ni ∈ V . The event represented by this edge is that node

ni is the first detection of a track. A path that represents a track with j measurements now

contains j + 2 nodes as follows – {sn1
, n1, ..., nj, f}. We call the extended graph an augmented

connectivity graph (ACG), denoted GA = (VA, EA), and refer to the original nodes in the basic

connectivity graph (representing the actual measurements) as inner nodes. An example of an

ACG is shown in Fig. 1(b). For notational convenience, we shall denote a generic node in the

ACG as n̄i, i = 1, ..., |VA|. We order these nodes as follows:

(n̄1, ..., n̄|VA|) = (s1, ..., sn, n1, ..., nn, f). (19)

14

Let GA = (VA, EA) be the ACG of the problem. We now define the parameter vector vA to

comprise of the following transition probabilities

vA =
{

pA
ij, (i, j) ∈ EA

}

,

where pA
ij is the probability that node n̄j follows node n̄i in a path that goes through n̄i in GA.

We let

pA
ij =























pij, if n̄i = ni, n̄j = nj

pb(j), if n̄i = sj, n̄j 6= f

pf (i), if n̄i = ni, n̄j = f

, (20)

where {pij, pb(j), pf (i)} were defined in subsection IV-B. In addition, define pff = 1 (as before),

and

pA
ij = 1 − pb(k) if n̄i = sk, n̄j = f,

which simply complement to 1 the outgoing probabilities from nodes {si}.

The augmented parameters pA
ij define a stochastic matrix PA, which has the following form

(under the assumed ordering of the nodes in (19))

PA =





0 B

0 P



 , (21)

where P is defined in (16), and

B =















pb(1) 0 · · · 0 1 − pb(1)

0 pb(2) · · · 0 1 − pb(2)
...

...
. . .

...
...

0 0 · · · pb(n) 1 − pb(n)















.

The two 0 matrices have n columns that correspond to the start nodes (s1, . . . , sn).

We note that PA may be interpreted as a one-step transition matrix of a directed random walk

on the augmented graph GA.

15

D. Sampling of Candidate Solutions

We now describe how to sample a partition ω from the distribution defined through the

augmented connectivity graph GA and the corresponding transition matrix PA. Our goal is to

sample efficiently, in the sense that the number of infeasible partitions that need to be rejected

should be minimized. We describe the sampling procedure in three stages. First, we describe

sampling a single path in GA. We then proceed with sampling multiple non-intersecting paths.

We finally describe how to handle paths that fall below the minimal required length.

1) Sampling a Single Path: Sampling a single random path from the graph GA is performed

by picking uniformly at random (u.a.r.) i1 from {1, ..., n} and generating a random walk on

GA starting at si1 according to the transition matrix PA until hitting f . Note that since GA

is a directed acyclic graph – after at most T steps the sink node f will be reached and the

process will terminate. The resulting path is τ =
{

si1 , ni1 , ..., nij , f, j ≥ 1
}

, or {si1 , f}. In the

latter case we declare the path as void. Otherwise, the path represents a track through the nodes
{

ni1 , ..., nij

}

.

2) Sampling Non-intersecting Paths: To sample a partition that avoids intersecting paths, we

generate n potential paths as described above, starting from the nodes {s1, . . . , sn} in random

order. To avoid track intersection, we invoke an elimination principle similar to the one used

in [10] in relation with the Travelling Salesperson Problem. After each single path is sampled,

we mark each of its nodes (save for the sink node f) as occupied, and eliminate all incoming

edges to these nodes, namely nullify the probabilities on these edges. We then re-normalize the

transition probabilities of the remaining outgoing edges to 1. This elimination step is equivalent

to eliminating the corresponding nodes from the augmented transition matrix PA in (21), and

re-normalizing each row sum to 1. After all n paths have been generated, the remaining internal

nodes (that is, those measurements that have not been selected as part of any path) are allocated

to the set of false alarms τ0.

3) Dealing with Short Paths: The partition ω = {τ0, . . . , τK} obtained in the previous stage

may still be non-feasible, as some of the tracks τ1, . . . , τK may be too short (recall that we

require each feasible track to contain some minimal number of measurements). Rather than

rejecting these partitions, which could still lead to a high rejection rate, we redefine measurements

contained in short tracks as false alarms, and append them to τ0. We note that this step entails

some modification to our definition of the probability distribution in (18); however the precise

16

expression is not required as part of the algorithm.

Upon completion of these steps we are left with a feasible partition ω. The sampling procedure

is formally summarized in Algorithm 3.

E. Parameter Update

In order to obtain the new parameter vector vA that will define the updated probability

distribution, we estimate its components using the best samples that were obtained in the previous

iteration. Recall that our goal is maximization of the posterior probability (4). Parameter update

is performed by taking the elite samples, according to the cost function (4), and calculating the

Maximum Likelihood estimate of vA. As is well known (e.g. [10, p. 139]), the MLE for each

parameter pA
ij is given by

p̂A
ij =

Nij

Ni

,

where Nij is the number of times the edge (i, j) was used in the elite sample and Ni is the

number of times node ni was visited in that sample. The PME updating is performed in a similar

manner as explained in section III. In addition, in our experiments we have used the smoothed

update (equation (7)) as described in section III.

Algorithm 3 Basic Sampling Procedure.

Input: The augmented connectivity graph GA and transition matrix PA defined in (21).

1: Initialize: Set S = {s1, ..., sn} (remaining start nodes), k = 1 (path counter), P = PA.

2: Start k-th path: Let j = 1 (node counter). Pick s uniformly at random from S. Set

S = S\ {s}. Define vk,1 = s to be the first node of the k-th path. Set u = vk,1 (current node

indicator). Set τk = {u}.

3: Modify transition matrix: Eliminate node u from P by setting the u-th column of P to 0

and normalizing the rows to sum up to 1.

4: Sample next node: Generate vk,j+1 from the distribution formed by the u-th row of P . If

vk,j+1 = f go to 5. Otherwise set u = vk,j+1, τk = τk ∪ u, j = j + 1 and reiterate from 3.

5: Proceed to next path: If S = ∅ go to 6. Otherwise, set k = k + 1 and repeat from step 2.

6: Generate the FA set: Set τ0 to the set of all inner nodes in {τ1, ..., τk}. Further, remove

all single-node paths from {τ1, ..., τk}, and append them to τ0. Let K be the number of

remaining paths.

Output: ω = {τ0, τ1, ..., τK}.

17

F. Basic Initialization Scheme

To invoke the CE-based algorithm one should introduce an initial probability distribution on

the set of solutions, parameterized by the vector v0. In typical applications such as TSP or

MaxCut, where no prior information is available, the vector v0 is often chosen to induce a

uniform distribution on the solution space [10]. Our first initialization scheme takes a similar

approach, with some required modifications related to track initialization:

1) For internal nodes ni, i = 1, . . . , n, we assign pz, the termination probability of a track,

to the edge connecting ni with f and equal probabilities to all outgoing edges from ni. In

case the only outgoing edge is the one leading to f , it is assigned a probability 1.

2) For start nodes si, i = 1, . . . , n, we set pb(i) (the probability that node si starts a path)

to pb, a chosen initial probability which is equal for all nodes. The parameter pb may be

empirically tuned, and is related to the known birth rates of the new targets λb. The choice

of pb = 0.3 was found to work well in our initial experiments.

This simple initialization method works well in small problems, but is inefficient in large

instances. A more effective method, which utilizes the dynamical nature of the problem is

described in subsection V-C.

V. IMPROVEMENTS TO THE BASIC ALGORITHM

The algorithm described in section IV provides a basic version of cross-entropy based data as-

sociation. However, the performance of this algorithm may be greatly enhanced by adding certain

key improvements to the sampling scheme, that make use of the specific problem characteristics.

In the next three subsections we discuss (a) history-based sampling that takes account of the

target’s dynamic model, (b) bidirectional sampling that helps in sampling complete trajectories

rather than their tails, (c) an improved initializations scheme for the sampling distribution, and (d)

elimination technique for unlikely tracks. These modifications define our final algorithm as used

in the simulation experiments. We end this section by discussing the computational complexity

of the modified algorithm.

A. History-Based Sampling

Recall that our basic sampling scheme is based the connectivity graph where each inner node

corresponds to a single measurement, and the next node in a path is sampled according to a

18

probability distribution that depends only on the present node. Assume that measurements contain

position estimates only (but not velocity estimates), as is often the case. This essentially implies

that the choice of next node may depend only on the current target position, but not on other

motion parameters such as the target velocity (direction and speed), which may be estimated

from the path sampled so far. To the contrary, the dynamic target model assumed in this work

(see equations (1)-(2)) implies that other components of the state vector xt should be useful

in estimating the next target position. These components typically include the target velocity

(direction and speed), and possibly higher position derivatives. For concreteness, let us focus the

discussion on target velocity.

To integrate target velocity into our sampling scheme, two options may be considered. One is

to add a (discretized) velocity variable to each node, which is estimated based on the sampled

path so far, and allow the next-node sampling distribution to depend on this variable as well. A

simpler option, which we pursue here, is to allow the next-node sampling distribution to depend

on the recent two (or more) nodes in the current path, rather than on the last node alone. Clearly,

the position data in two sequential nodes encodes the target velocity, position data from three

nodes can encode the target acceleration, etc.

Thus, we modify the parametric distribution that underlies the CE and PME algorithms in the

following way. Instead of sampling the next node in each path based on the current node alone,

we allow the sampling probability to depend on the last r recent nodes (with r = 2 used in our

simulations).

To keep our previous algorithms, it is useful to note that the above modification can be easily

translated to an expansion of the connectivity graph, where each possible sequence of r nodes

in the original graph now forms a node in the new graph. The actual sampling, initialization and

updating schemes described in sections IV-D, IV-F, and IV-E remain the same accept that they

are applied to this extended graph.

Clearly, the proposed extension increases the number of parameters to be estimated by the

CE and Parametric MinxEnt methods. For r = 2, the increase is proportional to the average out-

degree of the basic connectivity graph representing the problem. While the number of parameters

increases proportionally, the performance improvement is dramatic.

The preceding extension may also be motivated by considering the sequential sampling schemes

used in CE based algorithms as a useful approximation to the full probability distribution. The

19

following discussion may be related to some recent ideas found in [15]. Consider for example

the solution for the MinxEnt program (11), which specifies some probability density f∗(x) over

the components of x = (x1, x2, ..., xn). In general, one may write f∗(x) in sequential form:

f ∗(x) = fn(xn|x
n−1
1) · · · f2(x2|x1) · f1(x1), (22)

where we have used the shorthand notation x
j
i = (xi, xi+1, ..., xj). The idea behind CE and

Parametric MinxEnt is to approximate each element in this product by a parameterized distrib-

ution, with simplified dependence on past component. The simplest approximation assumes that

the components of x are independent. The next approximation, which is commonly used for

path-sampling ([10], [16]), employs the (first-order) Markov chain structure:

f∗(x) ≈ hn(xn|xn−1) · hn−1(xn−1|xn−2) · · ·h2(x2|x1) · h1(x1), (23)

where the ith component depends on the corresponding parameter vi. This is the approximation

used in our basic scheme, where the components xi correspond to the nodes in the connectivity

graph, and transitions on that graph are sampled via conditional probabilities of the form

pvi
(xi+1|xi). Alternatively, we may use a less crude approximation by allowing the distribution

of the next node in the path to depend on two (or more) previous nodes (second-order Markov

chain structure), as follows

f∗(x) ≈ hn(xn|xn−1, xn−2) · hn−1(xn−1|xn−2, xn−3) · · ·h3(x3|x2, x1) · h2(x2|x1) · h1(x1).

This representation translates to the two-node based sampling scheme as proposed above.

B. Bidirectional Path Sampling

Recall that we sample paths by picking at random an si node and generating a random walk

forward in time, starting at si and ending at f . If the node si (or ni) happen to fall in the middle

of an actual path, we will clearly miss the first part of this path. Thus, most of the paths sampled

in such manner will be “truncated” since only their tails will be sampled. In other words, in

order to obtain good solutions with tracks beginning at the actual appearance times of the targets,

we might need sufficiently many samples and many iterations of the algorithms. This limitation

may be efficiently resolved by allowing bidirectional sampling from the starting node si. That

is, in additional to sampling a forward path in the usual manner, we also sample backward in

time from si. The two sampled halves are joined to form one complete path.

20

Sampling backward paths is carried out using a separate structure, which is composed of

a backward connectivity graph with suitable sampling parameters. The backward connectivity

graph is simply obtained from the connectivity graph by reversing the direction of the graph

edges. We augment this graph with a new final node f ′ (see Fig. 2). However, the start nodes

nodes (si) are shared with the forward connectivity graph. The relevant sampling parameters for

the reverse graphs are as usual the transition probabilities between adjacent edges.

Sampling a complete path now starts, as before, by picking at random a start node s. From

that node, a forward path is sampled over the forward connectivity graph, and a backward

path is sampled using the reverse graph. Finally, the two halves are concatenated at s to create

the complete path. The rest of the algorithm proceeds essentially as before: Paths are valuated

according to the cost function (4), and the parameters are updated independently for the forward

and backward graphs.

The improved initialization scheme of the next subsection uses the dynamical model of the

target state evolution. For the reverse connectivity graph, we use the following ”backward”

version of the dynamical model (1), namely

xti = A−1(ti+1, ti)xti+1
− A−1(ti+1, ti)G(ti+1, ti)wti . (24)

Here we assume that the dynamics matrix A(ti+1, ti) is invertible (which valid in our simulation

models, in particular).

n1 n2 n3 n4 n5 n6

n1 n2 n3 n4 n5 n6

s1 s2 s3 s4 s5 s6

f

f ′

Figure 2. An example of the bi-directional sampling scheme. s1, s2, ..., s6 are shared by the original and the backward

connectivity graphs. The sampled forward path is s3 → n3 → n4 → n5 → f . The sampled backward path is s3 → n3 →

n2 → f ′. The resulting path is comprised of the nodes n2 → n3 → n4 → n5.

21

C. Likelihood-Based Initialization

We next present an improvement on the basic initialization scheme introduced in subsec-

tion IV-F. Recall that a uniform initial distribution may be used when no prior information is

available. In our case, however, prior information on possible target paths is embedded in the

dynamical and measurement models (1)-(2).

For example, if all targets are assumed to obey the (nearly) constant velocity model [17] and the

measurement model is accurate, high probability should be assigned to edges that connect nodes

representing co-linear measurements. Initialization of the nodes {s1, ..., sn} that was described

in subsection IV-F remains unaltered, and the proposed modification refers to the inner nodes

of the graph – ni, i = 1, ..., n, where n is the number of the inner nodes representing the

actual measurements. We describe the initialization procedure for these nodes with respect to

the history-based sampling described in subsection V-A.

To initialize the nodes representing the actual measurements we apply a Kalman Filter to every

three (or possibly more – depending on the target model) neighboring nodes of GA that represent

three consecutive measurements. The filter is initialized with the first two measurements using

the two-point differencing technique [17]. Namely, we initialize the position as that of the first

measurement and the velocity as the difference between the two measurements divided by the

difference in their time tags. We can now use the Kalman filter equations to obtain the expected

position and covariance of the third measurement. The corresponding probability pA
ij of each edge

of the graph is set proportional to the likelihood function of the corresponding measurements

relative to that prediction.

To illustrate, consider the situation depicted in Fig. 3. Assume that we have initialized a KF

using y1 and y2 that were obtained at two consecutive sampling times, and ŷ is the resulting

predicted measurement to the next sampling time. Assume that the neighbors of n2 (representing

the measurement y2) in the connectivity graph are n3, n4 and n5 (representing the measurements

y3, y4, and y5 respectively), that carry the same time tag as ŷ. The probabilities on the edges

connecting n2 to n3, n4, and n5, are pA
23, pA

24, and pA
25. These are determined on the basis of the

distance between ŷ and y3, y4, y5 respectively, using the assumption that the true measurement

22

y1 y2

y3

y4

y5

ŷ

y6

(a) The actual measurements

pA
23

pA
24

pA
25

n1 n2

n3

n4

n5

n6

pA
16

pA
12

(b) The corresponding graph nodes

Figure 3. Example of the initialization scheme. (a) Solid circles represent measurements, dashed circle represents predicted

measurement. (b) The corresponding part of the connectivity graph is shown.

deviates from the predicted one according to a Gaussian distribution. Mathematically, this reads,

yi ∼ N (ŷ, B), i = 3, 4, 5 (25)

pA
2i ∝ N (yi − ŷ, B),

∑

pA
2i = 1,

where B is the innovation covariance obtained for ŷ. Clearly, some edges cannot be initialized

in such manner, e.g., the edges n1 → n2 and n1 → n6 in the above example since n1 has no

possible predecessor. We assign those a uniform distribution. In our example pA
12 = pA

16 = 0.5.

As in the basic initialization scheme, the probabilities on the edges linking the inner nodes

to f are initialized to the termination probability pz, which was introduced in section II. The

probabilities on the other edges calculated via the above procedure are then re-normalized to

sum to 1. In case the only outgoing edge is the one leading to f , it is assigned a probability 1.

D. Elimination of Unlikely Tracks

The basic procedure of section IV together with the improvements described above produce

a feasible solution to the multi-scan data association problem having high posterior probability.

However, it is possible that among the actual tracks found by the algorithm, several false tracks,

or ghosts, will be generated. These tracks are patterns of consecutive false measurements that

constitute feasible tracks according to the definition of subsection II-D.

To reduce the number of such false tracks we apply additional likelihood-based test as follows.

For each track τ in the final partition ω we compute its likelihood ℓ(τ), and also ℓ0(τ) which

is the likelihood of all measurements in τ classified as false alarms. If ℓ(τ) exceeds ℓ0(τ) we

exclude τ from the tracks {τ1, ..., τK} of ω and add its measurements to the set of false alarms

23

of ω – τ0. This procedure may only increase the posterior probability of the partition ω, thus

resulting in a better score of the final solution.

E. Computation Complexity

We now evaluate briefly the running time of the proposed algorithms. The total running time is

determined by the number of iterations (sampling-evaluation-updating cycles) until convergence

– nCE . Each iteration is determined by the number of sampled candidate solutions – N , the time

required to generate each solution, the time required to evaluate the cost of solution, and the time

to update the parameters for the following CE or PME iteration. Recall that n is the number of

inner graph nodes representing the actual measurements of the problem, and T is the duration of

the surveillance scenario, namely the number of scans to be assigned (see subsection II-A). In the

following we summarize the time complexity (in terms of the number of elementary operations)

of various procedures. First, we provide the computational requirements of the basic algorithm

of section IV and then proceed with the improved scheme of section V.

1) Computational Complexity of the Basic Algorithm:

• The complexity of sampling a candidate solution is O(Tn2).

• The complexity of evaluation of the cost of a solution is O(nT 2).

• The complexity of updating the distribution is O(Nn2).

• The complexity of calculation of the initial distribution is O(n2).

The overall procedure time requirements are summarized as

O(nCE(NTn2 + NnT 2 + Nn2) + n2). (26)

2) Computational Complexity of the Improved Algorithm: The improved scheme differs from

the basic one by an increased number of graph nodes and an increased number of parameters

to be estimated. The increase is proportional to the average out-degree of the basic connectivity

graph. Denoting this quantity by η, we obtain the following worst case complexity.

• The complexity of sampling a candidate solution is O(Tn2).

• The complexity of evaluation of the cost of a solution is O(nT 2).

• The complexity of updating the distribution is O(Nηn2).

• The complexity of calculation of the initial distribution is O(ηn2).

24

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

True Partition − 10 Targets, λ V=100 (Single Scan)

False Alarm

Noisy Detection

Track

(a) A single scan

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

True Partition − 10 Targets, λ V=100

False Alarm

Noisy Detection

Track

(b) All scans

Figure 4. An example of a typical scenario. Target detections and FAs from all 10 scans are shown (a), FAs from a single

scan are shown (b).

Note that the time required for sampling a single candidate solution and evaluating its cost remain

unchanged since the path maximal length is not affected by the improved sampling scheme, nor

is the maximal number of the paths in the augmented connectivity graph. The complexity of

updating the distribution at each iteration, however, increases due to the increased number of

parameters and nodes.

The overall procedure time requirements are summarized as

O(nCE(NTn2 + NnT 2 + Nηn2) + ηn2). (27)

For dense scenarios, where η = O(n) and T ≪ n the above time complexity becomes O(nCENn3).

Although nCE , the number of iterations of CE-based algorithms, cannot be bounded in advance,

in all our experiments convergence has been obtained within 7 to 10 iterations. A similarly low

number of iteration till convergence seems to be typical of other CE applications as well [10].

VI. SIMULATION RESULTS

A. General Simulation Setup

We consider a similar simulation setup to that in [9]. A rectangular region on a plane, R =

[0, 1000]× [0, 1000] ⊂ R
2 is taken to be the surveillance region (to be specific, length units can

be taken as meter and time units as seconds). Each target has a 4-component state vector with

25

position and velocity in the x and y directions, that is xt = [pxt, vxt, pyt, vyt]
T . We have used the

Discrete White Noise Acceleration (DWNA) model [17] for the targets dynamics. Namely,

xt+1 = Axt + Gwt,

where

A = diag [F1, F1] , F1 =





1 Ts

0 1



 .

In addition, the vector process noise is wt = [wxt wyt]
T with covariance Q = diag(σ2

w, σ2
w), and

cov(Gwt) = σ2
w · diag(Q1, Q1), Q1 =





1
4
T 4

s
1
2
T 3

s

1
2
T 3

s T 2
s



 .

The measurement equation is

yt =





pxt

pyt



 +





vxt

vyt



 = Cxt + vt,

where

C =





1 0 0 0

0 0 1 0



 ,

and the (vector) measurement noise is vt = [vxt vyt]
T with covariance matrix R = diag(σ2

v , σ
2
v).

We have used a surveillance duration of T = 10 scans. Targets appear at a uniformly chosen

position from the left bottom or right bottom quadrants of R respectively. They all move

diagonally (in straight lines) with constant velocity randomly chosen between 0.2vmax and

0.9vmax. Each target’s appearance and disappearance times are chosen uniformly from the first

and last quarters of the surveillance interval respectively. An example of a typical scenario is

shown in Fig. 4.

B. Performance Measures

To the best of our knowledge, a standard definition of performance measures for evaluation of

MTT algorithms is an open question. Performance evaluation of single-target tracking algorithms

(both with and without measurement origin uncertainty) may be quantified by means of the Mean

Square Error (MSE). Such criteria are problematic when dealing with association algorithms,

since the MSE may provide meaningful insight on the performance only provided the data

26

association is perfect. We thus adopt the following, rather intuitive, measures for performance

evaluation suggested in [9].

1) The normalized correct associations (NCA), that is, the number of correct associations

made by the algorithm divided by the true number of associations.

2) The incorrect-to-correct association ratio (ICAR) which measures the ratio of incorrect to

correct associations.

An association here means two consecutive measurements on the same track. Mathematically,

for each partition ω ∈ Ω, the set of all associations in ω is represented as

SA(ω) = {(τ, tτi , t
τ
i+1) : i = 1, . . . , |τ | − 1, τ ∈ ω}

where tτi is the time of the i-th observation in track τ . The set of correct associations in ω

relative to ω∗, which is the true partition, is

CA(ω) = {(τ, t, s) ∈ SA(ω) : τ(t) = τ ∗(t), τ(s) = τ ∗(s), for some τ ∗ ∈ ω∗}, (28)

where τ(t) is the measurement at time t associated with track τ . The above measures now read:

NCA(ω) =
|CA(ω)|

|SA(ω∗)|
, ICAR(ω) =

|SA(ω)| − |CA(ω)|

|CA(ω)|
, (29)

where |A| is the cardinality of the set A. From the definition, NCA varies between 0 and 1

and it provides a measure of the number of correct associations. In case of perfect associations,

NCA = 1. NCA does not account, however, for false tracks. On the other hand, ICAR is a

positive measure not bounded from above and, informally, it counts false associations – both

false tracks and false continuations of true tracks. When no incorrect associations are made,

ICAR = 0. In addition, we record the number of tracks estimated by the algorithms.

C. Compared Algorithms

The performance of the CE based algorithms was compared to the following data association

schemes. First, is the Multiple Hypotheses Tracker (MHT) for which results have been reported in

[9]. The authors have used the implementation from [18], [19], which implements pruning, gating,

clustering, N -scan-back logic and k-best hypotheses (see [18] for details on these techniques).

Second, is the greedy tracker proposed in [9]. It is a batch-mode nearest neighbor multiple-

target tracking algorithm. It generates candidate tracks by picking measurements nearest to the

predicted states until there are no unused measurements left. Finally is the Markov Chain Monte

27

Carlo Data Association (MCMCDA) also proposed in [9]. The MCMCDA algorithm allows

sampling from complex distribution by simulating an ergodic Markov chain which converges

to the desired limiting distribution. In [9] the authors constructed a Markov chain on the set of

all feasible partitions of the measurements (see subsection II-D) with the posterior (4) as the

limiting distribution. Using a small set of elementary moves (e.g. track birth, track termination,

track splitting etc.) sampling from the posterior was possible after a few thousands of moves.

Then, a sample with the highest posterior was returned as the solution. The initial state of

the Markov chain was provided by the output of the Greedy algorithm. For the performance

comparison we have reconstructed the results for the MCMCDA and the greedy algorithms and

used the results reported in [9] for the MHT.

D. Experiments and Results

In this section we test the performance of the proposed algorithms by comparing them with the

performance of the methods mentioned in the previous subsection. The algorithms are compared

to each other using the performance measures NCA, ICAR and the estimated number of targets

described above.

Several options exist to challenge a data association algorithm. The first is by increasing the

false alarm rate λfV . In addition, one can decrease the detection probability Pd and increase the

density of tracks K. Closely moving targets, low detection probabilities and high false alarm rate

make the problem more difficult. In the following we perform three different test sequences in

which we modify different parameters to evaluate the performance of the algorithms – the false

alarm rate λf , the density of tracks K, and the detection probability Pd. Additional simulation

tests including the influence of the process and measurement noises, the segment length and

robustness to the target model are available in [20]. In all simulations presented below the

results are averaged over 8 repeated runs with new measurements generated independently at

each run.

1) Number of Targets: In this sequence we modify the track density. The number of targets K

in the scenario is varied between 10 and 75, while keeping the clutter rate low and the detection

probability high. Each target moves at constant velocity uniformly chosen between 30 and 120

m/s. All other parameters are fixed as well, namely – λfV = 1, Pd = 0.999 and vmax = 140 m/s,

pz = 10−2, and λbV = 1 such that, on average, there is a single new target at each scan. The

28

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Targets (K)

N
o
rm

a
liz

e
d
 C

o
rr

e
c
t
A

s
s
o
c
ia

ti
o
n
s

MHT

Greedy

MCMC

CEDA

PMEDA

(a) NCA

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Targets (K)

In
c
o
rr

e
c
t−

to
−

C
o
rr

e
c
t
A

s
s
o
c
ia

ti
o
n
 R

a
ti
o

MHT

Greedy

MCMC

CEDA

PMEDA

(b) ICAR

10 20 30 40 50 60 70
10

20

30

40

50

60

70

80

Number of Targets (K)

N
u
m

b
e
r

o
f
T

ra
c
k
s

MHT

Greedy

MCMC

CEDA

PMEDA

(c) Number of Tracks Detected

Figure 5. Simulation results for various values of K, the number of targets.

average NCAs, ICARs and number of tracks are presented in Fig. 5. It is readily seen that both

cross-entropy based algorithms score higher than Greedy and MCMCDA in NCA and better

in ICAR, introducing no significant difference between CEDA and PMEDA. All algorithms

outperform the MHT. Note that MCMCDA improves only slightly the performance achieved by

the greedy algorithm.

2) False Alarms Rate: Here we keep a constant number of K = 10 tracks, with targets

moving at constant velocity each uniformly chosen between 30 and 120 m/s. The clutter rate

varies between λfV = 1 and λfV = 100. Pd = 0.999, vmax = 140 m/s, pz = 10−2, and λbV = 1.

Namely, in this experiment we test our algorithms in heavily cluttered environment, keeping the

29

0 20 40 60 80 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Flase Alarm Rate (λ
f
 V)

N
o
rm

a
liz

e
d
 C

o
rr

e
c
t
A

s
s
o
c
ia

ti
o
n
s

MHT

Greedy

MCMC

CEDA

PMEDA

(a) NCA

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Flase Alarm Rate (λ
f
 V)

In
c
o
rr

e
c
t−

to
−

C
o
rr

e
c
t
 A

s
s
o
c
ia

ti
o
n
 R

a
ti
o

MHT

Greedy

MCMC

CEDA

PMEDA

(b) ICAR

0 20 40 60 80 100
0

5

10

15

20

25

Flase Alarm Rate (λ
f
 V)

N
u
m

b
e
r

o
f
T

ra
c
k
s

MHT

Greedy

MCMC

CEDA

PMEDA

(c) Number of Tracks Detected

Figure 6. Simulation results for various values of λfV . The actual number of targets is 10.

detection probability high and the number of targets low. The results are depicted in Fig. 6.

Clear superiority of PMEDA may be noticed with nearly 90% of correct associations. The CEDA

algorithm behaves similarly at low and moderate clutter rates, but degrades in NCA performance

at high clutter rates. However, false tracks are not produced keeping the ICAR relatively low.

We may conclude that, in this application, the updating rule of the PMEDA algorithm, which

uses all the samples obtained at a given iteration rather than the elite samples used by CEDA,

is preferable. As reported in [9], the MHT algorithm does not make any associations when

λfV ≥ 80 resulting in zero NCA and unreported ICAR. MCMCDA being initialized with the

output of the greedy algorithm, removes many of the false tracks found at the initialization stage,

30

thus improving the ICAR, but at the same time it degrades the NCA performance by changing

some of the correct associations. As a result, the obtained NCA is lower than that of the greedy

algorithm by a few percent. The greedy algorithm achieves reasonable performance in terms of

the NCA with more than 80% of correct associations, but results in unacceptably large ICAR

due to generation of high number of false tracks which also increase the ICAR.

3) Detection Probability: There is a constant number of K = 10 tracks, which move at

constant velocity each uniformly chosen between 30 and 120 m/s. The clutter rate is kept constant

at λfV = 1. The probability of detection varies between Pd = 0.3 to Pd = 0.9. Due to lower

detection probabilities we have set dmax = 5 since many consecutive missed detections may

occur (recall that dmax is the maximum number of consecutive missing observations of any

track that was defined in section II). The probability of track termination is pz = 0.01 and the

appearance of new tracks is modeled by λbV = 1. The results are depicted in Fig. 7. Both cross

entropy based algorithms outperform all other algorithms with some superiority of the PMEDA

over CEDA. Unlike the previous tests, the greedy algorithm performs poorly with less than 50%

of correct associations. MCMCDA scores better than MHT, but much worse than cross entropy

based algorithms especially at very low detection probabilities.

E. Discussion

It it noticeable in the first and second experiments that the MCMCDA does not introduce

significant improvement in terms of the NCA in comparison to the greedy tracker with which

it has been initialized. This occurs when the greedy algorithm finds a solution that is a strong

local maximum of the problem, and MCMC, being a local search method, needs many steps to

escape from this strong local extremum. Although in theory the MCMC method is considered

a global optimization method, it turns out in this experiment that at this level of problem

complexity it quickly got trapped in local minima, from which it could not get out in any

reasonable computation time. Thus, MCMC effectively reduces here to local search, while CE

based algorithms maintain a more global flavor as witnessed by their performance.

Another interesting phenomenon is the relatively poor performance of the MHT algorithm as

reported in [9]. Although in theory MHT is an optimal solution in the MAP sense it performs

poorly when the detection probability is low or the false alarm rate is high due to the necessary

heuristics used in the MHT. These heuristics are required as part of all practical implementations

31

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Detection Probability (P
d
)

N
o
rm

a
liz

e
d
 C

o
rr

e
c
t
A

s
s
o
c
ia

ti
o
n
s

MHT

Greedy

MCMC

CEDA

PMEDA

(a) NCA

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

Detection Probability (P
d
)

In
c
o
rr

e
c
t−

to
−

C
o
rr

e
c
t
 A

s
s
o
c
ia

ti
o
n
 R

a
ti
o

MHT

Greedy

MCMC

CEDA

PMEDA

(b) ICAR

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

14

Detection Probability (P
d
)

N
u
m

b
e
r

o
f
T

ra
c
k
s

MHT

Greedy

MCMC

CEDA

PMEDA

(c) Number of Tracks Detected

Figure 7. Simulation results for various values of Pd.

of the MHT since without them the number of hypotheses grows exponentially fast. MHT with

such heuristics may work well when a few hypotheses carry most of the weight. However,

when the detection probability is low or the false alarm rate is high, there are many hypotheses

with low weight and there is set of dominating hypotheses, so MHT cannot perform well. This

explains the above poor behavior of the method when tested in the extreme cases.

F. Computation Times

All algorithms proposed in this paper were implemented in Matlab R© without any code

optimizations and ran on a PC with 2.8GHz Intel processor. Recall that the overall performance is

32

determined by the time required to obtain and evaluate a single sample in the CE/PME procedures

in addition to the initialization and updating procedures. For dense scenarios, however, the time to

obtain a single sample, which requires O(Tn2) calculations, dominates the overall computation

time. We present in Fig. 8 this empirically found time versus the clutter rate which is proportional

to the average number of observations in the problem at hand. It is readily seen that this empirical

evidence strongly supports the calculated complexity needed to obtain a single sample.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Flase Alarm Rate (λ
f
 V)

T
im

e
 t
o
 o

b
ta

in
 a

 s
a
m

p
le

 (
s
e
c
)

Time of sampling a solution

Quadratic interpolation

Figure 8. Time required to obtain a single sample.

VII. SEQUENTIAL MULTI-SCAN TRACKING

In typical (off-line or on-line) applications, the number of sequential measurements (or scans)

is too large to be handled simultaneously by existing multi-scan data association algorithms. In

that case, the overall scenario may be divided into shorter segments, of length suitable for the

application of a multi-scan association algorithm. Still, it is desirable to maintain continuity of

paths between adjacent segments, as well as some interchange of relevant data.

We extend our algorithm to handle long scenarios by dividing the whole surveillance duration

into overlapping segments of length TW each. In each segment we execute the basic CEDA

algorithm using the observations which belong to that segment. The overlap region allows to

correct associations obtained at the final scans of the previous segment using measurements from

the next segment, and vice versa, to initialize the next segment with existing tracks. The idea is

illustrated in Fig. 9.

33

In more detail, suppose the CEDA algorithm has been applied to segment k. Associations

obtained in the first part of that segment (before the overlap region) are fixed and cannot be

changed. To initialize the algorithm in segment k+1, we assign probability 1 to the edges si → yi

for nodes yi that belong to the first scan of segment k + 1 and were associated with tracks in

segment k. Thus, these nodes are bound to be starting nodes of paths in the new segment. All

other probabilities in that segment are initialized as in the single segment case according to the

scheme described in subsection V-C.

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

τ1

τ2

y13

y14

y15

Segment k

Segment k + 1

Figure 9. Sequential multi-scam data association. The algorithm is invoked on two overlapping windows. Measurements y7

and y9 associated with τ1 in window k1 are used to initialize the track in window k + 1. Measurements y12, y14, and y15

associated with τ2 in window k + 1 improve the associations obtained in window k by classifying y10 as a false alarm.

The extent of overlap between two adjacent segments is a design parameter which should

be chosen using the following considerations. On the one hand, the overlap should be large

enough, so that misassociations at the later scans of segment k can be corrected while solving

in segment k + 1. On the other hand, large overlaps increase the number of segments and hence

the computation time. However, we have found, via simulation, that performance is not affected

significantly when the overlapping length is increased beyond a certain point, and satisfactory

results are obtained for small overlaps. The results supporting this statement are summarized in

Table I for a small scenario with 20 targets, 45 scans surveillance duration, and segment length

of 15 scans, Whereas the worst performance is achieved for non-overlapping windows, large

overlaps do not introduce significant changes.

Overlap size 0 3 6 9

NCA 0.89 0.94 0.93 0.95

Table I

THE OVERLAP INFLUENCE ON THE PERFORMANCE

34

Further testing of the proposed sequential CEDA algorithm was done as follows. We have used

the following parameters. The surveillance region is increased to R = [0, 10000]× [0, 10000] ⊂

R
2, and the surveillance duration is increased to T = 90 scans. Segment size is TW = 15, and

the length of the overlap between adjacent windows is 4 scans. Targets appear and disappear at

random times and positions and clutter rate is λfV = 10. Pd = 0.9, dmax = 3 and maximum

velocity is set to vmax = 230 m/s. All other parameters remain unchanged. Three test cases

are generated with total number of 50 tracks, 100 tracks and 150 tracks. Typical results for

the overall NCA and ICAR for the above test cases are summarized in Table II. These results

Number of targets NCA ICAR

50 0.95 0.04

100 0.94 0.04

150 0.92 0.06

Table II

SEQUENTIAL TRACKER PERFORMANCE

indicate that the proposed algorithm is indeed capable of initiating, tracking and terminating

tracks for long scenarios.

VIII. CONCLUSION

We have proposed two related methods for the multi-scan multi-target data association problem

based on the CE and PME heuristics. These schemes have been tested in simulation and show

improved performance relative to the state-of-the-art algorithms. A major issue in the proposed

algorithms is their computation time. Although polynomial in the problem parameters, the

computation time is still considerable in challenging scenarios which involve a large number

of measurements. In these cases the proposed algorithms are more suitable for off-line data

analysis. Future research directions should address further reduction of the computation time

while keeping the advantages of the proposed approach. Various extensions to the model should

be of interest, including non-linear target dynamics and multisensor measurements.

35

APPENDIX

POSTERIOR PROBABILITY DERIVATION

In this section we develop an explicit expression for the posterior (3). The result is commonly

used in the target tracking literature [1], [3], [9], [13] and we derive it here for clarity and

completeness.

Applying Bayes rule to (3) one obtains,

ω∗ = arg max
ω∈Ω

1

Z
p (Y1:T | ω) · P {ω}

= arg max
ω∈Ω

p (Y1:T | ω) · P {ω} ,

where Z is a normalization constant independent of ω. We shall compute the prior probability of

a partition – P {ω} and the likelihood of the measurements given a partition – p (Y1:T | ω), which

will allow easy computation of the posterior P {ω | Y1:T} up to the normalization constant.

A. The Prior Probability of a Partition

For each partition ω define the following quantities:

• mt - number of targets at time t.

• at - number of new targets at time t.

• zt - number of targets terminated at time t.

• dt - number of target detections at time t.

• ut - number of undetected targets at time t (according to ω i.e. missing measurements within

a path).

• ft - number of false alarms at time t.

Bearing in mind that nt is the total number of measurements obtained at time t, it may be easily

verified that the following relations hold:

mt = mt−1 + at − zt (30)

ut = mt − dt

ft = nt − dt.

The prior probability of a partition is determined by the number of detected, undetected, new,

continuing, and terminated targets and on the clutter model. It is derived similarly to the prior

36

in JPDA or MHT (see e.g. [13, p. 315, 339]) and reads:

P {ω} =
T

∏

t=1

at!ft!

nt!
µF (ft)µN(at) (31)

× pzt

z (1 − pz)
mt−1−ztP dt

d (1 − Pd)
ut ,

where µF (ft) and µN(at) are probabilities defined by the clutter and new targets models. In our

case these are modeled as Poisson processes, namely,

µF (k) = e−λf V (λfV)k

k!
, k = 0, 1, ... (32)

µN(k) = e−λbV
(λbV)k

k!
, k = 0, 1, ... (33)

B. The Likelihood Function of the Measurements

Computation of the likelihood rests on the following assumptions [13] which hold for the

specified measurement model.

1) The distribution of a measurement yti of a tracked target conditioned on all past measure-

ments up to time ti−1 is Gaussian with mean ŷti – the predicted measurement at time ti,

and covariance Bti – the innovation covariance. Namely,

yti | Y1:ti−1
∼ N (ŷti , Bti), (34)

where ŷti and Bti are obtained from the standard KF procedure:

ŷti = C(ti)x̂
−
ti

Bti = C(ti)P
−
ti

C(ti)
T + R,

and x̂−
ti , P−

ti are the conditional mean and error covariance from the time update stage of

the KF routine, and C(ti) and R were defined in (2). Note that if we conditioned on the

true track history, the above distribution would be Gaussian without approximation due to

the linear Gauss-Markov model each target is assumed to obey. However, we condition on

the entire set of the past measurements not necessarily correctly associated with the correct

targets. In this case, the above Gaussianity does not hold and it is only (yet commonly

used) assumption.

2) States of targets conditioned on past observations are mutually independent.

37

Applying Bayes rule we rewrite the likelihood as follows

p (Y1:T | ω) = p (YT | ω, Y1:T−1) · p (Y1:T−1 | ω) . (35)

Consider the first likelihood term. Conditioned on ω and the previous measurements, the set YT

contains measurements originated from previously existing tracks having Gaussian density, and

false alarms and new targets uniformly distributed in the surveillance region having volume V .

Defining the following indicator

αi =











1, if measurement yi originated from a previous track

0, otherwise

we thus obtain

p (YT | ω, Y1:T−1) =

|YT |
∏

i=1

N (yi; ŷi, Bi)
αi V −(1−αi) (36)

= V −(aT +fT)
∏

τ∈ω\{τ0}
τ(tT)6=∅

N (τ(tT); ŷtT (τ), BtT (τ)) ,

where N (x; µ, Σ) is the Gaussian density with mean µ and covariance Σ evaluated at x, τ(ti)

is the i-th measurement associated with track τ and ŷti(τ) is the i-th predicted measurement

obtained from the standard Kalman Filter applied to the measurements associated with track τ .

Note that we have used the second assumption above when moving to the product form in

(36) and the first one in writing the explicit density for each term in the product. Continuing

the recursion of (35) we obtain the following expression for the likelihood of p (Y1:T | ω):

p (Y1:T | ω) = V
−

T∑

t=1

at+ft

(37)

×
∏

τ∈ω\{τ0}

|τ |
∏

i=2

N (τ(ti); ŷti(τ), Bti(τ)) .

38

The posterior is obtained from the product of (31) and (37).

P {ω | Y1:T} =
1

Z

T
∏

t=1

e−V (λf+λa)

nt!
pzt

z (1 − pz)
mt−1−zt (38)

× P dt

d (1 − Pd)
utλat

b λ
ft

f

×
∏

τ∈ω\{τ0}

|τ |
∏

i=2

N (τ(ti); ŷti(τ), Bti(τ))

=
1

Z1

T
∏

t=1

pzt

z (1 − pz)
mt−1−ztP dt

d (1 − Pd)
utλat

b λ
ft

f

×
∏

τ∈ω\{τ0}

|τ |
∏

i=2

N (τ(ti); ŷti(τ), Bti(τ))

Note that the term V
−

T∑

t=1

at+ft

has canceled out.

REFERENCES

[1] Y. Bar-Shalom and T. E. Fortmann, Tracking and Data Association. Academic Press, San Diego, 1988.

[2] J. Collins and J. Uhlmann, “Efficient gating in data association with multivariate distributed states,” IEEE Trans. on

Aerospace and Electronic Systems, vol. 28, no. 3, pp. 909–916, July 1992.

[3] D. B. Reid, “An algorithm for tracking multiple targets,” IEEE Trans. on Automatic Control, vol. AC-24, no. 6, pp. 843–854,

December 1979.

[4] C. L. Morfield, “Application of 0-1 integer programming to multitarget tracking problems,” IEEE Trans. on Automatic

Control, vol. AC-22, no. 3, pp. 302–312, June 1977.

[5] M. Garey and D. Johnson, Computers and Intractability - A Guide to the Theory of NP-Completeness, V. Klee, Ed. Bell

Telephone Laboratories, 1979.

[6] S. Deb, M. Yeddanapudi, K. Pattipati, and Y. Bar-Shalom, “A generalized s-d assignment algorithm for multisensor-

multitarget state estimation,” IEEE Trans. on Aerospace and Electronic Systems, vol. 33, no. 2, pp. 523–538, April 1997.

[7] W. Ng, J. Li, S. Godsill, and J. Vermaak, “A review of recent result in multiple target tracking,” in Proc. of the 4th

International Symposium on Image and Signal Processing and Analysis, 2005.

[8] Y. Chung, P. Chou, M. Yang, and H. Chen, “Multiple-target tracking with competitive hopfield neural network based data

association,” IEEE Trans. on Aerospace and Electronic Systems, vol. 43, no. 3, pp. 1180–1188, July 2007.

[9] S. Oh, S. Russel, and S. Sastry, “Markov chain monte carlo data association for general multiple-target tracking problems,”

IEEE Conf. on Decision and Control, 2004.

[10] R. Rubinstein and D. Kroese, The Cross-Entropy Method - A Unified Approach to Combinatorial Optimization, Monte-Carlo

Simulation and Machine Learning. Springer Science, 2004.

[11] ——, Simulation and the Monte Carlo Method. John Wiley & Sons, Inc., 2007.

[12] J. Spall, Introduction to Stochastic Search and Optimization. John Wiley & Sons, Inc., 2003.

[13] Y. Bar-Shalom and X. Li, Multitarget-Multisensor Tracking: Principles and Techniques. Storrs, CT: YBS Publishing,

1995.

[14] R. Rubinstein, “A stochastic minimum cross-entropy method for combinatorial optimization and rare-event estimation,”

Methodology and Computing in Applied Probability, no. 1, pp. 1–46, 2005.

[15] ——, “Semi-iterative minimum cross-entropy algorithms for rare-events, counting, combinatorial and integer programming,”

Methodology and Computing in Applied Probability, vol. 10, no. 2, p. 121178, April 2008.

39

[16] P. de Boer, D. Kroese, S. Mannor, and R. Rubinstein, “A tutorial on the cross-entropy method,” Annals of Operations

Research, vol. 134, no. 1, pp. 19–67, February 2005.

[17] Y. Bar-Shalom, X. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation. New York : Wiley,

2001.

[18] I. Cox and S. Hingorani, “An efficient implementation of reid’s multiple hypotheses tracking algorithm and its evaluation

for the purpose of visual tracking,” IEEE Trans. on PAMI, vol. 18, no. 2, pp. 138–150, February 1996.

[19] I. Cox, “Multiple hypotheses tracking code,” http://www.adastral.ucl.ac.uk/∼icox/.

[20] D. Sigalov, “Data association in multi target tracking using cross entropy based algorithms,” Master’s thesis, Technion -

Israel Institute of Technology, February 2008.

