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Sparse Source Separation from Orthogonal

Mixtures

Moshe Mishali and Yonina C. Eldar

Abstract

This paper addresses source separation from a linear mixture under two assumptions: source sparsity

and orthogonality of the mixing matrix. We propose efficient sparse separation via a two-stage process.

In the first stage we attempt to recover the sparsity pattern of the sources by exploiting the orthogonality

prior. In the second stage, the support is used to reformulate the recovery task as an optimization problem.

We then suggest a solution based on alternating minimization. Random simulations are performed to

analyze the behavior of the resulting algorithm. The simulations demonstrate convergence of our approach

as well as superior recovery rate in comparison with alternative source separation methods and K-SVD,

a leading algorithm in dictionary learning.

I. INTRODUCTION

Blind source separation (BSS) is a fundamental problem in data analysis where the goal is to recover a

set of source signals from their linear mixture, typically in the presence of noise. The blind aspect refers

to the lack of prior information about the exact mixture coefficients or source values. A BSS problem is

ill-posed unless additional source properties are assumed, e.g., statistical independence or an underlying

deterministic structure. In sparse component analysis (SCA), only a few (active) sources contribute to

each measurement. Mathematically, a vector s(t) of n sources is constrained to have only K non-zero

entries per each time instant t. The linear mixture model is described by

x(t) = Ψs(t) + n(t), t = 0, 1, . . . , T − 1, (1)
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where Ψ is an m × n unknown mixing matrix, x(t) is the time-varying measurement vector, and n(t)

is an additive noise.

In this paper, we study the complete separation problem (m = n) with an orthogonal Ψ, which

amounts to finding an orthonormal basis in which the sources are sparsely represented. Previous SCA

methods, which focus on the underdetermined SCA problem (m < n), propose finding Ψ either by

combinatorial search [1], [2], or by an approximate maximization program [3], [4]. A related area in

which source separation arises is dictionary design, in which the goal is to recover a dictionary Ψ such

that the representation coefficients s(t) are sparse. A leading dictionary learning algorithm is the K-

SVD [5]. Although this method does not explicitly assume an orthogonal dictionary Ψ, it is possible in

principle to modify the basic algorithm by orthogonalizing the solution. Preliminary simulations, which

we show in Section V, show that simple modifications to K-SVD do not lead to significant improvement

in source separation; therefore, we have not further pursued this approach. Lesage et. al. [6] describe a

learning method for m < n and Ψ which is a union of orthonormal bases [6]. Experimentally, they show

that if Ψ is a single orthonormal basis, and a union model of two bases is used in the algorithms, then

in about 50% of the simulations one of the recovered bases is Ψ. Adjusting their method to learning a

single basis leads to similar performance in our simulations. A recent paper studies the same orthogonal

case we consider here [7]. The authors propose a non-convex program over the manifold of orthogonal

matrices with an ℓ1 sparsity-promoting objective. This program is proved to have a strict local minimum

at the correct mixing matrix under some technical condition. Unfortunately, in practice, state-of-the-art

descend solvers over the orthogonal manifold [8] did not converge in our simulations for the program of

[7].

Our main contribution is a two-stage approach for efficient source separation with orthogonal Ψ. Our

idea is to separate the support recovery from recovery of the source values. In the first stage, we determine

the support of the sources, namely which entries in s(t) are active for each time instant t. This structure

is inferred from a set of rules, that exploit the orthogonality of Ψ. Next, this information is incorporated

into an optimization program allowing to replace the difficult combinatorial constraints of SCA by a set

of linear equalities corresponding to the recovered support. Any solution to the resulting program must

minimize the Lagrangian, which leads to a set of equations that we solve by alternating minimization.

Empirically, the alternating procedure always converges and the recovery rate of the sparse sources is

superior with respect to both K-SVD and [6], even when using a modified version of these algorithms

that incorporates the orthogonality constraint.

The problem model is described in Section II where uniqueness of the separation is also addressed.
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The main contribution appears in Sections III, IV which describe the support recovery algorithm and

the subsequent alternating procedure, respectively. Supporting numerical experiments are presented in

Section V, followed by conclusions and further extensions in Section VI.

II. PROBLEM FORMULATION

A. Model

Starting with fixing notation, let Sik be the ikth entry of the matrix S and S
T be the transpose of S. We

use I for the identity matrix of appropriate dimensions. The ith column (row) of S is denoted as S:i (Si:).

A finite index set J indicates the appropriate column subset S:J with |J | columns. Similarly, SJ : is a row

subset. Vector support is defined as supp(v) = {k |vk 6= 0}. The Frobenius norm is ‖X‖F = Tr(XT
X).

We concentrate on the noise-free setting n(t) = 0, in which the matrix form of (1) is written as

X = ΨS, (2)

where the source vectors s(t), 1 ≤ t ≤ T are arranged as the columns of the n × T matrix S, and the

columns of X are the measurement vectors x(t). The more general scenario N 6= 0 is shortly discussed

in Section VI. In addition, (1) is considered over the real numbers with orthogonal Ψ, namely Ψ
T
Ψ = I.

Extension to a complex-valued model with unitary Ψ is immediate.

The matrix S is assumed to be K-sparse, namely for each column ‖S:i‖0 = K, where the ℓ0 pseudo-

norm counts the number of non-zeros of its vector argument. The sparse separation problem can be

viewed as an optimization of the squared-error between the given n× T measurement matrix X and an

approximation by an orthogonal Ψ and K-sparse S:

(Ψ̂, Ŝ) = arg min ‖X − ΨS‖F

s.t. Ψ
T
Ψ = I,

‖S:i‖0 = K, 1 ≤ i ≤ T.

(3)

Evidently, the pair Ψ,S of (2) is an optimal solution of the program (3). The next section provides a

sufficient condition ensuring a unique optimal solution to (3).

B. Uniqueness

An important question underlying any separation algorithm is whether (3) admits a unique optimal

solution pair (Ψ,S). The BSS problem (2) has inherent intermediacy which does not allow to determine

Ψ,S exactly; row permutations of S and column scaling of Ψ. When Ψ is orthogonal the intermediacy
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reduces to signed row permutations of S, and correspondingly signed column permutations of Ψ. To

address uniqueness (up to these signed permutations) we quote the following result of [5].

Theorem 1: The factorization B = AS, with normalized columns A ∈ R
m×n and K-sparse S, is

unique up to signed permutations under the following conditions:

• Support: Every 2K columns of A are linearly independent.

• Richness: Upon clustering the columns of S according to their support, every cluster consists of at

least K + 1 columns, sharing the same support. In addition, for every 1 ≤ i ≤ n, there exist k, j

such that the intersection supp(S:k) ∩ supp(S:j) = {i}.

• Non-degeneracy: Every column subset S:J of cardinality |J | = d, with r rows that are non-identically

zero, has rank(S:J) = min{d, r}.

In our case, the factorization (2) assumes an orthogonal Ψ. Exploiting this prior leads to the following

corollary.

Corollary 1: Consider the setting of Theorem 1 with orthogonal A. Then, uniqueness holds if n ≥ 2K,

S is non-degenerate and rich, possibly up to the following richness exceptions. The intersection property

may not hold for i = n, and for each cluster of columns (sharing the same support), it may also not hold

for one entry of the support.

A rich matrix S can be constructed with T = 2n(K +1) columns [5], whereas in the orthogonal case,

the exceptions of Corollary 1 allow to reach a similar construction with T = 2(n−n0)(K +1) columns,

where n0 = 1 + ⌊(n − 1)/K⌋ and ⌊x⌋ stands for the integer part of x.

Proof. The proof uses the constructive procedure described in [5], which consists of three stages. The

first stage clusters the columns of X to different K-dimensional subspaces by creating column subsets

whose rank is exactly K. The richness and non-degeneracy assumptions ensures the feasibility of the

clustering. Moreover, the non-degeneracy of S ensures that every subspace corresponds to columns of S

that share the same sparsity support.

The second stage examines all possible pairs of column clusters of X, searching for pairs such that

upon combining them to single cluster, the rank is exactly 2K − 1. Due to the non-degeneracy every

such pair corresponds to a pair of column clusters of S that their supports intersect at exactly one atom.

The last stage discovers one atom of Ψ from each such pair.

When Ψ is orthogonal, there is no change in the clustering stage, since a feasible solution requires

only that every support pattern appears at least K + 1 times. The last two stages are also unaffected for

every K − 1 support locations entries in every cluster. Now, the orthogonality of Ψ is used to discover

the last entry of the support in every cluster, compensating the possibility that one entry may lack the
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intersection property. This allows to discover n− 1 atoms of Ψ. The orthogonality property is now used

again to fill up the last atom.

Theorem 1 and Corollary 1 are proved by explicitly constructing Ψ,S. This procedure has combinatorial

complexity. In the next section, we describe a concrete non-combinatorial method to reveal the supports

of the columns of S.

III. SUPPORT RECOVERY

The support recovery stage relies on the following properties of C = X
T
X:

(R1) Ckj = 0 implies that supp(S:k), supp(S:j) are disjoint (assuming S is non-degenerate)

(R2) Ckj 6= 0 implies supp(S:k) ∩ supp(S:j) is not empty

(R3) Every column S:k contains exactly K non-zeros

(R4) Row permutations of S are allowed.

Algorithm 1 iteratively deduces locations of zeros and non-zeros of S by utilizing (R1)-(R4). An

n×T matrix Z is used to indicate the support of S and is initialized to Zik = φ for all entries, implying

no prior knowledge. An update Zik = 0 or 1 is performed once Sik is identified as zero or non-zero,

respectively. When a non-zero is identified, Zik = 1, and (R1) leads to an update Zij = 0 for every

Ckj = 0 (step 11). Once Z:k identifies exactly K non-zeros, which determines supp(S:k) = {i|Zik = 1},

(R2) implies that a column j with Ckj 6= 0 has Zij = 1 for at least one i ∈ supp(S:k). A conclusion

of this type, namely a specific column j which has at least one non-zero entry within an index set I, is

referred to as a (regular) rule. Fig. 1 illustrates the implications of (R1),(R2).
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Fig. 1: The non-zero entries of column k implies zeros in column j since Ckj = 0. A rule with I = {2, 3, 4}

within column l is based on Clk 6= 0. The rule can be effectively solved out to Z4l = 1 if Cvl = 0.

Rules are dynamically updated as follows. Entries i ∈ I for which Zij = 0 are automatically discarded

from I. If Zij = 1 for some i ∈ I, then the rule does not contribute information and is removed (step 5).



6

Input : C = X
T
X, sparsity level K

Output : Support pattern Z, rule list L

Initialization: Zik = φ, L with T special rules (see text)

for k = 1 to T do1

foreach Unsolved rule r ∈ L pointing column k do2

Let I be the entries pointed by r3

if Zik = 1 for some i ∈ I and r is regular then4

Remove r from L5

end6

if Symmetry holds with respect to I then7

Choose i ∈ I and set Zik = 18

end9

end10

foreach {i, j |Cjk = 0,Zik = 1} do Zij = 011

if Z:k indicates exactly K non-zero values then12

supp(S:k) = {i|Zik = 1}13

Zik = 0 for every i /∈ supp(S:k)14

Remove the kth special rule from L15

foreach {j |Ckj 6= 0} do16

Add a (regular) rule on column j with I = supp(S:k)17

end18

end19

end20

Repeat steps 1-20 till no further change in Z, L21

Algorithm 1: Support Recovery

If the rule is reduced to I = {i}, then Zij = 1 (step 8). This step is also executed when |I| > 1 and the

rows ZI: are equivalent, in the sense that zeros and non-zeros are identified in the same locations and

that the rule list L reflects a similar symmetry. Then, (R4) implies that Zij = 1 for some i ∈ I. To use

(R3), T special rules are created on initialization. The kth special rule, 1 ≤ k ≤ T , has I = {1, . . . , n}

for column k. Special rules are not removed in step 5 until K non-zeros are identified.
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The main loop of Algorithm 1 identifies new non-zero locations by resolving rules, which in turn

identifies the locations of zeros. The feedback from the latter effects the rule list (step 17) and vice versa.

Note that the first special rule triggers the first update: Zi1 = 1 for 1 ≤ i ≤ K and Zi1 = 0 for i > K.

A rigorous complexity analysis of Algorithm 1 is beyond the current scope. Nonetheless, a few

guarantees can easily be verified:

• The algorithm always reaches the termination point, step 21. This property holds due to the termi-

nation condition and since every Zik can be updated only once to 0 or 1.

• The main loop, steps 2-19, identifies at least one new non-zero entry of S, in every sweep of k from

1 to T . Thus, Algorithm 1 may execute these steps nKT times at the most before terminating.

• For T = 1, the support is fully recovered. More generally, the support is determined whenever S

consists of column subsets whose supports are pairwise disjoint and each column subset share the

same support.

It is interesting to note that full support recovery is possible even when there is no unique solution to

(3), e.g., T = 1.

The underlying logic behind Algorithm 1 can be extended by taking into account more sophisticated

decision rules. For example: once termination is reached, solve one of the remaining regular rules manually

by setting Zik = 1 for some i ∈ I, and then return to step 1. If this choice does not lead to full support

recovery, roll changes back and try another i ∈ I. We have not pursued this approach since in certain

pathological supports it generates an exponential-time search. However, our experiments show that in

many cases L contains only small sets of unsolved rules at termination, giving practical reasoning to this

strategy.

We point out that partial support recovery may happen (e.g., a rich S with the minimal number of

columns T = 2(n − n0)(K + 1)). Fortunately, as further described in the next section, in many cases

partial support recovery still allows exact source separation. Since the next recovery stage relies on the

zero locations of S, we may slightly modify Algorithm 1 in order to maximize the number of zeros that

are identified: The sequential sweep of k in step 1 can be replaced by choosing the column k, which

identifies the maximal number of new zeros locations in S. A naı̈ve implementation of this strategy

requires to execute steps 2-19 virtually for every 1 ≤ k ≤ T and then commit the changes only for the

selected column. However, as none of these steps is recursive, the complexity is approximately multiplied

by T . Our experiments show clear advantage for this approach, in the sense that at termination more

zeros are identified compared to selecting sequential columns in step 1.
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IV. SOURCE SEPARATION

Using the additional information of Z, the combinatorial sparsity constraints ‖S:i‖0 = K of (3) are

now translated to a set of linear equalities, indexed by the locations of the zeros:

(Ψ,S) = arg min ‖X − ΨS‖F

s.t. Ψ
T
Ψ = I,

Sik = 0, ∀i, k with Zik = 0.

(4)

Any solution to (4) will minimize the Lagrangian:

L(Ψ,S) = ‖X − ΨS‖2

F + Tr
[

Γ(ΨT
Ψ − I)

]

+ Tr(ΠT
S), (5)

where Γ,Π are matrices of Lagrange multipliers with appropriate dimensions and Πik = 0 for Zik 6= 0.

Calculating the gradients with respect to each variable yields

∇ΠL = 0 → Sik = 0, ∀i, k with Zik = 0 (6a)

∇ΓL = 0 → Ψ
T
Ψ = I (6b)

∇ΨL = 0 → (X − ΨS)ST = ΨΓ (6c)

∇SL = 0 → − 2ΨT
X + 2ΨT

ΨS + Π = 0. (6d)

To find Ψ,S satisfying (6a)-(6d), we propose an alternating minimization between Ψ,S. Fixing the

current estimate of S, then the optimal Ψ satisfying (6b)-(6c) is given by Ψ = UV
T where U,V are

orthogonal matrices taken from the singular value decomposition (SVD) XS
T = UΣV

T [6]. Next, it

can be verified from (6a) and (6d) that the optimal S, when keeping an orthogonal Ψ fixed, is computed

as Sik = [ΨT
X]ik where Zik 6= 0 and Sik = 0 otherwise.

Algorithm 2 summarizes the recovery of Ψ,S given the support matrix Z. Note that (4) is not convex,

and thus the system (6) only guarantees a stationary point. Moreover, the alternating approach does not

guarantee convergence (even to a stationary point) as (6a)-(6d) are not solved simultaneously. Nonetheless,

empirically, Algorithm 2 always converged to an optimal point of (4). Interestingly, in many cases a K-

sparse S is found even when the support is partially recovered. The relation between identification of

zeros and source recovery is evident from (4) and is further studied, empirically, in the next section.

V. NUMERICAL EXPERIMENTS

In order to examine recovery based on our algorithm, the following setup is used. For fixed problem

dimensions (n, T,K), a K-sparse matrix S of size n×T is constructed by selecting the non-zero locations
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Input : X, support pattern Z

Output : Ψ,S

Initialization: Ψ is a random n × n orthogonal matrix

repeat1

Sik = [ΨT
X]ik where Zik 6= 0 and Sik = 0 otherwise2

Decompose XS
T = UΣV

T using SVD3

Ψ = UV
T

4

until convergence5

Algorithm 2: Source and Mixing Matrix Recovery

uniformly at random for each column, then drawing non-zero values from a normal distribution. The non-

degeneracy assumption holds with probability one for this choice. Next, an orthogonal Ψ is constructed by

taking the left orthogonal matrix in the SVD of a square-n matrix whose entries are drawn independently

from the normal distribution. The measurement matrix is computed as X = ΨS.

Algorithm 1 is executed in order to recover the support of S. The (possibly partial) support information

is passed to Algorithm 2 which recovers a candidate pair Ψ̂, Ŝ. A success recovery is announced once

Ŝ is K-sparse and equals S up to signed row permutations, and Ψ̂ = Ψ up to the corresponding signed

column permutations. The average recovery success over 100 trials is reported in Fig. 2 for several

combinations of (n,K, T ).

As evident from the figure, increasing the number of measurements improves the recovery rate.

In addition, as n grows, a higher number of columns T is required to achieve the same recovery

rate. This behavior conforms with the dependency of T = 2(n − n0)(K + 1) on n, which implies

a possible construction of S satisfying the richness assumption. Interestingly, none of the examples S

in the simulations satisfies richness. Yet, as Fig. 2 reveals, our approach which is much faster than a

combinatorial recovery, shows similar dependency of the recovery rate on n, T .

We compare our method to K-SVD [5], an iterative algorithm which finds a candidate pair of normalized

columns (though not necessarily orthogonal) Ψ̂ and K-sparse Ŝ. The performance of the original K-

SVD algorithm is far from the results depicted in Fig. 2. We slightly modified the algorithm by adding

an orthogonalization step between every d = 5 consecutive iterations, in the same way performed in

Algorithm 2. The choice d = 5 was found to provide fast convergence to an orthogonal solution. In

addition, our method is compared to [6], which in case of an orthogonal Ψ reduces to K-SVD with
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Fig. 2: Image intensity represents the average recovery of Ψ,S over 100 trials per each value of n, T and for

two values of K.

orthogonalization step after every iteration. A simple modification (along the lines proposed in [6]) is

used to improve recovery rate; the threshold parameter λ of the sparse coding stage is gradually decreased

(in 100 iterations) towards zero, see [6, Eq. (5)]. Fig. 3 depicts the results and reveals a superior recovery

rate for our method. We note that our method and the modified version of [6] have comparable run times,

whereas the modified K-SVD is faster.
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Fig. 3: Comparison between our method (solid lines), the modified K-SVD algorithm (dashed lines), and the

modified version of [6] (dotted lines) as T varies from 10 to 100, n = 10 and two choices of K.

We also tried to compare our method with [7], who proposed to minimize J(Ψ) = ‖ΨT
X‖1 =

∑

ik |[Ψ
T
X]ik| over the manifold of orthogonal Ψ, which is a non-convex program and requires a

special solver. We used both descend algorithms of [8] for that purpose. However, neither converged in

our simulations.

Algorithm 2 uses the identified zero locations to update Ŝ in the alternating iterations. To explore the

relation between zeros identifications and source separation, we use the results of Fig. 2 to count the cases

of exact recovery whose support is fully recovery. We compare these cases to exact recovery with partial

support recovery. Fig. 4 reports the results. Clearly, a full support recovery is not necessary for exact
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Fig. 4: The bars indicate the portion of simulations with exact recovery of Ψ,S, for which full support recovery

occurs (cyan) and for which only partial is recovered (magenta).

recovery. However, the number of identified zero is not the only factor for exact separation. Specifically,

we encountered cases with same number of identified zeros, where some lead to exact recovery and

others do not.

VI. CONCLUSIONS AND EXTENSIONS

We developed a method for sparse source separation in an orthogonal mixture model. Algorithm 1

exploits invariance of inner products under orthogonal transforms to gather information about the support

of the sources. Using this knowledge, we can substitute the original combinatorial sparsity constraints by

linear equalities. A saddle point of the resulting optimization program can then be found by minimizing

the Lagrangian. Algorithm 2 introduces an alternating minimization procedure for this purpose. Numerical

experiments demonstrate the potential of our strategy, although further study and comparisons are required.

The current version of Algorithm 1 is highly sensitive to noise. Straightforward adjustments involve

thresholding the correlation matrix C prior to running the algorithm. In contrast, the development of

Algorithm 2 does not assume a noise-free setting and thus it may also be used in the presence of noise.

Finally, we point out that although a strict theoretical richness assumption is used to prove uniqueness,

high empirical recovery performance is noticed even when richness does not hold.
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