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Abstract

We examine the classical joint source–channel coding problem from the viewpoint of sta-
tistical physics and demonstrate that in the random coding regime, the posterior probability
distribution of the source given the channel output is dominated by source sequences, which
exhibit a behavior that is highly parallel to that of thermal equilibrium between two systems
of particles that exchange energy, where one system corresponds to the source and the other
corresponds to the channel. The thermodynamical entopies of the dual physical problem are
analogous to conditional and unconditional Shannon entropies of the source, and so, their bal-
ance in thermal equilibrium yields a simple formula for the mutual information between the
source and the channel output, that is induced by the typical code in an ensemble of joint
source–channel codes under certain conditions. We also demonstrate how our results can be
used in applications, like the wiretap channel, and how can it be extended to multiuser scenar-
ios, like that of the multiple access channel.

Index Terms: joint source–channel coding, statistical physics, thermal equilibrium, mutual
information, entropy.

1 Introduction

Consider the following two seemingly unrelated problems, which serve as simple special cases of a

more general setting we study later in this paper:

The first is an elementrary problem in statistical physics: We have two subsystems of particles

which are brought into thermal equilibirium with each other as well as with the environment (a
∗Part of this work was carried out during a visit in Hewlett–Packard Laboratories, Palo Alto, CA, U.S.A., in the

Summer of 2008.
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heat bath) at temperature T . The first subsystem consists of N particles having magnetic moments

(spins), {si}, each of which may be oriented either in the direction of an applied external magnetic

field B, in which case si = +1, or in the opposite direction, in which case si = −1, and its energy in

both cases is given by −siB (up to a certain multiplicative constant, which carries the appropriate

physical units, and which is irrelevant for the purpose of this discussion). In the second subsystem,

there are n non–interacting particles {s′i}n
i=1, each one of which may lie in one of two possible

states: the state s′i = 0, in which the particle has zero energy, and the state s′i = 1, in which it has

energy e0. What is the average energy possessed by each one of these subsystems in equilibrium,

as functions of e0, T , n, N , and B?

The second problem is in Information Theory, in particular, it is in joint source–channel coding,

where some of the notation used is deliberately chosen to be the same as in the previous paragraph:

A binary memoryless source generates a vector s of symbols (s1, s2, . . . , sN ), si ∈ {+1,−1}, i =

1, . . . , N , with probabilities q = Pr{Si = +1} and 1 − q = Pr{Si = −1}. This vector is encoded

into a binary channel codeword x(s) of length n and transmitted over a binary symmetric channel

(BSC) with a crossover probability p < 1/2, and a binary n–vector y is received at the channel

output. Consider the posterior distribution

P (s|y) =
P (s)W (y|x(s))∑
s′ P (s′)W (y|x(s′))

where P (s) and W (y|x) are the probability distributions that govern the source and the chan-

nel, respectively, as described above. Thus, clearly, P (s|y) is proportional to P (s)W (y|x(s)), or

equivalently, lnP (s|y) is (within a term that is independent of s) given by lnP (s) + lnW (y|x(s)).

For a typical code drawn uniformly at random from the ensemble of codes, what are the relative

contributions of the source and the channel to this quantity, for those vectors s that dominate

P (s|y) (i.e., those that capture the vast majority of the posterior probability)?

It turns out, as we shall see in Section 3 below, that the two problems have virtually identical

answers (in a sense that will be made clear and precise therein), provided that the parameters T

and B of the first problem are related to the parameters p and q of the second problem by

p =
exp{−e0/kT}

1 + exp{−e0/kT}
(1)
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and

q =
exp{B/kT}

2 cosh(B/kT )
, (2)

or equivalently,

e0 = kT ln
1− p

p
(3)

and

B =
kT

2
ln

q

1− q
, (4)

where k is Boltzmann’s constant.

Thermal equilibrium between the two subsystems in the above described physical problem, dic-

tates a certain balance between their thermodynamical entropies in order to arrive at the maximum

total entropy (by the second law of thermodynamics) for the total energy possessed by the entire

system at the given temperature T . As the thermodynamical entropy, in its statistical–mechanical

definition, is intimately related to the Shannon entropy, it turns out that this equilibrium relation

between the thermodynamical entropies of the physical problem, gives rise to an analogous relation

between Shannon entropies pertaining to the joint source–channel coding problem in the random

coding regime. In particular, it relates the entropy of the source to its conditional entropy given

the channel output, whose difference is exactly the mutual information between the source and the

channel output. The final outcome of this is a simple formula for calculating the mutual infor-

mation rate between the input and the output of a coded system for the typical code in a given

ensemble under certain conditions. This calculation builds strongly on the random energy model

(REM) of spin glasses due to Derrida [3, 4, 5] and its relation to the random code ensemble (RCE)

as described in [12].

Clearly, under the regime of reliable communication, the mutual information rate between the

source and the channel output coincides with the entropy rate of the source, as the conditional

entropy rate of the source given the channel output vanishes. Thus, the problem of calculating

the mutual information under reliable communication conditions is easy and in fact, not quite

interesting. The same calculation, however, when the conditions of reliable communication are not

met, appears less trivial. But what would be the motivation for such a calculation?

Here are just a few examples that motivate this: Consider a user that, in addition to its

desired signal, receives also a relatively strong interfering signal (codeword), which is intended to
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other users, and which comes from a codebook whose rate exceeds the capacity of this crosstalk

channel between the interferer and our user, so that the user cannot fully decode this interference.

Nonetheless, our user would like to learn as much as possible on the interfering signal for many

possible reasons: For example, the user would like to learn the interference signal in order to identify

where it originates from, or in order to estimate it and subtract it (intereference cancellation). The

mutual information rate, call it I, between the interference signal and the channel output then

gives some assessment concerning the quality of this estimation. For one thing, D(I), where D(·)

is the distortion–rate function of the source, is a lower bound to the distortion in estimating this

signal. Moreover, if the channel is Gaussian, one can calculate the exact minimum mean square

error (MMSE) from the mutual information rate I by taking its derivative w.r.t. the signal–to–noise

ratio (SNR) [9]. Another application comes from scenarios where the above described receiver is

a hositle party (an eavesdropper), from which one would like to conceal information as much as

possible. The natural setup, in this context, is that of the wiretap channel (cf. [14] as well as many

follow–up papers), where excess channel noise beyond capacity is harnessed as an effective key

that secures data communication. As we show in the sequel, the mutual information rate between

the transmitted message and the eavesdropper, which suffers from this excess noise, is strongly

related to the equivocation, which is a customary measure of security in Shannon–theoretic secrecy

systems.

The outline of this paper is as follows. In Section 2, we establish notation conventions. In Section

3, we provide some basic background of elementary statistical physics, which will be needed in the

sequel. In Section 4, we derive our main result, which is a formula for the mutual information rate.

In Section 5, we demonstrate how it is applied for the wiretap channel, and finally, in Section 6,

we demonstrate how our results can be extended to multiuser scenarios, like that of the multiple

access channel.

2 Notation Conventions

Throughout this paper, scalar random variables (RV’s) will be denoted by the capital letters, like

S, X, and Y , their sample values will be denoted by the respective lower case letters, and their

alphabets will be denoted by the respective calligraphic letters. A similar convention will apply to
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random vectors and their sample values, which will be denoted with same symbols with the bold

face font. Thus, for example, X will denote a random n-vector (X1, . . . , Xn), and x = (x1, ..., xn)

is a specific vector value in X n, the n-th Cartesian power of X . Sources and channels will be

denoted generically by the letter P ,Q,M and W . Whenever clarity and unambiguity will require it,

these letters will be subscripted by the names of the relevant RV’s, following the standard notation

conventions in the literaure, for example, PS will denote the probability distribution of a random

variable S, PX|Y will denote the conditional probability distribution of X given Y , and so on. The

cardinality of a finite set A will be denoted by |A|. Information theoretic quantities like entropies

and mutual informations will be denoted following the usual conventions of the information theory

literature.

3 Background

In this section, we provide a brief account of the very basic background in statistical physics, which

is needed for this paper.

Consider a physical system with N of particles, which can be in a variety of microscopic states

(‘microstates’), defined by combinations of of physical quantities associated with these particles,

e.g., positions, momenta, angular momenta, spins, etc., of all N particles. For each such mi-

crostate of the system, which we shall designate by a vector s = (s1, . . . , sN ), there is an associated

energy, given by an Hamiltonian (energy function), E(s). For example, if si = (pi, ri), where

pi is the momentum vector of particle number i and ri is its position vector, then classically,

E(s) =
∑N

i=1[
‖pi‖2
2m + mgzi], where m is the mass of each particle, zi is its height – one of the

coordinates of ri, and g is the gravitation constant.

One of the most fundamental results in statistical physics (based on the law of energy conserva-

tion and the basic postulate that all microstates of the same energy level are equiprobable) is that

when the system is in thermal equilibrium with its environment, the probability of a microstate s

is given by the Boltzmann–Gibbs distribution

P (s) =
e−βE(s)

Z(β)
(5)

where β = 1/(kT ), k being Boltmann’s contant and T being temperature, and Z(β) is the normal-
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ization constant, called the partition function, which is given by

Z(β) =
∑
s
e−βE(s)

or

Z(β) =
∫
dse−βE(s),

depending on whether s is discrete or continuous. The role of the partition function is by far

deeper than just being a normalization factor, as it is actually the key quantity from which many

macroscopic physical quantities can be derived, for example, the free energy1 is − 1
β lnZ(β), the

average internal energy (i.e., the expectation of E(s) where s drawn is according (5)) is given by the

negative derivative of lnZ(β), the heat capacity is obtained from the second derivative, etc. One

of the ways to obtain eq. (5), is as the maximum entropy distribution under an energy constraint

(owing to the second law of thermodynamics), where β plays the role of a Lagrange multiplier that

controls this energy level.

Let us define the quantity:

ΩN,δ(ε) =
∣∣∣∣ {s : (ε− δ/2)N ≤ E(s) ≤ (ε+ δ/2)N}

∣∣∣∣, (6)

and let us assume that the limit

Σ(ε) = lim
δ→0

lim
N→∞

lnΩN,δ(ε)
N

exists and that Σ(ε) is a differentiable concave function. Σ(ε) is the entropy of the physical system in

its statistical–mechanical definition. We will see shortly that it is intimately related to the Shannon

entropy associated with the Boltzmann–Gibbs probablity distribution P (s) defined above.

To see why the concavity assumption makes sense, note that at least when P (s) is a product

distribution (namely, when E(s) =
∑

i E(si)),

ΩN1+N2,δ

(
N1ε1 +N2ε2
N1 +N2

)
≥ ΩN1,δ(ε1) · ΩN2,δ(ε2)

since for every configuration s, where N1 ≤ N particles have total energy N1ε1 and N2 = N −

N1 particles have total energy N2ε2, the total energy of all N = N1 + N2 particles is obviously
1The free energy means the maximum work that the system can carry out in any process of fixed temperature.

The maximum is obtained when the process is reversible (slow, quasi–static changes in the system).
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N1ε1 + N2ε2, but the converse is not true since there are other ways to split the total energy of

N1ε1 + N2ε2 between the two complementary subsets of particles. Thus, taking the logarithm of

both sides, dividing by (N1 +N2), then taking the limits of N1, N2 →∞ such that N1/N2 tends to

a given constant, and finally, taking the limit of δ → 0, one readily observes that Σ(ε) is concave.

An argument of the same spirit can be exercised in somewhat more general situations, e.g., when

P (s) has a Markov structure (namely, the physical system has some nearest–neighbor interactions),

though some more caution is required.

Denoting

ψ(β) = lim
N→∞

1
N

ln
∑
s

exp{−βE(s)},

it is readily seen that

ψ(β) = lim
δ→0

lim
N→∞

1
N

ln

∑
j≥0

ΩN,δ((j + 1/2)δ) · exp{−Nβjδ]}


= sup

ε≥0
[Σ(ε)− βε], (7)

i.e., ψ(·) and Σ(·) are a Legendre–transform pair. Since Σ(·) is assumed concave, then the inverse

transform relation

Σ(ε) = inf
β≥0

[βε+ ψ(β)],

holds true as well, and so the derivatives β(ε) ∆= dΣ/dε and ε(β) = −dψ/dβ (which are the

maximizer of [Σ(ε)−βε] and the minimizer of [βε+ψ(β)], respectively), are inverses of each other.

It follows then that

Σ(ε) = ψ(β)− β · dψ
dβ
,

but as is readily seen, −dψ/dβ is the average internal energy, E{E(S)]}, where E is the expectation

operator associated with the Boltzmann distribution. This, in turn, is readily verified to agree with

the expression of the Shannon entropy rate H(S) of the distribution P (s),

H(S) = lim
n→∞

1
N

E

{
ln

[
1

P (S)

]}
= lim

n→∞
1
n

E

{
ln

[
Z(β)

exp{−βE(S)}

]}
= ψ(β) + βE{E(S)}. (8)

Thus, Σ(ε) = H(S) whenever β and ε are related by β = β(ε), or equivalently, ε = ε(β). For a

given β, the Boltzmann–Gibbs distribution has a sharp peak (for large N) at the level of ε(β). We
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then say that this value of ε is the dominant energy level: Not only is it the average energy, there

is also a strong concentration of the probability about this value as N grows without bound. The

second law of thermodynamics asserts that in an isolated system (which does not exchange energy

with its environment), the total entropy cannot decrease, and hence in equilibrium, it reaches its

maximum.

Now, suppose that we have a physical system that is composed of two subsystems, one having N

particles with microstates {s} and Hamiltonian E1(s), and the other has n particles with microstates

{s′} and Hamiltonian E2(s′). Let us suppose that these two subsystems are in thermal contact and

they both reside in a very large environment (heat bath) having a fixed temperature T = 1/(kβ).

The two subsystems are allowed to exchange energy with each other as well as with the heat bath.

How is the total energy of the system split between the two subsystems? An example of two such

subsystems was described in the first few paragraphs of the Introduction.

The partition function of the composite system is given by

Z(β) =
∑
s,s′

exp{−β[E1(s) + E2(s′)]}

and so the dominant energy level, as we saw before, is the one that achieves the associated nor-

malized log–partition function ψ(β), i.e., the solution ε0 to the equation dΣ(ε)/dε = β, where Σ(ε)

is the entropy of the combined system. Let us confine attention now to the set of combined mi-

crostates {(s, s′)} of the composite system which have energy (N + n)ε0. More precisely, assume

that the ratio n/N = λ is held fixed, so (N + n)ε0 = N(1 + λ)ε0, and let us define

ΩN,n,δ(ε0) =

∣∣∣∣∣{(s, s′) : N(1 + λ)(ε0 − δ/2) ≤ E1(s) + E2(s′) ≤ N(1 + λ)(ε0 + δ/2)}
∣∣∣∣∣.

Clearly, every configuration (s, s′) with energy about N(1+λ)ε0 corresponds to some allocation of

of the energy in one subsystem and the remaining energy in the other. Thus, defining Ω(1)
N,δ(ε) and

Ω(2)
n,δ(ε) as the enumerators of microstates with energy about ε in each one of the two subsystems

individually (as defined in eq. (6)), we have, for δ̂ = δ(1 + λ):

ΩN,n,δ̂(ε0) =
∑
j≥0

Ω(1)
N,δ((j + 1/2)δ)Ω(2)

n,δ

(
(1 + λ)ε0 − (j + 1/2)δ

λ

)
.

Defining Σ(ε) as limδ→0 limN→∞[lnΩN,λN,δ̂(ε)]/[N(1+λ)], we find, after taking logarithms of both

sides, dividing by N(1 + λ), letting N → ∞, and then δ → 0, that Σ(ε0) is given by the weighted
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supremal convolution2:

Σ(ε0) = sup
0≤ε≤(1+λ)ε0

[
1

1 + λ
· Σ1(ε) +

λ

1 + λ
· Σ2

(
(1 + λ)ε0 − ε

λ

)]
.

Assuming that the maximum is achieved by ε∗ ∈ (0, (1 + λ)ε0), it is characterized by a vanishing

derivative of the expression in the square brackets, i.e., the solution to the equation

Σ′
1(ε) = Σ′

2

(
(1 + λ)ε0 − ε

λ

)
, (9)

where ε is the unknown, and where Σ′
i is the derivative of Σi, i = 1, 2. This equation characterizes

the thermal equilibrium between the two subsystems and the heat bath. Now, the left–hand side

is exactly β. Thus, ε∗, the per–particle energy share of the first subsystem is the solution to the

equation Σ′
1(ε) = β (or, equivalently, of eq. (9), as said), and the remaining energy per particle,

[(1 + λ)ε0 − ε∗]/λ belongs to the other subsystem.

Comment. Returning to the example that opens the Introduction, a simple calculation shows that

the dominant energies are

H ·E{
N∑

i=1

Si} = NB tanh
(
B

kT

)
in the first subsystem, and

e0 ·E{
n∑

i=1

S′i} =
ne0 exp{−e0/kT}
1 + exp{−e0/kT}

in the second subsystem. Thus,

ε∗ = B tanh
(
B

kT

)
and

(1 + λ)ε0 − ε∗

λ
=

exp{−e0/kT}
1 + exp{−e0/kT}

.

In the parallel joint source–channel coding problem described in the Introduction, and to be fur-

ther studied in a more general setting in the sequel, we have: lnP (s) = (1
2 ln q

1−q ) ·
∑N

i=1 si +const,

and lnW (y|x) = (ln p
1−p) ·

∑n
i=1(xi ⊕ yi) + const, with ⊕ denoting modulo 2 addition, the dom-

inant contribution to P (s|y) comes from those {s} for which
∑N

i=1 si is about its typical value

N [(+1) · q + (−1) · (1 − q)] = N(2q − 1) = N tanh(B/kT ) (in analogy to the energy of the
2The supremal convolution between two functions f(x) and g(x) is generally defined as h(x) = supt[f(x−t)+g(t)].

The qualifier “weighted”, in our context, refers to the fact that both functions as well as their arguments are weighted
by 1/(1 + λ) and λ/(1 + λ).
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first subsystem above, where we have used the relations (1)-(4)) and
∑n

i=1(xi ⊕ yi) is about

np = n exp{−e0/kT}/[1 + exp{−e0/kT}] (in analogy to the energy of the second subsystem).

Notice that these two typical contributions to the log–posterior probability agree also with the

corresponding typical contributions, lnP (s0) and lnW (y|x(s0)), of the real message s0 that was

actually transmitted. This is true regardless of whether the communication is reliable or not, i.e.,

it continues to hold no matter whether the entropy rate of the source is smaller or larger than λ

times the mutual information between the input and the output of the channel.

Returning to the general discussion above, note that the same considerations continue to hold

even if one of the systems, say, the second one, has an effective negative entropy, that is, Ω(2)
n,δ([(1 +

λ)ε0 − ε∗]/λ) < 1, which means that for each microstate s of the first subsystem with per–particle

energy ε∗, only a fraction of the compatible combined microstates {(s, s′)} have noramilzed energy

ε0. Of course, ΩN,n,δ̂(ε
∗) must be larger than 1. In the sequel, we shall see that in the joint source–

channel coding problem, the source and the channel constitute a mechanism which is highly parallel

to that of equilibrium energy–sharing between two subsystems in a heat bath, where the subsystem

corresponding to the channel has a negative effective thermodynamic entropy in this sense.

We should comment that in order to determine the energy sharing between the two subsystems

in the above discussion, it was not necessary to consider how they thermally interact with each other

and to go through the weighted supremal convolution between their entropies, as we did. We could

have determined these energies simply by considering the equilibrium of each one of the subsystems

individually with the heat bath,3 thus equating the derivative of each one of the entropy functions

to β. Nonetheless, we have deliberately chosen to present the supremal convolution because in the

sequel, it is this relation that will lead to the derivation of the mutual information in the joint

source–channel coding problem.

4 Formulation, Main Results and Discussion

Consider an information source, S1, S2, . . ., whose symbols {Si} take on values in a finite alphabet

S. The source is characterized by a sequence of probability distributions, P (s), s
∆= (s1, . . . , sN ),

where N = 1, 2, . . .. Consider next a discrete memoryless channel (DMC), which is characterized
3When doing so, the other system then becomes part of the heat bath anyway.
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by a matrix of single–letter transition probabilities {W (y|x), x ∈ X , y ∈ Y}, where X and Y are

finite alphabets. The operation rate of the channel relative to the source is λ channel uses per

source symbol, which means that while the source produces an N–vector s = (s1, . . . , sN ) ∈ SN ,

the channel conveys n channel symbols, namely, it receives an n–vector x = (x1, . . . , xn) ∈ X n and

outputs an n–vector y = (y1, . . . , yn) ∈ Yn, where n = λN . The parameter λ is referred to as the

bandwidth expansion factor of the channel relative to the source.

For the sake of convenience in drawing the analogy with statistical mechanics, we will think

of both the source and the channel as Boltzmann distributions with certain Hamiltonians at a

certain common inverse temperature β, that is, P (s) is proportional to exp{−βES(s)} and W (y|x)

is proportional to exp{−βEC(x, y)}, where ES(·) and EC(·, ·) are the Hamiltonians of the source and

the channel, respectively. For a pair of n–vectors x and y, we will denote W (y|x) =
∏n

i=1W (yi|xi),

and keep in mind that it is proportional to exp{−βEC(x,y)}, where EC(x,y) ∆=
∑n

i=1 EC(xi, yi).

Clearly, there is no loss of generality in this representation of the source and the channel since there

is always at least one way of doing this: For example, one can simply take β = 1, ES(s) = − lnP (s),

and EC(x, y) = − lnW (y|x). The point is, however, that by doing this we have slightly extended

the scope: instead of one source and one channel, we are actually considering a family of sources

and channels, both indexed by a common parameter β, that controls the degree of uniformity or

skewedness of the distribution.

An (N,n) joint source–channel code, for the above defined source and channel, is a mapping from

the set SN to X n. Every source string s is mapped into a channel input vector x
∆= (x1, . . . , xn), and

when we wish to emphasize the dependence of x on s, we denote it as x(s). The code is assumed to

be selected at random, where for each s, the codeword x(s) is drawn under a distribution4 M(x),

independently5 of all other codewords. The receiver estimates s by applying a certain function on

the received channel output sequence y
∆= (y1, . . . , yn), i.e., it implements a function from Yn to

SN , which will be denoted by ŝ = ŝ(y). In some applications, the receiver (or the observer) may

not necessarily attempt at full–fledged decoding of the message, but may opt to merely estimate a
4A more general model would allow a distribution M that depends on s. For example, if SN can be naturally

divided into type classes (like in te case of memoryless sources, Markov sources, etc.), then it is plausible to let M
depend on the type class of s. However, among all sequences in SN , the important ones are those that are typical to
the source (others can be ignored in the large N limit), which are equiprobable in the exponential scale, and so, the
distribution M for all of them can be taken to be the same without loss of asymptotic optimality.

5The independence assumption is made here mostly for the sake of simplicity. It can be somewhat relaxed as long
as the concentration properties specified below continue to hold.
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certain function of the source sequence (e.g., some statistic such as its composition).

Our study of the mutual information induced by the joint source–channel code will be strongly

based on the posterior distribution, which, for a given (randomly selected) code, is defined as:

Pβ(s|y) =
P (s)W (y|x(s))∑

s′∈SN P (s′)W (y|x(s′))

=
exp{−β[ES(s) + EC(x(s),y)]}∑
s′ exp{−β[ES(s′) + EC(x(s′),y)]}

. (10)

On a technical note, observe that since the posterior distribution is given by a ratio, this allows

slighlty more freedom in the definition of the Hamiltonians ES and EC , as certain common constants

in the numerator and the denominator may cancel each other. For example, if the source is binary

and memoryless, as described in the example given in the Introduction, then P (s) is proportional

to exp{−(1
2 ln 1−q

q )
∑N

i=1 si}, and so one can define ES(s) to be proportional to
∑N

i=1 si, where the

factor 1
2 ln 1−q

q can be split between a part that is absrobed in the Hamiltonian itself and a part that

is attributed to the inverse temperature parameter β. A similar comment applies to the channel,

but here some more caution is required since, in general, the constant of proportionality that relates

W (y|x) and exp{−βEC(x,y)} may depend on x, unless the code is of constant composition and/or

the channel is symmetric in the sense that
∑

y exp{−βEC(x, y)} is independent of x for all β (which

is the case, e.g., in modulo–additive channels, like the BSC). If neither of these conditions hold

(i.e., if the code is not constant composition and the channel is not symmetric), we keep the choice

EC(x, y) as being proportional to − lnW (y|x).

For a given choice of the Hamiltonians ES and EC , in view of these considerations, let us define

the joint source–channel partition function as the denominator of the posterior distribution, i.e.,

Z(β|y) ∆=
∑

s∈SN

exp{−β[ES(s) + EC(x(s),y)]}.

In the course of studying the properties of a typical realization of the joint source–channel partition

function, pertaining to a given code ensemble, we will make a few observations, which were already

mentioned briefly in the Introduction:

1. Similarly as results that have already been observed in the context of the pure channel coding

problem [12], the statistical–mechanical system pertaining to Z(β|y) undergoes a phase tran-

sition, which corresponds, in the realm of coded systems, to the transition between reliable
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and unreliable communication, namely, the point at which the entropy rate of the source

exceeds the mutual information between the input and the output of the channel.

2. When identifying the set of source vectors {s} that dominates Z(β|y) (i.e., those that

contribute most to Z(β|y)) above the phase transition temperature, one observes a situa-

tion that parallels that of thermal equilibrium between two physical subsystems, one corre-

sponding to the source and the other corresponds to the channel. To be more specific, if

E(s,y) = ES(s) + EC(x(s),y) is thought of as the total ‘energy’ shared by the source and

the code/channel, then the dominant messages {s} split this total average energy between

the source and the channel components in a way that corresponds to thermal equilibrium

between the two parallel physical subsystems.

3. The balance between the thermodynamical entropies of the two physical subsystems that lie

in equilibrium, as described in item no. 2, is identified with the simple relation between the

corresponding Shannon entropies of the source, namely, the unconditional source entropy and

the conditional entropy given the channel output, whose difference is the mutual information

between the source and the channel output. This gives rise to a simple formula of the mutual

information rate induced by a typical code in the ensemble.

In analogy to the definitions and the assumptions outlined in Section 3, we now make a few

definitions and assumptions concerning the joint source–channel coding model.

A.1 Defining

Ω(S)
N,δ(ε)

∆=
∣∣∣∣ {

s ∈ SN : (ε− δ/2)N ≤ ES(s) ≤ (ε+ δ/2)N
} ∣∣∣∣,

our first assumption is that

ΣS(ε) ∆= lim
δ→0

lim
N→∞

lnΩ(S)
N,δ(ε)
N

exists and that ΣS(ε) is a differentiable concave function.

A.2 For a given y, define

φn,δ(ε|y) ∆=
1
n

ln Pr{n(ε− δ/2) ≤ EC(X,y) ≤ n(ε+ δ/2)},

where the random vector X is drawn under the random coding distribution M , independently

of y. Then, our second assumption is that for all ε ≥ 0, limδ→0 limn→∞ E{φn,δ(ε|Y )} tends
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uniformly to a differentiable function φ(ε), where the expectation E is w.r.t. both the random

selection of the codebook and the random actions of the source and the channel. Moreover,

we assume that limδ→0 limn→∞ φn,δ(ε|Y ) tends φ(ε) uniformly almost surely.

A.3 Let ΣS(ε) and φ(ε) be defined as above, and let Σ0(ε) be defined by the weighted supremal

convolution

Σ0(ε)
∆= max

0≤ε′≤(1+λ)ε

[
ΣS(ε′)
1 + λ

+
λ

1 + λ
φ

(
(1 + λ)ε− ε′

λ

)]
.

Our third assumption is that Σ0(ε) is a concave function throughout the range of ε where it

is non–negative. We now define

Σ(ε) =

{
Σ0(ε) Σ0(ε) ≥ 0
−∞ Σ0(ε) < 0

As we shall see below, while Σ0(ε) gives the logarithm of the expected number of configurations

with total energy ε, the function Σ(ε) gives the number of such configurations for a typical code

in the ensemble. To see this, note that if ΣS(ε′) + λφ([(1 + λ)ε − ε′]/λ) < 0 for all ε′, this means

that for every ε′ the product of the number of configurations {s} for which ES(s) is about nε′

and the probability that a randomly chosen codeword would provide the complementary energy

([(1 + λ)ε − ε′]/λ, is less than one, which means that there is a very low probability to find any

configuration with total energy ε, and so, Σ(ε) which is the normalized logarithm of the number of

such configurations (i.e., the thermodynamical entropy of the combined system) is equal to −∞ for

a typical code realization. Note that the concavity of Σ0(ε) across the range where it is non–negative

implies that Σ(ε) is concave as well.

In analogy to the discussion of the previous section, let us define

ZS(β) ∆=
∑
s

exp{−βES(s)}.

Then,

ψS(β) ∆= lim
N→∞

1
N

lnZS(β)

and ΣS(ε) are a Legendre–transform pair. Since ΣS(·) is assumed concave, then the inverse trans-

form relation

ΣS(ε) = inf
β≥0

[βε+ ψS(β)],
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holds true as well, and so the derivatives βS(ε) ∆= dΣS/dε and εS(β) = −dψS/dβ are inverses of

each other. It follows then that the Shannon entropy rate H(S) of P (s) (which depends on β)

agrees with ΣS(ε) whenever β and ε are related by β = βS(ε), or equivalently, ε = εS(β).

Referring to the partition function Z(β|y), let us distinguish between the contribution of

the actual realization of the true sequence that the source actually emitted s0, i.e., Zc(β|y) =

exp{−β[ES(s0) + EC(x(s0),y)]} and the contribution of all other (erroneous) source vectors

Ze(β|y) =
∑

s 6=s0

exp{−β[ES(s) + EC(x(s),y)]}.

Now, lnZc(β|y) is typically around −[E{ES(S)}+E{EC(X(S),Y )}]. As for Ze(β|y), let us define

ΩN,δ(ε|y) =
∣∣∣∣ {s 6= s0 : N(1 + λ)(ε− δ/2) ≤ ES(s) + EC(x(s),y) ≤ N(1 + λ)(ε+ δ/2)}

∣∣∣∣.
Then, similarly as in the previous section, one readily observes that for δ′ = δ(1 + λ), we have:

ΩN,δ′(ε|y) =
∑
j≥0

Ω(S)
N,δ((j + 1/2)δ)×

Pr{N(1 + λ)(ε− δ′/2)−N(j + 1)δ ≤ EC(X,y)) ≤ N(1 + λ)(ε+ δ′/2)−Njδ}

=
∑
j≥0

Ω(S)
N,δ((j + 1/2)δ) exp{nφn,δ([(1 + λ)ε− (j + 1/2)δ]/λ|y)} (11)

Taking logarithms of both sides, dividing by N + n = N(1 + λ), letting N grow without bound,

and finally letting δ go to zero, we obtain6 that:

lim
N→∞

ln Ω̂N,δ′(ε|Y )
N(1 + λ)

a.s.=

{
Σ0(ε) Σ0(ε) ≥ 0
−∞ Σ0(ε) < 0

but the r.h.s. is exactly Σ(ε). Thus, as explained earlier, Σ(ε) is the thermodynamical entropy

associated with the combined source–channel system. The concavity of Σ(ε) then implies that

it agrees (after the appropriate scaling) with the conditional Shannon entropy rate of the source

given the channel output, H(S|Y ), i.e., the entropy rate pertaining to the sequence of conditional

probabilities P (s|y) defined above. For a given ε in the range where Σ(ε) is finite, let ε′ = ε∗ achieve

the supremum defining Σ(ε).
6At this point, we are using the fact [12],[11] that for an ensemble of independently selected codewords, the

number of codewords which contribute energy EC(X, y) ≈ n[(1 + λ)ε − ε′]λ, is with very high probability zero, if
ΣS(ε′) + λφ(1 + λ)ε− ε′]/λ) < 0 and around exp{N [ΣS(ε′) + λφ(1 + λ)ε− ε′]/λ)} if ΣS(ε′) + λφ(1 + λ)ε− ε′]/λ) > 0.
The assumption of independnent codewords can be relaxed as long as this concentration property continues to hold.
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At this point, one should distinguish between two situations: In the first situation, ε is on

the boundary of the range where Σ(ε) is finite and positive, namely, Σ(ε) = 0. In this case, the

partition function Z(β|y) (and hence also Pβ(s|y)) is dominated by a subexponential number of

configurations {s} and so, the entropy rate H(S|Y ) = 0, which means that the system is frozen

in its glassy phase (cf. [12],[11] and references therein.) In the second situation, ε is an internal

point of the range where Σ(ε) > 0, where we will also assume that ε∗ ∈ (0, (1 + λ)ε), which is

the paramagnetic phase (or the disordered phase) of Ze(β|y). Then, the derivative of the function

being maximized vanishes, i.e.,

dΣS(ε′)
dε′

∣∣∣∣∣
ε′=ε∗

− dφ(ε′′)
dε′′

∣∣∣∣∣
ε′′=[(1+λ)ε−ε∗]/λ

= 0

or equivalently,

Σ′
S(ε∗) = φ′

(
(1 + λ)ε− ε∗

λ

)
, (12)

where Σ′
S and φ′ denote the derivatives of ΣS and φ, respectively. As before, eq. (12) gives rise

to thermal equilbrium between the physical system corresponding to the source and the one that

pertains to the code/channel. Next observe that the left–hand side is exactly βS(ε∗). Thus,

βS(ε∗) = φ′
(

(1 + λ)ε− ε∗

λ

)
,

which means that given the value of the total per–particle energy ε, we can find how the dominant

codewords split the energy between the source and the channel: we can solve the above equation

with the given ε, with ε∗ as an unknown. Then, the source contribution will be ε∗ and the channel

contribution will be [(1 + λ)ε− ε∗]/λ.

The discussion above holds for every value of ε for which Σ(ε) > 0. The dominant value of ε is

ε0, the one that achieves E{lnZ(β|Y )}/[N(1 + λ)] for large N , in other words, the achiever of:

ψ(β) = lim
N→∞

E lnZ(β|Y )
N(1 + λ)

= sup
ε≥0

[Σ(ε)− βε].

Thus, the dominant value of ε, which is relevant for the previous paragraph, is ε0, which in turn

depends only on β. But since Σ is assumed concave, then ψ and Σ are also a Legendre–transform

pair, and so ε0 and β are related via the derivatives, ε0 = ε(β) ∆= −ψ′(β) and β = β(ε) = Σ′(ε),

where again, primes denote the derivatives. In summary, given β, ε0 = ε(β) and ε∗ = εS(β). Thus,
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βS(ε∗) in the equilibrium equation is βs(εS(β)) ≡ β since βS(·) and εS(·) are inverses of one another.

Thus, the equilibrium equation applied to the dominant energy ε0 becomes

β = Σ′
S(ε∗) = φ′

(
(1 + λ)ε0 − ε∗

λ

)
.

If, in addition, φ is concave, then φ′ is monotone, and thus has an inverse, which is given by the

negative derivative −ζ ′ of the Legendre transform of φ, that is, by the derivative of

ζ(t) = sup
ε

[φ(ε)− εt]

and then
(1 + λ)ε0 − ε∗

λ
= −ζ ′(β).

Now observe that if, for a typical y, either Zc(β|y) dominates Ze(β|y), or Ze(β|y) is in its frozen

phase, then H(S|Y ) vanishes, and so the mutual information rate limN→∞ I(S;Y )/N = H(S). For

the complementary case, our main result is the following:

Theorem 1 Let E{I(S;Y )} denote the expected mutual information, where the expectation is

taken w.r.t. the ensemble of of joint source–channel codes. Then, under Assumptions A1–A3:

lim
N→∞

E{I(S;Y )}
N

= −λφ(−ζ ′(β)),

provided that Σ(ε0) > 0.

Remark: From the above discussion, it is apparent that this result applies also to the almost–sure

limit of I(S;Y )/N w.r.t. the code ensemble.

Proof.

lim
N→∞

EI(S;Y )
N

= H(S)−H(S|Y )

= ΣS(ε∗)− (1 + λ)Σ(ε0)

= −λφ
(

(1 + λ)ε0 − ε∗

λ

)
= −λφ(−ζ ′(β)). 2 (13)

Discussion. We obtained then a very simple formula which depends solely on the random coding

distribution. But what is the meaning of ζ ′(β)? Since −φ(ε) is, in fact, the large deviations rate
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function for the event EC(X,y) ≤ nε, and ζ(t) is its Legendre transform, then it must be the

almost–sure limit of the log–moment generating function, that is

ζ(t) a.s.= lim
n→∞

1
n

ln
∑

x∈Xn

M(x)e−tEC(x,Y )

where, as defined above, M is the random coding distribution that governs each one of the inde-

pendent, randomly selected codewords. Thus,

−ζ ′(β) a.s.= lim
n→∞

1
n
·

∑
xM(x)Ec(x,Y )e−βEC(x,Y )}∑

xM(x)e−βEC(x,Y )
.

But the Boltzmann weight e−βEC(x,y) is proportional to W (y|x), and so, −ζ ′(β) is exactly the

asymptotic almost–sure normalized conditional expectation of the energy, limn→∞ E{EC(X,Y )|Y }/n,

stemming from the action of the channel on the message x(s0) that was actually transmitted. This

quantity in turn is assumed to concentrate about its mean which is limn→∞ E{EC(X,Y )}/n.

Thus, Ze(β|y) and P (s|y) are dominated by (erroneous) sequences {s} whose normalized en-

ergy ε0 consists of a source contribution ε∗ = limN→∞ E{ES(S)}/N , and a channel contribution,

[(1+λ)ε0− ε∗]/λ that agrees with the normalized energy generated by the noise, i.e., it agrees with

limn→∞ E{EC(X,Y )}/n, where X and Y are related via the channel W . Moreover, this is also the

typical energy composition of the true message s0 that was actually transmitted (cf. the definition

of Zc(β|y). Thus, the above conclusion holds true regardless of whether or not the entropy rate of

the source is smaller (in which case s0 dominates Z(β|y)) or larger than λ times the normalized

mutual informtion between X and Y (in which case, erroneous messages dominate Z(β|y) for a

typical y). We have already seen this behavior in the special case of the binary source and the

BSC.

Example 1. Suppose that the channel is BSC and codewords are generated by fair coin tossing. In

this case, W (y|x) is proportional to exp{−βEC(x,y)}, where EC(x,y) is the Hamming distance

and β = ln 1−p
p . In this case, φ(ε) = h2(ε)− ln 2 whose derivative is φ′(ε) = ln 1−p

p , and so, −ζ ′(β),

the inverse of φ′(ε), is given by −ζ ′(β) = 1/(1 + eβ) = p. It follows then that if, in addition,

the source is binary and memoryless with a parameter q, then P (s|y) is dominated by vectors

{s} whose energy is as described in the Introduction. Also, the normalized mutual information is

−λφ(−ζ ′(β)) = −λφ(p) = λ(ln 2 − h2(p)). Somewhat more generally, let each coordinate Xi(s),

i = 1, . . . , n, of each codeword be drawn i.i.d. with probabilities Pr{Xi(s) = 1} = 1− Pr{Xi(s) =
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0} = m. Then, it is easy to show (using the method of types [2]) that

−φ(p) = min
{PX|Y : Ed(X,Y )≤p}

[I(X;Y ) +D(PX‖M)], Y ∼ Bernoulli(m ∗ p),

wherem∗pmeans the binary convolution betweenm and p (i.e., m∗p = m(1−p)+p(1−m)), d(·, ·) is

the Hamming distance and PX is the marginal ofX induced by Y (which is Bernoulli(m∗p)) and the

reversed channel PX|Y to be optimized. By eliminating the divergence term, we are lower bounding

−φ(p) by the rate–distortion function of Y at Hamming distortion p, which is h2(m ∗ p) − h2(p).

On the other hand, returning to the original minimization problem, by selecting PX|Y (instead of

minimizing over PX|Y ) to be the reverse channel induced by M and WY |X (which is the BSC(p)),

we are getting the same quantity also as an upper bound. Thus, −φ(p) = h2(m ∗ p) − h2(p), and

so,

lim
N→∞

EI(S;Y )
N

= λ[h2(m ∗ p)− h2(p)].

Comment: An alternative view on the derivation of the asymptotic mutual information rate between

S and Y comes from the following chain of equalities:

lim
N→∞

EI(S;Y )
N

= lim
N→∞

E

{
ln
P (Y |S)
P (Y )

}
= lim

N→∞

1
N

E {ln exp{−βEC(X(S),Y )}} −

lim
N→∞

1
N

E

{
ln

[∑
s

1
ZS(β)

exp{−β[ES(s) + EC(X(s),Y )]}
]}

= −β[(1 + λ)ε0 − ε∗] + ψS(β)− ΣS(ε∗)− λφ

(
(1 + λ)ε0 − ε∗)

λ

)
+ β(1 + λ)ε0

= βε∗ + ψS(β)− ΣS(ε∗)− λφ

(
(1 + λ)ε0 − ε∗)

λ

)
= −λφ

(
(1 + λ)ε0 − ε∗)

λ

)
(14)

where we have used the fact that the summation over s is dominated by configurations with per–

particle energy ε0, which is allocated as ε∗ and [(1 + λ)ε0 − ε∗]/λ.

5 Application to the Wiretap Channel

In this section, we demonstrate how our results apply to the wiretap channel. Wyner, in his well–

known paper on the wiretap channel [14], studied the problem of secure communication across a
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degraded broadcast channel, without using a secret key, where the legitimate receiver has access

to the output of the good channel and the wiretapper receives the output of the bad channel.

In that paper, Wyner characterized the optimum trade–off between reliable coding rates and the

equivocation at the wiretapper, which was defined in terms of the conditional entropy of the source

given the output of the bad channel, observed by the wire–tapper.

Consider a DMS P as before, and a cascade of two finite alphabet DMC’s: WY |X followed

immediately by WZ|Y , both7 operating at a relative rate of λ channel symbols per source symbol.

The source s ∈ SN is encoded to a channel input vector x(s) ∈ X n, n = λN , and then transmitted.

A code for the wire–tap channel should be designed in a way, that on the one hand, the legitimate

receiver is required to estimate the source s from the output y ∈ Yn of the channel WY |X within

an arbitrarily small probability of error, whereas on the other hand, the eavesdropper, which has

access to z ∈ Zn, should be able to learn as little as possible about the source in the sense that

the asymptotic equivocation, ∆ = lim supN→∞H(S|Z)/N , should be as large as possible. Wyner

showed [14] that the largest achievable value of ∆ is given by λΓ(H(S)/λ), where

Γ(R) ∆= max
PX : I(X;Y )≥R

[I(X;Y )− I(X;Z)].

In particular, the secrecy capacity Cs, which is the solution to the equation R = Γ(R), is the

rate at which the potential secrecy that the wiretap channel can offer is fully expoilted: If the

entropy of the source, H(S)/λ is less than or equal to Cs (supposing that λ can be chosen in such

a way), then the coding scheme of [14] that asymptotically achieves Cs works as follows: Let X∗

be the random variable X that achieves Γ(R), for some R in the range H(S)/λ ≤ R ≤ Cs, and

let Y ∗ and Z∗ be the corresponding outputs of the two channels. We first compress the source S

to its entropy, and then apply channel coding so that the good receiver can still decode reliably

for large N and n, but the bad one cannot. Now, since H(S)/λ ≤ Cs, then by the definitions of

Γ(·) and Cs, I(X∗;Y ∗) ≥ H(S)/λ + I(X∗;Z∗). Accordingly, the channel codebook is composed

of about eNH(S) = enH(S)/λ bins (one for each typical source sequence), each of size slightly less

than enI(X∗;Z∗). The codeword actually transmitted is randomly chosen among all codewords of

the bin pertaining to the index of the compressed source sequence. Note that the eavesdropper

could have decoded the message had it been informed of the bin which the transmitted codeword
7The notation of the output of the second channel, Z, should not be confused with the notation of the partition

function since we do not refer the partition function in this section.

20



belongs to since the rate of the bin, as said, is (slightly) less than I(X∗;Z∗). The idea then is that

this information is irrelevant since it is independent of the source vector, and so it does not help

the eavesdropper in learning anything about the source. Indeed, if we represent the transmitted

codeword x as f(c(s),u), where c(s) stands for the bit string of the lossless compression of s,

indicating the bin index using nH(S)/λ nats, and u as an independent random bit string of length

nI(X∗;Z∗) nats, then we have the following: One the one hand,

H(X|Z) ≤ H(c(S),U |Z) = H(c(S)|Z) +H(U |Z, c(S))

where the term H(U |Z, c(S)) essentially vanishes since, as mentioned above, every bin forms a

channel sub–code that is reliably decodable by the eavesdropper. On the other hand,

H(X|Z) = H(X)− I(X;Z),

thus the equivocation achieved is:

H(S|Z) ≥ H(c(S)|Z) ∼ H(X)− I(X;Z)

where the first term in the r.h.s. is essentially n[H(S)/λ+I(X∗;Z∗)] and the second term, which is

a mutual information induced by a code above capacity, can be evaluated using our above results,

provided that the channel code is randomly selected from an ensemble that satisfies our assumptions.

For example, if the codewords are chosen i.i.d. according to the distribution of X∗, then I(X;Z)

is approximately nI(X∗;Z∗), and then full secrecy is achieved as H(S|Z)/N is essentially equal

to H(S). Nonetheless, since the rate of the code [H(S)/λ + I(X∗;Z∗) is less than I(X∗;Y ∗),

the legtimate decoder can still decode reliably. Out results can be used also to assess the secrecy

achieved by random varlaibles other than i.i.d. according to X∗, while ensuring that the good

decode can still decode reliably.

6 Extension to Multiuser Settings

The above ideas can be extended in a natural manner to multiuser communication situations, and

in this section, we demonstrate this for the multiple access channel (MAC), where the underlying

principle is again thermal equilibrium between the subsystems pertaining to the different users and
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that of the channel. As before, our focus is on the regime where reliable communication cannot

hold (the paramegnetic phase).

As an example, consider a randomly selected joint source–channel code for a MAC with two

users, in the following setting. We are given two independent sources, S1, S2, . . . and T1, T2, . . .

governed by probability distributions PS(·) and PT (·), which are proportional to exp{−βES(·)}

and to exp{−βET (·)}, with partition functions ZS(β) and ZT (β), respectively. Each N–vector of

the first source s = (s1, . . . , sN ) ∈ SN is encoded into a channel input vector xS(s) ∈ X n
S and

each N–vector of the second source t = (t1, . . . , tN ) ∈ T N is encoded into a channel input vector

xT (t) ∈ X n
T . Both codebooks are selected independently, where each codevector of the first code

is chosen independently according to distribution MS and each codevector of the second codebook

is selected independently according to distribution MT . Both codewords are fed into a memoryless

MAC W (y|xS ,xT ), which is proportional to exp{−βEC(xS ,xT ,y)}. If we wish to estimate the

mutual information EI(S,T ;Y ) induced by the code, this is quite a trivial extension of the former

derivation. But what about EI(S;Y )?

Here, it will be more convenient to adopt the alternative derivation of eq. (14). Considering the

partition function

Z(β|y) =
∑
s,t

exp{−β[ES(s) + ET (t) + EC(xS(s),xT (t),y)]},

let ε∗S , ε∗T , and ε∗C denote the dominant energies allocated to the source S, the source T , and

the MAC, respectively. Also, for a typical randomly chosen codeword xS(s) of the source mes-

sage s actually transmitted, let us define enφn,δ(ε|xS(s),y) as the probability (under MT ) that

Ec(xS(s),XT ,y) is between n(ε− δ/2) and n(ε+ δ/2), for given xS(s) and y, and assume that as

n→∞ and then δ → 0, φn,δ(ε|xS(s),y) tends uniformly almost surely to a certain function which

will be denoted by φ(ε|S). Now,

lim
N→∞

EI(S;Y )
N

= lim
N→∞

1
N

E{lnP (Y |S)} − lim
N→∞

1
N

E{lnP (Y )}

= lim
N→∞

1
N

E

ln

 1
ZT (β)

∑
t

exp{−β[ET (t) + EC(XS(S),XT (t),Y )]}

−

lim
N→∞

1
N

E

ln

 1
ZS(β)ZT (β)

∑
s,t

exp{−β[ES(s)+
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ET (t) + EC(XS(s),XT (t),Y )]}]}

= ψS(β) + ΣT (ε∗T ) + λφ(ε∗C |S)− β(ε∗C + ε∗T )− ΣT (ε∗T )−

ΣS(ε∗S)− λφ(ε∗C |S) + β(ε∗S + ε∗T + ε∗C)

= λ[φ(ε∗C |S)− φ(ε∗C)] (15)

The last line of the above chain of equalities can be intuitively explained as follows: The term

−λφ(ε∗C) stands for limN→∞ EI(S,T ;Y )/N , because of the same reasoning as before (if we look

at the pair (S,T ) as one entity). The term λφ(ε∗C |S) corresponds to the conditional mutual

information rate limN→∞ EI(T ;Y |S)/N since the true S is given and only the random codeword

of T is selected. Thus, by the chain rule of the mutual information, the difference gives the mutual

information rate between S and Y .

Example 2. Consider the binary modulo–2 additive MAC, Y = XS ⊕XT ⊕ V , where all variables

take on values in {0, 1}, ⊕ denotes addition modulo 2 (XOR), and V is Bernoulli with parameter

p = Pr{V = 1}, independent of XT and XS . Similarly as in Example 1, let the codebooks of the

two users be generated by i.i.d. distributions with parameters mS and mT , respectively. Now, as

before, ε∗C = p and the probability that XS ⊕ XT , whose components are Bernoulli(mS ∗ mT ),

would fall within distance np from a typical y, whose components are Bernoulli(mS ∗ mT ∗ p),

is exponentially en[h2(p)−h2(mS∗mT ∗p)], thus φ(p) = h2(mS ∗ mT ∗ p) − h2(p). On the other hand,

the probability of the same event conditioned on xS , is the probability that XT would fall within

distance np from y ⊕ xS = xT ⊕ v (which has Bernoulli(mT ∗ p) components), and thus is of the

exponential order of enφ(p|S) = en[h2(p)−h2(mT ∗p)]. It follows then that

lim
N→∞

EI(S;Y )
N

= λ[h2(mS ∗mT ∗ p)− h2(mT ∗ p)].

In the special case where mT = 1/2, we get limN→∞
I(S;Y )

N = 0 regardless of mS , in agreement

with intuition, as XT behaves like Bernoulli(1/2) noise in the paramagnetic regime.
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