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GEOMETRIC APPROACH TO SAMPLING AND
COMMUNICATION

EMIL SAUCAN*, ELI APPLEBOIM', AND YEHOSHUA Y. ZEEVI'

ABSTRACT. Relationships that exists between the classical, Shannon-
type, and geometric-based approach to sampling are investigated. Some
aspects of coding and communication through a Gaussian channel prob-
lem are considered. In particular, a constructive method to determine
the quantizing dimension in Zador’s theorem is provided. A geomet-
ric version of Shannon’s Second Theorem is introduced. Applications
to Pulse Code Modulation and Vector Quantization of Images are pro-
vided. In addition, we sketch the geometerization of wavelets for Image
Processing purposes. We also discuss the implications of the Uncertainty
Principle on sampling and reconstruction of images. An extension of our
sampling scheme to a certain class of infinite dimensional manifolds is
considered.

1. GENERAL BACKGROUND

1.1. Introduction. We consider a geometric approach to Shannon’s sam-
pling theorem, i.e. one based on sampling the graph of the signal, considered
as a manifold, rather than a sampling of the domain of the signal, as is cus-
tomary in both theoretical and applied signal and image processing, moti-
vated by the framework of harmonic analysis. In this context it is important
to note that Shannon’s original intuition was deeply rooted in the geometric
approach, as exposed in his seminal work [60], and also in [61]. Indeed, it is
this geometric viewpoint of the problem which distinguishes Shannon from
Kotelnikov [35] and Nyquist [45], and allows him to transcend the restricted
context of technical communication theory. We were also inspired in our en-
deavor by the “dictionary” of geometric to communication theory notions,
and we strived to emulate it.!

Our approach is based upon the following sampling theorem for differ-
entiable manifolds that was recently presented and applied in the context
image processing ([54], [55])*:
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IDifferent paths towards the geometerization of Sampling Theory can be found, e.g. in
[49] and [34].

2An approach similar to ours appeared in [37], however mathematically less rigorous
and comprehensive. Unfortunately, we were not aware of the existence of this study upon
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Theorem 1.1. Let ¥" C RN n > 2 be a connected, not necessarily com-
pact, smooth manifold, with finitely many compact boundary components.
Then, there exists a sampling scheme of ¥™, with a proper density D =

D(p) = D<$>, where k(p) = max{|ki|, ..., |kn|}, and where kq,...,k, are

the principal curvatures of 3", at the point p € X™.
Moreover, the following corollary is also applicable to this problem:

Corollary 1.2. Let X", D be as above. If there exists kg > 0, such that
k(p) < ko, for all p € X", then there exists a sampling scheme of X" of
finite density everywhere. In particular, if X" is compact, then there exists
a sampling of X" having uniformly bounded density.

Note, however, that this is not necessarily the optimal scheme (see [55]).

The constructive proof of this theorem is based on the existence of the
so-called fat triangulations (see [52]). The density of the vertices of the
triangulation (i.e. of the sampling) is given by the inverse of the maximal
principal curvature. An essential step in the construction of the said trian-
gulations consists of isometrically embedding of X" in some RY, for large
enough N (see [48]), where the existence of such an embedding is guaran-
teed by Nash’s Theorem ([44]). Resorting to such a powerful tool as Nash’s
Embedding Theorem appears to be an impediment of our method, since
the provided embedding dimension N is excessively high (even after further
refinements due to Gromov [27] and Giinther [28]). Furthermore, even find-
ing the precise embedding dimension (lower than the canonical N) is very
difficult even for simple manifolds. However, as we shall indicate in the next
section, this high embedding dimension actually becomes an advantage, at
least from information theory of viewpoint.

The resultant sampling scheme is in accord with the classical Shannon
theorem, at least for the large class of (bandlimited) signals that also satisfy
the condition of being C? curves. In our proposed geometric approach, the
radius of curvature substitutes for the condition of the Nyquist rate. To
be more precise, our approach parallels, in a geometric setting, the local
bandwidth of [29] and [72]. In other words, manifolds with bounded curvature
represent a generalization of the locally band limited signals considered in
those papers. However, the 1-dimensional case is a limiting, degenerated
case, from the geometric viewpoint. Specifically, the notion of fatness (of
simplices), essential to the geometric sampling scheme (see [55]), reduces, in
this case to the (rather week) condition that there exists fy > 0 such that
(Si+1 — 5i)/(sj41 — sj) > fo, for all pairs of distinct sampling points s;, s;,
i.e such that the ratios of the distances between consecutive sampling points
are bounded from below and above. (Indeed, no notion of angle exists on
the real line.) This fact induces an apparently weakness of the geometric
method (as compared to the classical Shannon theorem), since curvature is

the publication of our previous work [54], [55] and [2]. We use therefore this opportunity
to rectify it.
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scale dependent. However, for bandlimited signals (and certainly for any
“real life” signals), the energy of the signal is bounded from above by some
Ey, hence we can assume it is normalized to equal 1. Then it is easy to see
that the curvature condition is actually equivalent to the Nyquist rate.>4

Here we further investigate the extent and implications of this analogy,
and of the geometric approach in general. We begin by making a few obser-
vations regarding the extent of our results, by finding the largest space of
signals wherein our results may be applied effectively. Next, in Section 2, we
establish the proper analogies considering concepts originating from classi-
cal sampling and from coding theory, considered in the context of Gaussian
channels. In doing so, we attempt to construct a “dictionary” of geometric
sampling and concepts originating from Shannon’s fundamental approach
[59].

In the last section we address a few implementation problems. In partic-
ular, we sketch a geometrical approach to wavelets in the context of Image
Processing. We also discuss the implications of the Uncertainty Principle
insofar as sampling and reconstruction of images are concerned.

Finally, we extend in the Appendix our investigation to (a class of) in-
finite dimensional manifolds. Such manifolds, and the need for a sampling
theory for this class of geometrical objects naturally arise, for instance, in
the context of continuous variations and deformations, of signals, e.g video,
perceived as infinite series of trigonometric functions.

1.2. General “geometric” signals. We begin our investigation by noting
that, by the Paley-Wiener Theorem (see, e.g., [50]), any bandlimited signal
is of class C*°. We have already shown in [54] that our geometric sampling
method applies not only to bandlimited signals, but also to more general
“blackboard signals”, i.e. L? functions whose graphs are smooth C? curves,
not necessarily planar.In fact, the geometric sampling approach can be ex-
tended to a far larger class of manifolds. Indeed, every piecewise linear (PL)
manifold of dimension n < 4 admits a (unique, for n < 3) smoothing (see for
example [65]), and every topological manifold of dimension n < 3 admits a
PL structure (cf., for example, [65]). In particular, for curves and surfaces,
one can first consider a smoothing of class > C? (so that curvature can be
defined properly), which can then be sampled with sampling rate given by
the maximal curvature radius. Since the given manifold and its smoothing
are arbitrarily close [43], one obtains the desired sampling result. (This very
scheme is developed and applied in [54] for gray-scale images.)

3In comparing the classical and geometric approaches, one should bear in mind that no
algebraic structure is presumed in the geometric context , whereas it is, implicitly assumed
in the (infinite) sum appearing in the classical version.

4n fact, Shannon already had the intuition of the role of curvature (using second partial
derivatives) for sampling and begun to explore its geometry in[61].
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While numerical schemes for practical implementation of smoothing exist,
they are not necessarily computationally satisfactory. For practical applica-
tions, one can circumvent this problem by applying numerical schemes based
on the finite element method ([56]). However, for the sake of mathematical
correctness and in order to be able to tackle more general applications, one
would like to consider more general curvature measures (see, e.g. [71]) and
avoid smoothing altogether (see [56] for the full details of this approach and
Section 2 below, for a brief discussion of this topic in a slightly different
context).

It is worthwhile to highlight yet another aspect of our geometric sam-
pling method: Shannon’s Sampling theorem relates to bandlimited signals,
that are, necessarily, unbounded in time (space). Obviously, unbounded
signals are not encountered in Image Processing, nor in any other practical
implementations. In contrast, geometric sampling presents no unbounded-
ness restrictions, quite the opposite: it is far easier to apply for bounded
manifolds. The importance of this fact is far from being purely theoreti-
cal. Indeed, by eliminating the need to produce periodic signals (surfaces)
it drastically reduces aliasing effects. There is, of course, a fundamental
constraint of uncertainty (see also [23]) in the background of Shannon’s
Sampling Theorem. As already stated, this will be addressed in the context
of our geometrical approach in Section 3.

1.3. Pulse Code Modulation for Images. Our geometrical approach to
sampling lends itself to consideration of a much broader range of topics
in communications. In particular, it offers a new method for PCM (pulse
code modulation) of images.®> This approach is endowed with an inherent
advantage in that the sampling points are associated with relevant geometric
features (via curvature) and are not chosen randomly via the Nyquist rate.
Moreover, the sampling is in this case adaptive and, indeed, compressive
(see [8]), lending itself to interesting technological benefits.

1.4. Vector Quantization for Images. A complementary byproduct of
the constructive proof of Theorem 1.1 is a precise method of wvector quan-
tization (or block coding). Indeed, the proof of Theorem 1.1 consists in the
construction of a Voronoi (Dirichlet) cell complex {7/} (whose vertices will
provide the sampling points). The centers ay, of the cells (satisfying a certain
geometric density condition) represent, as usual, the decision vectors. An
advantage of this approach, besides its simplicity, is entailed by the possibil-
ity to estimate the error in terms of length and angle distortion when passing
from the cell complex {7’} to the Euclidean cell complex {¢}} having the
same set of vertices as {7’} (see [48]). Indeed, in contrast to other related
studies, our method not only produces a piecewise-flat simplicial approxi-
mation of the given manifold, it also actually renders a simplicial complex
on the manifold. Moreover, one can actually compute the local distortion

5considered as such and not as 1-dimensional signals
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resulting by passing from the Euclidean geometry of the piecewise-flat ap-
proximation to the intrinsic geometry of its projection on the manifold. If
M = M™ is a manifold without boundary, then locally, for any triangulation
patch, the following inequality holds [48]:

3 5
ZdM(xyy) < deucl(i'vg) < ng(xay)a

where deyel, dpys denote the Euclidean and intrinsic metric (on M) respec-
tively, and where z,y € M and Z, y are their preimages on the piecewise-flat
complex. For manifolds with boundary, the same estimate holds (for the
intM and OM), except for a (small) zone of “mashing” triangulations (see
[52]), where the following weaker distortion formula is easily obtained:

10(@9) = SO0 < dena(?.,5) < Saaa(w.9) + SO

where f(6) is a constant depending on the 8 = min {6y, Oint pr} — the fatness
of the triangulation of &M and int M, respectively, and 7y denotes the mesh’
of the triangulation of certain neighbourhood of OM (see [52]). In other
words, the (local) projection mapping 7 between the triangulated manifold
M and its piecewise-flat approximation X is (locally) bi-lipschitz if M is
open, but only a quasi-isometry (or coarsely bi-lipschitz) if the boundary of
M is not empty.?

Yet, a more important advantage stems from Zador’s Theorem [70], im-
plying that we can turn into an advantage the inherent “curse of dimension-
ality”. Indeed, by of Zador’s Theorem, the average mean squared error per
dimension:

1
&= N /]RN deucl(x’pi)p($)dxa

p; being the code point closest to x and p(x) denoting the probability den-
sity function of x, can be reduced by making avail of higher dimensional
quantizers (see [14]). Since for embedded manifolds it obviously holds that
p(z) = p1(x)xn, we obtain:

1
&= N /Mn deucl(xypi)pl(x)dxy

It follows that, if the main issue is accuracy, not simplicity, then 1-dimensional
coding algorithms (such as the classical Ziv-Lempel algorithm) perform far
worse than higher dimensional ones. Of course, there exists an upper limit
for the coding dimension.” The geometric coding method proposed here

6The building of these patches is essential for the control of the fatness of the triangu-
lation. Their size essentially depends upon the (local) maximal curvature, (see [48])

i.e. the supremum of the diameters of the simplices belonging to the triangulation

8In fact, as the two inequalities above show, 7 is sightly stronger, in both cases.

90therwise one could just code the whole data as one N-dimensional vector (albeit of
unpractically high dimension)!...
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provides a matural high dimension for the quantization of M™ — the embed-
ding dimension N. Moreover, it closes (at least for images and any other
data that can be represented as Riemannian manifolds) an open problem re-
lated to Zador’s Theorem: finding a constructive method to determine the
dimension of the quantizers (Zador’s proof is nonconstructive). In fact, for
a uniformly distributed input (as manifolds, hence noiseless images, can as-
sumed to be, at least in first approximation) a better estimate of the average
mean squared error per dimension can be obtained, namely:

%an deucl(iypi)dx i %an deucl(-rvpi)dx

£ = -
Jagn dez Vo(M™)dz

where V,, denotes the n-dimensional volume (area) of M. Whence, for com-
pact manifolds one obtains the following expression for &:

£ — % an deucl(xypi)dx _ % an deucl(xvpi)dx
Y Jy, da > Vn(Vi)de 7
where V; represent the Voronoi cells of the partition.

Moreover, we have the following estimate for the quantizer problem, that
is: Chose centers of cells such that the quantity

1 %an deucl(xapi)dx

2
N ( % S Vn) 45
is minimized. Here, again, the high embedding dimension N furnishes us
with yet an additional advantage. Indeed, manifolds N increases dramati-
cally, even for compact manifolds and even taking into consideration Gro-
mov’s and Giinther’s improvement of Nash’s original method (see [27], resp.
[28]). For instance, n = 2 requires embedding dimension N = 10 and n =3
the necessitates N = 14. Hence, for large enough n one can write the fol-
lowing rough estimate:

~ 1 an deucl(xypi)dw

AN T

2. SAMPLING AND CODES

2.1. Packings, Coverings and Lattice codes. In classical signal pro-
cessing, the required signal bandwidth W and the Nyquist sampling rate are
constrained by the condition W = n/2.

This admits an immediate generalization to periodic signals, or, in geo-
metric terms, for signals represented over a lattice: A = {\;}. One can even
interpret the sides (boundaries) of the lattice as the various coordinates in
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a multi-dimensional (warped) space or time (see, e.g. [63], [39]).1° Note
that such signals can be viewed as distributions on the n-dimensional torus
T = R™/Z"™. According to this interpretation, the (n-dimensional!) period
is the fundamental cell \ of the lattice. Two scalars are naturally associated
with this cell: its diameter diam(\)!! and its volume Vol()\). Either one
may be used as a measure of the n-dimensional period. However, they are
both interrelated and associated with one geometric feature, the so-called
“fatness’:

Definition 2.1. Let v = v* be an k-dimensional cell. The fatness (or
aspect-ratio) of v is defined as:
Vol(\)
min PN
A diam’(A)
where the minimum is taken over all the [-dimensional faces of v, 0 < k. (If
dim A = 0, then Vol(A\) = 1, by convention.)

o(y) =

In the case of simplices (and of regular cells) this definition of fatness is
equivalent to the following one (see [48])'2:

Definition 2.2. Let v = v* be an k-dimensional cell. v is called -fat if
there exists ¢ > 0 such that the ratio ; > ; where r denotes the radius
of the inscribed sphere of v (or inradius) and R denotes the radius of the
circumscribed sphere of v (or circumradius). A cell-complex T' = {~; }er is

fat if there exists ¢ > 0 such that all its cells are ¢-fat.

Recall that the in- and circum-radius are important in lattice problems:
given a lattice A with (dual) Voronoi cell IT (of volume 1), one has to mini-
mize the inradius to solve the packing problem, and to minimize the circum-
radius for solving the covering problem (see [14]). Note that A and IT are
simultaneously fat. It follows that fat cell-complexes and, in particular, fat
triangulations, represent a mini-max optimization for both the packing and
the covering problem. Moreover, since fat triangulations are essential for
the sampling theorem for manifolds, it appears that there exists an intrinsic
relation between the sampling problem for manifolds and the covering and
packing problems.

2.2. Average Power, Rate of Code and Channel Capacity. It is nat-
ural to extend the classical definitions of average power in the signal:

1T,
P—T/O Pyt

10Alternatively7 one can interpret the dimensions as representing wave length, or even
as mixed fundamental quantities, e.g. space-time or even space-time-wave-length, as they
arise in Medical Imaging (CT).

11or7 alternatively, the length of the longest edge
12Any cell can be canonically decomposed into simplices, hence the equivalence of the

definition can be extended to general cells.
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and the rate of the code:
1
R= —log, N
T g2

in the context of lattices with fundamental cell A, where N represents the
number of code points in the following manner:

2 1 2
Vol /f NlVol()\) /f (t)dt,

and

1 1
R = 1 ————logy N
Vol(d) 082N = Mol 1082
respectively, N1 being the number of cells.

Similarly, one can adapt the classical definition of the channel capacity:

C = lim R= lim logz%N,

T—o0 T—o0

to become
logy N

1
= Vol M, NVl ()
Since N and Nj are related by N1 = a(N), where « is the growth function
of the manifold, the expression of C' becomes:

1 logy N
T Vol(A\) a(N)

It follows that C' = oo for non-compact Euclidean and Hyperbolic man-
ifolds, and C = 0 for their Elliptic counterparts. Unfortunately, no such
immediate estimates can be readily produced for manifolds of variable cur-
vature.

Note that by putting 1/7 = Vol(M), the definitions above apply for any
sampling scheme of any manifold of finite volume, not just for lattices. In
this case N and N represent the number of vertices, respective simplices,
of the triangulation.'3

The interpretation of frequency considered above does not extend, how-
ever, to general geometric signals. For a proper generalization we have to
look into the geometric analogue of W. Based on [55], Theorem 5.2 for the
case of curves, i.e. 1l-dimensional (geometric) signals, W equals the cur-
vature rate k/2, were k represents the maximal absolute curvature of the
curve. This, and the sampling Theorem 4.11 of [55] naturally lead us to the
following definition of W for general geometric signals:

C_

Definition 2.3. Let M = M" be an n-dimensional manifold n > 2. W =
Wiy = 1/kpr, where kyy = maxk; and k;,i = 1,...,n are the principal
curvatures of M.

131 the language of classical signal processing, this approach is known as ‘recurrent
nonuniform sampling [19]. (See also [68].)
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According to classical considerations, the energy E of the signal f : R — R
is considered to be equal to its L? norm:

oo +oo
B-50)- [ Pod- 5 > (o).

One would like, of course, to find proper generalizations of the notion
of energy for more general (geometric) signals. In view of the discussion
above, it is clear that a first step is to replace 2W by its proper general-
ization. However, when considering more general function spaces of specific
relevance (s.a. bounded variation (BV), bounded oscillation (BO), bounded
mean oscillation (BMQO)), one should consider energies fitting the specific
norm of the space under consideration. This discussion is, of course, also
valid with regard to the best way to define average power P, and rate R, of
a geometric signal.

We can now look into the first definition of code efficiency: the nominal
coding gain of a code c¢; over another code, say (c2), is:

neg(C1,02) = 10logy, <2”71 ?) ,
1 2

where p is the square of the minimal squared-distance between coding points.
For geometric codes of bounded curvature (hence compact ones), the expres-
sion for p is particularly simple: p = 1/mink (k denoting again principal
curvature).

2.3. The Channel Coding Problem. It is most natural to approach the
problems associated with the Gaussian white noise channel in the context
of “geometric signals”, i.e. in the context of manifolds. Recall that in the
classical context, a received signal is represented by a vector X = F +Y,
where F' = (f1,..., fn) is the transmitted signal, and Y = (y1,...,Yyn)
represents the noise, whose components y; are independent Gaussian random
variables, of mean 0 and average power o?. The main, classical result for
the Gaussian channel is the following:

Theorem 2.4 (Shannon’s Second Theorem, [60]). For any rate R not ex-
ceeding the capacity Cy:

1 P
CO = TIOgQ <1+0_2> s
there exists a sufficiently large T, such that there exists a code of rate R
and average power < P, and such that the probability of a decoding error
is arbitrarily small. Conversely, it is not possible to obtain arbitrarily small
errors for rates R > Cy.

In the case of geometric signals, F' is given by the sampling (code) points
on the manifolds and, since the mean equals 0, the noisy transmitted signal

F +Y lies in the tube Tuby(M). Recall that Tub,(S) = U,cg Ip,s,» Where



10 EMIL SAUCAN*, ELI APPLEBOIM', AND YEHOSHUA Y. ZEEVIf

I 5, is the open symmetric interval through p, in the direction of unit normal
N, of M at p, of length 20, where o, is chosen to be small enough such
that I, ,, NI, =0, for any p,q € S.

While not being seemingly evident, the existence of tubular neighbor-
hoods is assured both locally, for any regular, orientable manifold, and glob-
ally for regular, compact, orientable manifold (see [26]). In addition, the
regularity of the manifolds OTub, (M) = M — U cp, eN,, OTub} (M) =
M +Upenr eN,, where 9Tub_ (M) U dTub/ (M) = dTub, (M), is at least as
high as that of M: If M is convex, then 9Tub, (M), OTub} (M) are piece-
wise Cb! manifolds (i.e. they admit parameterizations with continuous and
bounded derivatives), for all ¢ > 0. Also, if M is a smooth enough manifold
with a boundary, that is, at least piecewise C2, then 9Tub,, (M), 0Tub} (M)
are piecewise C2 manifolds, for all small enough o (see [20]).

In the geometric setting, o can be taken, of course, to be the maximal
Euclidean deviation. However, a better deviation measure is, at least for
compact manifolds, the Haussdorf Distance (between M and 0Tub, (M),
OTub} (M)):

Definition 2.5. Let (X,d) be a metric space and let A, B C (X,d). The
Hausdorff distance between A and B is defined as:

di (A, B) = max{supd(a, B), supd(b, A)}.
acA beB

For non-compact manifolds one has to consider the more general Gromouv-
Hausdorff distance (see, for example, [5]).

Since, according to the above arguments, both the distance between M
and dTub (M), OTub} (M) and the deviations of their curvature measures
are arbitrarily small for small enough o, we can state a first geometric version
of Shannon’s Theorem for the Gaussian channel. While a perfect analogy is
not available, we can nevertheless formulate the following theorem:

Theorem 2.6 (Qualitative geometric version of Shannon’s Second Theo-
rem). Let M™ be a smooth geometric signal (manifold) and let o be small
enough, such that Tub,(M) is a submanifold of R"*'. Then, given any
noisy signal M + Y, such that the average noise power oy is at most o,
there exists a sampling of M + Y with an arbitrarily small probability of
resultant decoding error.

Remark 2.7. The analogue of the capacity in the context of the geometric
approach to codes is Cy = Cy(k, o, 1), where r represents the differentiability
class of M.

Remark 2.8. The existence of tube OTub (M) is, as noted, guaranteed glob-
ally in the case of compact manifolds. Hence it follows that the sampling
scheme is also global and necessitates O(N) points, N = Nj;. However, for
non-compact manifolds (in particular non-band limited geometric signals),
the existence of OTub} (M) is guaranteed only locally. Therefore “gluing
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7of patches is needed, an operation which requires the insertion of addi-
tional vertices (i.e. sampling points), their number being a function of the
dimension of M. Hence, in this case, Ny1y = O(N})).

It is important to note that, again, this result is not restricted to smooth
manifolds, but rather extends to much more general signals: Indeed, for any
compact set M € R", the (n — 1)-dimensional sets dTub, (M), 9Tub (M),
are Lipschitz manifolds'* for almost any ¢ (see [30]). Moreover, the gener-
alized curvatures measures of 9Tub, (M), OTub} (M) are arbitrarily close
to the curvature of M, for small enough o ([12], [30]). It follows that the
above generalization befits not only the case of the Gaussian noise, but to
more general types of noise, as well (see, [60], [31], [36]).

The full details of a quantitative version, including the general case, are
laborious and warrant a separate discussion (see [56]).

Before we conclude this section, we wish to emphasize that the impor-
tance of tubes is not necessarily limited to Differential Geometry. It is just
as important in Statistics (see, e.g. [38]). However, its relevance to sam-
pling theory is in particular evident. Indeed, Shannon’s ideas, as exposed
in [59] and [60] are very similar to our approach (even if lacking the specific
geometric nomenclature)15. For instance, his equivalent of the tube radius
is used in [59] as a measure of the uncertainty of the reconstruction (not to
confused with the Heisenberg Uncertainty Principle — see Section 3). For
the development of Shannon’s approach see [62].

3. IMPLEMENTATION CONSIDERATIONS: GEOMETRIC WAVELETS AND
UNCERTAINTY

The question is whether the implementation of the geometric sampling
scheme is feasible. We do not address the purely geometric aspects, that
would be highly relevant in Computer Graphics implementation (these were
partly addressed in [55] and [2]).

Instead, we focus on the far more important and popular Image Processing
tool of wavelets. The versatility and adaptability of wavelets for a variety
of tasks in Image Processing and related fields is too well established in the
scientific community, and the bibliography pertaining to it is far to extensive,
to even begin to review it here.

We do, however, stress the fact that the multiresolution property of
wavelets has been already applied in determining the curvature of (planar)
curves [1] and to the intelligence and reconstruction of meshed surfaces (see,
e.g. [18], [25], [40], [67]). Moreover, the intimate relation between scale and
differentiability in natural images has also been stressed [21].

1. topological manifolds equipped with a maximal atlas for which the changes of

coordinates are Lipschitz functions.
151, particular, convergence of the measure of entropy of the noise introduced in [60]
is easily obtained in our setting.
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Unfortunately, for many investigators concerned with wavelets applica-
tions, PL approximations are not necessarily among their most familiar
tools. It is, therefore, a challenge to consider the integration of tools prac-
ticed by both communities. Although it may appear to be a surprising result
to those primarily familiar with classical wavelets, the Stromberg wavelets
[64], that are based on PL functions.

Another, more intriguing issue is whether one can replace the intuitive
trade-off between scale and curvature, by a formal concept of wavelet cur-
vature, in particular in cases such as those of the Stromberg wavelets, or, in
the more difficult case of Haar wavelets that are not even piecewise linear!®.
Interestingly enough, this can be done by using metric curvatures [4] (and
[53] for a short presentation); a detailed discussion of the technical aspects
of these issues will appear elsewhere [57]). We should just mention here that
for the Stromberg wavelets, the ideal metric candidate is the Menger curva-
ture 17, which is by now well established as a tool both in Pure (e.g. [47])
and Applied (e.g. [24]) Mathematics. For the Haar wavelets, the desired
metric curvature is the Finsler-Haantjes curvature 8.

A more suitable approach to surface reconstruction could, for example,
implement ridgelets [7], or the more generalized, curvelets [9]. For these too
metric curvatures are natural and computable, see [57].

The application of wavelet functions in the reconstruction of the signal
brings up the issue of Uncertainty Principle with regard to the structure of,
and constraints existing in the design of, such functions (see, e.g. [66]).

The Uncertainty Principle has an impact on the geometric sampling ap-
proach at a much more fundamental level than its direct effect on the struc-
ture of the approximation functions. It is valid in each and every of the
parameterizations ¢ : R”™ — M™, that define the manifold M™ ([65]). Since
these parameterizations represent a locally finite family, it follows that, at
least for compact manifolds, a type of global Uncertainty Principle is valid.
Of course, for manifolds that are graphs of functions f : R" — R (or even
f:R™ — R™) a proper global Uncertainty Principle holds. This includes
the extension to images and, in particular, color and fully-textured images
that have become so important in the field of image processing. On the
other hand, such global parameterizations for images are not really attain-
able, hence the need for approximations and the relevance of the problems
addressed in [66]. Moreover, different parameterizations can be obtained for

16and for any classical concept of curvature is not even definable.

17The Menger curvature of a triangle is defined to be the radius of its circumscribed
circle.

18The Finsler-Haantjes curvature of an arc of curve basically measures the scaled dif-
ference between the length of the arc and the length of the chord it spans. Note that for
curves in the plane (and space) the Finsler-Haantjes and Menger curvatures a a point can
be defined by passing to the limit. In this context, the two notions coincide and, moreover,
they reduce to the classical notion of curvature.
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the same manifold, therefore bounds for the manifold!® can not be attained
in this manner.

In addition, we should note that one can use the Local Uncertainty Princi-
ple to prove the global one (see [13]) and that the Local Uncertainty Principle
is, in fact, qualitatively stronger (see [22]).

It appears as though there is a discrepancy between the harmonic analysis-
based approach and the geometric-based-approach (adopted herein and else-
where [54], [55] and [2]). However, a direct relation between the geometry
of the manifold M™ and the proper Uncertainty Principle has been recently
revealed. To highlight it, one first proves that a generalized form of the Un-
certainty Principle (the so called Weak Uncertainty Principle,?° [46]) implies
a number of classical inequalities, in particular Nash-type and Poincare-type
inequalities. Then, one shows that these inequalities are strongly influenced
by the geometry of the manifold, in particular by the Ricci curvature — see
[17], [69], [51]. The connection between these facts is completed by the fact
that the Weak Uncertainty Principle implies the classical one (see [46]).

A somewhat different approach to a geometric viewpoint of the Uncer-
tainty Principle applies to the Pitt inequality and logarithmic Sobolev in-
equality (see [3]). See also [16] for an extended treatment, including a Un-
certainty Principle for discrete-time signals.

APPENDIX — GEOMETRIC SAMPLING OF INFINITE DIMENSIONAL SIGNALS

Since in the classical context band-limited signals are viewed as elements
f of L2(R), such that supp (f) C [—, x|, where f denotes the Fourier trans-
form of f, it is interesting to ask the following question: Can one extend the
sampling theorem proven in [54] to infinite dimensional manifolds? Using
an example introduced in [41], it may be concluded that this question is
not only far from being naive, but rather the answer is positive in that our
geometric sampling method translates directly into the context of infinite
dimensional manifolds, at least for a class of functions that naturally arise
in the the context of [41]. However, since the full proofs required in the
example below are rather technical, we refer the reader to the original paper
[41], and limit ourselves here to a brief presentation.

Consider the following spaces:

C*={e€C®R)|e(z+1) =e(x)},

1

f:{eECC’O(R)‘e(m+1):e($),/ e? =1},
0

M C C, M = {Xo = 0] X first eigenvalue of @} ,

where @ denotes the Hill operator: Q@ = —D? + q,q(z + 1) = ¢(x), and
where D = 0/0z,0 < x < 1.

19and not merely for the parameterizing functions
20We do not discuss here in detail this generalized inequality, because of the technical-

ities involved, for these the reader is referred to [46].
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Since 1 an 0 are regular values for their respective functions, M is a
smooth, co-dimension one hyper-surface in C7°, that is endowed with the
topology inherited from that of C*°, endowed with the sup norm. Further,
exactly as in the finite-dimensional case (see [55]), for any 2-dimensional
section determined by unit tangent vectors to M at ¢, one can define (and
compute) the maximal principal curvature (of the section).

Moreover, since the co-dimension of M in C7° is 1, it follows that, together
with a tangent plane, a normal to M at ¢ is also defined. It follows that one
can use the same method as in the finite dimensional case (see [55]) to find
a sampling of M.

It follows that a sampling scheme identical to that developed for the finite
dimensional case can be applied for the manifold M, as well. Unfortunately,
no uniform sampling is possible for the entire manifold: the maximal cur-
vature, associated with functions approximating “saw-tooth” functions can
be made as large as desired (see [41]).

One would like to extend these considerations, in a systematic manner,
to general infinite dimensional manifolds (e.g. lo and Hilbert cube mani-
folds). However, even if the appropriate geometric differential notions are
defined and computed, the fundamental problem of constructing fat trian-
gulations for infinite dimensional manifolds still has to be dealt with. It
is therefore important to note that triangulations of such manifolds exist
(see [10]). However, even finding a notion analogous to that of fatness in
the oo-dimensional case represents a challenge. (For a different approach to
a differential geometry of some infinite dimensional spaces see for example
42].)
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