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Abstract 
The use of Trace Caches is a well known technique to overcome the problem of limited 

instruction fetch bandwidth in modern computer architectures. A Trace Cache stores instructions 

dynamically, based on the order of their execution, rather than the in the order they appear and 

are compiled within the source program.  Trace Caches were found to be especially effective for 

very wide machines as they improve instruction fetch bandwidth.  

Previous research projects propose the use of relatively short traces to increase the probability of 

the correct execution of the traces, as well as to optimize Trace Cache memory space utilization. 

In this research, we investigate the possibility of using the Trace Cache to achieve a reduction of 

power consumption within the design. 

Power saving is an important aspect of modern architectures and many different algorithms have 

been proposed towards this goal. One of the proposed power saving techniques is dynamic 

tuning of processor’s resources, by turning off, for example, those units and resources that are 

not in use. Implementing this technique requires a monitoring unit that is able to predict such 

down-time and provide information about the resources, as potentially needed by the execution. 

We propose to use a Trace Cache for that purpose, as traces, particularly lengthy ones, contain 

information about future instruction execution. Therefore, we believe we can use this information 

to optimize the execution of long and frequent-used traces, and suggest optimizations that can 

lead to major power savings. 

To benefit from dynamic optimization, we need to be able to predict instruction sequences early 

enough in order to allow changes to the trace, allowing sufficient lead time to make the changes. 

Therefore, we focus on predicting long instruction sequences that will enable prediction of the 

processor needs for longer execution time. We will explore the feasibility of making dynamic 

optimizations based on the information about these sequences. We propose an algorithm for the 

dynamic tuning of processor’s resources, based on the information stored within the Trace 

Cache. In our proposal, we aim to achieve this with minimal performance penalty and additional 

hardware requirements. 

This work provides an overview of Trace Cache proposals and enhancements over existing 

solutions, including an overview of several power reduction techniques. We propose a novel 

opportunity for using long traces as a potential to reduce processor power consumption by 

analyzing the behavior of instructions that are executed from the Trace Cache.  Finally, we 

discuss the possibilit ies of using the proposed algorithm. 
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Abbreviations 

 

IPC Instructions per Cycle 

CPI Cycles per Instruction 

TC Trace Cache 

IC Instruction Cache 

PC Program Counter 

FP Floating Point 
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Conventions and Definitions 
For the reader’s convenience, we define terms and conventions used in this work. 

I nstruction fetch - The phase of an instruction cycle in which an instruction is read from 

memory. 

Static instruction order (program order)  – The order in which instructions are stored at 

the Instruction Cache, based on their placement by the compiler. 

Dynamic instruction order – The order in which instructions are executed by the In-order 

processor as required by the program. 

Basic Block – A group of non-branch instructions ending with a branch.  

Trace - A sequence of basic blocks (possibly with repeated blocks) that contains no internal 

control flow and a single entry point. A trace usually starts at an address of a branch target, 

and ends when one of the termination conditions is met. 

Trace termination conditions -  The factor that most directly controls the quality and 

utility of created traces. In general, traces are composed of an integral number of basic 

blocks. We do not allow breaking basic blocks or splitt ing them between different traces, 

except for very exceptional cases such as a single very long basic-block. Other criteria can 

be the number of instructions or of branches and control instructions. 

Trace line -  The space in a trace-cache required to store a maximal-size trace (maximal 

number of instructions).  

Trace Cache - A mechanism for increasing the instruction fetch bandwidth by storing 

traces of instructions that have already been fetched. 

Trace Sequence – A sequence of several trace lines, not necessarily placed one after 

another at the Trace Cache, but fetched one after another from the Trace Cache without 

being interrupted by a fetch from the Instruction Cache. 

Long Trace Sequence – A trace sequence which is built from a large number of 

instructions (e.g. more than 100) and therefore from a large number of trace lines. 

Trace Prediction -  A mechanism for predicting the trace line that will be executed next. 

Trace Sequence Prediction - A mechanism for predicting a trace sequence that will be 

executed in the future (several trace lines that will be executed in the order in which they 

were predicted). Sequence Prediction is successful if we can predict n instructions (n is a 
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predefined number) and all of the predicted instructions were actually executed in the 

predicted order. 

Trace Cache Configuration – is represented by two numbers (n,m).  Where n is the 

maximal number of instructions that can reside in the trace (trace line size), m is the 

maximal number of branches allowed in the trace. 

Dynamic Tuning – A process of modification in order to adjust the processor’s resources 

to the current demands of the running application. 

Power Consumption refers to the electrical energy that must be supplied over time to an 

electrical device to maintain its operation. Power consumption is usually a function of the 

power needed to perform the intended function of the device plus additional "wasted" 

power that is dissipated as heat. 
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1. I ntroduction 
In the past the primary goal of general purpose design was performance, regardless of the 

power it may consume. Many research activities were conducted to improve the 

performance of superscalar architectures, such as enhancements to the front-end engine 

and execution engine. The execution engine was mostly enhanced by making the processor 

wider, using instruction parallelism techniques, adding more resources (e.g. functional units, 

registers etc.) and by having deeper speculation. Despite all the hardware enhancements, 

there are several problems that reduce the effectiveness of those enhancements. One of 

them is instruction fetch, due to the execution of long non contiguous instruction sequences 

that are stored in a different order at the Instruction Cache. Having reached a “power wall”  

we now face another problem - Power Consumption - which increases with the addition of 

more hardware resources. Power Consumption includes power wasted on hardware that is 

not being used. Eventually the power problem can be translated to performance problem as 

its solution often requires lowering the frequency. 

One of the proposed hardware based optimizations to improve the effective fetch bandwidth 

was the Trace Cache  [10] , [ 13] , [ 14] . Conventional Instruction Caches are not capable of 

fetching multiple blocks per cycle, because instruction sequences are not always in 

contiguous locations. Trace Caches overcome this limitation by caching the dynamic 

instruction stream into structure called “trace”, so instructions that are kept non-

contiguously at the Instruction Cache appear contiguous (based on their execution order) in 

the Trace Cache. 

 

Figure 1: Trace Cache vs. Instruction Cache 

Each line of the Trace Cache stores a trace of a dynamic instruction stream. A trace is a 

sequence of at most n instructions and at most m basic blocks starting at any point in the 

dynamic instruction stream. A trace is specified by a starting address and branch vector (a 

sequence of up to m-1 branch outcomes that describe the path followed).  
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A line of the Trace Cache is filled as instructions are fetched from the Instruction Cache. I f 

the same trace is encountered again in the course of executing the program, it is fed 

directly to the decoder. Otherwise, fetching proceeds normally from the Instruction Cache.  

 

Figure 2: Trace Cache – Build and Fetch paths 

Trace Caches are effective because most programs exhibit properties of temporal locality 

and easily predicted branch behavior. The downside of the Trace Cache is that it stores a lot 

of redundant data [14] .  

A Trace Cache was found to be most effective if its size is not limited, however small Trace 

Caches are more practical. Small Trace Caches are efficient in terms of power, since they 

are more predictable and have shorter access time. Most of the researches use Trace 

Caches with a trace line that contains up to 16 instructions and up to 3 branches.  

Several papers have proposed using “hot traces” (traces that have been used repeatedly) to 

overcome the problem of the limited size of small Trace Caches and as a basis for various 

trace cache optimizations.  The optimizations include, for example, reducing the power 

consumption of the core and gaining better performance given a limited-size cache  [4] , [ 14] . 

One of the proposed filters is a Sample Filter that improves the behavior of a small Trace 

Cache in terms of coverage and hit rate while the power of the fetch stage is reduced  [2] . 

To benefit from continuous instruction sequences that are stored in the Trace Cache, we 

should be able to fetch traces from there without accessing the Instruction Cache between 

traces. To do this it is necessary to predict what the next trace will be. A straightforward 

method, and the one used in [14] , is to predict all multiple branches within a trace 

simultaneously. Then, armed with the last PC of the preceding trace and the multiple 

predictions, the fetch unit can access the next trace. Another approach is next trace 
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prediction  [ 8] .  A next trace predictor treats the traces as basic units and explicitly predicts 

sequences of traces. I t collects histories of trace sequences and makes predictions based on 

these histories. 

We have presented the instruction fetch problem and the Trace Cache as one of its 

solutions. The second problem, as stated above, is processor power consumption. This has 

become one of the great challenges in designing high performance processors. The rapid 

increase in complexity and speed that comes with each new CPU generation causes greater 

problems with power consumption and heat dissipation. Traditionally, these concerns were 

addressed through semiconductor technology improvements, such as voltage reduction and 

technology scaling. Recently the focus on Power Consumption has increased and it is being 

taken into consideration in the very early stages of microarchitecture design.  

Trace Cache was found to be very power efficient in case such as P4 [6] , where it saves 

decode energy and PARROT  [15]  when used for power optimizations.  

Many different algorithms have been proposed for saving power, including turning off units 

when they are idle. Several researches proposed dynamic tuning of resources of a general 

purpose processor, according to the needs of the executed program  [1]  [ 7]   [ 11] .  

Bahar et al  [ 1]  proposed reducing power dissipation by adjusting the issue queue and  

execution units to the varying needs of the program. Ponomarev et al  [ 11]  proposed 

dynamically adjusting the sizes of the issue queue (IQ), the reorder buffer (ROB) and the 

load/store queue (LSQ) based on the periodic sampling of their occupancies. 

The main idea of dynamic tuning is to reduce or close resources when the program does not 

require the full performance of the processor. In this case the processor can enter the low-

power mode. When the program switches behavior again and requires more resources, the 

processor returns to normal operation. This technique is based on the observation that full 

resources are required only for a portion of the program’s execution. For dynamic tuning we 

need a mechanism that will monitor the needs of the program. The monitoring scheme must 

be simple since the solution cannot be more power hungry than the problem. Also we do 

not want to sacrifice performance. Another requirement from the monitoring unit is the 

ability to predict changes at the processor’s resources sufficiently ahead of time. Changes, 

such as disabling and enabling hardware resources, may take time. To achieve power 

reduction without lowering performance, we would like to identify places where some 

resources are not needed for a “ long time”. “Long time” is defined as enough time to disable 

the resource, benefit from power reduction while the resource is disabled and not 

consuming power, and enable the resource just before it is required without losing 
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performance.  We can discuss time in terms of number of instructions that can be executed 

during this time. Therefore prediction of a processor’s requirements enough time ahead can 

be translated into predicting enough instructions ahead. 

In this work we check the feasibility of an architectural enhancement to reduce power 

consumption. The proposed enhancement is based on a solution that was originally 

developed for performance improvements. Until now Trace Cache was used mainly to 

increase instruction fetch bandwidth, we propose using it for power reduction purposes as 

well. 

The main idea of our proposal is to use Trace Cache as monitoring unit for dynamic tuning 

of the processor’s resources at run time. This can be done based on the dynamic 

information that resides in the Trace Cache. As long as we can predict instruction sequences 

coming from the Trace Cache that will be executed in the near future, we get all the 

information that we need. Knowing the next instructions that will be executed gives us 

knowledge about the processor’s requirements and gives us sufficient time to prepare the 

processor for future requirements. For example, if the Trace Cache predicts that we will not 

have Floating Point (FP) instructions for a time that is long enough to disable the FP unit, 

save enough power and re-enable it for the next FP instruction, we can go ahead and 

disable it. As we need prediction for long time ahead we’ll focus on prediction of long 

instruction sequences. Because our proposal is based on using data from the Trace Cache, 

the prediction and dynamic tuning will be relevant only for instructions coming from there. 

The prediction can be done by using a Trace Predictor and keeping additional information 

for each Trace Cache line. 

The baseline of this work is existing processors with a Trace Cache, while we don't try to 

improve the Trace Cache, its predictor or its performance. Therefore we don't want to 

change the existing Trace Cache but use existing hardware with minimal additions. This 

proposal is orthogonal to changes that might be done to improve the Trace Cache and also 

relevant for future and improved systems that use a Trace Cache.   

This work checks the feasibility of the above idea and proposes directions for future work. 

 

 

Organization of this work: 

The rest of this work is organized as follows.  

Section 2 presents an overview of related works and background for this work. The 

simulation environment used is presented in section 3. Section 4 describes basic 
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observations. The proposed algorithm and feasibility studies are described in Section 5. 

Section 6 discusses the possibilit ies of using the proposed algorithm and presents ideas for 

further improvements. In section 7 we conclude and propose ideas for future work. 
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2. Overview of Previous works /  Background 

Trace Cache 
As the issue width of superscalar processors increases, the importance of instruction 

fetch bandwidth increases as well. Several software (compiler optimizations) and 

hardware solutions were proposed in order to increase the effectiveness of the fetch 

mechanism.  In this work we focus on a hardware solution called Trace Cache. Trace 

Cache keeps instructions in their dynamic order (traces) rather than in their static 

compiled order as they are stored in Instruction Cache. 

 

(a) Instruction Cache 

 

 

(b) Trace Cache 

Figure 3: Storing a noncontiguous sequence of instructions 

Figure 3 shows the structure of the Trace Cache versus the Instruction Cache. 
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A Trace Cache consists of traces. Each trace inside the Trace Cache is limited to n 

instructions (the trace cache line size) and m basic blocks, which mean m-1 branch 

instructions (branch throughput). A trace is specified by a base address (address of 

the first instruction in the trace) and the directions of its branches.  

Trace Cache operation can be best understood by an example. Figure 4 shows a 

program’s control flow graph (CFG), where each node is a basic block, and the arcs 

represent potential transfers of control (e.g. branches). In this figure, arcs 

corresponding to branches are labeled to indicate taken (T) and not taken (N) paths. 

The sequence ACE represents one possible trace which holds the instructions from 

the basic blocks A, C, and E. This would be the sequence of instructions beginning 

with basic block A, where the next two branches are not taken and taken, 

respectively. These basic blocks are not contiguous in the original program, but would 

be stored as a contiguous block in the Trace Cache. A number of traces can be 

extracted from the CFG. Four possible traces are:  

1:  ABC 

2: ACE 

3: CEA 

4: EF 

5: BBC 

6: BBB  

 

Figure 4: Example of control flow graph 

Of course, many other traces could also be chosen for the same CFG, and, in fact, a 

trace does not necessarily have to begin or end at a basic block boundary, which 

further increases the number of possibilit ies. Also, note that in a Trace Cache, the 
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same instructions may appear in more than one trace. For example, the blocks A, C 

and E appear more than once in the above list of traces. However, the mechanism 

which builds traces always creates traces that begin and end on basic block 

boundaries. 

Previous works deal with Instruction Cache hit rate and branch prediction accuracy, 

but there are a few additional problems that Trace Cache tries to solve:  

• Branch throughput – the number of instruction fetched during one cycle 

depends on the number of branches that can be predicted in a single cycle 

(on average every fifth instruction is a branch). 

• Noncontiguous instruction alignment - the continuity of the code can be 

broken by an unconditional jump, which makes it difficult to fetch more 

instruction in the same cycle.     

• Fetch unit latency – latency might increase while trying to address the above 

problems.  

These problems can be solved using both software and hardware approaches. On the 

hardware side we find techniques like the branch address cache, the collapsing buffer 

or the trace cache. On the software side, we find instruction scheduling techniques 

and code reordering approaches like the software trace cache. 

The Trace Cache mechanism deals with the problems stated above as it allows 

fetching of nonconsecutive basic blocks coming from different instruction cache lines 

(noncontiguous instruction alignment). I t captures the dynamic instruction stream: 

instruction sequences and the branch directions which lead to them. I f the same 

starting instruction will be selected again in the future and if we predict the same 

branch outcomes, the whole instruction trace can be fetched from the Trace Cache. 

We can fetch several basic blocks without additional processing thus avoiding the 

fetch unit latency. When there is no trace that meets the demands the instructions 

will be read from the regular Instruction Cache. 

2.1.1 Trace Cache Build and Access 

Traces are built during fetch of instructions from the Instruction Cache. The 

instructions are inserted into a buffer in the order they are accessed, till the 

termination conditions are met. A directions vector is built in parallel in order to recall 

the branch directions which were used in the trace. Eventually the trace is copied 

from the buffer to the Trace Cache and saved there (usually this is done by Fill Unit – 
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see Figure 5).  

The trace can later be accessed either solely by its base address or by a combination 

of the base address and its branch directions vector. The Trace Cache may choose to 

allow two traces with the same base address to be saved at the same time. In this 

case, a combination of the base address and its branch directions vector will be 

required to access the trace. 

 When a trace is fetched from the Trace Cache the PC stops influencing the 

instruction fetch stage (the PC is still calculated for recovery reasons). As a branch 

instructions in the trace resolves its conditional expression it is compared to the 

directions vector of the trace to see if the trace took the branch correctly. When a 

misprediction is detected, the machine needs to roll back to the mistaken branch and 

look for a new trace (or build it) from that point.  

 

Figure 5: The conventional Trace Cache – block diagram 

 

Several design parameters should be considered as part of the definition of the build 

and access mechanisms, as they can affect Trace Cache functionality:  

- Termination conditions, or when should the building stop. Aside from the 

obvious cases of reaching the instruction and branch limits for each trace (maximal 

number of instructions and branches), there could be some other situations in which 

the machine would do better by not continuing the trace. When an indirect branch is 

used, the trace cache mechanism is not able to check the correctness of the target 

address. I f no mechanism is added to handle such cases, the trace must end. Another 
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example is function calls, where it might be wise for a new function to start at a new 

trace, thus increasing the chances of this trace to be reused. Another idea could be to 

try and finish traces at a branch instruction when possible (a basic block).  Doing so 

may create traces that will have better usage, although it may result in more unused 

data areas in the Trace Cache. Some  Trace  Caches  may  choose  not  to  continue  

a  trace  after  a  taken  backward branch (in order to have only one copy of a loop 

body), or to continue building  only  if  the  remaining  trace  will  be  able  to  

contain  a  whole  loop  body  (to  create  loop unrolling). 

- Multiple traces with same base address. When saving more then one trace for 

a base address the Trace Cache allows more flexibility. However, it may become more 

complex to access the trace. Therefore we should decide whether to allow multiple 

traces with the same base address and how many of those are allowed. 

- Adding traces to the Trace Cache. A trace is being built in a buffer during 

instruction fetch. The buffer can transfer traces to the Trace Cache when it finishes 

building them, but they might not be valuable traces, as they are based on accessed, 

not committed, instructions. Copying the traces after they commit could give the 

machine better confidence in the trace. Doing so would require a more complex 

control unit. A different option to increase the confidence of the saved traces could be 

adding some filters in order to have only selected traces in the cache (will be 

discussed later).  

- Trace Cache access. In most works dealing with Trace Cache a specific trace is 

searched in the Trace Cache when accessing it. In case we have multiple traces with 

the same base address we will access the Trace Cache with both the base address 

and the branch direction vector. This requires predicting the next few branches. Such 

prediction could be done by a regular branch prediction mechanism designed to 

predict few branches forward based on its own predictions. Another possibility is a 

special trace prediction mechanism that tries to predict the next trace as a whole 

according to previous traces which were used (will be discussed later).  

2.1.2 Trace Cache advantages and limitations 

The Trace Cache approach relies on two principles:  

Temporal locality – the property that instructions which have been recently used 

will be used again in the near future. Therefore if the Trace Cache consists of 

repeatedly used traces we stand to gain in the instruction fetch stage.  

Branch behavior - most branches tend to be biased towards one direction, which is 
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why the accuracy of branch prediction is usually high. Therefore having a trace with 

the most common branch prediction will benefit us most of the time, and the loss 

from mispredictions will be relatively negligible. 

I t is possible to make the Trace Cache power efficient on CISC machines (e.g. Intel's 

Pentium 4  [ 6] ) by saving decoded instructions. We might choose to save decoded 

instructions in the Trace Cache, since addresses are not effective within a trace, and 

we can use the trace even if the actual instruction code changes. By doing so, such 

machines are able to save much time and power when fetching from the Trace Cache 

by not having to decode the instructions once more.   

Example: In P4 by Intel, there is a Trace Cache that can hold up to 12K uops 

(decoded  instructions), the decoding  itself takes 2 stages in P4, and when fetching 

from the Instruction Cache (L2) only one instruction can be fetched per cycle (as 

opposed to 3 uops in the Trace Cache). Fetching more than one CISC instructions is 

difficult due to the fact that the instructions come in different lengths; the uops are 

RISC-like  instructions and come in a fixed size, thus by fetching from the Trace 

Cache the P4 need not decode the instructions and can fetch more  instructions per 

cycle.   

In order to measure Trace Cache performance, metrics other than the common 

metrics of hit rate and IPC have been defined. These are fragmentation, instruction 

duplication, efficiency, indexability, and retirement rate  [ 12] . Since performance is the 

reason for having a Trace Cache in the first place, IPC must be the metric of choice in 

determining the best configuration. 

The limits of the Trace Caches are presented by: 
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• Duplication – a measure of how efficiently the “unfragmented'' storage in 

the Trace Cache is used. Duplication is a consequence of the method of 

indexing the Trace Cache and is really an intended side effect. In a Trace 

Cache, the instruction address is used along with branch prediction 

information to identify a trace, so a given block may begin a trace and also 

appear as an interior member of many traces in the Trace Cache. 

Examples for duplication (according to Figure 6):  

- Traces that start from same address (A):  ACG, ACD 

- Same building block in several traces (C):  EAC, ACG 

• Fragmentation – a measure of storage utilization which describes the 

portion of the Trace Cache that is unused because of traces shorter than the 

maximal number of instructions in the TC line. I t is essentially wasted 

storage. 

Examples for fragmentation (according to Figure 6) are ACG, ACD. 

• I ndexability – miss rate due to searching for an address that doesn’t start a 

trace, although it is an interior member of the trace.  

Examples for indexability (according to Figure 6) are D, G. 

Those metrics mostly reflect the problem in utilization of the Trace Cache’s memory 

space. 

 

Figure 6: Trace Cache Limitations 

The common use of the Trace Cache is to increase instruction fetch bandwidth and 

resolve additional fetch related issues, as stated above. We propose a different 
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direction, which is to use the Trace Cache for power reduction, based on the 

information that already resides in the Trace Cache or can be collected from it. 

Trace Cache line Predictor 
The best mode of work would be achieved by fetch from the Trace Cache only and 

without fetch from the Instruction Cache. Therefore it ’s important to define a 

mechanism for fetching the next line from the Trace Cache. A Trace Cache line can 

be identified by both the base address and branch direction vector. In order to predict 

the next line we need to predict the next few branches. Such prediction could be 

done by a regular branch prediction mechanism designed to predict a few branches 

forward. 

A number of methods for fetching multiple basic blocks per cycle from Instruction 

Cache have been proposed, based on multiple branch prediction. The predictor 

generates multiple branch predictions while the Trace Cache and Instruction Cache 

are accessed. The fetch address is used together with the multiple branch predictions 

to determine if there is a trace in the Trace Cache that matches the predicted 

sequence of basic blocks and if there is a hit. Alternatively, the Trace Cache can be 

designed to signal a hit if the fetched trace only partially matches the requested path. 

During each fetch cycle the predictions made by the branch predictor are used to 

select which blocks within the trace that was fetched from the cache will be issued to 

the core. I f a trace cache line contains ABC, and the predictor predicts ABD, blocks A 

and B are supplied. I f the predictor selects AC, as can happen with some control 

flows, only A is supplied. This technique is called partial matching  [ 4] . The use of 

partial matching allows requests to hit in the Trace Cache more frequently and results 

in better usage of the Trace Cache. 

Another option is a special trace prediction mechanism designed specifically to work 

with Trace Caches. I t tries to predict the next trace as a whole according to previous 

traces which were used  [ 8] .  

The trace predictor differs from a multi branch predictor in the way it relates to a 

trace as the basic unit rather than the branch instruction. The trace predictor 

explicitly predicts the next trace according to the traces which were fetched before. I t 

collects histories of trace sequences and makes predictions based on these histories. 

This is similar to conditional branch prediction where predictions are made using 

histories of branch outcomes.  

The identifiers of previous traces (base address plus a branch directions vector) 
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represent a path history that is used to form an index into the prediction table. The 

last N trace-identifiers are hashed via a hashing function while the results are saved 

in a special history buffer (N hashed IDs). When trying to predict the next trace, the 

hashed IDs are combined by an index generator to form an index. This index is used 

to access the prediction table. A two bit counter is attached to each entry to provide 

confidence, for a successful completion of a predicted trace the counter is increased 

by 1, for a mistake it is decreased by 2. When the counter reaches zero the trace is 

removed from the prediction table and the actual trace will replace it. 

 

 

Figure 7: Next Trace Predictor 

 

Trace Cache Filter 
I t has already stated above that the Trace Cache can contribute more than an 

increase of instruction fetch bandwidth. I t can also contribute to reducing power 

consumption by keeping the instruction traces in decoded format and consuming 

power only when building a trace. I t has been proposed by Rosner et al. [ 14]  that the 

functionality of the Trace Cache can be divided into trace-building, which builds and 

fetches the traces, and trace-bookkeeping, which maintains the Trace Cache and tries 

to avoid unnecessary rebuilds. While the Trace Predictor improves trace-building 

functionality, the Trace Cache filter affects the functionality of the trace-bookkeeping 

and tries to improve the Trace Cache organization and utilization.  

I t was observed by Rosner et al.  [ 14]  that:  

• The majority of the traces are rarely used. Many traces are built only once. 
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• The majority of the executed instructions come from the more frequently 

used traces. 

• A good replacement mechanism has a significant effect on reducing the build-

rate (affects both performance and power.) 

Those behavioral patterns indicate that filtering techniques based on the frequency of 

trace usage can reduce the trace-build rate. Therefore, filtering can increase fetch 

bandwidth and reduce power consumption. The filter can increase the utilization of 

the trace cache by preventing the infrequently used traces from polluting the trace-

cache and keeping the “good” traces. This way we’ll have “good” traces ready in the 

Trace Cache for fast delivery and we’ll prevent expensive rebuilds.   

The trace population can be divided into two groups: the “hot traces” and “cold 

traces”.  “Hot traces”, traces that have been used repeatedly, are a small number of 

traces responsible for the majority of the instructions executed. Most of the traces are 

“Cold traces” that are rarely executed.  I t follows the “80/20 principle”:  a small 

fraction of the static code is responsible for most of the dynamic code.  

A “good” Trace Cache should have a replacement algorithm that helps the cache 

population consist mainly of “hot traces”. I t should also have a mechanism that 

prevents “cold traces” from entering the cache. “Cold traces” might cause the eviction 

of “hot traces,” thus reducing the hit rate of the cache and increasing the number of 

builds, which waste power.  Another advantage of keeping “hot traces” is that their 

number is usually limited, so they can fit well into a small Trace Cache and allow most 

of the code to be executed from the Trace Cache.  

Various SW- and HW-based filtering mechanisms have been proposed using the 

“hold/cold traces” principle  [ 2]  [ 9]  [ 14]  . 

Kosyakovsky et al.  [ 9]  proposed software-based profiling to identify “hot traces”. The 

traces are classified into four types according to the frequency they have been 

accessed during the sampling interval. Based on those classifications the SW supplies 

hints to hardware about which trace should be built and stored in the Trace Cache 

and which should be executed from the Instruction Cache. This technique requires 

ISA changes (add hints).  

Rosner et al.  [ 14]  presented a HW approach which separates the Trace Cache into 

two mutually exclusive parts. Filter Trace Cache (FTC) and Main Trace Cache (MTC). 

The FTC is used for filtering (monitors traces behavior), while the MTC stores traces 

that have been selected by the filtering process (“hot traces”). 
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Instructions are fetched from the instruction cache, decoded, and built into traces. 

Built traces are entered into the FTC. Useful traces are moved to the MTC for longer 

term storage. Other traces are discarded from the FTC. The decision to discard or 

promote a trace is made based on a filter that implements some heuristic. The 

heuristic is based on the number of times this trace was accessed. The assumption is 

that a useful trace will continue to be accessed repeatedly, therefore it gets promoted 

to MTC. Otherwise, it ’s discarded on the grounds that it is likely to be evicted from 

the MTC shortly after being promoted and before being used again.  

The downsides of this proposal are that each access to the Trace Cache requires 

access to both parts and leads to higher power consumption, while only part of the 

Trace Cache (MTC) is used to store “hot traces”, making the Trace Cache effectively 

smaller. 

 

Figure 8: FTC and MTC filtering system 

 

The Sampling Filter, as proposed by Behar et al.  [ 2] , is based on the observation that 

most of the builds are of “cold traces”. Those traces have a small chance to be 

accessed again before being evicted from the cache, while “hot traces” reside fairly 

longer in the cache and are occasionally disturbed by the “cold traces”.  

Normally every trace that is built is inserted into the cache. The Sampling Filter is an 

entrance filter that would prevent “cold traces” from entering the cache. I t allows only 

a fraction of the potential traces to be built and enter the cache. This filter uses a 
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statistical approach and selects traces to be inserted into the cache randomly on 

periodic basis (without prior knowledge and without performing any bookkeeping on 

the traces). Traces that are not selected are discarded. Using this approach we 

reduce the number of “cold traces” in the Trace Cache. 

The filtering algorithm can be tuned with different sampling rates (the rate at which 

traces are sampled and inserted into the cache). 

The advantages of this proposal are that this filter requires minimal hardware for the 

implementation, it improves the Trace Cache utilization by “hot traces” and reduces 

the number of trace builds and the power associated with those builds.  

The downsides of this proposal are a longer learning (adjustment) period and that for 

each sampling rate there are some access patterns that might be destructive. 

 

Figure 9: Trace Cache with Sampling Filter 

 

Power Reduction Mechanisms 
Performance has been a main goal to achieve in superscalar architecture. This is 

mainly achieved by exploiting instruction-level parallelism. Performance improvements 

often translate into having multiple execution units that can accommodate a large 

variety of instruction mixes. In order to support different execution capabilit ies and to 

achieve a significant speedup, the conventional instruction path needs to include wide 

issue buffers to allow a larger number of in-flight instructions and wide instruction 

paths to feed all available execution units. All those require more hardware, which 

leads to higher power consumption.  

  22  



Traditionally, performance concerns have taken priority over energy costs or power 

consumption. Power efficiency has been addressed mainly at the technology level, 

through lower supply voltages, smaller transistors, better packaging, etc. 

Lately there is a growing focus on reducing the power consumption as we are 

approaching a “power wall” .  Power dissipation of microprocessors is becoming an 

important concern for designers. Low-power design has become an active area of 

research, but the power problem should also be addressed at the microarchitectural 

level. 

Modern superscalar microprocessors are designed to achieve the best performance 

for large number of targeted applications (benchmarks), resulting in the permanent 

allocation of resources to maximize performance across a wide range of applications. 

I t has been observed that there is wide variation in processor resource usage among 

various applications. In addition, the execution profile of most applications indicates 

that there is also wide variation in resource usage from one section of an application’s 

code to another. High-end configurations also tend to have high energy consumption 

partly due to power consumption of unused modules. The ideal would be to identify 

the right configuration which optimizes the energy consumed per each region of 

code. 

Several works have presented changes at the microarchitectural level for control and 

scaling of resources to address the issue of power consumption. 

The technique called Pipeline Balancing (PLB) proposed by Bahar et al. [ 1] , 

dynamically tunes the resources of a general purpose processor to the needs of the 

program by monitoring performance within each program. The goal is to determine 

the changing needs of each program and tune processor resources to the program 

with the aim of reducing power dissipation. The PLB algorithm is quite simple. There 

is a monitoring unit that monitors the issue and execution needs of the program. 

When the program does not require the full issue and execution capabilit ies of the 

processor, the issue width of the processor is reduced, some execution units are 

disabled and it enters a low-power mode. When the program switches behavior again 
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the processor returns to normal operation.  

 

Figure 10: Pipeline organization of the processor 

 The basic assumption of the PLB algorithm is that past program behavior indicates 

future program needs. I t predicts the future resource needs of the program based on 

past program characteristics such as issue IPC (for integer and FP instructions).  

These values are measured over a fixed sampling window. The requirement of the 

PLB is that the monitoring scheme must be simple, since the solution cannot be more 

power hungry than the problem, and PLB cannot sacrifice performance to reduce 

energy. PLB saves energy by modifying the activity rate in the issue queue and 

execution logic when the program doesn’t require them. Implementing this technique 

requires dedicated HW (counters, comparators, FSM). 

Ponomarev et al.  [ 11]  proposed changing  the “one-size-fits-all”  philosophy in 

allocating datapath resources as it results in resource over-commitment.  They 

proposed a mechanism that dynamically adjusts the sizes of the issue queue (IQ), the 

reorder buffer (ROB), and the load/store queue (LSQ) based on the resource 

demands of the executing program.  

 

Figure 11: Superscalar Datapath 
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 The resources of those components are partit ioned and the number of active (i.e., 

powered up) partit ions are chosen dynamically by tracking the actual demands of the 

program. The IQ, the LSQ, and the ROB are controlled independently. Resources can 

be downsized if their occupancies are low by deallocating one or more partit ions and 

turning them off.  As the resource demands of the application go up, deactivated 

partit ions are turned back on to avoid any impact on performance. Downsizing is 

done based on periodic sampling of the occupancies of each component. Upsizing, on 

the other hand, is done more aggressively in order not to harm the performance. The 

hardware requirements for this mechanism are simple. The proposed approach 

attempts to track closely the dynamic demands of an application and therefore tries 

to allocate “ just the right amount of resources at the right time” to conserve power. 

In this work again the decision is based on the past behavior. This technique has 

several constraints:  it requires dedicated hardware that can be partit ioned, transition 

period is required for pointer adjustment. 

Another technique based on run-time profiling was proposed by Iyer et al. [ 7] . I t is 

based on detection of hotspots - several small crit ical regions of code in which a 

program spends most of the execution time.  

 

Figure 12: Hotspot detection hardware 

  

This technique is based on identifying these hotspots in a program at run-time, 

characterizing each hotspot in terms of its power usage and arriving to the energy-

optimal configuration of resources for the processor. The hotspots are identified by 
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finding the most frequent branches. 

To determine the optimum configuration for each hotspot power register was used. I t 

maintains power statistics for the four units of the processor that were defined as 

most power-hungry:  floating point ALU, integer ALU, register file and instruction 

window. There is predefined number of possible configuration and the goal is to find 

an optimum configuration for each hotspot. When a hotspot is detected the power 

register is sampled each 1024 instructions and then the configuration is changed. 

After the optimum configuration is found, it is stored inside the hotspot table. The 

table contains one entry for each hotspot. The next time the same hotspot is 

encountered, the optimal values can be taken from the table. 

This technique requires additional dedicated hardware used for “hotspot” detection 

and power profiling. Using “hotspots” for power optimization reminds our proposal, as 

we are looking for regions of code that are frequently executed.  

The main idea of the above works is to propose microarchitectural solutions to make 

the processor more energy efficient. They propose scaling the processor’s resources 

dynamically and adjusting them to the demands of executed code in order to have a 

more energy-optimal configuration of resources for the processor. Those changes 

should be done with minimal impact on performance. As the decision is done during 

run-time it requires a monitoring unit that should track changes in the code. The 

works stated above use different monitoring units and propose different dynamic 

changes of various resources in the processor. 

In all the above proposals additional hardware is used for monitoring the executed 

code. In this work we want to propose another microarchitectural solution to the 

power problem based on dynamic scaling of a processor’s resources during run-time. 

We attempt to reduce the power consumption while the performance is retained, 

based on existing hardware. As stated before, a Trace Cache can contribute to power 

reduction of the FE (by storing decoded instructions). We want to propose additional 

way for power reduction and use the Trace Cache as a monitoring unit for dynamic 

scaling of processor’s resources.  

A Trace Cache stores the instructions in their execution order. A good Trace Cache 

will have most of the executed code in execution order. Therefore it might have the 

data about future demands of the processor. I f we can derive and use this data 

wisely we can fit the processor’s resources to the exact demands of the executed 

application. We can attempt to identify the best configuration for the processor to 

optimize the energy consumed per instruction for each region of code. All the data we 
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need about application behavior can be derived from the Trace Cache. Therefore for 

processors that already use the Trace Cache no additional hardware is needed for 

monitoring. The optimizations that can be done based on the data stored at the Trace 

Caches will be discussed later.  
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3. Simulation Environment 
The performance numbers presented below are based on an extended version of the  

sim-outorder simulator from the SimpleScalar tools set 3.0d  [ 3] .  The configuration used for all 

simulations is the default configuration of Simple Scalar. The main parameters are listed below in 

Table 1.  

We use 10 benchmarks from the Spec2000 benchmark suite  [ 5]  with different inputs (total 20 

benchmarks). The benchmarks and inputs are listed in Table 2.  

 

The SimpleScalar simulator was augmented with a detailed model of the Trace Cache along with 

the Next Trace Predictor and Sampling Filter as implemented by Michael Behar  [ 2] . 

 

 

Figure 13: SimpleScalar Simulator with Trace Cache 
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Execution Engine 

Decode, Issue, Commit width 4 

  

INT ALU: 4 

INT MUL/DIV: 1 

FP ALU: 4 
Functional Units 

FP MUL/DIV: 1 

Fetch queue size 4 

Register update unit (RUU) 16 

Load Store queue (LSQ) 8 

  

Memory 

L1 Data Cache 

Size:16KB 

Associatvity:  4 ways  

Block Size: 32B 

Replacement Policy:  LRU 

Latency: 1 cycle 

L1 Instruction Cache 

Size:16KB 

Associativity:  1 way  

Block Size: 32B 

Replacement Policy:  LRU 

Latency: 1 cycle 

Trace Cache 

Size:1KB 

Associativity:  2 ways  

Block Size: 16B 

Replacement Policy:  LRU 

Latency: 1 cycle  

L2 Unified cache 

Size:256KB 

Associatvity:  4 ways  

Block Size: 64B 

Replacement Policy:  LRU 

Latency: 6 cycles 

  

Branch predictor 

Predictor Bimodal 2K entry 

Return Address Stack (RAS) 8 

BTB 2K entry, 4 ways 

Next Trace Predictor HYBRID 

Table 1: SimpleScalar Parameters 
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We used the following benchmarks from the SPEC2000 Benchmark Suite  [ 5] :  

Benchmark Input 

179.art A10.img 

164.gzip input.source 

164.gzip input.log 

164.gzip input.graphic 

164.gzip input.random 

164.gzip input.program 

175.vpr Place 

175.vpr Route 

176.gcc 166.i 

176.gcc 200.i 

176.gcc Integrate.i 

176.gcc scilab.i 

181.mcf inp.in 

256.bzip2 input.source 

256.bzip2 input.graphic 

256.bzip2 input.program 

183.equake inp.in 

255.vortex lendian1.raw 

300.twolf Ref 

188.ammp ammp.in 

Table 2: Benchmarks 

 

Trace Cache at SimpleScalar 
Several parameters can affect the performance of the Trace Cache:  

• Trace Cache line size 

• Can we have traces with same base address 

• When should we stop building the trace 

• Can a trace be aborted in the middle 

• How it’s being accessed, etc. 

In this work we use traces that are constructed in the front-end, so wrong speculative 

traces are allowed. Each trace can contain up to m instructions and n direct branches 

(m, n are simulator parameters). All traces end at basic block boundaries in order to 
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reduce the number of unique traces and duplications. Indirect branches or jumps, 

procedure calls, return instructions and interrupts terminate the construction of a 

trace. Traces beginning with the same start address but with different branch 

outcomes can coexist in the Trace Cache. Each trace is identified by Trace ID which 

consist of the address of the first instruction in the trace and a branch direction vector 

(each bit is the direction of a branch. 0 for not taken and 1 for taken). 

The Next Trace Predictor is used for trace prediction and is responsible for supplying 

the correct trace ID.  A Sampling Filter is used to improve the Trace Cache’s hit rate. 

Concurrent access between the Instruction Cache and the Trace Cache (CTC) was 

modeled. 

The simulator can be at one of the following states with regard to the Trace Cache: 

Build, Read or Trace Fetch. 

Each instruction that is fetched from the regular Instruction Cache is entered into the 

trace builder buffer and attached to a trace. In this situation the machine is in Build 

state. I f there is a hit in the Trace Cache, the Build process from the Instruction 

Cache is terminated. As the access to the caches is concurrent, the Trace Cache miss 

penalty is minimal (as we use small Trace Caches the penalty associated with misses 

would be too high in sequential mode). 

When a trace ends for any of the reasons mentioned above (reached end conditions) 

it is sent to the Trace Cache without checking if it fully commits. At this point the filter 

may still prevent it from being actually saved. The simulator moves from Build state 

to the Trace Fetch state.  

During the Trace Fetch stage the current program counter along with branch 

directions vector is checked in the Trace Cache for a hit. I f there is a hit, a trace line 

is supplied, otherwise instructions are fetched from the Instruction Cache or the 

Memory and the simulation moves to the Build state. The Trace Cache continues to 

feed the fetch unit until the trace ends or until there is a misprediction in the pipeline. 

This is called a Read state.  

The Trace Cache gets feedback from the writeback stage about whether the branches 

were correctly predicted. I t gets feedback from the commit stage to report which 

traces have fully committed. In order to support these feedbacks each instruction 

should have an indication of the trace it belongs to. In case of branch misprediction 

during the Read stage there is a recovery process and the simulator moves to the 

Trace Fetch state. In case of misprediction the part of the trace until the branch that 

caused the misprediction will be executed and the rest will be discarded. 
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The Trace Predictor is updated at the commit stage with the information if the trace 

prediction was correct (trace was fully committed) or incorrect and updates the 

predictor counters for this trace accordingly. 

 

Figure 14: Access to the Trace Cache 

Figure 14 shows different states with regard to the Trace Cache and transitions between them. 
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4. Basic observations 
In this work we want to propose a novel usage for Trace Cache. Until now the main usage 

of the Trace Cache has been to increase the instruction fetch bandwidth. The usage we 

want to propose is based on the statistical information that already resides there and can be 

retrieved with minimal addition of HW. The Trace Cache keeps instructions in their 

execution order. In each fetch of a Trace Cache line we receive up to n instructions (where 

n is the size of Trace Cache line) that will be executed next. In other words, in each trace 

line fetch we can predict up to n instructions and their characteristics. We propose using this 

prediction for dynamic tuning of the processor’s resources and for regulating the Power 

Consumption of the processor. 

Our proposal is based on having a prediction for sequences of instructions that come from 

the Trace Cache; therefore we need to check that enough instructions come from the Trace 

Cache (based on given configuration) to make this proposal significant.  

In order to simulate basic observations we used a 16:3 configuration of the Trace Cache. 

This configuration allows up to 16 instructions in the trace and up to 3 branches in the 

trace. 
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Figure 15: percentage of instructions coming from TC vs. IC (16:3) 

Figure 15 shows the percentage of instructions that come from the Trace Cache, while the 

rest come from the Instruction Cache based on the 16:3 configuration. We can see that for 

most of the benchmarks the majority of the instructions come from the Trace Cache and not 
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from the Instruction Cache, or at least we have a significant amount of instructions coming 

out of the Trace Cache during the program.  

I f there is a miss at the Trace Cache the instructions will be fetched from the Instruction 

Cache. In this case the instruction fetch bandwidth will be lower and we may want to move 

to a low-power configuration in order to reduce the Power Consumption instead of using the 

full capabilit ies of the processor. 

During instruction fetch from the Trace Cache we can fetch up to n instruction (where n is 

the size of the trace line), therefore while fetching a trace we expect to predict the 

characteristics of up to n instructions ahead. This data will be relevant only if the 

instructions that reside in the trace will be actually executed. We define “trace execution 

quality” as the ratio of executed to stored instructions in the trace. The prediction about the 

trace information will be relevant only if the trace execution quality is high. Otherwise we 

can’t change the processor's resources based on such a prediction. 

Benchmark I nput 
Trace Execution 

Quality 

179.art A10.img 0.96 

164.gzip input.source 0.95 

164.gzip input.log 0.96 

164.gzip input.graphic 0.94 

164.gzip input.random 0.95 

164.gzip input.program 0.94 

175.vpr Place 0.95 

175.vpr Route 0.99 

176.gcc 166.i 0.97 

176.gcc 200.i 0.96 

176.gcc integrate.i 0.97 

176.gcc scilab.i 0.96 

181.mcf inp.in 0.96 

256.bzip2 input.source 0.92 

256.bzip2 input.graphic  0.97 

256.bzip2 input.program 0.97 

183.equake inp.in 0.98 

255.vortex lendian1.raw 0.99 

300.twolf Ref 0.93 

188.ammp ammp.in 1 

Table 3: Trace Execution Quality for TC with configuration 16:3 
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 (Trace Execution Quality =  ratio between number of instructions executed from Trace 

Cache line and number of instruction that are actually stored at the Trace Cache line).  

Table 3 shows that the trace execution quality of a Trace Cache with configuration 16:3 is 

very high. This result shows that we have high confidence that when fetching a certain line 

from the Trace Cache most of the instructions from this line will be executed. Therefore 

using a prediction about characteristics of all instructions that are stored at this line is 

relevant. 

In our proposal we aim to predict long instruction sequences and therefore we’re interested 

in trace utilization. In the case of fully utilized traces we can predict information for as many 

instructions as the Trace Line size. For a basic configuration it means that in case of high 

utilization each time we fetch a new Trace Cache line we can predict data for about 16 

instructions ahead. 

Benchmark Number of instructions 

art_test1 12.34 

gzip_source 12.79 

gzip_log 13.79 

gzip_graphics 11.58 

gzip_random 12.10 

gzip_program 11.99 

vpr_place 12.10 

vpr_route 11.66 

gcc_166 12.41 

gcc_200 11.55 

gcc_integrate 12.13 

gcc_scilab 11.38 

mcf 12.77 

bzip2_graphics 11.74 

bzip2_program 11.94 

equake_inp 12.35 

vortex_lendian1 12.59 

twolf_ref 13.34 

Ammp 11.50 

Table 4: Average number of instructions executed from TC line for 16:3 configuration  

 

Table 4 shows the average numbers of instructions executed from Trace Cache lines for 

different benchmarks. As trace execution quality is high (almost 1) those numbers also 

represent trace utilization for a 16:3 Trace Cache configuration. According to this 

  35  



measurement we see that in each trace fetch we can actually predict information about 

twelve instructions only (on average) that will be executed in the future. 

Large Traces 
We want to be able to dynamic changes to the processor’s configuration such as disabling 

and enabling units based on the prediction that we make. Disabling or enabling a unit can 

take a non-trivial amount of time, depending on the HW implementation (not in the scope of 

this work).  

We define “prediction window” as a window of time during which executed all the predicted 

instructions and only them. In order to make a change at the processor, we need the 

prediction window to be big enough to allow it. Predicting more instructions ahead of the 

execution enlarges this window. (E.g. In case we can predict that no FP instructions will be 

executed in the near future we can suggest disabling of FP unit. We will benefit from this 

change if the prediction window is long enough to allow disabling of the FP-unit, execution 

under new power saving configuration and enabling FP unit back.) 

Actually the time can be represented by the number of instructions that can be executed 

during this time; therefore “prediction window” can be represented by the number of 

instructions that are executed during it.  

We want to be able to predict more than twelve instructions ahead (the average shown 

above). As we predict one Trace Cache line each time we can try to achieve bigger 

prediction window by increasing the size of Trace Cache line.  

We checked if a bigger Trace Cache line can increase the prediction window. We chose to 

check a 50:10 Trace Cache configuration, meaning up to 50 instructions at the line and up 

to 10 branches. We need to check if all the basic observations are still relevant. First of all 

we want to check that we still have enough instructions coming from the Trace Cache vs. 

Instruction Cache and that using Trace Cache for prediction is relevant. As stated above, the 

following measurements are based on configuration 50:10. 
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Figure 16: percentage of instructions coming from TC  

 

This measurement at Figure 16 shows that when we enlarge the Trace Cache line most of 

the instructions still come from the Trace Cache (more than 50%  of the instructions for 

most of the benchmarks).  Therefore a predictions based on a 50:10 Trace Cache 

configuration are relevant. We still need to check if we succeeded in actually enlarging our 

prediction window. The percentages of instructions coming from the Trace Cache are high, 

but in most of the cases the numbers are lower than for a 16:3 Trace Cache configuration.  

Other parameters that needs to be checked, in order to decide whether predictions based 

on a 50:10 Trace Cache configuration are relevant and long enough, are trace execution 

quality and trace utilization. 

Table 5 shows the trace execution quality measurements (the ratio of executed to stored 

instructions in the trace) for a 50:10 and 16:3 Trace Cache configurations. 
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Benchmark I nput 

Trace 
Execution 

Quality 16:3 

Trace 
Execution 

Quality 50:10 

179.art A10.img 0.96 1 

164.gzip input.source 0.95 0.88 

164.gzip input.log 0.96 0.91 

164.gzip input.graphic 0.94 0.93 

164.gzip input.random 0.95 0.96 

164.gzip 

input.progra

m 0.94 0.87 

175.vpr place 0.95 0.91 

175.vpr route 0.99 0.98 

176.gcc 166.i 0.97 0.96 

176.gcc 200.i 0.96 0.96 

176.gcc integrate.i 0.97 0.95 

176.gcc scilab.i 0.96 0.95 

181.mcf inp.in 0.96 0.9 

256.bzip2 input.source 0.92 0.92 

256.bzip2 input.graphic  0.97 0.97 

256.bzip2 

input.progra

m 0.97 0.9 

183.equake inp.in 0.98 1 

255.vortex lendian1.raw 0.99 0.99 

300.twolf ref 0.93 0.98 

188.ammp ammp.in 1 0.99 

 

Table 5: Trace Execution Quality for TC with different configurations  

Comparing the two Trace Cache configurations, we see that in most of the cases the trace 

execution quality is lower for 50:10 Trace Cache configuration than for 16:3, although it is 

still high enough. Knowing the execution quality is meaningless without knowing the actual 

number of the instructions that are stored in the Trace Cache line or executed from each 

Trace Cache line. We can have a very high trace execution quality, but the trace may be 

short. In this case we won’t be able to have a long enough prediction. 
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Benchmark 
Number of instructions 
16:3 TC configuration 

Number of instructions 
50:10 TC configuration 

art_test1 12.34 45.30 

gzip_source 12.79 25.64 

gzip_log 13.79 32.14 

gzip_graphics 11.58 24.76 

gzip_random 12.10 29.75 

gzip_program 11.99 22.71 

vpr_place 12.10 26.60 

vpr_route 11.66 17.76 

gcc_166 12.41 23.83 

gcc_200 11.55 20.58 

gcc_integrate 12.13 21.75 

gcc_scilab 11.38 18.29 

mcf 12.77 33.13 

bzip2_graphics 11.74 24.63 

bzip2_program 11.94 24.45 

equake_inp 12.35 29.18 

vortex_lendian1 12.59 25.46 

twolf_ref 13.34 27.47 

ammp 11.50 26.88 

Table 6: Average number of instructions executed from TC line 

Table 6 shows the average numbers of instructions executed from a Trace Cache line for 

different benchmarks. I t compares between the two configurations. As trace execution 

quality is high (almost 1) for both configurations, those numbers also represent the trace 

utilization. The above measurements show a serious drop in utilization of the Trace Cache 

with larger lines, meaning that the efficiency of the Trace Cache has decreased too. We also 

see that by increasing the trace line by a factor of 3 (from 16 to 50) we achieved an 

average increase in predicted instructions by only a factor of 2. 

By increasing the trace line size we increased the number of instructions we can predict in 

each trace fetch, although the instruction increase was not as beneficial as expected. On the 

other hand, the change caused lower trace execution quality, lower Trace Cache utilization 

and therefore decreased Trace Cache performance.  

Another drawback of changing the Trace Cache configuration is the lack of flexibility. We 

prefer to be able to add our solution to any existing system with a Trace Cache, regardless 

of its configuration. Trace Cache configuration might be a very difficult and meticulous 

decision affected by different parameters that we can’t and don’t want to be aware of.  

The conclusion is that increasing the Trace Cache line size will not help increasing the 
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prediction window in the desired way: having significant increase without hurting the 

existing configuration and performance. 

Therefore we’re looking for solution that will give us prediction based on the Trace Cache 

regardless of its configuration. 
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5. Long Trace sequences 
In order to benefit from dynamically changing the processor’s configuration we need to be 

able to predict the needs of the processor ahead of time. Such prediction will allow us to 

make the change and benefit from it in terms of reducing power consumption. We use the 

number of instructions that are executed during this time as representative of the elapsed 

time, and therefore we would like to predict as much instructions as possible.   

In the previous chapter we saw that there is a potential to use the information from the 

Trace Cache to predict the processor’s needs, as the majority of the instruction come from 

the Trace Cache and not from Instruction Cache. (This can also be improved as Trace Cache 

is being improved.) 

We showed that enlarging the Trace Cache line allows us to increase the prediction window, 

but not enough. On the other hand, it hurts Trace Cache utilization and performance, and 

on the other hand, we prefer to have a solution that is configuration independent.  

Another way to predict characteristics about long instruction sequences from the Trace 

Cache is to use more than one trace. The main idea is to use those traces as long as they 

are fetched one after another from the Trace Cache (but do not necessarily reside in 

consecutive lines in the Trace Cache). I f we are able to predict such a sequence and fetch 

information from several Trace Cache lines together, we can handle them as a very long 

instruction sequence coming out of the Trace Cache. We can use the combined information 

from all those lines as a prediction for dynamically scaling the processor’s resources in the 

near future, while those instructions are executed. In this case we don’t need to change the 

existing configuration of the Trace Cache, and therefore don’t hurt its utilization, 

performance and system flexibility. The important thing to remember is that we don’t need 

to fetch the instructions from the Trace Cache, which may require time. All we need to do to 

predict the future behavior is to fetch the Tag which keeps the information about the 

instructions at the line. This “ fetch” is much less time and power-consuming. 

We define a Trace Sequence as a sequence of instructions coming only out of the Trace 

Cache (without fetching from the Instruction Cache). A Trace Sequence can consist of one 

or more Trace Cache lines.  

But the questions are:  

- Do we have Trace Sequences that are long enough to allow sufficient prediction? 

- Do such sequences include enough instructions to make this proposal relevant? 

In order to answer those questions we checked the percentage of instructions that are 

executed from trace sequences with different length. 
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Figure 17: Distribution of instruction sequences coming from TC 

Figure 17 presents distribution of instruction sequences. We can see for each benchmark 

what percentage of instructions executed from the Trace Cache (X axis) belongs to 

sequence with certain length (Y axis). In other words, each dot (x,y) in the Figure 17 

represents the following data:  y%  of instructions executed from the Trace Cache belong to 

trace sequences with length x or more. 

Examples to explain the graph:  

- For the ammp benchmark about 90%  of the instruction sequences coming from the 

Trace Cache are very long instruction sequences. Over 85%  of the instruction 

sequences are longer than 1000 instructions. 

- For the twolf_ref benchmark about 40%  of the instruction sequences are longer than 

100 instructions, but only 20%  are longer than 150 instruction. There is small amount of 

instruction sequences with length 200 or above. 
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The data presented in Figure 17 is presented in the table below in more detailed manner, but with focus on 

certain length numbers. I t presents percentage of instructions at instruction sequences with lengths over 30, 

50, 100, 200, 300, 500 or 1000 executed from the Trace Cache. 

Benchmark I nput 

%  
instructions 

in 
sequences 
with over 

30 
instructions 

%  
instructions 

in 
sequences 
with over 

50 
instructions 

%  
instructions 

in 
sequences 
with over 

100 
instructions 

%  
instructions 

in 
sequences 
with over 

200 
instructions 

%  
instructions 

in 
sequences 
with over 

300 
instructions 

%  
instructions 

in 
sequences 
with over 

500 
instructions 

%  
instructions 

in 
sequences 
with over 

1000 
instructions 

179.art A10.img 98.79%  96.29%  75.88%  75.45%  75.12%  74.43%  73.63%  

164.gzip input.source 93.70%  81.16%  59.66%  34.69%  27.53%  23.93%  21.09%  

164.gzip input.log 96.09%  89.69%  75.07%  57.59%  49.66%  42.34%  34.56%  

164.gzip input.graphic 95.39%  87.71%  59.36%  30.35%  22.85%  12.26%  8.96%  

164.gzip input.random 96.91%  94.04%  71.02%  41.94%  32.50%  21.73%  19.36%  

164.gzip input.program 90.52%  74.81%  47.17%  22.97%  18.02%  15.41%  14.51%  

175.vpr Place 64.86%  37.95%  9.87%  3.44%  2.77%  1.82%  0.66%  

175.vpr Route 65.27%  48.54%  13.76%  5.19%  2.96%  1.49%  0.08%  

176.gcc 166.i 91.90%  82.65%  69.90%  55.64%  50.49%  46.33%  44.90%  

176.gcc 200.i 80.88%  68.51%  50.99%  37.51%  31.37%  24.84%  19.30%  

176.gcc integrate.i 75.82%  61.89%  46.98%  38.64%  34.55%  30.67%  24.54%  

176.gcc scilab.i 67.77%  51.76%  33.56%  19.93%  13.75%  9.10%  5.29%  

181.mcf inp.in 91.37%  89.11%  80.56%  75.11%  70.54%  67.83%  63.00%  

256.bzip2 input.source 92.11%  69.20%  49.87%  30.78%  28.49%  25.90%  22.71%  

256.bzip2 input.graphic  93.47%  70.88%  57.22%  40.48%  40.02%  39.55%  38.99%  

256.bzip2 input.program 92.50%  71.99%  53.87%  39.79%  37.22%  34.02%  31.50%  

183.equake inp.in 88.61%  76.10%  44.14%  6.00%  0.78%  0.00%  0.00%  

255.vortex lendian1.raw 82.94%  67.76%  15.88%  9.74%  8.76%  0.23%  0.15%  

300.twolf Ref 64.39%  48.27%  39.81%  0.15%  0.12%  0.03%  0.00%  

188.ammp ammp.in 94.99%  92.11%  91.23%  89.70%  88.69%  86.59%  86.49%  

Table 7: Distribution of instruction sequences 

For example: 

- 75.88%  of instruction sequences in the art benchmark that were executed from the 

Trace Cache have 100 instructions or more, 73.63%  of the instruction sequences 

have 1000 instructions or more. The set of the traces with more than 100 

instructionst includes the set of sequences with over 1000 instructions.  

- In the equake benchmark, 44%  of instruction sequences that were executed from 

the Trace Cache have 100 instructions or more, but only 6%  have 200 instructions 

or more. 

We can see that most of the benchmarks have a high percentage of instruction sequences 

coming from the Trace Cache with over 100 instructions in the sequence.  

There are several benchmarks that have high percentages of very long instruction 

sequences (over 1000 instructions):  art, gcc_166, mcf, ammp. 
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Figure 18:  Distribution of instruction sequences coming from TC (zoom till 200) 
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The below table presents summary of the above measurements - percentage of executed 

instructions that came as long trace sequences from the Trace Cache. We defined here 

“ long sequence” as sequences with at least 100 or 200 instructions. The measurement is 

done relatively to all executed trace sequences. 

Benchmark I nput 

%  instructions 
in trace 

sequences with 
over 100 

instructions 

%  instructions 
in trace 

sequences with 
over 200 

instructions 

179.art a10.img 75.88%  75.45%  

164.gzip input.source 59.22%  34.47%  

164.gzip input.log 75.07%  57.59%  

164.gzip input.graphic 59.37%  30.34%  

164.gzip input.random 71.02%  41.95%  

164.gzip input.program 47.24%  23.03%  

175.vpr Place 9.87%  3.43%  

175.vpr Route 13.73%  5.19%  

176.gcc 166.i 69.54%  54.84%  

176.gcc 200.i 51.02%  37.52%  

176.gcc integrate.i 46.99%  38.67%  

176.gcc scilab.i 33.50%  19.90%  

181.mcf inp.in 80.56%  75.11%  

256.bzip2 input.source 86.70%  80.76%  

256.bzip2 input.graphic  57.22%  40.48%  

256.bzip2 input.program 54.03%  39.83%  

183.equake inp.in 45.41%  6.47%  

255.vortex lendian1.raw 15.91%  9.72%  

300.twolf Ref 39.75%  0.14%  

188.ammp ammp.in 91.23%  89.70%  

Table 8: Long Trace Sequences at the Trace Cache 

We can see in Table 8 that many instructions that come from the Trace Cache reside in 

long sequences, and therefore their behavior can be potentially predicted and used as input 

for dynamical tuning of processor’s resources. 

Another idea to increase the prediction was to check the lengths of the instruction 

sequences coming from the Instruction Cache. Those instructions interrupt sequences of 

instructions from the Trace Cache. We thought that they can be ignored, if short enough, 
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and we can see the program or part of it as very long sequence of instructions coming from 

the Trace Cache. The simulations (Figure 19) showed that although most of the 

instructions executed from the Instruction Cache belong to short sequences, there are still a 

number of long instruction sequences executed from the Instruction Cache that can’t be 

ignored. 
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Figure 19: Distribution of instruction sequences coming from IC 

Figure 19 presents the distribution of instruction sequences coming from the Instruction 

Cache for different benchmarks. Each point (x,y) presents the following data:  y%  of 

instruction sequences that were executed from the Instruction Cache are with length x or 

more. 

For example: In the gcc_scilab benchmark about 10%  of instruction sequences executed 

from the Instruction Cache are more than 100 instructions long. 

Comparing Figure 19 with Figure 17 we can see that most of the instructions in long 

sequences are executed from the Trace Cache and not from the Instruction Cache. 

Proposed architecture 
In this work we propose making a small change to the existing Trace Cache to add 

additional information to each trace and to build a Trace Cache with trace characterization. 
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Figure 20: Trace Cache basic structure 

The current architecture of the Trace Cache already includes additional information for each 

trace, called a Tag. The Tag includes the trace id, the trace size and other trace related 

information. We propose adding information about instructions inside the trace, called trace 

characterization, to the Tag. As we’re changing the Tag only, the change we propose won’t 

affect Trace Cache parameters, it will only increase the Tag. This information can be derived 

from the instructions within the trace during trace build. Having this information summarized 

in the Tag will allow us to have a special fetch during trace access that will fetch only the 

information needed for dynamical tuning without needing to fetch all the instructions. The 

content and the amount of additional information depend on the type of tuning that we 

want to make (will be discussed later). 

5.1.1 Algorithm for Dynamic Tuning based on the Trace Cache 

In this chapter we define the algorithm that can be used for dynamical tuning of 

processor’s resources. 

1. Retrieve the information about future requirements for the resources, based on the 

Trace Cache. The information will be retrieved from the Tags. 

2. Analyze the retrieved information and propose an optimal configuration. 

3. Compare the proposed configuration with the current configuration. 

4. Change the current configuration if needed. 

In this work we will focus on # 1 and propose options for # 2. 
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Another issue that should be addressed is when this algorithm should be performed.  

We should define a limit:  the number of instructions or traces that we predict ahead. 

The algorithm should be performed again before all the predicted instructions are 

executed to recalculate the processor’s needs according to the next set of instructions 

and to apply a new configuration if needed. There is no need to perform the 

algorithm for each new trace access, as long as we have data for a long time ahead.  

In addition to performing the algorithm according to the number of instructions that 

have yet to execute, we propose to do it for each misprediction, as the configuration 

that was predicted is not relevant anymore. 

We should be aware that there are cases in which we won’t be able to predict enough 

instructions according to predefined limit, for example if the next trace is not in the 

Trace Cache. Therefore we propose to perform the algorithm based on the number of 

instructions in the trace sequence that remain to be executed and not based on a 

constant time or instruction interval. 

There is no need to have feedback on whether we followed the predicted path. This 

should work, as we use same predictor for fetching the instructions, so as long as we 

didn’t have a misprediction the path should be the same.   
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Prediction of long trace sequences 
We see that we can benefit a lot from predicting long trace sequences and their content. As 

mentioned above, such sequences mostly consist of several Trace Cache lines in the order 

that they should be fetched and executed (but not necessarily in the order in which they are 

stored inside the Trace Cache).  

 

Figure 21: Example of a Trace Sequence 

Figure 21 presents an example of a trace sequence ABEC which is combined of 4 traces. A, 

B are consecutive traces, but B and E, E and C are non-consecutive. 

In order to benefit from those sequences we should be able to know the information from 

all the lines enough time ahead. Preferably before the instructions from the first trace of the 

sequence are fetched and executed, and not at the time that the actual fetches occur.  

As mentioned before, what we actually need in order to perform dynamic tuning is not the 

prediction of the actual instructions in the trace sequences, but prediction of information 

about the trace sequence. There are several options to achieve this:   

- A trace that starts a long trace sequence should keep relevant information for the 

whole sequence. 

- Predict all (or enough) traces ahead and take the relevant information from each 

trace. 

For the first option we can use the regular Trace Cache line prediction mechanism to predict 

sequence information by predicting one trace each time. The change that we need for this 
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option is that each trace should be able to keep enough information needed to make a 

decision for which trace sequence it may start. This solution has several drawbacks: We 

need to add more space to the Trace Cache to each line for additional information (may 

require a lot of space). We need to decide what information should be saved in case a trace 

can start several long sequences or be part of several trace sequences. 

For the second option less information can be saved per each line, but we need to have a 

new prediction mechanism – the Sequence Information Predictor. I t should be able to 

predict the next line before it ’s actually needed for execution. More than that, it should be 

able to predict several lines ahead until we have enough information or until prediction is 

unavailable. 

We tried to simulate the second approach. We built a Sequence Information Predictor based 

on the Trace Predictor. The algorithm for the Sequence Information Predictor is described 

below in Figure 22.  

 

Figure 22: Algorithm for Sequence Information Predictor 
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Two main changes need to be done to apply this algorithm: 

- Trace Tags should have additional information. This requirement is easy to 

be implemented and requires minimal change. 

- The Trace Predictor that we use should be changed. I t is required to be 

activated in advance, before the previously predicted trace was executed or 

an event fetched and before we got feedback. This requirement is more 

complicated and it requires an additional changed version of the Trace 

Predictor. The implementation is described below. 

In our proposal the Trace Predictor is activated independently in two different 

versions: 

- The Trace Predictor is activated as before to find the next trace for 

execution. Following this instructions are fetched for execution. 

- A changed version of the Trace Predictor is activated. I t tries to predict as 

trace lines ahead as possible. During this activation only Tags are fetched 

without actual fetch of instructions. I t ’s important to emphasize that even for 

short traces (like 16:3 configuration) the Trace Cache is not accessed 

frequently, and therefore we have time for smarter algorithms that will 

calculate and change the configuration.  

The above algorithm also requires definition of a limit. A limit is the number of 

instructions that is enough to make a future prediction and change the processor’s 

configuration. I ts definition is not in the scope of this work. For feasibility studies we 

defined it as 100 instructions. During the simulation we used “sliding window” 

approach. Trace Sequence Predictor was activated each time Trace Predictor was 

activated (each time we access new trace we predict 100 instructions ahead). 

5.1.2 Change of the Trace Predictor – implementation details 

In regular Trace Predictor implementation there are two tables (Simple Scalar 

implementation):   

• Ongoing-table - keeps all the traces and an indication whether they are still 

valid in the processor. 

• History-table - keeps predictions (trace ID) and counters for prediction 

correctness. This table is used only for Trace Predictor purposes. 
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Each trace that is fetched is added to the Ongoing-table. The trace is kept there until 

it is committed or recovered (due to misprediction). During this time the trace is 

indicated as valid. The trace becomes invalid after it ’s committed or removed in case 

of recovery. The Ongoing-table is used not only for the Trace Predictor (e.g. 

instructions fetch from the trace), and therefore we should keep it correct, especially 

the valid indications. 

Each trace that is executed without recovery updates the History-table which is used 

for the Trace Predictor.  A counter relevant to the trace (identified by trace-ID) is 

updated according to whether the trace had a correct or incorrect prediction. In case 

of a new trace a new prediction is added to the History-table.  

 

Figure 23: Table’s update policy 

 

The Trace Predictor calculates the index to the History-table based on the trace 

address and previous traces (next trace predictor). The calculation is done based on 

the traces in the Ongoing-table (even if the previous traces already committed and 

are not valid at the table). According to this index the Trace Predictor accesses the 

History-table and checks whether the counter for this trace indicates a good 

prediction. I f the counter is high, the predictor returns a correlated trace address, 

otherwise there is no prediction. 
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Trace Predictor
TP(j)

j_index = calculate to History_Table for trace j
prediction-counter = read History_Table.j_index[counter]
If (prediction_counter is high)

return History_Table.j_index[prediction]
Otherwise

return no_valid_prediction

 

Figure 24: Trace Predictor for j (j last executed trace) 

The changed Trace Predictor aims to predict more that one trace. Therefore as long 

as we want to predict another trace we simulate as if we fetched a trace and try to 

predict next one. All predicted traces are added speculatively to the Ongoing-table 

(without valid bit set, without changing table parameters) and we let the predictor 

work as usual.  We don’t update the Ongoing-table's parameters (e.g. valid, num-of-

entit ies, head), so those speculative traces won’t be visible for regular execution, they 

will be visible only for the Trace Predictor as the “path” to next trace. When the trace 

is actually fetched it will override its previous and speculative entry in the Ongoing-

table by updating all necessary parameters.  

Trace Sequence Predictor
TSP(j)

More prediction is 

needed?

TP(j)

Exit TSP

Returned valid prediction i? Exit TSP

- Fetch trace i (w/o setting valid)
- Read I’s info

- j = i (latest fetched trace)

No

No

Yes

Yes

j – last predicted trace

 

Figure 25: Trace Sequence Predictor starting from trace j 
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Filter for long trace sequences 
We see from the results of the simulations above (Table 8) that although we have many 

long trace sequences, we also have many short trace sequences (the complement of long 

sequences). Prediction based on short trace sequences will not give Power Reduction but 

may harm performance. For example if we make a configuration change according to short 

sequence prediction we may choose to disable some unit that we may need in the near 

future. In this case instead of power gain we lose performance. We can gain a lot from 

using prediction in case of long trace sequences but we can also lose a lot from doing 

changes based on short trace sequences. 

We would like to be able to predict long trace sequences only and base dynamic changes of 

the processor’s resources on those predictions only. We tried to find a way to filter short 

trace sequences and predict only long trace sequences. 

There are several origins for short trace sequences. Sometimes we just don’t have 

prediction for next trace. Sometimes short trace sequence can be created by a misprediction 

in the middle of long sequence. 

We simulated some basic filters that require minimal additional change. 

Most of the simulated filters are based on two counters that are added to each Trace Cache 

line Tag. The first counter was increased each time this trace started a short trace sequence 

(short_seq_cntr). The second counter was increased each time the trace started a long 

trace sequence (long_seq_cntr).  

Update of the counters:  Each time we start new sequence (not necessarily for each new 

trace) we keep the trace ID of the trace that started it. When the sequence is stopped (we 

encountered fetch from Instruction Cache or misprediction) we update one of those 

counters. The counters are updated according to trace ID and number of instructions 

executed so far, depending on whether the sequence that the trace started was short or 

long.  

The definition of a long trace sequence depends on limit requirements. In our simulations 

we defined a long trace sequence as a sequence with more than 100 instructions. Those 

counters were used later at the fetch of trace sequence information to decide whether they 

have a potential to start a long trace sequence.  

We tried several filters, as presented below, which are based on the described above 

counters:   

• The continuity has potential to be long if  

(long_seq_cntr - short_seq_cntr) >  0 
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• The continuity has potential to be long if  

(long_seq_cntr - short_seq_cntr) >  1 

• The continuity has potential to be long if  

long_seq_cntr >  0 

• The continuity has potential to be long if  

long_seq_cntr >  1 

An additional filter that we tried was based on the new Trace Predictor for several trace 

lines (as described above). I f the Trace Predictor can predict enough traces after this one in 

order to have a long trace sequence, then this trace is a good candidate for starting a long 

trace sequence. This filter covers only one source for short trace sequences – no available 

prediction for long sequences. This filter can be improved by taking into consideration 

“mistakes” in previous predictions, and whether this long sequence became eventually 

short. Other filters should cover all the origins of short trace sequences. 

The results from simulations of the described above filters are presented at Table 9:  

Benchmark I nput 

Ench. 
Trace 

Predictor 
long_cntr -  

short_cntr> 0 
long_cntr -  

short_cntr> 1 
long_cntr 

>  0 
long_cntr 

>  1 

       

179.art a10.img 82.93%  22.13%  8.22%  66.36%  43.41%  

164.gzip input.source 57.02%  18.19%  8.06%  46.19%  26.84%  

164.gzip input.log 74.21%  36.20%  21.23%  57.92%  39.19%  

164.gzip input.graphic 34.85%  28.20%  14.69%  56.62%  33.41%  

164.gzip input.random 59.32%  36.58%  19.79%  64.10%  41.13%  

164.gzip input.program 34.37%  17.62%  9.10%  44.85%  24.92%  

175.vpr place 45.17%  12.31%  3.56%  25.75%  7.95%  

175.vpr route 80.63%  9.36%  5.78%  13.95%  6.95%  

176.gcc 166.i 50.34%  31.32%  16.08%  47.75%  26.71%  

176.gcc 200.i 69.63%  32.44%  17.62%  47.55%  26.45%  

176.gcc integrate.i 71.20%  23.05%  10.60%  38.36%  19.22%  

181.mcf Inp.in 79.82%  20.26%  7.95%  57.97%  36.66%  

256.bzip2 input.source 77.90%  59.49%  45.85%  65.69%  49.65%  

256.bzip2 input.program 79.93%  53.24%  37.08%  61.86%  43.14%  

183.equake Inp.in 77.34%  44.34%  19.77%  58.33%  25.93%  

255.vortex lendian1.raw 84.57%  15.50%  4.86%  25.78%  7.67%  

300.twolf Ref 84.35%  17.41%  5.65%  38.70%  13.49%  

188.ammp ammp.in 71.40%  18.93%  4.69%  22.23%  4.94%  

Table 9: percentage of successful predictions using different filters 
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Each number in Table 9 presents the percentage of successful predictions of long trace 

sequences using a certain filter. Successful prediction – the sequence was identified by the 

filter as a long trace sequence and was executed as a long trace sequence. The numbers 

are calculated as the ratio between successfully predicted long trace sequences (that were 

predicted as long trace sequences and were executed as long trace sequences) and all 

executed trace sequences with more than 100 instructions.   

We can see that even by adding a very simple filter (long_seq_cntr >  0) we can have good 

prediction of long trace sequences. For example: in the art benchmark 66.36%  of executed 

long trace sequences were predicted as long trace sequences by the (long_seq_cntr >  0) 

filter.  

Also we can see that filtering based on the new Trace Sequence Predictor increases the 

chance for more accurate prediction of long trace sequences. For example: in the art 

benchmark 82.93%  of executed long trace sequences were predicted by new Trace 

Predictor as long trace sequences. As stated above this filter can be improved by taking into 

account history of mispredictions (this can be improved in future work). 

Same data also presented in the figure below. 
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Figure 26: Successful Prediction of Trace Long Sequences using different filters 
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 We can see that using Trace Sequence Predictor predicts successfully most of the long trace 

sequences. 

The problem with using Trace Sequence Predictor is that it has a very high percentage of “bad” 

predictions, relatively to using the presented above filters. We consider a prediction as “bad” if 

short sequence was predicted as long. In this case we might have a wrong decision of making 

changes based on wrong information. 

percentage of wrongly predicted short sequences

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

ar
t_

te
st

1

gz
ip

_s
ou

rc
e

gz
ip

_l
og

gz
ip

_g
ra

ph
ic

s

gz
ip

_r
and

om

gz
ip

_p
ro

gr
am

vp
r_

pla
ce

vp
r_

ro
ut

e

gc
c_

16
6

gc
c_

20
0

gc
c_

in
te

gr
at

e
m

cf

bz
ip

2_
so

ur
ce

bz
ip

2_
pro

gr
am

eq
ua

ke
_i

np

vo
rte

x_
le

nd
ia

n1

tw
ol

f_
re

f

am
m

p

Trace Sequence Predictor

long_cntr-short_cntr>0

long_cntr-short_cntr>1

long_cntr>0

long_cntr>1

 

Figure 27: “Bad” Prediction of Trace Long Sequences using different filters 

This figure shows that using Trace Sequence Predictor has many “bad” predictions relatively to 

using other filters. 
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6. Discussion 

Characteristics of long trace sequences 
We examined long trace sequences and tried to characterize them. Most of the long trace 

sequences (that eventually became very long – thousands of instructions) have patterns of 

repeating instructions (like a loop). 

We tried to count those loops to check if we have correlation between the sequence length 

and having a loop with many iterations. We saw such a correlation for very long trace 

sequences. Long trace sequences (hundreds of instructions) did not necessarily include 

loops. We checked loops in terms of trace lines only (counted trace lines that repeated 

themselves). 

One of the examples we presented for dynamic tuning of processor’s resources was 

disabling the FP execution unit if we could predict a long sequence of non-FP instructions. 

We tried to simulate such a prediction by adding a simple indication to the Tag about 

whether the trace includes an FP instruction or not. According to our simulations long trace 

sequences either had many FP instructions or none. Therefore the FP unit can be a good 

candidate for dynamical tuning. 

How to use Prediction of long trace sequences? 
We showed that many long trace sequences of instructions can come from the Trace Cache. 

We proposed a way of accurately predicting information about such sequences. Assuming 

we can collect all relevant information about the instructions in the trace and maintain it in 

the Tag, how can we use it? Our proposal was to use this information for power reduction. 

As the necessary information can be available sufficiently ahead of execution time, we can 

use the information to disable and enable execution units without lowering performance. 

We listed suggestions for power optimizations. Those optimizations can be done using 

dynamic tuning of processor resources based on the information that can be retrieved from 

the Trace Cache: 

1. FE power down. When we predict a long trace sequence coming from the Trace Cache 

we can disable units that fetch instructions from the Instruction Cache. We can close 

parts of the FE and fetch as all coming instructions from the Trace Cache. For this change 

it 's enough to know that we have a long trace sequence coming from the Trace Cache 

and what the length is. This use does not require any additional information to be kept in 

the Tag, as the trace size is already part of it. We don't need to know what the 

instructions inside this sequence are. We can enhance this idea by keeping information or 
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hints for decode at the Trace Cache and disabling some decode related units as well. I f 

we keep decoded instructions we can also turn off the decoder. 

2. Disable/enable FP units. Simulations show that trace sequences either had many FP 

instructions or none. Therefore the FP unit is a good candidate for being disabled based 

on long trace sequences’ predictions. In order to make it possible we need to keep the 

information whether the Trace Cache line has FP instructions inside it.  

3. “Exotic” instructions. Special hardware that is being kept for “exotic” instructions is a 

good candidate to be closed while not needed. Similar to FP there are special purpose 

instructions that use dedicated hardware. Those instructions are not widely used. As long 

as we don’t run appropriate applications we can enjoy power saving while this hardware 

is disabled. 

4. Execution unit balancing. Another option is to collect statistics for each trace about the 

utilization of different units during execution. Using this information per trace sequence 

we can configure execution units according to the needs of the program. During this work 

we didn’t measure the benefit of power reduction, but other works showed that pipe 

balancing can achieve power reduction  [ 1] . 

5. Memory operations. While identifying many memory operations based on long trace 

sequence, we can suggest partially disabling units unrelated to execution of those 

instructions as memory instructions are very time consuming. Another option is to change 

issue width. More accurate algorithms can be proposed for analyzing such instructions 

and base dynamic tuning on whether they cause hit or miss.  

6. Power Reduction during loop execution. Simulations showed that many very long trace 

sequences are based on loops. We can recognize large numbers of loop repetitions using 

Loop Detector. On the other hand we can collect statistics on different unit utilization 

during the loop execution based on Trace Cache. Dynamic tuning can be based on the 

above information. Trace Cache will provide information about the resources needed for 

loop body. Loop Detector will provide the number of repetitions for better prediction of 

sequence length. Using data from trace sequences we can do this for long loops as well 

(where loop body consists of several traces). 
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7. Summary 
This work showed a new approach to using Trace Caches. Most of the works proposed using 

Trace Caches to achieve low latency and high bandwidth during instruction fetch. 

In this work we tried to go in another direction and propose using the information that we 

already have in the Trace Cache for reduction of Power Consumption.  

This work is based on the assumption that the information in the Trace Cache is highly 

accurate (most of the traces are “hot” and if we have a hit at the Trace Cache then we get a 

correct trace).  

Our proposal is to use the Trace Cache as a monitoring unit for dynamic tuning of 

processor’s resources. Trace Caches store instructions in their executed order. I f we can 

predict the instructions that will be executed in the trace then we can adapt the processor’s 

resources to the actual needs of the program. 

In this work we do not add a Trace Cache, but rather make small changes. The baseline of 

this proposal is processors that have Trace Caches.  

First of all we checked the feasibility of the proposal, whether Trace Cache can be used as a 

monitoring unit. We saw that the majority of executed instructions come from the Trace 

Cache and not from the Instruction Cache (most of the benchmarks showed 70%  or above). 

Therefore making decisions about future execution based on instructions executed only from 

the Trace Cache has high potential. We checked the quality of trace execution to 

understand whether the data about instructions in the trace is relevant. For all the 

benchmarks the trace execution quality was very high (over 0.92). Therefore we can predict 

future execution based on the instructions stored in the Trace Cache, as there is high 

confidence that they will be actually executed. 

We proposed tuning the processor’s resources dynamically based on prediction of what 

resources will be used. We know that we have this information in the Trace Cache. We 

showed that this information can be retrieved from the Trace Cache with high confidence. I f 

we can predict which of the processor's resources will be used, we can turn off redundant 

hardware and save power. Changes based on turning units on or off units take time. In 

order to make such changes and benefit from them, we need to have information about 

future execution sufficiently ahead of time. Prediction of one Trace Cache line ahead, as 

achieved by regular trace line fetch, is insufficient for this purpose. For small a Trace Cache 

with regular traces we can predict only 12 instructions in average. Increasing the trace line 

proved to be inefficient, therefore we defined long trace sequences as several traces 

executed one after the other. We considered sequences with more than 100 instructions as 
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long. According to our simulations we have enough long trace sequences coming from the 

Trace Cache. Over 50%  of the instructions executed from the Trace Cache come as part of 

long trace sequences. This shows that if we can predict those long trace sequences we can 

predict information about most of the instructions sufficiently ahead of time. 

We changed the Trace Predictor to be able to predict information about several trace lines 

ahead (trace sequence). By doing this we found a way to predict information about many 

instructions that will be executed in the future. Knowing this information allows us to tune 

the processor’s resources accordingly:  turn-off redundant hardware and turn-on required 

hardware.  

We can benefit, in terms of power, from knowing about future instructions, but we can also 

lose performance if we base resource changes on short trace sequences. We tried to "build" 

some simple filters that would help us to distinguish between long and short instruction 

sequences and we succeeded predicting up to ~ 60%  of long trace sequences. 

We tried to analyze those trace sequences to understand how the information that we can 

retrieve can be used for reducing power consumption. We proposed several directions for 

dynamic tuning based on the information that can be retrieved from long trace sequences 

coming from Trace Cache. 

Our proposal is independent of the Trace Cache that is used or its configuration. We tried to 

base our simulations on the Trace Cache with several improvements in order to achieve 

better performance. Improvements of the Trace Cache in terms of trace prediction, 

utilization and ability to cover most of the executed program, will contribute to better results 

of our proposal as well. 

Future work 
In this work we proposed a microarchitectural enhancement that aims to reduce Power 

Consumption based on the Trace Cache. We checked the feasibility of this proposal and 

presented some ideas that can be implemented based on this enhancement. We didn’t 

simulate most of those ideas and they can be the subject of future work.  

More work can be done to improve the long trace sequences filter to achieve a higher 

percentage of prediction for long sequences and a lower percentage of prediction of short 

sequences (i.e., to reduce number of times short trace sequences are predicted as long). 

Wrong prediction of short sequences instead of long has a high penalty in performance.  

In this work we didn’t simulate the real gain that can be achieved in power consumption and 

loss of performance and this can be a subject for future work. 

One of the ideas that came from analyzing trace sequences is to combine a Loop-Detector 
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with a Trace Predictor to identify long trace sequences that are based on a loop that is 

repeated many times. This can be used as a prediction for very long trace sequences.  

More work can be done in analyzing long trace sequence and finding other proposals for 

dynamic changes. 

We presented the existence of long trace sequences and how to predict them. More work 

can be done to define what a long sequence is in terms of number of instructions, and how 

to determine this number. Calculation of this number can be done based on the resource 

that will be tuned and how long it takes to make the change.  

We tried to predict many instructions to have a big prediction window. However we didn’t 

have a definition for mapping the time units to the number of instructions. This mapping 

may depend on the configuration (execution width) of the processor and might be tuned as 

we change the configuration. 

We proposed defining the configuration based on additional information from instructions 

that will be executed. We didn’t define how to set the configuration or perform the actual 

changes. All those are subjects for future work. 

 

 

  62  



8. References 
 

[ 1] . R. I ris Bahar, S. Manne; "Power and energy reduction via pipeline balancing", In Proc. 

ISCA’01, pages 218–229. June 2001 

[2] . Behar, M.;  Mendelson, A.;  Kolodny, A.;  “Trace Cache Sampling Filter”, ACM Transacti

on Computer Systems (TOCS), 2007 

ons 

 

33, Jan 

 

f 

m on 

[3] . Douglas C. Burger and Todd M. Austin. The SimpleScalar Tool Set, Version 2.0. University

of Wisconsin, Madison Tech. Report. June 1997. 

[4] . D. H. Friendly, S. J. Patel and Y. N.Patt, “Alternative Fetch and Issue Policies for the 

Trace Cache Fetch Mechanism” 

[5] . J. Henning. SPEC CPU2000: Measuring CPU Performance in the New Millennium. IEEE 

Computer, pp. 28-35, 2000. 

[6] . G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel:  "The 

microarchitecture of the pentium 4 processor", Intel Technology Journal Q1, 2001 

[7] . A. Iyer and D. Marculescu, “Run-Time Scaling of Microarchitecture Resources in a 

Processor for Energy Savings,” Proc. Kool Chips Workshop, Dec. 2000. 

[8] . Q. Jacobson, E. Rotenberg, J. E. Smith, “  Path- Based Next Trace Prediction,” in  

Proceedings of the 30th International Symposium on Microarchitecture, pp. 14-23, 

December 1997. 

[9] . O. Kosyakovsky, A. Mendelson and A. Kolodny, “The Use of Profile-based Trace 

Classification for Improving the Power and Performance of Trace Cache Systems”, in 4th 

Workshop on Feedback-Directed and Dynamic Optimization, Dec. 2001. 

[10] . Peleg, U. Weiser;  "Dynamic Flow Instruction Cache Memory Organized Around Trace 

Segments Independent of Virtual Address Line", United States Patent  No. 5,381,5

10, 1 

[11] . D. Ponomarev, G. Kucuk, and K. Ghose,, “Dynamic Resizing of Superscalar Datapath

Components for Energy Efficiency”, in IEEE Trans. On Computers, 55(2), pp 199-213, 

Feb. 2006 

[12] . M. Postiff, G. Tyson and T. Mudge, “Performance Limits of Trace Caches”, in Journal o

Instruction-Level Parallelism, vol. 1, Oct. 1999. 

[13] . E. Rotenberg, S. Bennett and J.E. Smith, “Trace Cache: a Low Latency Approach to High 

Bandwidth Instruction Fetching”, in Proceedings of the 29th International Symposiu

Microarchitecture, Dec. 1996 

[14] . E. Rotenberg, S. Bennett and J. Smith, “A Trace Cache Microarchitecture and Evaluation”, in IEEE 

Trans. On Computers, 48(2), pp 111–120, Feb. 1999 

  63  



[ 15] . R. Rosner, Y. Almog, M. Moffie, N. Schwartz and A. Mendelson, “PARROT: Power 

Awareness through Selective Dynamically Optimized Traces”, in PACS’03, Dec. 2003. 

[16] . Rosner, R.;  Mendelson, A.;  Ronen, R.;  “Filtering techniques to improve trace-cache 

efficiency” in International Conference on Parallel Architectures and Compilation 

Techniques (PACT), Page(s):  37 -48, 2001  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  64  


	Usage of Trace Cache for Predicting Power Saving Opportuniti
	I. Sorani, A. Kolodny and A. Mendelson

	Abstract
	Abbreviations
	Conventions and Definitions
	Introduction
	Overview of Previous works / Background
	Trace Cache
	Trace Cache Build and Access
	Trace Cache advantages and limitations

	Trace Cache line Predictor
	Trace Cache Filter
	Power Reduction Mechanisms

	Simulation Environment
	Trace Cache at SimpleScalar

	Basic observations
	Large Traces

	Long Trace sequences
	Proposed architecture
	Algorithm for Dynamic Tuning based on the Trace Cache

	Prediction of long trace sequences
	Change of the Trace Predictor – implementation details

	Filter for long trace sequences

	Discussion
	Characteristics of long trace sequences
	How to use Prediction of long trace sequences?

	Summary
	Future work

	References
	R. Iris Bahar, S. Manne; "Power and energy reduction via pip
	Behar, M.; Mendelson, A.; Kolodny, A.; “Trace Cache Sampling
	Douglas C. Burger and Todd M. Austin. The SimpleScalar Tool 
	D. H. Friendly, S. J. Patel and Y. N.Patt, “Alternative Fetc
	J. Henning. SPEC CPU2000: Measuring CPU Performance in the N
	G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyke
	A. Iyer and D. Marculescu, “Run-Time Scaling of Microarchite
	Q. Jacobson, E. Rotenberg, J. E. Smith, “ Path- Based Next T
	O. Kosyakovsky, A. Mendelson and A. Kolodny, “The Use of Pro
	Peleg, U. Weiser; "Dynamic Flow Instruction Cache Memory Org
	D. Ponomarev, G. Kucuk, and K. Ghose,, “Dynamic Resizing of 
	M. Postiff, G. Tyson and T. Mudge, “Performance Limits of Tr
	E. Rotenberg, S. Bennett and J.E. Smith, “Trace Cache: a Low
	E. Rotenberg, S. Bennett and J. Smith, “A Trace Cache Microa
	R. Rosner, Y. Almog, M. Moffie, N. Schwartz and A. Mendelson
	Rosner, R.; Mendelson, A.; Ronen, R.; “Filtering techniques 









