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Abstract— We consider the problem of transmitting a Gaussian
source on a slowly fading Gaussian channel, subject to the mean
squared error distortion measure. The channel state information
is known only at the receiver but not the transmitter. The source
is assumed to be encoded in a successive refinement manner,
and then transmitted over the channel using the broadcast
strategy. In order to minimize the expected distortion at the
receiver, optimal power allocation is essential. We propose an
efficient algorithm to compute the optimal solution in linear
time O(M). Moreover, we provide a derivation of the optimal
power allocation when the fading state is a continuum, using the
classical variational method. The proposed algorithm as well as
the continuous solution is based on an alternative representation
of the capacity region of the Gaussian broadcast channel.

I. INTRODUCTION

Fading channel occurs naturally as a model in wireless com-

munications. For slow fading, the receiver can usually recover

the channel state information (CSI) accurately, however the

transmitter only knows the probability distribution of CSI,

but not the realization. Such uncertainty can cause significant

performance degradation, and the broadcast strategy was used

in [1] as an approach to combat this effect. In this strategy,

some information can only be decoded when the fading is

less severe, which is superimposed on the information that can

be decoded under more severe fading. Thus the receiver can

decode the information adaptively, according to the realization

of the channel state. The similarity to the degraded broadcast

channel [2] is clear in this context, particularly for channels

with finite number of fading states. Generalizing this view,

when the fading gain can take continuous values, the receiver

can be taken as a continuum of users in a broadcast channel.

The broadcast strategy naturally matches the successive re-

finement (SR) source coding framework [3], as the information

decodable under the strongest fading is protected the most,

and should be used to convey the base layer information in

the SR coding. As more information can be decoded when

the channel is subject to less fading, more SR coded layers

can be decoded, and the reconstruction quality improves. In

this work, we consider this scenario for a quadratic Gaussian

source. In order to minimize the expected distortion at the

receiver, it is essential to find the optimal power allocation in

the broadcast strategy, and this is indeed our focus. This cross

layer design approach was in fact already suggested in [1].

Initial effort on this problem was made by Sesia et al.

in [4], where the broadcast strategy coupled with SR source

coding was compared with several other schemes. Etemadi and

Jafarkhani also considered this problem in [5], and provided

an iterative algorithm, by separating the optimization problem

into two sub-problems. In two more recent works [6] [7],

Ng et al. provided a recursive algorithm to compute the

optimal power allocation for M fading states, with worst case

complexity of O(2M ); moreover, by directly taking the limit of

the optimal solution for the discrete case, a solution was given

for the continuous case optimal power allocation, under the

assumption that the optimal power allocation is concentrated

in a single interval. Similar problems were considered in [8]

[9] in the high SNR regime from the perspective of distortion

exponent.

Our contribution in the present work is two-fold: firstly,

we propose a new algorithm that computes the optimal power

allocation for M fading states with O(M) complexity, i.e., in

linear time; secondly, we provide a derivation of the contin-

uous case optimal power allocation solution by the classical

variational method [10]. Both the algorithm and the derivation

rely on an alternative representation of the Gaussian broadcast

channel capacity, which appeared in [11].

The rest of the paper is organized as follows. In Section II

we give the system model, and in Section III the new algorithm

is provided and its optimality is proved. In Section IV we give

the derivation for the continuous case solution, and Section V

concludes the paper.

II. SYSTEM MODEL AND PRELIMINARIES

We assume the memoryless source {Xi}∞i=1 is generated

independently and identically according to a zero-mean unit

variance Gaussian distribution. To simplify the notation, we

directly assume the channel in the real domain as

Yc =
√

sXc + N, (1)

where Xc is the real-valued channel input and Yc is the channel

output, s ∈ R is the (random) channel power gain, and N
is the zero-mean unit variance Gaussian additive noise in the

channel. Extension to complex system with circular symmetric

complex noise is straightforward.

We consider a slowly fading channel model, where each

channel codeword consists of a length-lc channel symbol

block. Source symbols of block length-ls is encoded into

a single channel codeword, and there is a source channel

mismatch factor b = lc/ls; see also Fig. 1. Each channel

block is assumed to be sufficiently long to approach channel
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Fig. 1. The broadcast approach for minimizing the expected distortion.

capacity, as well as the rate-distortion limit, however still much

shorter than the dynamics of the slowly fading process.

For the case with a finite number of fading states, the M
possible power gains in an increasing order s1 < s2 < ... <
sM are distributed according to a probability mass function pi

such that
∑M

i=1 pi = 1. The transmitter has a power constraint

P , and if power Pi is allocated to the i-th layer in the broadcast

strategy, the i-th layer channel rate Ri is given by

Ri =
1

2
log(1 +

Pi

1/si +
∑M

j=i+1 Pj

), (2)

where we use natural log. The equivalence to broadcast on

a set of channels with different noise variances is clear. Let

ni , 1/si, which implies n1 > n2 > ... > nM are the

equivalent noise power on the channels.

Since the Gaussian source is successively refinable [3], the

receiver with power gain si can thus achieve the distortion

Di = exp(−2b

i
∑

j=1

Rj). (3)

Combining (2) and (3), the problem is essentially the following

minimization over the power allocation (P1, P2, ..., PM ),

min

M
∑

i=1

pi





i
∏

j=1

(1 +
Pi

1/si +
∑M

k=i+1 Pk

)





−b

(4)

subject to: Pi ≥ 0, i = 1, 2, ..., M,
∑M

i=1 Pi ≤ P.

When the fading state is continuous, the density of the

power gain distribution is then given by f(s), which is

assumed to be continuously differentiable. The goal is then to

find a power allocation density function P (s), or its cumulative

function, which minimizes the expected distortion.

III. NEW ALGORITHM AND ITS OPTIMALITY

The problem in (4) is not convenient for optimization due

to its complicated form. In fact it is not immediately clear

that the function being optimized is a convex function of

(P1, P2, ..., PM ), but it is clear that the rate-region of the

broadcast channel is convex. Thus we seek another charac-

terization of R = (R1, R2, ..., RM ) for the broadcast channel

capacity. An alternative characterization was given in [11], and

we now translate it into our notation.

A. Rederivation of the equivalent representation

The rate vector R on the boundary region corresponds to

a power allocation P1, P2, ..., PM . Solving the value of Pi

in terms of the rate vector R gives an equivalent system of

equations, and through further simplification, we have1

∑

i≥m

Pi =
∑

i≥m

(ni − ni+1) exp



2

i
∑

j=m

Rj



 − nm,

m = 1, 2, 3, ..., M, (5)

where we define nM+1 , 0. The RHS of the above equation

is monotonically decreasing in m, hence for any rate vector

R, provided that (5) is satisfied for m = 1, i.e.

P =
∑

i≥1

(ni − ni+1) exp



2

i
∑

j=1

Rj



 − n1,

there must be a power allocation such that (5) is satisfied for

all m, and it is on the boundary of the capacity region. Thus

we can alternatively characterize the capacity region as

C =







(R1, R2, ..., RM ) : Rm ≥ 0, m = 1, 2, ..., M,

M
∑

i=1

(ni − ni+1) exp



2

i
∑

j=1

Rj



 − n1 ≤ P







.

Moreover, the above function is convex in (R1, R2, ..., RM ).
We can now reformulate the optimization problem as a

convex programming problem:

min

M
∑

i=1

pi exp(−2b

i
∑

j=1

Rj)

subject to: Ri ≥ 0, i = 1, 2, ..., M,
∑M

i=1(ni − ni+1) exp
(

2
∑i

j=1 Rj

)

− n1 ≤ P.

From the optimal rate vector R we can then recover the

corresponding power allocation.

B. The Lagrangian formulation and the algorithm

Now consider the Lagrangian form

L =

M
∑

i=1

pi exp(−2b

i
∑

j=1

Rj) −
M
∑

i=1

νiRi

+λ





M
∑

i=1

(ni − ni+1) exp



2

i
∑

j=1

Rj



 − n1 − P



 .

The Karush-Kuhn-Tucker (KKT) condition requires that
∂L

∂Rm

= 0 for the optimal solution, and taking the difference

between ∂L
∂Rm

= 0 and ∂L
∂Rm+1

= 0 gives

−2bpm exp(−2b

m
∑

j=1

Rj) + 2λ(nm − nm+1) exp



2

m
∑

j=1

Rj





= νm − νm+1, m = 1, 2, ...,M,
(6)

1The equations given in [11] appears to have a minor mistake that the inner

sum was given as
∑i

j=1
Rj .



where νM+1 , 0, for some νm ≥ 0, m = 1, 2, ...,M .

Furthermore, the complementary slackness requires νmRm =
0, m = 1, 2, ...,M ; the power constraint should be satisfied

with equility, or λ = 0.

Since the optimization problem is a convex programming

problem, the KKT condition is both necessary and sufficient

for an optimal solution. Clearly if the quantity

κm ,
bpm

nm − nm+1

is monotonically increasing, we can set νi = 0 for i =
1, 2, ..., M and find an explicit solution, provided the power

constraint is not violated; however this is not true in general.

We can use the following algorithm to find the optimal

rate allocation. When a layer is assigned zero rate, it will

be called “ineffective”; otherwise it will be called “effective”.

For simplicity, define κM+1 = ∞. A layer is labeled “active”

if it is a result of combination of layers in the previous loop.

An intuitive explanation is given in the next subsection.

1) Combination of layers to reach a monotonic κ sequence.

a) Assign ∆nm = nm − nm+1 and calculate κm for

m = 1, 2, ..., M . Label all the layers effective and

active. Let r = 1.

b) Denote the lower effective neighbor of layer i as

i−, and its upper effective neighbor layer as i+.

Start from ik = i1, for all the ar active layers

i1, i2, ..., iar
:

i) If ik > 1 and κi−
k

≥ κik
: label layer ik

ineffective and combine it with its current

lower effective neighbor layer j. Update pj =
pj + pik

, ∆nj = ∆nj + ∆nik
, as well as κj

values accordingly. Label j as active.

ii) If κik
≥ κi+

k

: label layer i+k ineffective and

combine it with its current lower effective

neighbor layer j. Update pj ,∆nj and κj values

accordingly. Label j as active.

iii) If k < ar, increment k by 1 and return to step

(1(b)i).

c) If after the above loop, any layer remains active:

increment r by 1 and return to step (1b).

2) Denote the number of effective layers by K. For all

the effective layers ik, k = 1, 2, ..., K, let exp(2Rik
) =

κ
1/(b+1)
ik

/κ
1/(b+1)
ik−1

; in other words for all the effective

layers we have exp(2
∑ik

j=1 Rj) = κ
1/(b+1)
ik

. Assign the

ineffective layers rate zero.

3) Check power consumption.

a) Let iko
be the lowest effective layer, and define

Pn = P + niko
.

b) Let

λ1/(b+1) =

∑kK

k=ko
(nik

− nik+1
) exp

(

2
∑ik

j=1 Rj

)

Pn
.

c) If

bpiko

λ(niko
− niko+1

)
≥ 1, (7)

then reduce Riko
by 1

2(b+1) log λ; otherwise, label

iko
ineffective (Riko

= 0), increment ko by 1,

update Pn = P + niko
, and return to step (3b).

C. The correctness of the algorithm and its complexity

Intuitively speaking, we classify the layers into two kinds:

those with κ value lower than or equal to its lower neighbor

(the first kind), and those with κ value higher than its lower

neighbor (the second kind). The algorithm combines the first

kind layers in each step, and then continues this operation until

no layers of the first kind exist in the resulting sequence. The

resulting rate allocation is valid, if the κ sequence is indeed

monotonically increasing and the power constraint is satisfied.

A few more comments are in order: 1) In step 1, we want to

form a monotonic sequence of κi by combining consecutive

layers, such that step 2 can provide meaningful rates. To do

this, we combine (remove) all the layers that are monotonically

non-increasing. Only the neighbors of those whose κ value

were updated in the previous loop need to be considered,

because this is the only case that a change of classification

may occur. 2) In step 3, we need to assure the total power is

used up by adjusting the value of λ. However, this has to be

done such that the lower layer still has positive rate, which is

the condition in (7) If this is not possible, the lowest effective

layer is eliminated; this condition is checked repeatedly for

the reduced layers until it is satisfied. 3) In the loop of step

(1b), we emphasize the layer is combined with its current

effective lower layer, because the layer i−k (or ik) may become

ineffective in the previous steps.

The complexity of the algorithm is O(M). Step 2 is clearly

of O(M) complexity. In Step 3, λ is updated less than M
times. A close inspection of the summation in the numerator

reveals that each time it can be done with O(1) complexity,

and thus Step 3 is of O(M) complexity. The complexity of

Step 1 is more subtle. The value of κi can be computed in

O(M). Denote the number of loops in Step 1 as r0; denote

the number of layers with κ value lower than or equal to

its lower neighbor (the first kind) in the r-th loop as br, and

the number of other effective layers (the second kind) as cr.

The complexity in the r-th loop is bounded by linear term

of br, however br ≤ 2ar, because only the active layers and

their lower effective neighbor layers can be of the first kind.

Moreover, notice that
∑r0

2 ar ≤ M , since it is upper bounded

by the total number of layers made ineffective, further implied

by the fact that a layer is active only when an ineffective

layer is combined into it. Clearly we have a1 = M , and thus
∑r0

1 ar ≤ 2M . The overall complexity is thus O(M), and then

the conversion into power allocation is of O(M) complexity.

We note that in order to achieve the O(M) complexity of

the given algorithm, fairly involved data structure is needed.

More precisely, a doubly-linked list to update effective layers,

coupled together with a singly-linked list to update the active

layers (which can be combined into one linked-list) appears

most appropriate. However, even a naive implementation with-

out such data structure is of O(M2) complexity.



D. The optimality of the algorithm

Since the problem is a convex optimization, and it obviously

satisfies Slater’s condition, the KKT conditions are sufficient

for optimality. Thus the proof for optimality reduces to to find

νi ≥ 0, that satisfy the complementary slackness condition

νiRi = 0, i = 1, 2, ...,M , which also satisfy (6), because the

power constraint is already satisfied with equality.

Theorem 1: The algorithm given above finds the optimal

rate allocation.

Proof: Since for the effective layers, Rik
> 0, we may

set νik
= 0 by the complementary slackness condition. There

are several cases that we need to consider:

1) The ineffective layers above the lowest effective layer.

2) The original effective layers which are rendered ineffec-

tive by the power constraint, i.e., the layers that become

ineffective in step 3.

3) The (original) ineffective layers below the lowest effec-

tive layers.

For the first case, suppose these layers are between two

effective layers I and J , I ≤ J . If there are ineffective layers

above the highest effective layer, we take J = M + 1. From

step 3 of the algorithm we can essentially assign the value of

ρ , exp(
∑I

j=1 2Rj) such that

−2b[pI + pI+1 + ... + pJ−2 + pJ−1]ρ
−b + 2λ(nI − nJ)ρ = 0.

(8)

Since layer I and J are effective, we set νI = νJ = 0. Expand

the condition in (6), we have

−2bpkρ−b + 2λ(nk − nk+1)ρ − νk + νk+1 = 0,

k = I, I + 1, ..., J − 1.

Though the above equations (under the solution found by

the algorithm) uniquely specifies νi, I < i < J , it is not

obvious that those values are indeed non-negative. We need

the following lemma to proceed.

Lemma 1: For the combined layers between layer-I and

layer-J , given any j∗ such that I ≤ j∗ ≤ J − 2, we have

κ− ,
b
∑j∗

i=I pi
∑j∗

i=I ∆ni

≥
b
∑J−1

i=j∗+1 pi
∑J−1

i=j∗+1 ∆ni

, κ+. (9)

The proof of the lemma is in [12], and is omitted here.

Now we are ready to prove the existence of non-negative ν
value for the first kind of ineffective layers. The value of νi,

where I < i∗ < J has to satisfy

−2b

J−1
∑

i=i∗

piρ
−b + 2λ

J−1
∑

i=i∗

∆niρ − νi∗ = 0, (10)

−2b

i∗−1
∑

i=I

piρ
−b + 2λ

i∗−1
∑

i=I

∆niρ + νi∗ = 0. (11)

From (8), we see that νi∗ is indeed non-negative, because

Lemma 1 asserts that for i∗ we have

κ− =
b
∑i∗−1

i=I pi
∑i∗−1

i=I ∆ni

≥ κ+ =
b
∑J−1

i=i∗ pi
∑J−1

i=i∗ ∆ni

. (12)

If ν < 0 was true, then

−2b

J
∑

i=I

pi∗−1ρ
−b + 2λ

J
∑

i=I

pi∗−1∆niρ < 0, (13)

which would contradict (8).

We next consider the second kind of ineffective layers.

Suppose the original effective layers ik, ik+1,...,ik+h becomes

ineffective due to the power constraint. Since they are all

effective originally, we have by the monotonicity of the κ
factor

bp∗ik

nik
− nik+1

≤
bp∗ik+1

nik+1
− nik+2

≤ ... ≤
bp∗ik+h

nik+h
− nik+h+1

, (14)

where we used p∗ to stand for the accumulated probability

after the combining of layers in Step 1 but before Step 3. By

step 3 of the algorithm we have

λ >
bp∗ik+h

nik+h
− nik+h+1

. (15)

Thus we only need to show the following equations specify a

set of non-negative νi for i = ik, ik+1, ..., ik+h:

−2bp∗ik+h
+2λ(nik+h

− nik+h+1
) −νik+h

= 0,

−2bp∗ik+h−1
+2λ(nik+h−1

− nik+h
) −νik+h−1

+ νik+h
= 0,

... ...

−2bp∗ik
+2λ(nik

− nik+1
) −νik

+ νik+1
= 0. (16)

From the first equation, we get

νik+h
= −2bp∗ik+h

+ 2λ(nik+h
− nik+h+1

),

and it is non-negative because of (15). From the second

equation, we have

νik+h−1
= −2bp∗ik+h−1

+ 2λ(nik+h−1
− nik+h

) + νik+h
, (17)

which is also non-negative, because −2bp∗ik+h−1
+

2λ(nik+h−1
− nik+h

) ≥ 0 due to (15) and (14), and the

last term is non-negative from the proceeding argument.

Continue this line of argument, it is clear

νik
≥ νik+1

≥ ... ≥ νik+h
≥ 0. (18)

By this we found the proper non-negative νi for the second

kind of ineffective layers.

For the third kind of ineffective layers, a proof can be found

following the same line as the first kind, and the details are

omitted due to space constraint.

IV. VARIATIONAL DERIVATION OF THE CONTINUOUS CASE

SOLUTION

We now consider the case with continuum of layers, starting

with a reformulated optimization problem. Define

I(i) = exp(

i
∑

j=1

2Rj). (19)

We take the number of layers to infinity and the constraint

becomes an integral equation, where we convert back to the

power gain s instead of noise power n, and it is clear we can

replace the inequality by equality without loss of optimality
∫ ∞

0

I(s)
1

s2
ds = P (20)



The term to be optimized is given by
∫ ∞

0

f(s)

I(s)b
ds. (21)

Note the additional condition that I(s) has to be monotonically

non-decreasing, and the the boundary conditions I(0) = 1.

Due to the limited space, we next focus on the case when

only a single positive power allocation interval exists.

Ignoring the positivity constraint I ′(s) ≥ 0 for now, take

J(s, I, I ′) =
f(s)

Ib(s)
, G(s, I, I ′) =

I(s)

s2
,

the problem is thus

minimize

∫ ∞

0

J(s, I, I ′)ds, (22)

subject to

∫ ∞

0

G(s, I, I ′)ds = P. (23)

Next we assume there is a unique interval [s1, s2] for

which power allocation is non-zero. Under this assumption,

the objective function reduces to

D(I) =

∫ s2

s1

f(s)

I(s)b
ds + F (s1) +

1 − F (s2)

I(s2)b
, (24)

where F (s) =
∫ s

0
f(r)dr, and the constraint becomes

P (I) =

∫ s2

s1

I(s)
1

s2
ds +

I(s2)

s2
− 1

s1
− P. (25)

Then we can write the Lagrangian form L(I) = D(I)+λP (I).
To find the extremum of I(s), we consider an increment

q(s), and thus the increment of the Lagrangian functional is

given by ∆(q) = L(I + q) − L(I).
The Euler-Lagrange equation (pp. 42-50 [10]) then requires

JI + λGI −
d

dh
[JI′ + λGI′ ] = 0, (26)

which further simplifies to

I(s) =

(

bf(s)s2

λ

)1/(b+1)

. (27)

It is clear that for I ′(s) ≥ 0 to be true, which is necessary for

I(s) to be a valid solution, f(s)s2 should have non-negative

derivative in any interval such that (27) holds; if there is only

one interval over the support of f(s) where such property is

satisfied, then the single interval solution assumption is indeed

true. Now since q(s2) can be arbitrary, at this variable end

(pages 25-29 [10]) a necessary condition for an extremum is

−b(1 − F (s2))

I(s2)b+1
+ λ

1

s2
= 0, (28)

which gives

λ =
bs2(1 − F (s2))

I(s2)b+1
. (29)

With I(s1) = 1, we have λ = bf(s1)s
2
1, which now with the

expression of I(s) gives one boundary condition

1 − F (s2) = f(s2)s2. (30)

The lower bound s1 is determined by the power constraint,

from which we have
∫ ∞

s1

I(s)

s2
ds = P +

1

s1
. (31)

We have thus find the unique extremal solution.

To find the corresponding power allocation, define T (s) =
∫ ∞

s
P (r)dr. We thus derive from (5) that

T (s) =

(

f(s2)s
2
2

f(s)s2

)1/(b+1)
1

s2

+

∫ s2

s

(

f(r)r2

f(s)s2

)1/(b+1)
1

r2
dr − 1

s
. (32)

This is in fact the same solution as that in [7], and indeed

the derivation in [7] matches the optimal solution derived

through the classical variational method. Furthermore, the

variational method derivation directly asserts that f(s)s2 has

non-negative derivative is necessary for any positive power

allocation interval; this condition was however lacking in [7].

In the more general case without the assumption of only

one effective interval, a solution can also be derived from

the variational method through a more involved route (given

in [12]), however it is not clear the method in [7] can be

generalized to this case.

V. CONCLUSION

We considered the optimal power/rate allocation in the

broadcast strategy, in order to minimize the expected distortion

of a quadratic Gaussian source transmitted over a fading

channel. A linear complexity algorithm is proposed, and its

correctness and optimality are proved. Moreover, a derivation

for the optimal allocation with a continuum of layers is given,

using the classical variational method.
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