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Abstract

Using well–known results from statistical physics, concerning the almost–sure behavior of
the free energy of directed polymers in a random medium, we prove that a certain ensemble
of tree–structured rate–distortion codes with delayless decoding, asymptotically achieves the
rate–distortion function under a certain symmetry condition.
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1 Introduction

The directed polymer in a random medium (DPRM) is a statistical–mechanical model of a disor-

dered physical system, which has attracted considerable attention of physicists for many years (cf.

e.g., [1],[2],[3],[4],[5],[6],[8],[12],[13] and references therein). Loosely speaking, in this model, each

configuration of the system corresponds to a walk along consecutive bonds of a certain lattice, or a

tree, where each such bond is assigned with an independent random variable (energy), and where

the total energy of this walk is the sum of energies along the bonds visited. For a given realization

of these random energy variables, the probability of each walk is given by the Boltzmann distribu-

tion, namely, it is proportional to an exponential function of the negative total energy. The main

challenge, as usual in equilibrium statistical physics, is to characterize the asymptotic normalized

free energy of a typical realization of the system. For the case where the walks are defined on a

tree (from the root to one of the leaves), this problem has a closed–form solution.

The main message in this short paper is the observation that, under a certain symmetry condi-

tion, this solution of the DPRM can be harnessed directly to the performance analysis of a certain

ensemble of rate–distortion codes which have a tree structure that is motivated by a very simple

(actually, trivial) entropy coding as well as delayless decoding. In particular, it turns out that un-

der the above–mentioned symmetry condition, this tree–structured code ensemble asymptotically

achieves the rate–distortion function, and not only in expectation, but also almost surely.

The outline of this work is as follows: In Section 2, we establish our notation conventions. In

Section 3, we give a brief background in statistical mechanics in general and on the DPRM in

particular. Finally, in Section 4, we show how the solution to the DPRM model can be used to

prove that our tree structured code ensemble achieves the rate–distortion function.

2 Notation Conventions

Throughout this paper, scalar random variables (RV’s) will be denoted by capital letters, like X

and Y , their sample values will be denoted by the respective lower case letters, and their alphabets

will be denoted by the respective calligraphic letters. A similar convention will apply to random

vectors and their sample values, which will be denoted with the same symbols in the boldface font.
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Thus, for example, X will denote a random n-vector (X1, . . . ,Xn), and x = (x1, ..., xn) is a specific

vector value in X n, the n-th Cartesian power of X . Sources and other probability measures that

underly sequence generation will be denoted generically by the letters P and Q, and specific letter

probabilities will be denoted by the corresponding lower case letters, e.g., p(x), q(y), etc. The

expectation operator will be denoted by E{·}.

For two positive sequences {an} and {bn}, the notation an
·
= bn means that an and bn are

asymptotically of the same exponential order, that is, limn→∞
1
n

ln an

bn
= 0. Similarly, an

·
≤ bn

means that lim supn→∞
1
n

ln an

bn
≤ 0, etc. Information theoretic quantities like entropies and mutual

informations will be denoted following the usual conventions of the Information Theory literature.

3 Background

Consider a physical system with n particles, which can be in a variety of microscopic states (‘mi-

crostates’), defined by combinations of physical quantities associated with these particles, e.g., po-

sitions, momenta, angular momenta, spins, etc., of all n particles. For each such microstate of the

system, which we shall designate by a vector x = (x1, . . . , xn), there is an associated energy, given

by an Hamiltonian (energy function), E(x). For example, if xi = (pi, ri), where pi is the momentum

vector of particle number i and ri is its position vector, then classically, E(x) =
∑N

i=1[
‖p

i
‖2

2m
+mgzi],

where m is the mass of each particle, zi is its height – one of the coordinates of ri, and g is the

gravitation constant.

One of the most fundamental results in statistical physics (based on the law of energy conser-

vation and the basic postulate that all microstates of the same energy level are equiprobable) is

that when the system is in thermal equilibrium with its environment, the probability of finding the

system in a microstate x is given by the Boltzmann–Gibbs distribution

P (x) =
e−βE(x)

Z(β)
(1)

where β = 1/(kT ), k being Boltzmann’s contant and T being temperature, and Z(β) is the nor-

malization constant, called the partition function, which is given by

Z(β) =
∑

x

e−βE(x)
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or

Z(β) =

∫

dxe−βE(x),

depending on whether x is discrete or continuous. The role of the partition function is by far

deeper than just being a normalization factor, as it is actually the key quantity from which many

macroscopic physical quantities can be derived, for example, the free energy1 is F (β) = − 1
β

ln Z(β),

the average internal energy (i.e., the expectation of E(x) where x drawn is according (1)) is given

by Ē
∆
= E{E(X)} = −(d/dβ) ln Z(β), the heat capacity is obtained from the second derivative, etc.

One of the ways to obtain eq. (1), is as the maximum entropy distribution under an average energy

constraint (owing to the second law of thermodynamics), where β plays the role of a Lagrange

multiplier that controls the average energy.

Quite often, real–world physical systems of many particles, such as magnetic materials and

solid–state devices, are subjected to effects of impurity (e.g., defects) that may appear as amorphic

structures and disorder. To model such disorder, it is customary to let the Hamiltonian, E(x),

depend also on certain random parameters and to examine the behavior of systems pertaining to

typical realizations of these random parameters. There are many models of this kind in the physics

literature. One of them is the DPRM, which is defined on a certain graph, such as a hypercubic

lattice, or a tree. We henceforth focus on the latter and describe it more formally than in the

Introduction.

Consider a Cayley tree, namely, a full balanced tree with branching ratio d and depth n (cf. Fig.

1, where d = 2 and n = 3). Let us index the branches by a pair of integers (i, j), where 1 ≤ i ≤ n

describes the generation (with i = 1 corresponding to the d branches that emanate from the root),

and 0 ≤ j ≤ di − 1 enumerates the branches of the i–th generation, say, from left to right (see

Fig. 1). For each branch (i, j), 1 ≤ j ≤ di, 1 ≤ i ≤ n, we randomly draw an independent random

variable εi,j according to a fixed probability function q(ε) (i.e., a probability mass function in the

discrete case, or probability density function in the continuous case).

A walk w, from the root of the tree to one of its leaves, is described by a finite sequence

{(i, ji)}
n
i=1, where 0 ≤ j1 ≤ d − 1 and dji ≤ ji+1 ≤ dji + d − 1, i = 1, 2, . . . , (n − 1).2 For a given

1The free energy means the maximum work that the system can carry out in any process of fixed temperature.
The maximum is obtained when the process is reversible (slow, quasi–static changes in the system).

2In fact, for a given n, the number jn alone dictates the entire walk.

4



30 1 2 4 65 7

0 1

0 1 2 3

Figure 1: A Cayley tree with branching factor d = 2 and depth n = 3.

realization of the RV’s {εi,j : i = 1, 2, . . . , n, j = 0, 1, . . . , di − 1}, we define the Hamiltonian

associated with w as E(w) =
∑n

i=1 εi,ji
, and then the partition function as:

Zn(β) =
∑

w

exp{−βE(w)}. (2)

Of course, since {εi,j} are RV’s, then so is Zn(β). The primary question addressed by physicists,

in this context, concerns the (typical) behavior of the RV

fn(β)
∆
=

1

nβ
ln Zn(β) (3)

for n large, which is (up to the minus sign), exactly the normalized free energy per step. It turns out

(as proved e.g., in [2],[6]) that fn(β) has a self–averaging property, in the terminology of physicists,

in other words, the sequence of random variables {fn(β)}n≥1 converges in probability (and in fact,

almost surely as is shown in [2]) to a deterministic constant f(β), which is given by

f(β) =

{

φ(β) β ≤ βc

φ(βc) β > βc
(4)

where

φ(β)
∆
=

ln[d · E{e−βε}]

β
(5)

where the expectation, which is assumed finite, is taken w.r.t. q(ε), and where βc is the value of β

for which φ(β) is minimum, or equivalently, the solution to the equation φ′(β) = 0, where φ′ is the

derivative of φ.
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As can be seen, β = βc is a point at which the asymptotic normalized free energy per step

changes its behavior: Although f(β) and its first derivative are continuous functions for all β, the

second derivative is discontinuous at β = βc. In the terminology of physicists, this is referred to as a

second order phase transition. Observe that while one might expect that the sequence fn(β) would

converge to the same limit as E{fn(β)} = 1
nβ

E{ln Zn(β)}, i.e., the so called quenched average, the

high temperature phase result (4) corresponds to 1
nβ

ln[E{Zn(β)}], which is called the annealed

average. This means that Jensen’s inequality is essentially tight at this range of β. However, these

two averages depart from each other at the low temperature phase, β > βc. As can be observed,

in this phase, the asymptotic normalized free energy no longer depends on β, and it is referred to

the glassy phase or the frozen phase, which is characterized by zero thermodynamical entropy, in

other words, the partition function is dominated by a sub–exponential number of configurations

possessing the ground–state energy (cf. e.g., [11, Chap. 5]). For reasons that will become apparent

shortly, this frozen phase is the relevant phase for our source coding problem.

The asymptotic free energy formula (4) has been proved in the physics literature at least in four

different ways: The first [2] is based on martingales, the second is based on non–integer moments

of the partition function [6],[8], the third is based on a recursion of a certain generating function of

the partition function as well as on traveling waves [5],[7], and the fourth method is the so–called

replica method [5], which, although not rigorous, is very useful in statistical mechanics.

4 Main Result

We now turn to our lossy source coding problem, where some of the notation that will be used will

be deliberately identical to that of Section 3. Consider a discrete memoryless source (DMS) P that

generates symbols X1,X2, . . . of a finite3 alphabet X . Let Y denote a finite reproduction alphabet

and let ρ : X × Y → [0,∞) be a given distortion function.

Consider next a tree–structured ensemble of codes for encoding source n–tuples, x = (x1, . . . , xn),

which is defined as follows: Given a coding rate R (in nats/source–symbol), which is assumed to

be the natural logarithm of some positive integer d, and given a probability distribution on the

reproduction alphabet, Q = {q(y), y ∈ Y}, let us draw d = eR independent copies of Y under Q,

3Finite alphabet assumptions are made mostly for simplicity. It is expected that our derivations continue to hold
in the continuous case as well under suitable regularity conditions.

6



and denote them by Y1, Y2, . . . , Yd. We shall refer to the randomly chosen set, C1 = {Y1, Y2, . . . , Yd}

as our ‘codebook’ for the first source symbol, X1. Next, for each 1 ≤ j1 ≤ d, we randomly se-

lect another such codebook under Q, C2,j1 = {Yj1,1, Yj1,2, . . . , Yj1,d}, for the second symbol, X2.

Then, for each 1 ≤ j1 ≤ d and 1 ≤ j2 ≤ d, we again draw under Q yet another codebook

C3,j1,j2 = {Yj1,j2,1, Yj1,j2,2, . . . , Yj1,j2,d}, for X3, and so on. In general, for each t ≤ n, we randomly

draw dt−1 codebooks under Q, which are indexed by (j1, j2, . . . , jt−1), 1 ≤ jk ≤ d, 1 ≤ k ≤ t − 1.

Once the above described random code selection process is complete, the resulting set of code-

books {C1, Ct,j1,...,jt−1
, 2 ≤ t ≤ n, 1 ≤ jk ≤ d, 1 ≤ k ≤ t − 1} is revealed to both the encoder and

decoder, and the encoding–decoding system works as follows:

• Encoding: Given a source n–tuple Xn, find a vector of indices (j∗1 , j∗2 , . . . , j∗n) that minimizes

the overall distortion
∑n

t=1 ρ(Xt, Yj1,...,jt
). Represent each component j∗t by R = ln d nats

(that is, log2 d bits), thus a total of nR nats.

• Decoding: At each time t (1 ≤ t ≤ n), after having decoded (j∗1 , . . . , j∗t ), output the repro-

duction symbol Yj∗
1
,...,j∗

t
.

A few comments are in order at this point: First, as we see, the codebook generation process is

branching hierarchically by a factor of d at each step, hence it is convenient to think of the code

as having the structure of a Cayley tree, as in Section 3. The encoder seeks the best walk on that

tree in the sense of minimum distortion. Note also that the process of converting the optimum

walk w∗ = (j∗1 , j∗2 , . . . , j∗n) into a compressed bitstream is extremely simple: We just convert each

jt ∈ {1, . . . , d} into its binary representation using log2 d bits without any attempt at compression.

In other words, the entropy coding part is trivial in the sense that it uses neither the memory that

may be present in the sequence (j∗1 , j∗2 , . . . , j∗n), nor the possible skewdness of the distributions of

these symbols. Finally, the decoding process is a purely sequential delayless process: At time t,

the decoder outputs the t-th reproduction symbol. This is in contrast to the decoder of a general

block code, which has to wait until the entire bit string of length nR has been received before it

can start to decode. Thus, at least the decoding delay is saved this way.

In order to analyze the rate–distortion performance of this ensemble of codes, using the results

of Section 3, we now make the following assumption:
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The random coding distribution Q be such that the distribtion of the RV ρ(x, Y ) is the same for all

x ∈ X .

It turns out that this assumption is fulfilled quite often – it is the case whenever the random

coding distribution together with distortion function exhibit a sufficiently high degree of symmetry.

For example, if Q is the uniform distribution over Y and the rows of the distortion matrix {ρ(x, y)}

are permutations of each other, which is in turn the case, for example, when X = Y is a group

and ρ(x, y) = γ(x − y) is a difference distortion function w.r.t. the group difference operation.

Somewhat more generally, this assumption still holds when the different rows of the distortion

matrix are formed by permutations of each other subject to the following rule: ρ(x, y) can be

swapped with ρ(x, y′) provided that q(y′) = q(y).

It should be pointed out that if the optimum random coding distribution Q∗, namely, the one

corresponding to the output of the test channel that achieves the rate–distortion function of X,

happens to satisfy the above symmetry assumption, then as we show below, the rate–distortion

performance of the above descrirbed code ensemble achieves the rate–distortion function. Moreover,

this will turn out to be the case, not only in expectation, but also with probability one.

We now turn to our analysis which makes heavy use of the results of Section 3. For a given x

and a given realization of the set of codebooks, define the partition function in analogy to that of

the DPRM:

Zn(β) =
∑

w

exp{−β

n
∑

t=1

ρ(xt, Yj1,...,jt
)}, (6)

where the summation extends over all dn possible walks, w = (j1, . . . , jn), along the Cayley tree,

as defined in Section 3. Clearly, considering our symmetry assumption, this falls exactly under the

umbrella of the DPRM, with the distortions {ρ(xt, Yj1,...,jt
)} playing the role of the branch energies

{εi.j}. Therefore, 1
nβ

ln Zn(β) converges almost surely, as n grows without bound, to f(β), now

defined as

f(β) =

{

φ(β) β ≤ βc

φ(βc) β > βc
(7)
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where

φ(β)
∆
=

ln[d · E{e−βρ(x,Y )}]

β

=
ln[eR · E{e−βρ(x,Y )}]

β

=
R + ln[E{e−βρ(x,Y )}]

β
. (8)

Thus, for every (x1, x2, . . .), the distortion is given by

lim sup
n→∞

1

n

n
∑

t=1

ρ(xt, Yj∗
1
,...,j∗

t
)

∆
= lim sup

n→∞

1

n
min
w

[

n
∑

t=1

ρ(xt, Yj1,...,jt
)

]

= lim sup
n→∞

lim
β→∞

[

−
ln Zn(β)

nβ

]

= lim
β→∞

lim sup
n→∞

[

−
ln Zn(β)

nβ

]

a.s.
= − lim

β→∞
f(β) (9)

= −φ(βc)

= max
β≥0

[

−
ln[E{e−βρ(x,Y )}] + R

β

]

∆
= D0(R), (10)

where the interchange of limits at the third equality is justified by the following chain:

lim sup
n→∞

lim
β→∞

[

−
ln Zn(β)

nβ

]

≤ lim sup
n→∞

lim
β→∞

[

−
ln exp{−β

∑n
t=1 ρ(xt, Yj∗

1
,...,j∗

t
)}

βn

]

= lim sup
n→∞

1

n

n
∑

t=1

ρ(xt, Yj∗
1
,...,j∗

t
)

= lim
β→∞

lim sup
n→∞

1

n

n
∑

t=1

ρ(xt, Yj∗
1
,...,j∗

t
)

= lim
β→∞

lim sup
n→∞

[

−
ln exp{−β

∑n
t=1 ρ(xt, Yj∗

1
,...,j∗

t
)}

βn

]

≤ lim
β→∞

lim sup
n→∞

[

−
ln[d−n

∑

w exp{−β
∑n

t=1 ρ(xt, Yj1,...,jt
)}

βn

]

= lim
β→∞

lim sup
n→∞

[

−
ln Zn(β)

βn

]

+ lim
β→∞

ln d

β

= lim
β→∞

lim sup
n→∞

[

−
ln Zn(β)

βn

]

(11)
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and the opposite inequality (and hence equality) is obtained in exactly the same way, with the only

exception that the limits over β and over n exchange their roles at all places.

We have shown then that the almost–sure distortion performance is uniformly given by D0(R)

for every individual source sequence x1, x2, . . .. Now, let us suppose that Q is chosen to be the

output distribution Q∗ induced by the source P and the test channel X → Y that achieves the rate–

distortion function, and that the symmetry assumption continues to hold for Q∗ = {q∗(y), y ∈ Y}.

Then, we claim that D0(R), defined with Q = Q∗, coincides with the distortion–rate function of

the source, D(R).

To see why this is true, recall that the rate–distortion function R(D) has the following repre-

sentation (see, e.g., [9, p. 90, Corollary 4.2.3],[14],[10]):

R(D) = −min
β≥0

min
Q







βD +
∑

x∈X

p(x) ln





∑

y∈Y

q(y)e−βρ(x,y)











(12)

which, due to convexity in β and concavity in Q, is equaivalent to

R(D) = −min
Q

min
β≥0







βD +
∑

x∈X

p(x) ln





∑

y∈Y

q(y)e−βρ(x,y)











= −min
β≥0







βD +
∑

x∈X

p(x) ln





∑

y∈Y

q∗(y)e−βρ(x,y)











, (13)

and which, under the symmetry assumption, tells us that for every point (D,R) on the rate–

distortion curve, we have:

R = −min
β≥0







βD + ln





∑

y∈Y

q∗(y)e−βρ(x,y)











. (14)

Let β∗ achieve this minimum, i.e.,

−R = β∗D + ln





∑

y∈Y

q∗(y)e−β∗ρ(x,y)



 , (15)

or, equivalently,

D(R) = −
ln

[

∑

y∈Y q∗(y)e−β∗ρ(x,y)
]

+ R

β∗
(16)

Thus, clearly,

D(R) ≤ max
β≥0







−
ln

[

∑

y∈Y q∗(y)e−βρ(x,y)
]

+ R

β







= D0(R), (17)
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and so, it remains to show also the converse inequality, D(R) ≥ D0(R). To this end, observe that

eq. (14) implies that for every point (D,R) on the rate–distortion function:

−R ≤ βD + ln





∑

y∈Y

q∗(y)e−βρ(x,y)



 , (18)

holds for all β ≥ 0 (with equality for β = β∗). Equivalently, for all β ≥ 0:

D ≥ −
ln

[

∑

y∈Y q∗(y)e−βρ(x,y)
]

+ R

β
, (19)

and so,

D(R) ≥ max
β≥0







−
ln

[

∑

y∈Y q∗(y)e−βρ(x,y)
]

+ R

β







= D0(R), (20)

thus proving that D0(R) = D(R).

5 Conclusion

In this paper we have shown that for a certain ensemble of tree structured codes, having a very

simple entropy coder and a zero–delay decoder, the rate–distortion bound is achieved under a

certain symmetry assumption.

Perhaps even more importantly, this paper makes an attempt to demonstrate that occasionally,

analysis tools, and even explicit results, may be existent in other disciplines, like statistical physics,

and they can be useful, sometimes even almost verbatim.
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