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Abstract: In an aplanatic optical system, where the entrance pupil is not 
located at the front focal plane, a corresponding quadratic phase is expected 
at the back focal plane. However, tightly focused optical fields evaluated by 
methods based on the traditional Richards-Wolf approach, lacks this 
quadratic phase. In the current work we calculate the focused field, for both 
high and medium numerical apertures, based on the Stratton-Chu diffraction 
integral in a 2D system. We find that the quadratic phase factor depends on 
the numerical aperture, and it approaches the corresponding paraxial value 
for lower numerical apertures. 
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1. Introduction  

Tight focusing of light in high numerical aperture (NA) systems is becoming increasingly 
important with recent advances in nanotechnology. The majority of methods suggested for the 
tight focusing of different types of illumination are based on the approach pioneered by 
Richards and Wolf in 1959 [1] (for a detailed review of these methods see [2]). Although this 
approach has a number of drawbacks it is the only one that offers reasonable 3D computation 
complexity for this class of diffraction problems. Among its drawbacks is the fact that the 
derived focused field at the back focal plane lacks the expected quadratic phase when the 
entrance pupil is not situated at the front focal plane.  

The computational complexity can be substantially reduced when 2D diffraction 
problems are considered. Therefore these problems lend themselves to treatment by other 
rigorous diffraction approaches, which involve less assumptions and approximations than the 
Richards-Wolf (RW) approach. One such approach is the calculation of the diffracted field by 
means of the Stratton-Chu (SC) [3] diffraction integral.  
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In this work we perform a numerical investigation of the focused field of an ideal 
aplanatic 2D optical system, imaging a point source in infinity. We examine optical systems 
with NA values ranging from 0.2, which is high enough for the validity of the Debye 
approximation [4], to 0.96, which is about the limit for most immersion-less focusing optics. 
Our results show that in all the investigated range the RW approach produced a piecewise 
planar phase of the focused field on the back focal plane. In contrast, the SC approach 
produced a quadratic phase which approaches the quadratic phase produced by the paraxial 
approach, for decreasing NA values. It was found that the relation between the quadratic 
coefficients of the SC and paraxial cases was equal to 1-NA2. As explained later, this relation 
is not a consequence of optical aberrations. This interesting result was found valid also for 3D 
optical systems, for all the field components. In an analogy to the paraxial case, we believe 
that this quadratic phase is a property of an optical system. In other words, it is not dependent 
on the incident illumination, as long as this illumination satisfies the involved assumptions on 
the optical system. 

This paper is organized as follows. The next section derives the expressions for the 2D 
focusing of piecewise quasi constant phase wavefronts at the entrance pupil, which is based 
on the RW approach. The third section presents the expressions for the 2D SC integral. The 
investigated problem is discussed in the fourth section, which is followed by the numerical 
results and their analysis in the fifth section. Finally, the conclusions are drawn. 

2. Two dimensional focusing based on Richards-Wolf approach 

2.1 Problem statement and system description 

The original RW approach was formulated for an aplanatic optical system having rotational 
symmetry. In this section we reformulate the original approach and adapt it for a 2D system. 
In the course of this reformulation we leave a provision for wavefronts with piecewise quasi 
constant phase at the entrance pupil as opposed to a plane wave in the original approach. The 
involved 2D system is a degraded case of a 3D system with the field distribution along the y 
axis being infinitely uniform. Thus without loss of generality we consider the xz plane, where 
the z axis is also the axis of the optical system. 

 

 

Fig. 1. Schematic illustration of the investigated problem. 

 
The involved optical system is schematically depicted in Fig. 1. In the object space, the 

incident wavefront, at the entrance pupil, is formed by rays propagating along the optical axis 
z. Each ray is associated with the unit vector s0, as shown in the figure. A distance between a 
ray and the z axis is denoted h. After passing the optical system, the ray leaves through the 
exit pupil in a direction of an associated unit vector s1. All the rays can be thought of as 
emerging from an imaginary Gaussian cylinder σ with radius f, the focal length of the optical 
system. The axis of the Gaussian cylinder is situated on the y axis. The rays and their 
associated unit vectors s1 emerging from the Gaussian cylinder are directed towards the 
geometrical focal point O. Each vector s1 forms an angle θ with the negative direction of the z 
axis. Angles θ situated in the second quadrant are defined as positive and those in the third 



quadrant are defined as negative. The numerical aperture of the optical system defines a 
maximum angle θmax. The fields are evaluated at a point P(x,z) in the vicinity of the 
geometrical focus. 

 
According to [5] these fields in an angular spectrum representation, for a 2D case, are 

given by the following expressions, where e denotes the electric field and h denotes the 
magnetic field:  
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The variables sx, sz are the respective x and z components of the unit vector s1. These unit 
vectors span the integration surface angle Ω. Ray strength factors are denoted a and b. 
Wavelength is denoted by λ and wave-number by k. The considered optical system is 
aplanatic. Thus for a case of imaging a point source at infinity the wavefronts in the image 
space are cylindrical with the common center at the Gaussian image point, which is the 
geometrical focal point. Therefore the aberration function Φ is assumed to be free of terms 
representing both primary and higher order optical aberrations. Yet, it reflects phase 
deviations of the incident wavefront from a plane wave case as they appear at the entrance 
pupil. The square root of wavelength factor is due to the 2D nature of the considered problem. 

A number of other assumptions, used in [1], must be stated. Both the object space and the 
image space have ε ≈ µ ≈ 1. The refraction in the optical system involves small angles that do 
not significantly affect the direction that the vibration of the electric (and magnetic) field 
makes with the xz plane. As all the rays are contained in the xz plane, which also contains the 
optical axis, this plane has the same significance as a meridional plane in a 3D optical system 
of rotation. The integrals (1) and (2) imply Kirchhoff boundary conditions, which can be 
justified only for cases when the exit pupil dimensions and the propagation distance to the 
focal point are large compared to the wavelength. 

2.2 Derivation of an explicit expression for the focused field 

In the preceding subsection it was assumed that a piecewise quasi constant wavefront at the 
entrance pupil was adequately described by rays parallel to the optical axis. This assumption 
implies that each segment with a quasi constant phase satisfies the conditions for such a 
representation. Moreover, it is assumed that only a small fraction of the energy in the incident 
field is contained in regions where non-negligible phase variations occur, in particular in the 
boundaries between neighboring segments. Under these conditions it is possible to use the 
principle of superposition to evaluate the field in the focal region as a superposition of the 
contributions obtained from each quasi constant phase segment of the incident field. It should 
be noted that no assumptions are made about the incident optical field amplitude or 
polarization. 

The electric fields e0 and e1, associated with the incident and emerging rays, in the object 
and image space accordingly can be represented by the following expressions: 

( ) ( )0 0 0exp expl ik iψ γ=0e u0e      (3) 

( ) ( )1 1 1exp expl ik iψ γ=1e u1e      (4) 

The l0 and l1 are the amplitude factors, ψ0 and ψ1 are the values of the eikonal, γ0 is the phase 
deviation of the incident wavefront from a plane wave, γ1 is the phase deviation of the 



emerging wavefront from the Gaussian cylinder, eu0 and eu1 are unit vectors in the direction of 
the fields e0 and e1, respectively. Similarly to [1], using the sine condition  

( )sinh f θ=        (5) 

and the geometrical optics intensity law we obtain: 

( )1 0 cosl l θ=       (6) 

The expression is the same as for the 3D case. The reason is that the area factor responsible 
for the square root lies, in case of 3D optical system, in the meridional plane which 
corresponds to the xz plane as discussed above.  

A converging cylindrical wavefront at the image space corresponds to a plane wave in the 
object space. Thus the phase deviations from them for the same ray are equal, i.e.: 

0 1γ γ=         (7) 

From (3), (4), (6) and (7) the expression for the electrical field of the emerging ray becomes: 

( ) ( ) ( )0 0cos exp expl i ikθ γ ψ=1 ue e1 1   (8) 

When expressed with the ray strength factor a the electrical field of the emerging ray on the 
Gaussian cylinder surface is given as: 

( ) ( )0 1exp expi ikγ ψ=1e a f    (9) 

Consequently, for the ray strength factor a we get the following notation: 

( )0 cosl f θ= u1a e

1

     (10) 

A couple of notes must be made at this point. First, there is a small difference in a from the 
classical 3D case as the amplitude is proportional to the square root of the focal distance, 
rather than to the distance itself. Second, the phase deviation γ, which is neither in a nor in the 
eikonal is accounted for in the aberration function Φ. Third, the distinction between the 
positive and the negative θ values gives a different meaning to the θ angle as opposed to the 
3D case.  

In order to obtain the direction of eu1 we define a Cartesian xyz system with origin at the 
geometrical focal point as shown in Fig. 1. Similarly to [1] we introduce two unit vectors g0 
and g1. These vectors lie in the xz plane such that the vector g0 is perpendicular to the ray in 
the object space and g1 is perpendicular to the ray in the image space, while both are directed 
away from the optical axis z. As we assumed above (similarly to [1]) the angle that the electric 
and magnetic fields make with the xz plane does not change between the object space and 
image space. Thus the corresponding projections of these fields are equal, as shown for the 
electric field case: 

⋅ = ⋅0 u0 1 ug e g e      (11) 

( ) ( )1× ⋅ = × ⋅0 0 u0 1 ug s e g s e 1     (12) 

Based on the geometry of the problem we get the following expressions for the vectors, where 
the xu, yu and zu are the unit vectors in the direction of the axes x,y and z: 

( ) ( )sign x sign θ= =0 ug x ux     (13) 



( )1 cos sinsign θ θ= +ug x z θu

u

   (14) 

=0s z        (15) 

1 sin cosθ θ= − +u us x z     (16) 

The direction of eu0 depends on the polarization of the incident light. Here we consider both x 
and y polarizations. For the incident x polarization, after some algebra we get the direction of 
eu1 and consequently the value of the ray strength factor ax: 

( )0 cos cos sinxl f θ θ=x ua x z θ+ u
   (17) 

The lox is the amplitude factor of the incident x polarization. For the incident y polarization 
and the corresponding amplitude factor loy the value of the ray strength factor ay is: 

0 cosy yl f θ= ua y      (18) 

Writing down similar expressions for the strength factors of the magnetic field is facilitated by 
the relation of the magnetic and electric fields for a plane wave [6]: 

( )ε µ=h ×s e      (19) 

Thus we get for incident electric field polarizations x and y: 

0 cosxl f θ ε µ=x ub y     (20) 

( )0 cos cos siny yl f θ ε µ θ θ= − +u ub x z   (21) 

Assembly of the results (16), (17), (18), (20) and (21) into (1) and (2) produces the 
following expressions for the fields at a point P(xp,zp):  
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The definitions of M and N are: 
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The integrals (22), (23) imply the following variable change as related to (1) and (2): 



x

z

ds
d

s
dθΩ = =     (26) 

The integrals (22) and (23) are a reformulation for an original RW approach with a 
provision for a piecewise quasi constant phase of the incident wavefront. When this provision 
is suppressed by setting γ0x=γ0y=0, it can be verified that the original RW expressions reduce 
to the above 2D expressions by setting φ=0 and letting θ have negative values. Therefore 
when the integrals (22) and (23) are used below for the evaluation of the fields in the vicinity 
of the geometrical focal point they represent the result based on the RW approach.  

3. Two dimensional focusing based on Stratton-Chu integral 

The Stratton-Chu (SC) diffraction integral [3] is an exact and rigorous expression for the 
electric and magnetic fields in the investigated point. The only condition which is imposed in 
the original formulation is that the volume V upon which the integration of the incident field is 
performed does not contain any sources. It is also assumed that the volume is homogenous, 
isotropic and has zero conductivity. As it is implied in the original formulation, the Kirchhoff 
boundary conditions that are applied to the field on the surface of the volume reduce the 
accuracy of this approach. Still, this approach is believed to be more accurate than the RW 
approach as it does not make all the assumptions that are required for RW formulation. 

The expression of the SC integral for the electric field is given in [3] as: 

( ) ( ) ( ) ( )1
, ,

4
p p p

S
x y z i daωµ ψ ψ ψ

π
= × + × ×∇ + ⋅ ∇⎡ ⎤⎣ ⎦∫E n H n E n E  (27) 

where P(xp, yp,zp) is a point where the field is evaluated in terms of the electric and magnetic 
fields, incident on the surface S, which bounds the volume V, in which P is located. The unit 
normal vector n points outwards from S. The Green’s function is denoted ψ. The integration is 
performed over the entire surface S. Application of this integral to a 2D problem requires a 
number of changes relative to the 3D case. Expression (27) implies that the amplitude is 
inverse proportional to the wavelength, thus multiplication by a square root of the wavelength 
is required. Similarly, the Green’s function expression in 2D is [7]: 

( ) ( 41

0
1

i kr

kr
H kr e

r

πλ )ψ π += →     (28) 

It must be noted that the absolute value r of the distance vector r, between the source point 
and P, is independent of the y coordinate since it is assumed to be zero elsewhere in the 2D 
problem. Accordingly, the gradient of the Green’s function does not have elements in y 
direction: 

(1ikre ikr

rr
ψ −

∇ = − ur )

ik

    (29) 

Where ru is a unit vector in the direction of r. For a monochromatic wave in vacuum we can 
restate the coefficient of the first term with help of intrinsic impedance of free space η0: 

0 120i ikωµ η π=      (30) 

Substitution of (28), (29) and (30) into (27) gives: 
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In a similar way an expression for the magnetic field is (a starting expression can be found in 
[8]): 
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These integrals (31) and (32) can be used for the evaluation of the focused field from the 
known wavefront converging in the image space of the optical system. 

We turn now to the definition of this converging wavefront. Here we deal with the same 
physical problem that is described in the previous section. In this problem the only source is 
located at infinity in the negative direction of the z axis. As previously, making the same 
assumptions on the incident illumination and the optical system, we can use the Gaussian 
cylinder for the description of light emerging from the optical system to its image space. We 
can use the complete geometrical form of the Gaussian cylinder as the integration volume V. 
The only field that is incident on S, the external surface of V, is the light emerging from the 
optical system. As the considered problem is infinite in the y direction we can analyze it on a 
2D plane perpendicular to the y axis, which is chosen as xz plane, similarly to the RW case. 
Thus the actual SC integration is performed along the intersection path between S and the xz 
plane. As previously, we assume the Kirchhoff boundary condition which gives the fields on S 
in terms of rays passing through the optical system. Certainly, imposing these conditions 
reduces the accuracy of the SC result and requires that the point P is located far enough from 
the Gaussian cylinder surface.  

The electric and magnetic fields, incident on S can be expressed using (9), (17), (18), 
(19), (20), (21) as follows: 

( ) ( ) ( )0 0 0 0cos exp cos sin expx x y yl i l iθ γ θ θ γ⎡ ⎤= + +⎣ ⎦u u uE x z y  (33) 

( ) ( )( )0 0 0 0cos exp exp cos sinx x y yl i l iθ ε µ γ γ θ θ⎡ ⎤= −⎣ ⎦u uH y x + uz  (34) 

We have dropped the eikonal from the expressions of the fields assuming that any phase 
differences between the two incident polarizations are adequately represented in the phase 
deviations γ0x and γ0y. Substituting (33) and (34) into (31) and (32) evaluates the focused field 
in a slightly different way than it is done by the Debye-Wolf integral. Introducing some 
approximations it can be shown that the SC integral is reduced to the RW integral [9].  

4. Focused field quadratic phase discussion 

It is a well known fact that a Fourier transform of an object, as obtained at the back focal 
plane of a paraxial focusing optical system, is multiplied by some quadratic phase. 
Mathematically, this quadratic phase factor can be derived by the Fresnel-Kirchhoff integral  
([10] Eq. 5-19): 
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For the moment, we neglect the aperture of the lens in the above expression. The x0 and y0 are 
the coordinate axes normal to the direction of the axis of optical system z at the position of the 
object, located at a distance d0 from the lens, as shown in Fig. 2. The object is represented by 
the transfer function t0(x0, y0). A coordinate system of xf and yf axes is defined at the back 
focal plane of the lens having focal length of f. Thus, according to (35), when there is no 
object and t0 represents the optical system aperture, the above quadratic phase is expected at 
the focal plane unless the aperture is placed exactly at the lens front focal plane. 

 

Fig. 2. Focusing optical system.  

 
The corresponding analysis of the focal field by Debye integral, as presented in [6] 

produces a piecewise quasi constant phase at the focal plane of an aplanatic optical system. So 
is the case with the Debye-Wolf integral which is a rigorous vector extension of the Debye 
integral. Consequently when a phase obtained by RW focusing of a plane wave is evaluated, it 
does not contain the quadratic phase either. The lack of the quadratic phase is not the only 
discrepancy of the Debye approach. It is known that in optical systems with low Fresnel 
number the results of Debye integral become less accurate until the approach completely 
breaks down for systems with Fresnel number below 1 [4]. It must be noted that the above 
comparison considers optical systems of moderate numerical apertures, such as 0.2, where 
both approaches have reasonable accuracy. The same effects are observed in a 2D analysis. 

Considering a focusing problem in 2D enables us to apply the SC integral, as discussed 
above, with an affordable computational complexity. As it will be shown in the next section, 
the focal field evaluated by the SC integral does have the quadratic phase, similar to the one 
produced by the Fresnel-Kirchhoff integral. It must be stressed that the SC and RW 
approaches integrate the same field incident on the same Gaussian cylinder, but they produce 
different results. Interestingly, comparison of the amplitudes of the focused fields between the 
SC and RW results does not reveal significant differences, as opposed to the comparison of 
the phases.  

The quadratic phase of the focused field, as produced by SC approach appears to depend 
on the numerical aperture of the considered optical system. For lower numerical apertures it 
approaches the quadratic phase predicted by the Fresnel-Kirchhoff integral, while for higher 
numerical apertures it approaches zero as the Debye approach suggests. The quantitative 
analysis of the dependence of the quadratic phase on the numerical aperture is performed in 
the next section. As the next section considers aplanatic optical system illuminated by a plane 
wave, the aberration of the wavefront on the Gaussian cylinder Φ is taken to be zero 



everywhere. Thus, according to [6], the observed quadratic phase is not connected with 
primary or higher order optical aberrations.  

5. Numerical analysis 

5.1 Introductory analysis of a low numerical aperture case 

We start by considering a focusing optical system with a relatively low numerical aperture of 
0.2. As such, it can be schematically described as in Fig. 1 or in Fig. 2. The system is 
illuminated from the left by a plane wave propagating in the positive z direction. For the 
paraxial analysis, the lens aperture is represented by the amplitude transmittance function t0. 
The paraxial representation of a lens as a thin optical element allows to assume that d0=0. 
Thus the focal field distribution can be calculated based on (35) or by using paraxial optical 
operators [11]. Both rigorous approaches, RW and SC start with ray representation of the 
incident illumination at the entrance pupil. This representation neglects the diffraction effects 
of the entrance pupil as the rays are either stopped by the pupil or continue to the image space. 
Thus the most natural position for modeling the entrance pupil is at the lens surface. All the 
rays reaching the image space are described on the surface of the Gaussian cylinder forming 
an emerging wavefront in the image space. This emerging wavefront is integrated for the 
focused field evaluation by either Debye-Wolf or Stratton-Chu integrals.  

In an optical system, its angular aperture is generally different between the object side 
and image side [6]. The analysis, presented in this work, is performed having an association of 
the investigated focusing optical system with microscope objectives in mind. Microscope 
objectives were originally intended for imaging of small, luminous, species, while in this 
work we consider a reverse direction of light propagation through the objective as we speak of 
focusing light. Thus the object space of a microscope objective corresponds to the image 
space of the focusing optical system presented in the previous sections, and consequently the 
image space of the microscope objective corresponds to the object space of the investigated 
optical system. According to the above and to the definition in [6] the relation between the 
numerical aperture (NA) of the optical system and its aperture angle θmax is given by: 

( )maxsinNA n θ=       (36) 

Where n is the refractive index of the optical system image space. In this work we assume n = 
1. From (36) and the sine condition (5) we can get the half-width of the entrance pupil:  

( )max maxsinh f f Nθ A= = ⋅      (37) 

For consistency between the rigorous and the paraxial approaches, the amplitude 
transmittance function t0 also has the half-width hmax. In this work we choose hmax = 1.5mm. 
Thus for NA = 0.2 the focal length becomes f = 7.5mm. It must be noted that the exit pupil has 
a different half-width but it is not relevant to the present work. 

The plane wave, incident on the entrance pupil of the optical system can have an arbitrary 
polarization. In this work we consider two orthogonal polarizations of the incident plane wave 
x and y. These polarizations span all the other polarizations (linear, circular and elliptic). The 
paraxial, scalar approach does not make any distinction between the polarizations. Therefore 
the paraxial results are compared with the focal field component in the direction of the 
incident illumination polarization.  

The focused field amplitudes, as evaluated by different methods, are presented in Fig. 3. 
The values of the amplitudes are given in percents, relative to the maximum amplitude value, 
evaluated by (35). The amplitudes, evaluated by different methods are too close to see the 
difference even when the main lobe is zoomed over the entire graph. Presenting the difference 
of the amplitudes from the amplitude calculated analytically by (35) gives a better 
perspective, as shown in Fig. 4. Again the differences are given in percents, relative to the 
same value as in Fig. 3. 



-30 -20 -10 0 10 20 30

0

10

20

30

40

50

60

70

80

90

100

distance in wavelengths
%

 o
f 

m
a
x
. 

a
m

p
lit

u
d

e

 

 RW X

RW Y

SC X

SC Y

OP

AN

 

Fig. 3. Focused field amplitudes. Prefix meaning: RW – evaluation by RW method, SC – 
evaluation by SC method, OP – evaluation by paraxial operators, AN – evaluation by analytic 
paraxial expression. Suffix meaning: X – incident x polarization, Y – incident y polarization.  
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Fig. 4. Rigorous focused field amplitude differences from the analytical paraxial result.  
Prefix meaning: RW – evaluation by RW method, SC – evaluation by SC method.  

Suffix meaning: X – incident x polarization, Y – incident y polarization.  

In Fig. 4, the line corresponding to SC X completely overlaps (and hides) the line 
corresponding to RW X; similarly, SC Y overlaps RW Y. The differences between the 
overlapping lines are of an order of 0.0005%. 
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Fig. 5. Wavefront phase after the removal of “sync” jumps.   
Prefix meaning: RW – evaluation by RW method, SC – evaluation by SC method.  

Suffix meaning: X – incident x polarization, Y – incident y polarization.  



We now turn to the investigation of the phase of the focused field components 
corresponding to the incident illumination polarization and the phase of the complex focused 
wavefront in the paraxial case. It is implied by Fig. 3 that there are multiple zero crossings of 
the amplitude along the x axis, which are due to the “sinc”-like behavior of the complex 
function representing the wavefront. The zero crossings incur phase jumps of π. These jumps 
are unwanted as they complicate the analysis of the quadratic phase of the wavefront, which is 
the investigation subject in this work. Clearing those jumps can be accomplished by 
multiplying the wavefront by the sign of its real or imaginary part. The phase remaining after 
the multiplication is shown in Fig. 5. There are three groups of overlapping graphs in Fig. 5. 
The first group comprises paraxial results, where the analytically calculated quadratic phase 
overlaps the phase of the wavefront evaluated by the paraxial operators. The second group 
comprises the phases of the results obtained by SC approach, where the phase corresponding 
to the incident y polarized plane wave overlaps and hides the phase corresponding to x 
polarized incident plane wave. Their phase also looks like quadratic, but it appears to have 
less steep slope, which can be a result of a smaller coefficient. The third group comprises the 
phase of RW approach results. Again the phases corresponding to different incident 
illuminations overlap and they both are zero. 

We can summarize that as far as the paraxial approximation holds, both paraxial and 
rigorous methods, discussed herein, are in a good agreement regarding the amplitude of the 
focused field in the direction of the incident illumination polarization. When considering the 
focused field phase, the RW approach, based on the Debye integral, does not produce the 
quadratic phase, as opposed to the paraxial approach, based on the Fresnel-Kirchhoff integral. 
The approach, based on the SC integral, yields a quadratic phase which is slightly different 
from the paraxial result. As it was discussed in the earlier sections, the SC approach involves 
fewer approximations than the RW approach. The results presented above suggest that the 
field evaluated by the SC approach has a better correspondence to the paraxial results. Thus it 
can be suggested that SC approach is more accurate than RW approach also when optical 
systems of higher numerical aperture are concerned. It must be noted that these conclusions 
are independent of the polarization of the incident illumination.  

5.2 Amplitude evaluation for higher numerical apertures 

To the best of our knowledge, this work is the first one that uses SC integral for tight 
focusing. Therefore it is important to verify that the focused field amplitude on the back focal 
plane, as calculated by the SC approach corresponds to that evaluated by the widely accepted 
RW approach. For this purpose we evaluate the amplitude of the focal field by the two 
approaches for different numerical apertures of an optical system. We choose to keep the hmax 
= 1.5mm, thus different numerical aperture values are achieved by different focal length 
values, according to (37). Practically, this also means that the number of samples taken on the 
Gaussian cylinder changes with different arc lengths defined by the angle θmax and different 
focal distances f, as the number of samples, per wavelength distance along the arc, is kept 
constant.  

Presenting focused field amplitudes similarly to Fig. 3 would give no visible indication 
about the differences between them. Thus we present the absolute differences between the 
amplitude results calculated by RW and SC, which are normalized by the maximum 
amplitude value of the SC result. Correspondingly, these absolute differences are presented in 
percents of the maximum amplitude for Ex field component in Fig. 6, Ey field component in 
Fig. 7 and Ez field component in Fig. 8. 

 



-10 -5 0 5 10

1

2

3

4

5

6

7

8

x 10
-4

distance in wavelengths
%

 o
f 

m
a
x
. 

a
m

p
lit

u
d

e

 

 
NA=0.2

NA=0.4

NA=0.6

NA=0.8

 

Fig. 6. Absolute amplitude difference of the Ex field component normalized by the maximum 
amplitude value. Different lines correspond to different numerical apertures.  
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Fig. 7. Absolute amplitude difference of the Ey field component normalized by the maximum 
amplitude value. Different lines correspond to different numerical apertures.  

 
The differences are presented for a selected subset of numerical apertures. Generally, in 

the vicinity of the geometrical focal point, the difference is limited by 10-5 of the maximum 
amplitude values for all the field components. It is interesting to note that the difference in the 
center is smaller for higher numerical apertures. This comes in agreement with [4], stating that 
the Debye approach is more accurate for optical systems with higher Fresnel numbers. It is 
also evident that the result for Ez field, in Fig. 8, contains a significant number of point-wise 
numerical errors, which overlay a difference pattern that is otherwise similar to that of the 
other fields.  

The Debye approximation represents each ray that is directed to the geometrical focus 
from the Gaussian cylinder as a plane wave in the vicinity of the geometrical focus. This 
approximation is expected to become less accurate when higher distances from the 
geometrical focal point are considered. Thus we expect that the differences between the RW 
approach that uses Debye approximation and the SC approach that does not make this 
approximation, become greater with a greater distance from the geometrical focal point. In 
order to make a qualitative analysis of the dependence of the differences on the distance from 
the geometrical focal point we need to perform some averaging of the curves presented in 
Figs. 6-8. The averaging is required for better visualization of the differences that behave in 
an oscillatory way with amplitude increasing with the distance from the geometrical focus.   
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Fig. 8. Absolute amplitude difference of the Ez field component normalized by the maximum 
amplitude value. Different lines correspond to different numerical apertures.  

 
The averaged difference is, of course, only an approximation that shows a general trend or 
contour, rather than a result having an exact quantitative meaning. The averaged differences 
are shown in Figs. 9, 10 and 11. One can notice that with a small exception for the Ex field, 
the difference increase with a distance from the geometrical focus becomes steeper with 
higher numerical aperture of the system. A possible explanation can be a comparison between 
the plane waves and the spherical (cylindrical in 2D) waves. Each point on the Gaussian 
cylinder is both a representative of a ray directed to the geometrical focus and a secondary 
source of cylindrical waves, according to Huygens principle. In the former case it is evaluated 
as a plane wave in the vicinity of the focal point and in the latter case it is a cylindrical wave 
with radius equal to the focal distance. With increasing numerical aperture this radius 
becomes smaller (as the entrance pupil radius is kept constant) and therefore the difference 
between the plane wave and the cylindrical wave becomes larger when the same distance 
from the focal point is considered.  
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Fig. 9. Approximate contours of absolute amplitude difference of the Ex field component 
normalized by the maximum amplitude value. Different lines correspond to different numerical 

apertures.  
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Fig. 10. Approximate contours of absolute amplitude difference of the Ey field component 
normalized by the maximum amplitude value. Different lines correspond to different numerical 

apertures.  
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Fig. 11. Approximate contours of absolute amplitude difference of the Ez field component 
normalized by the maximum amplitude value. Different lines correspond to different numerical 

apertures.  

5.3 Quadratic phase evaluation for higher numerical apertures 

We turn now to the investigation of the focused field quadratic phase, as produced by the SC 
approach for different numerical apertures of an optical system. The extraction of the 
quadratic phase associated with a specific field component was described in subsection 5.1. 
The quadratic phase is evaluated for optical systems with different numerical apertures, as 
discussed in section 5.2. As previously, we keep the hmax = 1.5mm, thus different numerical 
aperture values are achieved by different focal length values, according to (37). After phase 
jumps removal and a certain amount of smoothing, the quadratic phase of the Ex field looks 
like the one shown in Fig. 12. It is interesting to note that at first the quadratic phase becomes 
steeper with increasing numerical aperture, but after a certain point it begins to decrease with 
increasing numerical aperture.  

In the 2D system the Ex and Ez fields correspond solely to the incident x polarized 
illumination and the Ey field corresponds solely to the incident y illumination. Thus it is 
important to investigate the quadratic phase of all field components for the corresponding 
incident illumination polarizations. A quantitative measure of a quadratic phase coefficient 
can be obtained by polynomial fitting of the phase curves as depicted in Fig. 12. The absolute 
value of the quadratic phase coefficient (reflecting such optical system parameters as focal 
length of wavelength) is given in Fig. 13, as a function of the numerical aperture. From Fig. 



13 it is evident that the numerical aperture after which the quadratic phase factor starts 
decreasing is about 0.6.   
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Fig. 12. Quadratic phase of the Ex field component. Different lines correspond to different 
numerical apertures.  
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Fig. 13. Absolute value of quadratic phase coefficients of different field components as a 
function of numerical aperture.  
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Fig. 14. Relative value of quadratic phase coefficients of different field components as a 
function of numerical aperture.  
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Fig. 15. Relative value of quadratic phase coefficients of different field components compared 
with a corresponding analytical expression, as a function of numerical aperture. The result 

corresponding to analytical expression is denoted Fit. 
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Fig. 16. Difference shown as a function of numerical aperture, between the analytically 
calculated relative quadratic phase coefficient and corresponding results, derived from different 
field components. Except for the Ez field and Ey field at NA=0.95, other difference results are 

below 0.02%. 

 
A deeper insight on the behavior of the rigorous quadratic phase coefficient cv as a 

function of numerical aperture can be obtained by normalizing it with the quadratic phase 
coefficient of the paraxial case cp, appearing in (35): 

,

2v
v norm v v

p

c f
c c c

c k

f λ
π

= = =      (38) 

The rigorous quadratic phase coefficient cv,norm, relative to the paraxial quadratic phase 
coefficient cp, is shown in Fig. 14, for all the field components, as a function of numerical 
aperture. The form of the curve in Fig. 14 hints that it can have a polynomial dependence on 
the numerical aperture. Evaluating polynomial coefficients for all the field components 
suggests that cv,norm is fitted by the following polynomial: 

2

, 1v normc = − NA      (39) 

The comparison of the relative coefficients obtained by the numerical field evaluation with the 
coefficient given by (39) is shown in Fig. 15. For better perception of the actual differences 
between the compared values, they are shown separately in Fig. 16. The differences 
corresponding to the Ex and Ey fields are mainly limited by 2x10-4, while the difference 



corresponding to the Ez field is higher. This may be due to a higher level of numerical errors 
in Ez, as evident from Fig. 8. 

The investigation above leads to our main result, the expression of the quadratic phase 
coefficient at the back focal plane of the focusing system: 

( )
2

2 max1 1
2 2

v

k k h
c NA

f f f

⎡ ⎤⎛ ⎞
= − = −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
    (40) 

This result shows that the quadratic phase coefficient, derived from the results of the rigorous, 
vector methods, approaches the value obtained by paraxial analysis for systems with 
decreasing numerical aperture. At the other extreme, with NA approaching 1, the coefficient 
approaches zero and the phase function, at the back focal plane, approaches piecewise planar 
profile.  

The result in (40) was obtained for a plane wave illumination at the entrance pupil of the 
focusing system. Making an analogy with a paraxial case, it can be expected that this result is 
a property of the optical system rather than of the incident illumination. The verification of 
this conclusion has yet to be performed. 

The interesting result, as obtained above, for a 2D system, hints that some similar 
quadratic phase behavior can be expected in a 3D system. Given a very high computational 
complexity, required to perform such an analysis of a 3D system, we can not present any 
definite conclusions so far. Results of some preliminary 3D system simulations suggest that 
the quadratic phase of all the three field components of the focused field is close to the one 
described by (40) for some specific numerical aperture values. Yet, much more work has to be 
done in this direction. 

5. Conclusion 

We have used the Stratton-Chu diffraction integral to investigate the phase of the focused 
field of a 2D optical system. We have found that this phase has a quadratic component, 
similar to that of the Fresnel-Kirchhoff diffraction integral, as opposed to the result of Debye-
Wolf integral which does not produce any quadratic phase component. The coefficient of the 
investigated quadratic phase was found to be dependent on the square of the numerical 
aperture as 1-NA2. This result was consistent for all field components. A closed analytical 
form of the quadratic phase coefficient will allow an easy addition of the quadratic phase to 
focal field values, obtained by Richards-Wolf approach so as to improve the accuracy of the 
subsequent analysis. If, as we believe, the discussed quadratic phase is independent of the 
incident illumination, it can be added to the results of any method based on RW approach. 
Yet, a care should be taken when considering 3D systems, as their proper investigation is still 
ahead.  
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