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ABSTRACT 

 

In this work, re-quantization for trans-coding of MPEG intra-frames and JPEG images is considered and analyzed. 

Our analysis shows that both the rate and the distortion of re-quantized images depend mainly on the ratio between 

the new and the old quantization steps. The new quantization step is selected using a simplified fast algorithm that 

ensures low distortion. Our analysis is based on the structure of the quantizer and the Laplace-like distribution of the 

DCT coefficients in sub-band coding. The proposed approach could be instrumental in achieving a required bit-rate 

at low distortion while allowing real-time implementation due to low computational complexity. 
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1. INTRODUCTION AND PROBLEM DEFINITION  

 
Image and video transmission usually requires trans-coding since in many cases the bit-rate of the transmitted data 

has to meet the various requirements of the transmission channel and the limitations of the receiving end. This 

process of bit-rate reduction has to be carried out with minimal distortion, and when done in real-time, it is crucial 

that the trans-coding is performed at low computational complexity. A straightforward method is to cascade a 

decoder and an encoder. Despite the simplicity of this approach, however, such a system is computationally heavy 

and not necessarily optimal. More sophisticated trans-coding schemes can be performed in many ways, both in the 

bit domain and in the frequency domain [1].  

One of the methods for video trans-rating is re-quantization. This is done by re-quantizing DCT coefficients in the 

transform domain. Figure 1 depicts general system description. Figure 1(a) shows a basic coding scheme where 

DCT is performed on each image block. The DCT coefficients are then quantized and coded using variable length 

coding (VLE). Figure 1(b) shows a basic re-quantization scheme. The coded signal is decoded (VLD), re-quantized 

in the DCT domain and then coded again (VLE). Two stages of quantization are involved in the process of re-

quantization. The first stage of quantization is performed at the encoder and cannot be controlled, altered or avoided. 

It is shown as the Q1 block in Figure 1 and the quantization step size used is q1. The second stage of quantization is 

performed for trans-coding or trans-rating. It is shown as the Q2 block in Figure 1 and the quantization step size used 

here is q2. In addition to those two quantizers, a third reference quantizer is also used throughout this work denoted 

by Q2,ref. The reference coarse quantizer is used directly on the original signal. The performance of the second stage 

quantizer is evaluated by comparing it to the reference quantizer.  

 

The goal of this work is to analyze the process from a rate-distortion point of view, so that it is possible to design 

this second stage quantizer in an optimal way that would keep the distortion low as well as the amount of bits 

required to code the data. The developed method has to be fast and simple so that it could be suitable for real-time 

applications. 
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Figure 1: (a) Basic coding scheme; (b) Basic re-quantization scheme 
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1.1. Quantizer Definitions 

Typically, in both MPEG Intra frames and JPEG images, a uniform threshold quantizer (UTQ) is used, with no dead 

zone. Such a quantizer (also called a midtread quantizer) as illustrated in Figure 2 is used for both quantization 

stages, as in [3] and [5].  

Throughout this work two types of quantization are considered. The first is uniform quantization, i.e., the 

entire image is quantized with the same quantization step. The second is quantization using the JPEG quantization 

matrix when only the quality factor Q is altered. This factor multiplies the constant quantization matrix. The 

quantizer is well defined using Equations (1) and (2), similar to definitions used in [5]. 
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Figure 2 : UTQ schematic description 
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The decision and reconstruction levels of the quantizer are defined as in Figure 2. The decision level l of 

the stage i (i=1,2) quantizer is denoted by di,l. In general, di.0 = 0 and di.l = (l - 0.5)qi. The reconstruction level l of 

stage i quantizer is denoted by ri.l. When using a midtread quantizer, ri.0 = 0 and ri,l  = l∙qi . Some formulas were 

developed for positive values of the DCT coefficients. For negative values (2) is used. 

 

i   – Quantization stage (1 or 2) 

 

q   – Quantizer step size 

 

di,l – Decision level of      

        quantization bin l 

 

ri,l – Reconstruction level    

        of quantization bin l 
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This work is organized as follows. In Section 2, a method for selecting a new quantization step to minimize 

the MSE is shown.  Section 3 introduces theoretical rate-distortion analysis. In Section 4 simulation results are 

presented, and in Section 5 the work is summarized and conclusions are provided. 

 

 

 

 

 

 

2. MINIMZING RE-QUANTIZATION DISTORTION 

 

The criterion used here for distortion is MSE (Mean Squared Error) as well as visual quality as discussed in Section 

4. Consider all possible input values of one bin (bin l) of the first stage quantizer Q1 as 

1 2

2,1, 1, 1 1,[ , )
Q Q

ml l lx d d r const r const     ,                               (3)
 

as suggested in [3], in order to keep the re-quantization distortion to a minimum, we should attempt to achieve  

    2 2 1 2, 2,ref refy Q Q x y Q x  
.      

           (4)
 

This way, there is no additional distortion caused by using two- stage quantization instead of using one stage coarser 

reference quantizer directly. Specifically we can write 

2,
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2, 2, 11, 1, 1, :[ , ) [ , )m ml ll m d d d d     .                                                                                                               (6)   

 

This means, that in order to avoid a re-quantization error, each quantization bin of the first stage quantizer Q1 has to 

be contained in some quantization bin of the coarser second stage quantizer Q2. Otherwise, if there is some second 

stage decision level d2,m between (and not equal to) a pair of first stage decision levels (d2,m [ d1,l, d1,l+1) and        

d2,m≠ d1,l, d1,l+1),  condition (4) is contradicted. This is shown in the following equations, assuming for instance 

that  d2,m < r1,l.  
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This case is illustrated in Figure 3. 
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Figure 3 : Quantization bin illustration 

In order to avoid additional distortion due to re-quantization and maintain the condition in (4), from (6), (7) and (8) 

it follows that  

   2, 1,m ld d .                                                                             (9) 

This means that all decision levels of the second stage quantizer must coincide with decisions levels of the first stage 

quantizer. Thus, each bin of the coarse second stage quantizer must contain an integer multiplication of the finer first 

stage quantizer bins: q2 = k∙q1, where k is a natural number.  

 

Consider the first bin of the coarse reference quantizer: d2,ref,0=0;   d2,ref,1=0.5q2 . When taking into account the 

quantization bins of the first stage quantizer that fits into the large reference bin we should use 

 1,0 1, 10; 0.5nd d n q    ,              (10) 

where n(n≥1), is the index of the decision level of the finer quantizer that coincides with the d2,ref,1  decision level 

of the coarse reference quantizer. We may also state: d2,ref,1= d1,n. Accordingly, we get 
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                                                            (11) 

2 1k n odd    .                                                                                                                                (12) 

This shows that in order to maintain the condition in (4) for all the x axis, the ratio between the finer and the coarser 

quantizer steps, k = q2 /q1 must be an odd number.  

Further analysis of the distortion due to re-quantization appears in the following section. 
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3. RATE-DISTORTION ANALYSIS FOR LAPLACIAN PDF 

 

Analysis of the distortion and bit rate of the re-quantized image requires modeling the distribution of the DCT 

coefficients throughout the entire re-quantization process. First, the original data has to be modeled, next the 

quantized data and finally the re-quantized data. The bit rate of the re-quantized image could then be estimated for 

various re-quantization step sizes by calculating the entropy of the re-quantized data. The optimal re-quantization 

steps, which minimize the entropy (and thus the bit-rate) and the distortion of the re-quantized data can then be 

selected. 

DCT coefficients of coded images can be fairly modeled using Laplace distribution [3],[4],[9] such that 

  0.5
x

p x e
                                                                                      (13) 

 

The probability weight of each quantization bin of the first stage quantizer can be then calculated, using the 

quantization step size (which is known to the device performing the re-quantization). For quantization step q, for 

positive values, the probability weights of the first stage quantizer are expressed as 
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The probability weight of bin l is denoted by wl. Figure 4 depicts the probability weights of the first stage quantizer. 

Only the positive axis is shown and thus only half of the bin around zero appears.  
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Figure 4 : Probability weights after quantization          

 

Next, it is needed to calculate the entropy and MSE of the re-quantized data in order to estimate the 

required bit-rate and distortion. The probability distribution at the input of the second stage quantizer is no longer 

Laplacian and the quantized data takes discrete values. Each value is a reconstruction level of a quantization bin 

from the first stage quantizer with probability weight accordingly. The re-quantized data will also obtain discrete 

values, according to the new reconstruction levels. In fact, it is possible to regard the re-quantization process as 

rearranging of the probability weights of the discrete quantized values into new groups, representing the re-

quantized values and their probability distribution.  

It can be observed that the position of the decision levels of the second stage quantizer compared to the 

decision levels of the first stage quantizer, determines the re-grouping of the probability weights of the quantized 

data. This determines the probability weights (and distribution) of the resulting re-quantized data.  Detailed rate-

distortion analysis using this notion is given in the following sub sections. In addition, the rounding policy of the 

second stage quantizer (i.e., whether 0.5 is rounded towards 1 or 0) greatly affects the re-grouping of the probability 

weights during the re-quantization process. Rounding 0.5 to 0 was suggested in [10] and is regarded as “rounding 

toward zero” while rounding 0.5 to 1 is regarded as “regular rounding”.  

 Figure 5 demonstrates the re-quantization process and the affect of the ambiguity when rounding 0.5 

towards 1 or 0. The first (left most) axis represents possible values at the input of the first stage quantizer. Decision 

levels are marked with longer lines perpendicular to the axis. Representation levels are marked with the shorter lines 

with “x” on them. The original quantization step size is 3 for all the second stage quantizers depicted, as shown in 

the left lower corner of the figure.  
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The following axes demonstrate the re-quantization process for different quantization step sizes used for 

the second stage quantizer. For instance, the second axis from the left represents re-quantization using a quantizer 

with step size equal to 4. The decision and representation levels of the second stage quantizers are marked in a 

similar way. Also, the transition of each representation level of the first stage quantizer to the appropriate 

representation level of the second stage quantizer is shown. For that purpose the following notation is used in the 

figure. 

Original 

representation level

Original 

quantization step

3 40 0

Re-quantized 

representation level

Re-quantization 

quantization step

 

Let us observe closely the case when the quantization step of the second stage quantizer is equal to 6 (twice 

the original quantization step). It can be noticed that there is some ambiguity regarding the quantization of the value 

3 (a representation value of the first stage quantizer). This value falls directly on the decision level of the second 

stage quantizer. This means that it is possible to quantize this value to 0 (rounding towards zero) or 6 (regular 

rounding). In a similar way, -3 could be quantized towards 0 or -6.  

This situation leads to the conclusion that the rounding policy of the second stage quantizer can greatly 

affect the re-quantization process outcome. While both possible approaches to the rounding policy were considered 

throughout this work, rounding towards zero appears to be a more promising approach. This can intuitively be 

explained as follows: 

Let  p x  denote the probability of a DCT coefficient x being equal to in the original image. Since the 

Laplace PDF is zero centered, for 
1 2

0    :    
2 1

p x p x    . It thus follows that rounding to a lower 

value will decrease the distortion. In addition, the more values of the quantized DCT coefficients are rounded 

towards zero the bigger the probability weight of the zero quantization bin becomes. This affects the entropy directly 

and decreases the required bit-rate. Detailed analysis appears in the following sub sections. Both rounding methods 

were implemented and compared in the simulations described in Section 4. 
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10 

 

 

3.1 Rate Analysis of a Laplacian Source 

 

As mentioned, entropy will be used as a measure of the resulting bit-rate of the re-quantized data. The probability 

distribution of the input signal (at the first stage quantizer) is Laplacian, as defined in (13) and shown in Figure 6.  
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Figure 6 : Laplacian probability distribution 

 
Three methods of re-quantization (one for each rounding method and direct quantization) were considered. Below is 

a derivation of the entropy as a function of the factor k , which is the ratio between the first and second stage 

quantization step sizes as defined by  

2

1

q
k

q
  .                  (15) 

Only integer values are considered as shown in (9) since an integer ratio is required to avoid additional distortion 

due to the re-quantization process and since it allows for a comprehensive analysis regardless of the first stage 

(initial) quantization step size. Moreover, it is expected that for odd values of k both the rate and the distortion 

performance of the three quantization methods will be similar. As discussed and shown in (12), for odd multiples all 

three re-quantization methods perform the re-quantization in the same manner (and equal input to all three 

quantizers results in an equal output).  

 

The entropy measure is defined as, 

   2, 2 2,logl l
l

E p r p r




                  (16) 

where 2,lr is the representation level of quantization bin l of the second quantizer. The entropy expressions were 

derived separately for odd and even values of k . For odd values of k , the expressions for entropy are shown as 

follows. 
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   

           
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Table 1 : Entropy of re-quantized data as a function of k for odd values  
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For even values of k and rounding toward zero, the expressions for the entropy are the following: 
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Table 2 : Entropy of re-quantized data as a function of k for even values and rounding toward zero  
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For even values of k with regular rounding, the expressions for the entropy are: 
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   
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   
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Table 3 :  Entropy of re-quantized data as a function of k for even values and regular rounding  
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The entropy of the re-quantized data is plotted in Figure 7 as a function of k . The first stage quantization step size 

used is 
1

10q    and the parameter λ is set to 0.1, a value found appropriate for images [6]. 
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Entropy for Re-Quantized Laplace PDF

 

 

Rounding to zero
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Direct quantization

 

Figure 7 : Entropy of re-quantized Laplace distribution 

 

It can be observed that for rounding toward zero, a much steeper decrease in entropy occurs when k is even. This 

shows that better compression can be achieved at these points. This can be seen at the sharp transition from 1 to 2 

(q2=2∙q1) and from 3 to 4 (q2=4∙ q1). Whereas, for regular rounding a steeper decrease in entropy occurs when k is 

odd, at the transition from 4 to 5 (q2=5∙q1) as opposed to the transition from 5 to 6 (q2=6∙q1). In general, the 

entropy is substantially higher for regular rounding, which means that better compression is achieved using 

rounding toward zero.  When comparing to the direct quantization curve, if the reference coarse quantizer is used 

once on the original data, it can be observed that for the even multiples, the entropy of the re-quantized data is 

smaller when rounding toward zero is used and larger when regular rounding is used. At the odd multiples 

however, the entropy of the re-quantized data is equal to that of the data quantized once with the coarse reference 

quantizer, as expected. This reinforces the conclusion that deeper compression is achieved at even multiples of the 

original quantization step size when using rounding toward zero.  
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3.2. Distortion Analysis of a Laplacian Source 

 

The distortion of re-quantized DCT coefficients is considered here, assuming Laplacian distribution before 

quantization, i.e., 

       
2, 1 2,1 2, 1

2, 2,

2 22 2

2, 2,
10

ˆ
2

l l

l l

d d d

x x x

l l
l ld d

D x x f x dx x r e dx x e dx x r e dx
    

   
  

 

           (17) 

 using the definition of error caused by quantization. Next, to calculate the error caused by re-quantization, the 

second stage quantizer decision levels ( 2,ld ) and reconstruction levels ( 2,lr ) are used. As with the entropy in the 

previous sub section, the distortion is evaluated as a function of k , separately for odd and even values, for regular 

rounding and for rounding towards zero. As before, for odd values, the distortion for both rounding methods and for 

the direct quantization is equal. Below are derivations for odd values:  
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
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Table 4 : Distortion of re-quantized data as a function of k for odd values 
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For even values of k and for rounding toward zero, the expressions for the distortion are shown below. 
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Table 5 : Distortion of re-quantized data as a function of k for even values and rounding towards zero 
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For even values of k and for regular rounding, the expressions for the distortion are shown below. 
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Table 6 : Distortion of re-quantized data as a function of k for even values and regular rounding 

 

The Distortion of the re-quantized DCT coefficients is plotted in Figure 8 as a function of k . As before, the first 

stage quantization step size used is 
1

10q    and the parameter λ was set to 0.1. The distortion is plotted for both 

rounding methods as well as for direct quantization, where the data is only quantized once using the reference 

quantizer. 
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Figure 8 : Distortion of re-quantized Laplace distribution 

 

It can be observed that for re-quantization using both rounding methods, a much steeper increase in distortion occurs 

when k is even. This can be seen here at the sharp transition from 1 to 2 (q2=2∙ q1) and from 3 to 4 (q2=4∙ q1). In 

addition, the distortion at the even multiples is the highest for regular rounding, second high for rounding toward 

zero and lowest for direct quantization. This means that re-quantization with an even multiple of the original 

quantization step, additional distortion is inevitable for both rounding methods and it is higher for regular rounding. 

Third, as k increases, the distortion for both re-quantization methods and direct quantization converges to the same 

value. This can be explained in the following manner. As k increases, the probability weight of the interval 

1 1[ , ]
2 2

q q
  increases according to 

 
1

1

/2
5

1

/2
2

10 1

kq
x k

zero bin

kq

P e dx q e
   




     .             (18) 

Since this interval is quantized to zero in all three methods, when 1zero binP   , the distortion for all three methods 

converges to the same value. Figure 9 shows zero binP  as a function of k for λ=0.1.It can be observed that for 



19 

 

 

10, 1zero bink P   , which explains the similar distortion values in Figure 8, for all three methods. Similar 

behavior can be observed in Figure 7, for the entropy. 
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Figure 9 : Probability weight of zero binP  as a function of k 
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3.3 Rate-Distortion Analysis 

 
Earlier derivations were used to examine the theoretical rate-distortion behavior of the re-quantized DCT 

coefficients, assuming initial Laplacian distribution. Figure 10 shows the rate vs. distortion for 
1

10q  , 0.1   and 

rounding toward zero. It can be seen that there are parts of the curve where moving towards substantially higher 

distortion does not substantially reduce the rate. For instance, when moving right from 85D to 100D the rate 

remains 1.29R  bit per pixel. This means that there are some re-quantization step sizes that will cause a larger 

distortion without reducing the rate. Clearly such re-quantization steps are best avoided. This issue is further 

demonstrated and discussed in the next section. 
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Figure 10 : Rate- distortion for re-quantization of Laplace PDF  
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Figure 11 shows the rate-distortion behavior for re-quantization using both regular rounding and rounding toward 

zero as well as direct quantization. The conclusions remain consistent with previous observations: 

 With rounding toward zero, the performance is usually superior to regular rounding and direct 

quantization, where superior performance means lower distortion for the same rate or lower rate for the 

same distortion. 

 With regular rounding there are areas where lowering the rate substantially decreased the distortion only 

slightly, which is an abnormal behavior for a rate-distortion analysis. The reason is that some re-

quantization steps (even multiples of the original quantization step) perform badly and increase the 

distortion significantly without improving the compression. 

 The points of intersection for all three methods are the odd multiples of the original step size. 

 In general, regular rounding gives the worst results.   
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Figure 11 : Rate-Distortion for re-quantized Laplacian PDF using three re-quantization methods 
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4. SIMULATION RESULTS 

 

Two types of quantization were used in the simulation: uniform quantization and quantization using the JPEG 

quantization matrix. As discussed, two rounding techniques were used: regular rounding (where 0.5 is rounded 

towards 1 and -0.5 is rounded towards -1) and rounding towards zero (where 0.5 is rounded towards 0 and -0.5 is 

rounded towards 0 as well). Figure 12 shows the original “man.tiff” image. Figure 13 shows the “man” image after 

uniform quantization with q1=15. Figures 14-16 show three attempts to re-quantize the image shown in Figure 13.  

 

 

Figure 12 : “man.tiff” 

 

 
Figure 13 : q1 = 15, PSNR is 36.7639, rate is 1.3395 bit per pixel, regular rounding 

 

Figure 14 shows this image re-quantized with q2 = 29 and Figure 15 shows the image re-quantized with a slightly 

coarser re-quantization step of q2 = 30 = 2•q1. Rounding towards zero was used for both images. 
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Figure 14 : q2 = 29, PSNR is 30.5439, rate is 1.1834 bit 

per pixel, rounding toward zero 

 

Figure 15 q2= 30, PSNR is 32.1022, rate is 0.53909 bit 

per pixel, rounding toward zero 

Figure 16 shows the image re-quantized with q = 30 =2• q1. This time regular rounding was used. 

 

Figure 16 q2= 30, PSNR is 30.0445, rate is 1.1828 bit per pixel, regular rounding 

When comparing Figure 14 to Figure 15, it can be easily observed that Figure 15 looks much better than Figure 14. 

There is less noise and the image appears to be much smoother. The numerical results are summarized in Table 7 

below. Even though a coarser re-quantization step was used in Figure 15, the PSNR is higher by approximately 1.5 

dB, which is evident visually as well. Moreover, the compression of the image re-quantized with q2 = 30 is much 

more significant  (the required bit-rate is more than two times lower) than the compression of the image re-quantized 

with q2 = 29. When comparing Figure 15 to Figure 16, the importance of the rounding method becomes obvious. 
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Those two images are re-quantized with the same step (q2 = 30) however the rounding method varies. Rounding 

toward zero was used in the image in Figure 15, while regular rounding was used in the image in Figure 16. As a 

result, Figure 16 is much noisier, its PSNR is lower by approximately 2 dB and its bit-rate is more than twice higher.  

 

Fig.13 q2=29 PSNR:  30.54 Rate: 1.18 bits/pixel Rounding to zero 

Fig.14 q2=30 PSNR:  32.1 Rate: 0.54 bits/pixel Rounding to zero 

Fig.15 q2=30 PSNR:  30.04 Rate: 1.18 bits/pixel Regular rounding 

Table 7 : Numerical results 

 

The following figures demonstrate similar results for quantization using the JPEG quantization matrix. Figure 17 

shows the original “girl.bmp” image. Figure 18 shows the same image quantized with the JPEG matrix using the 

quality factor Q1 = 0.5 (which multiplies the matrix). Figures 19 and 20 show results for re-quantization using both 

rounding methods. 

 

 

Figure 17 : Original “girl.bmp” 
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Figure 18 : Q1 = 0.5, PSNR is 38.619, rate is 1.1157 bit per pixel 

 

 

 

Figure 19 : Q1 = 0.5, Q2 = 1, PSNR is 33.8481  

rate is 0.99316 bit per pixel,  regular rounding 

 

Figure 20 : Q1 = 0.5, Q2 = 1, PSNR is 35.7367 

 rate is 0.58789 bit per pixel, rounding toward zero 

 

In the above figures the same quality factor was used (Q2 = 1). However, regular rounding was used in Figure 19 

and rounding toward zero was used in Figure 20. It can be observed once again that the second image (rounding 

toward zero) is much smoother and less noisy, has a higher PSNR (by almost 2 dB) and has a much lower bit-rate.   

The visual results presented above are consistent with the theoretical results of previous sections and show 

how crucial it is to select the right quantization step. Figure 21 and 22 show results for rate and MSE as a function of 

the uniform re-quantization step q2. The original quantizer step was q1=10. Seven different images (man, camera, 

army, chip, Lena, gold hill, girl) have been used and the figures show the averaged results. Figure 21 shows the 

required bit-rate (bits/pixel) of the re-quantized images, relative to the bit-rate required to code the image quantized 

once with the original quantizer step q1=10. The solid line shows the bit-rate of the reference quantizer (used 
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directly on the original image). The dashed line (with “o” marks) shows the result for re-quantization using regular 

rounding. It can be observed that for this case, the drastic decrease in bit-rate occurs at q2=k∙ q1+1 for even k. The 

dotted line (with “*” marks) shows the result of re-quantization using rounding towards zero. For this case the 

drastic decrease in the bit-rate occurs on q2=k∙ q1 for even k as shown theoretically in subsection 3.1. Figure 22 

shows the MSE as a function of q2. The solid line shows the MSE of the reference quantizer (used directly of the 

original image every time). The dashed line (with “o” marks) shows the result for re-quantization using regular 

rounding. The MSE peaks at q2=k∙ q1 for even k and reaches its local minima at q2=k∙ q1 for odd k, as shown 

theoretically in sub section 3.2. The dotted line (with “*” marks) shows the result of re-quantization using rounding 

towards zero.  The MSE peaks at q2=k∙ q1-1 for even k and also reaches its local minima at q2=k∙ q1  for odd k. 

Generally, rounding towards zero gives better results than regular rounding. This is obvious when q2=20 

and q2=40. Moreover, the re-quantized images are best compressed when q2 is an even multiple of q1.The MSE is 

lower when rounding towards zero is used instead of regular rounding. 

 

10 15 20 21 25 30 35 40 41
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q

b
it
s
/p

ix
e

l 

Rate as a Function of Q - Uniform Qunatization

 

 

Direct Qunatization

Re-quantization with regular rounding

Re-quantization with forced rounding towards zero

 

Figure 21 : Rate as a function of re-quantization step q 
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Figure 22 : MSE as a function of re-quantization step q 

 
Figure 23 shows rate vs. distortion for the three re-quantization methods. The empirical curves obtained below are in 

full compliance with the behavior and conclusions from the theoretical analysis carried out in Section 3.  
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Figure 23 : Empirical rate vs. distortion 
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6. CONCLUSIONS 

 

A re-quantization method for trans-coding JPEG and MPEG intra-frames has been considered and analyzed. The 

process of re-quantization involves selection of the second stage quantization step, or a quality factor when using the 

JPEG quantization matrix. The efficiency and performance of the proposed method have been evaluated based on 

the obtained bit-rate, MSE and visual quality of the re-quantized images.  Despite its superior results, the method is 

straightforward to implement and of low computational complexity. The optimal re-quantization step size can be 

easily chosen based only on the original quantization step size. The resulting bit-rate is low as well as the MSE.  

   

In this work, we have shown that the bit-rate of the re-quantized image decreases significantly when the re-

quantization step size is an even multiple of the original quantizer step size. This notion was shown for the case of a 

Laplacian distribution of the DCT coefficients. When the image is re-quantized (with the re-quantization step 

growing), the probability weights are re-assigned into new bins. The entropy decreases (along with the required bit-

rate) when the probability weights merge together. The entropy decrease is very significant when even multiples of 

the original quantization step are used.   

 

On the other hand, the MSE is minimized at odd multiples of the original quantization step size and peaks 

at even multiples. This has been shown by analyzing the structure of the midtread quantizer used in JPEG and 

MPEG intra-frames as well as the Laplacian distribution of the DCT coefficients. The distortion of the re-quantized 

image was compared to the distortion of a reference quantizer that was used directly on the original image. It was 

shown that the rounding policy of the re-quantization process greatly affects its performance. Rounding quantized 

DCT values towards zero significantly decreases the MSE for even multiples. In fact, the MSE maximum is then 

shifted to q2=2kq1-1. This allows benefiting from the low rate achieved for even multiples, at relatively low 

distortion. In addition, it was shown that the rounding policy also affects the bit-rate. Rounding towards zero 

achieves the lowest rates at q2=2kq1 while regular rounding shifts the minimum rate point to q2=2kq1 +1. 

 

 This work has introduced a rate-distortion model for the re-quantization method, using both rounding 

methods and direct quantization. Our theoretical analysis supports and explains the experimental results that there 

are re-quantization step sizes that greatly increase distortion without significantly decreasing the bit-rate, which 

makes them unsuitable. It has also been shown theoretically that rounding toward zero always outperforms regular 

rounding. Our conclusion is that most efficient trans-coding is achieved by selecting a re-quantization step that is an 

even multiple of the original quantization step and rounding the re-quantized coefficients towards zero. These results 

could be helpful in improving currently available trans-coding systems, especially for real-time applications. 
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