

IRWIN AND JOAN JACOBS

CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

Transact ifying Apache

Haggai Eran, Ohad Lutzky,

Zvika Guz and I dit Keidar

CCI T Report # 7 1 8

February 2 0 0 9

Electronics
Computers
Communications

DEPARTMENT OF ELECTRICAL ENGINEERING

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL

Transactifying Apache

Haggai Eran Ohad Lutzky Zvika Guz Idit Keidar

Department of Electrical Engineering, Technion - Israel Institute of Technology

haggaie@tx.technion.ac.il lutzky@gmail.com zguz@tx.technion.ac.il idish@ee.technion.ac.il

Abstract

Apache is a large-scale industrial multi-process and

multi-threaded application, which uses lock-based syn-

chronization. We report on our experience in modify-

ing Apache to employ transactional memory instead

of locks, a process we refer to as transactification;

we are not aware of any previous efforts to transactify

legacy software of such a large scale. Along the way,

we learned some valuable lessons about which tools

one should use, which parts of the code one should

transactify and which are better left untouched, as well

as on the intricacy of commit handlers. We also stum-

bled across weaknesses of existing software transac-

tional memory (STM) toolkits, leading us to identify

desirable features they are currently lacking. Finally,

we present performance results from running Apache

on a 32-core machine, showing that, there are scenar-

ios where the performance of the STM-based version

is close to that of the lock-based version. These results

suggest that there are applications for which the over-

head of using a software-only implementation of trans-

actional memory is insignificant.

Categories and Subject Descriptors D.1.3 [Program-

ming Techniques]: Concurrent Programming

General Terms Measurement, Performance, Experi-

mentation

Keywords Software Transactional Memory

1. Introduction

The vast shift to multi-core machines in recent years

creates a major challenge for software developers, who

must learn how to exploit the parallelism that such

architectures can offer. In this context, Transactional

Memory (TM) is one of the leading paradigms targeted

at allowing programmers to easily harness the paral-

lelism of future multi-core machines and to extract the

performance promise these systems can offer. Since

hardware transactional memory implementations are

not yet in the market, Software Transactional Memory

(STM) tools offer a viable alternative in the interim.

One of the principal challenges that TM systems

confront, (besides delivering performance), is the abil-

ity to handle large-scale commercial applications. De-

velopers that wish to employ TM, face the challenge

of applying it to large legacy code. As TM systems are

maturing, these aspects of convertibility and complete-

ness are becoming critical in order to allow TM to shift

from a promising concept to a full-fledged commercial

tool. In this work, we try, via a design example, to an-

swer how far we are from achieving these goals.

To date, TM was mostly employed within the niche

of complex concurrent data structures, such as red-

black trees and skip lists [9, 7], and isolated scientific

algorithms (such as STAMP [3]); it was additionally

used for benchmarks such as STMBench7 [8], which

measures operations on a complex yet still artificial

object graph. Moreover, Transactional Memory was

mostly used thus far in benchmarks that were imple-

mented explicitly with TM from the outset.

In this paper, we use Transactional Memory for

the first time in the context of large-scale industrial

software, which, moreover, does not pertain to any

of the typical niches of transactional memory bench-

marks. Furthermore, we convert legacy code, which

used lock-based synchronization, to work with transac-

tional memory, rather than write the benchmark from

scratch. We refer to this conversion process as trans-

actification. Specifically, we transactify the Apache

web server. Since Apache is written in C, we needed

to employ C-based STM toolkits. We next recognized

that it would not be feasible to use library-based STM

tools, as this would entail changing all reads and writes

to global variables in the code. Instead, we opted for

compiler-based STMs. We experimented with two such

lesley
Text Box
CCIT REPORT #718 February 2009

tools, TANGER [5] and Intel’s STM Compiler [15].

Section 2 provides background on Apache and the two

STM tools we attempted to use in this endeavor.

Our goal in this exercise is twofold. First, we wanted

to examine whether the transactional memory paradigm

is broadly applicable, outside its traditional niches, in

contexts where a high level of parallelism is already

obtained using lock-based synchronization. Second, as

transactional memory is being touted as the panacea

for the limited parallelism of coarse-grained locks, and

since coarse-grained locks that limit parallelism are

widely used in legacy code, one can anticipate a grow-

ing need for transactification of legacy software. We

sought to learn how painful such a process can be, and

what can be done in order to facilitate it.

In the course of this project, we learned some valu-

able lessons. For example, we have seen that tools vary

in the features they are able to support, which has sig-

nificant impact on their usability in such large-scale

projects. We have further learned that in such a large

system, it is more realistic to transactify only pertinent

parts of the code, while most of the code is better left

untouched. Finally, we have found that there is a vital

need to sometimes defer irrevocable actions to the end

of a transaction; this feature is provided by a language

construct called a commit handlers. In Section 3, we de-

scribe in detail our transactification process, including

the hurdles we have encountered and the means used to

overcome them.

Though we finally managed to overcome the hurdles

and create working transactified code, the process left

us somewhat unsatisfied with the current state of the

art. In Section 4, we compile a wish list of features that

would have been very helpful in this process, had they

been provided by TM toolkits; we hope that developers

of future STM versions will take these into considera-

tion.

In Section 5 we study the performance of the trans-

actified version of Apache on a 32-core machine. Note

that since the legacy Apache code is already tuned

to work well with multiple threads and multiple pro-

cesses, and since we use software-only TM solutions,

which were not optimized for this application, one

could expect the transactified version to be signifi-

cantly slower than the original. Somewhat surprisingly,

we show that this is not the case, and the transacti-

fied version’s performance is competitive to that of the

lock-based legacy code. As future TMs are expected to

Figure 1. Apache worker MPM architecture.

incorporate hardware support, and also to be better op-

timized for a range of application, our results suggests

that in the future, porting applications to TM may be

valuable.

Section 6 summarizes the lesson we learned in the

transactification process.

2. Background: Software and Tools

2.1 Apache

Apache [16] HTTP server is a popular web server ap-

plication written in C. It supports working on multipro-

cessor machines with several multi-processing mod-

ules (MPMs) each offering a different strategy for han-

dling requests and distributing the work. The most pop-

ular threaded MPM is the worker MPM, which works

by running multiple worker-threads under several pro-

cesses, each thread handles a single request at a time. In

each such process there are several worker threads, and

also a listener thread that fetches incoming requests and

dispatches them to the available workers, as illustrated

in Figure 1.

There are not many points of interaction between the

worker threads themselves, where transactional mem-

ory can be used. One such place is Apache’s memory

cache implemented by the mod_mem_cache module.

This module enables the workers of each process to

share a cache of recently served requests. A new re-

quest can be served from the memory cache, and save

the time required to access the disk and generate the re-

quested page. Since the cache is shared among multiple

threads, it is synchronized by a single lock, therefore a

good candidate for converting into transactional mem-

ory.

Apache’s cache is implemented with a couple of

modules. The first, mod_cache, implements the logic

related to caching. It tests the metadata of each requests

to see if it can be supplied from the cache, according

to the request’s HTTP headers and the system config-

uration. It uses one of the underlying cache implemen-

tation modules, mod_mem_cache or mod_disk_cache

to do the actual caching.

The mod_mem_cache module implements a memory

cache using a shared hash table and priority queue.

The key to the hash table is the URL of the request,

converted into a canonical form. The cache is limited

both by size and by the number of elements, and by

memory size, so on insertion, sometimes lower priority

entries are removed from the cache. The priority is

determined by one of two algorithms: LRU, removing

the least recently used entries first, and GDSF (Greedy

Dual Size Frequency) assigning score to entries based

on the cost of a cache miss, and the entry size.

2.2 C STM Systems

C and C++ STM systems divide into two kinds: Library

based and compiler based. Library based STMs [4, 6,

13] are built as a C library. Every transaction begins

with a call into the library, and commits by another call.

All reads and writes to global variables must be done

through special library functions when in a transaction.

This requires a great amount of work for converting an

application to use STM. Not only accesses to global

memory in the function that started the transaction must

be converted, but also any access from any function

being called from this function. We therefore ruled out

this approach.

In contrast, compiler-based STM [5, 15, 1, 2] use a

specialized compiler, which has extended syntax for

transactional memory atomic blocks. The compiler

can then automatically convert memory accesses in-

side transactions into calls to the underlying library.

The term transactification sometimes refer to this pro-

cess. We experimented with two compiler-based STMs,

which we now describe.

2.2.1 Tanger

The TANGER [5] transactifying compiler is an open-

source academic compiler extension for LLVM [12],

an extensible compiler framework. Tanger aims at cre-

ating a transactifying compiler that is independent of

the STM system used. It works with the TinySTM [6]

library, but can easily be extended to use other STM

libraries by writing a simple plugin.

TANGER is accompanied with the TARIFA [5] tool,

which transactifies compiled binaries, even without the

sources. This feature is a very important advantage

when modifying legacy code, where often not all the

source code is available, as the code uses legacy li-

braries.

2.2.2 Intel STM Compiler

Intel has published [15] an experimental STM compiler

based on their industrial compiler ICC. Although ICC

uses a proprietary STM manager, Intel has published

their ABI [10] allowing for other STM managers to re-

place their own. This feature and its selective transacti-

fication ability were the main reasons why we preferred

ICC.

In the latest version of Intel STM Compiler, support

for abort and commit handlers was also added to the

system, by registering a callback function from inside

a transaction.

An extension to the Gnu Compiler Collection (GCC)

is being developed [1] to enable transactional memory

support for GCC. It is intended to work with TinySTM,

but being open source, other STM systems will proba-

bly be ported too. The syntax of the C/C++ language

extensions is designed to be compatible with ICC. This

means that applications converted for ICC will prob-

ably be compilable under GCC with this extension,

without much modification.

3. Transactification

3.1 Which STM to use?

On examining the Apache code, our first observation

was that the vast majority of the code does not access

any global variables, and therefore does not require

transactification at all. Upon identifying the parts that

do require atomicity, we wanted to only focus on them,

without touching the rest of the code, in order to save

work for the programmers as well as saving unneces-

sary work for the compiler and the linker.

We first attempted to do this with TANGER, albeit

unsuccessfully. The version of TANGER we used cre-

ated a transactified version of each function in a com-

pilation unit. Every function call inside a transaction

was then converted to a call to the new version. This

creates a major disadvantage when working on a large

application. Moreover, sometimes the transactification

might fail because of calls to functions whose source

is not available and cannot be transactified. This can

cause the entire build process to fail, where in fact the

code could have been transactified without any error by

skipping these functions.

This drawback was the main reason why we even-

tually chose to use Intel’s STM Compiler. It solves

the unneeded transactification problem by adding some

new function attributes to the language in order to tell

the compiler which functions need to be transactified.

The attribute tm_callable tells the compiler that a

transactified version of the function will be needed.

This way, only functions that are required inside trans-

actions can be marked as tm_callable and be trans-

actified.

Lately, a new release of TANGER was announced,

one in which the developer can annotate which func-

tions should be transactified. However, we did not get

a chance to try it.

3.2 What to transactify

We have decided to focus our change in Apache with

the memory cache module. As described in Section 2.1,

it is a significant point of interaction between Apache’s

worker threads, and since it is implemented with a

coarse-grained lock, it is ideal for converting into STM.

Another advantage is that it is a well encapsulated

module, allowing us to study the effect of converting

a small part of code on the larger system – Apache

itself has about 340,000 lines of code, while the cache

module is comprised of only 6651 lines of code.

The conversion process included converting critical

sections protected by the cache module’s main lock

into atomic blocks, and decorating required functions

as tm_callable. The module had used atomic instruc-

tions for some memory accesses, and these were con-

verted to full transactions in atomic blocks, so that col-

lisions with these accesses will be detected. Overall we

only changed 273 lines of code, some in the cache mod-

ule, and some with additional helper functions such as

the atomic instruction wrappers.

3.3 Defining atomic blocks

Following the conversion, some transactions contained

code that pertained to the transaction, but did not nec-

essarily need to run atomically with the transaction.

An example might be a transaction removing an object

from the cache, and freeing its memory. While the re-

moval operation must be protected inside a transaction

as it is using the shared memory structure of the cache,

the memory release can happen any time later, since no

other thread can point to the removed object after it had

been removed from the cache.

For lock based systems, having the memory release

as part of the critical section might cause a thread to

hold the critical section a little longer than needed, but

does not cause any problems other than that. In TM

systems, including the memory release in the trans-

action slows down the system in a similar way, since

having accesses to memory structures such as those re-

quired by memory management may cause collisions

with other threads. But in addition, with this approach,

the cleanup functions need to be transactified, which re-

quires additional work both from the programmer and

the compiler.

In our case, we chose not to transactify such func-

tions, but instead remove them from the atomic section,

and execute them after the transaction had committed.

Although this requires some changes to the code, the

changes are limited to the call-site, and need not mod-

ify any of the called libraries.

For example, the critical section in the open_entity

function shown in Figure 2 is responsible for retrieving

a page to fulfill a request from the server. It increments

the reference count on the cached page, and registers a

decrement function to be invoked upon completing the

request. When we converted the critical section into a

transaction, we did not want the function apr_pool_

cleanup_register to be called from inside the trans-

action, as transactifying it would require working on

another library, the Apache Portable Runtime library,

thus breaking encapsulation.

The semantics of requests and sub-requests in Apache

guarantee the request cannot be completed before the

return of this function, therefore we could move the

registration of the cleanup function out of the atomic

section, as seen in Figure 3. In this example, the reg-

istration occurred at the end of the atomic block, so

we did not have to move it in order to take it out of

the block; we simply ended the atomic block earlier.

Nevertheless, in other cases, such actions occur in the

middle of an atomic block. For example, in a function

that cleans up multiple objects from the cache, for of

the objects removed it would first remove its pointer

from the cache, and then decrease its reference count

in free its memory if necessary. In this case we would

s t a t i c i n t open_entity(cache_handle_t *h, request_rec *r, c o n s t char *key) {

...

i f (sconf ->lock) a p r t h r e a d m u t e x l o c k (sconf ->lock);

obj = (cache_object_t *) cache_find(sconf ->cache_cache , key);

i f (obj) {

i f (obj ->complete) {

request_rec *rmain=r, *rtmp;

apr_atomic_inc32 (&obj ->refcount);

/* cache is worried about overall counts , not ’open’ ones */

cache_update(sconf ->cache_cache , obj);

/* If this is a subrequest , register the cleanup against the main

* request. This will prevent the cache object from being cleaned up

* from under the request after the subrequest is destroyed. */

rtmp = r;

w h i l e (rtmp) {

rmain = rtmp;

rtmp = rmain ->main;

}

a p r p o o l c l e a n u p r e g i s t e r (rmain ->pool , obj , decrement_refcount ,

apr_pool_cleanup_null);

}

e l s e obj = NULL;

}

i f (sconf ->lock) a p r t h r e a d m u t e x u n l o c k (sconf ->lock);

...

}

Figure 2. Original open_entity function.

like to do all the removals inside the transaction, and all

the reference decrements and memory cleanup oustide

of the transaction. In order to deal with such scenar-

ios, it is desirable to have language support for commit

handlers, as explained in the next section.

3.4 Commit Handlers

Commit and undo handlers are pieces of code that are

scheduled by a transaction to run when the transaction

will commit, or abort, respectively. This mechanism,

was suggested in [14]. Commit handlers are described

there as a mechanism that allows finalization of tasks,

for instance, a transactional system call such as write to

file might have its permanent side effects be executed

in a commit handler. Abort handlers are called when a

transaction is aborted and can reverse the side-effects

of a transaction.

These handlers can sometimes be used to implement

more efficient transactions. For example, if allocating

memory inside a transaction, (assuming without a spe-

cialized memory allocator which is available in many

STMs), the STM would need to log all the memory ac-

cesses to the memory management data structures, and

undo these writes in case of an abort. A more efficient

solution could be allocating the memory immediately,

and in case of an abort just free the memory in an abort

handler.

From our perspective, commit handlers could have

been used to make the modifications we wanted in the

atomic blocks, and move finalization functions out of

atomic blocks just by registering them as commit han-

dlers. In the example shown in Figure 2, the call to

apr_pool_cleanup_register could have been con-

verted into a call registering this function as a commit

handler.

Intel STM Compiler support abort and commit han-

dlers in its latest addition. Handlers are written as func-

tions with a single void * argument, and registered

by calling the API functions _ITM_addUserCommit-

Action or _ITM_addUserUndoAction. This feature

was only recently added, and we have not used it in our

s t a t i c i n t open_entity(cache_handle_t *h, request_rec *r, c o n s t char *key)

{

...

t m a t o m i c {

obj = (cache_object_t *) cache_find(sconf ->cache_cache , key);

i f (obj) {

i f (obj ->complete) {

++obj ->refcount;

/* cache is worried about overall counts , not ’open’ ones */

cache_update(sconf ->cache_cache , obj);

}

e l s e obj = NULL;

}

}

/* Register the object for updating after cleanup */

i f (obj && obj ->complete) {

request_rec *rmain=r, *rtmp;

/* If this is a subrequest , register the cleanup against the main

* request. This will prevent the cache object from being cleaned up

* from under the request after the subrequest is destroyed. */

rtmp = r;

w h i l e (rtmp) {

rmain = rtmp;

rtmp = rmain ->main;

}

a p r p o o l c l e a n u p r e g i s t e r (rmain ->pool , obj , decrement_refcount ,

apr_pool_cleanup_null);

}

...

}

Figure 3. Transactified open_entity function.

experiments. TANGER currently does not support reg-

istering such handlers.

4. Wish List

During the transactification process, we have identified

several apparatus whose absence has complicated the

conversion process. In this section, we indicate several

such issues in the hope that this will expedite their

assimilation into future STMs.

4.1 Handler Closures

While commit handlers can aid a lot in the process of

transactifying a legacy application, their current syntax

in Intel STM Compiler is very limiting. Handlers must

be given as a pointer to function of a specific signature,

so a developer trying to move a piece of code out

of an atomic block, would still need to write a new

function. It would be nice to have a language construct

that defines a new commit handler right where it is

being registered, however this requires the language to

support closures.

A closure is a function that has bounded variables

from the environment where it was defined. It is in-

tended to be passed along similarly to a function

pointer, and when called refer to variables that existed

where it was defined. In Figure 4, we give an example

of the desired syntax of such a commit handler closure.

The block of code after the on_commit keyword uses

variables such as rmain and obj from its surrounding

block that must be captured until it is executed later

when the transaction commits.

Having closures allows us to easily defer execution

of code until after the transaction commits, with mini-

mal modification to our code. Instead of creating a new

function for each piece of code being deferred, and pos-

sible create new data types to hold the data from inside

the transaction that each such function required, with

closures we could just change the piece of code being

s t a t i c i n t open_entity(cache_handle_t *h, request_rec *r, c o n s t char *key) {

...

t m a t o m i c {

obj = (cache_object_t *) cache_find(sconf ->cache_cache , key);

i f (obj) {

i f (obj ->complete) {

request_rec *rmain=r, *rtmp;

++obj ->refcount;

/* cache is worried about overall counts , not ’open’ ones */

cache_update(sconf ->cache_cache , obj);

/* If this is a subrequest , register the cleanup against the main

* request. This will prevent the cache object from being cleaned

* up from under the request after the subrequest is destroyed. */

rtmp = r;

w h i l e (rtmp) {

rmain = rtmp;

rtmp = rmain ->main;

}

on commit {

a p r p o o l c l e a n u p r e g i s t e r (rmain ->pool , obj , decrement_refcount ,

apr_pool_cleanup_null);

}

}

e l s e obj = NULL;

}

}

...

}

Figure 4. open_entity function with desired commit handler closure syntax.

deferred into a closure, and let the implementation han-

dle these tasks.

Of course there are many problems implementing

closures in a language without garbage collection such

as C, especially since there is no guarentee that the

pointers taken by the closure will not be invalidated

before the closure is run.

4.2 Statistics and Profiling

Intel’s STM manager collects statistics about the trans-

actions being run, their size, abort rates, etc. Unfortu-

nately however, it cannot work with a multiprocess ap-

plication such as Apache. This limits the ability to in-

vestigate the performance of converted applications to

only limited runs with only one process, or having only

black box measurements of the system.

Collecting these statistics ourselves was not possible

without abort handlers, of course, because any statis-

tics data a transaction might modify would be reset

to its original value in case the transaction aborted.

Abort handlers allow us to track these measurements

ourselves, but since they were only added in Intel’s lat-

est compiler, we have not implemented such measure-

ments yet.

5. Performance Evaluation

5.1 Methodology

We evaluate the transactified web server using Siege

[11], an HTTP load testing tool. The server is loaded

with the set of UNIX man-pages – a set of small tex-

tual files typical of some web sites. Each page is served

using the man2html program, uncompressed and con-

verted into HTML. Thus, the serving of files requires

enough computational resources to make the use of

caching worthwhile.

The man2html program is a Common Gateway In-

terface (CGI) program that serves unix manual (man)

pages on Internet sites. The pages are usually stored

compressed in gzip format, and formatted using the

troff format. The program receives a request for a man

page from the web server, uncompresses the required

file, and converts it to HTML. As every CGI program,

it outputs the result with relevant HTTP headers.

The default caching policy of Apache forbids caching

dynamically generated pages such as those of man2html,

unless the HTTP headers of the resulting page clearly

specify otherwise. To make caching of the man2html

pages possible, we modified man2html to output such

headers, specifying the output can be cached for one

hour.

In each experiment, the pages are requested ran-

domly according to a Zipf distribution with some pa-

rameter s, which determines how frequently the most

popular pages are visited, thus controlling the level of

locality in the requests. The higher the value of s is, the

more locality there is in the workload.

The experiments run on two computers connected

by Gigabit Ethernet. Each of the machines is an 8-

processors SMP, with quad core 2.3GHz AMD Opteron

processors (for a total of 32 cores), and 126GB of

RAM. One of the machines was used as a server run-

ning Apache, and the other served as a client, running

Siege.

5.2 Results

We compare the average latency and request through-

put when running on different numbers of cores, and

with different values of s. Each graph presents results

from three experiments, comparing the performance of

an Apache server running without a cache, a cached

version without our transactional modifications, and

the transactified version.

As expected, with low locality (s = 0.1), the cache

yields almost no benefit. Moreover, the penalty of the

STM increases with the number of processors, caus-

ing it to be less practical, as we see in Figures 5(a)

and 5(b). This degradation of the STM-based version

occurs since almost all of the requests result in cache

misses, thus causing more work to be done within

transactions, and increasing contention. However, this

workload is not representative; typical Apache work-

loads exhibit more locality, and hence benefit from the

cache.

With more representative locality, such as s = 1,

(Figures 6(a) and 6(b)), caching is beneficial. The

overhead of STM is still significant, but its performance

is better than when not using a cache at all.

With even higher locality (s = 2), the contention

on the cache is high even with small number of cores.

The results of the high locality experiments are shown

in Figures 7(a) and 7(b). In this case, caching provides

major performance benefits, increasing throughput by

a factor of four. Here, the two cache-based versions ex-

hibit close results, with a small yet consistent advantage

to the STM version.

In all the experiments described above, performance

begins to decrease beyond a certain number of cores.

This number becomes smaller as the locality increases,

albeit it occurs at a higher throughput when there is

more locality. This occurs due to the increased compe-

tition among the cores over the shared resources. In par-

ticular, in the transactified version, the abort rate rises

with the number of cores, as we show below.

We further note that in all workloads, there is a

number of cores for which the transactified version

performs better than the original version. This might

be due to the advantage STM has over coarse-grained

locking – the fact that transactions only collide when

they access the same memory, while the non-transactified

version requires the same lock for all requests.

In order to investigate this decrease in throughput,

we wanted to show the transaction abort rate for these

experiments. Unfortunately, as noted in Section 4.2, In-

tel STM’s statistics mechanism is unable to work with

multiple processes. We therefore ran an additional ex-

periment, with Apache in a single process debugging

mode, in order to collect internal data about the trans-

actions.

We ran this single-process experiment with the

medium locality workload, that is, with s = 1. Sur-

prisingly, we see in Figure 8(a) that the throughput of

both the original and the STM version improve in this

mode. This suggests that Apache’s multi-process mode

is somehow not supported well on our machines. Nev-

ertheless, as before, neither version is able to benefit

from the maximum allowed parallelism of the machine.

Figure 8(b) shows the average number of aborts

per transaction for the experiment with the transact-

ified version. The increase in the abort rate explains

the decrease in the request throughput. At first, the

abort rate increases gradually, and the benefit of having

more cores available outweighs it. But after about eight

cores, the increase in the abort rate dominates, so that

there is little benefit in using more cores.

150

200

250

300
s
ts

 P
e
r

S
e

c
o

n
d

no-cache

no-transactions

0

50

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

R
e

q
u

e
s
ts

Number Of Cores

transactified

(a) Request throughput

4

5

6

7

8

e
c

o
n

d
s no-cache

no-transactions

transactified

0

1

2

3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

S
e
c

Number Of Cores

transactified

(b) Average response time

Figure 5. Very low locality workload (s = 0.1). The cache is not effective, and the penalty of using STM is high.

300

400

500

600

700

ts
 P

e
r

S
e

c
o

n
d

no-cache

no-transactions

0

100

200

300

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

R
e

q
u

e
s
ts

Number Of Cores

transactified

(a) Request throughput

3

4

5

6

7

e
c
o

n
d

s no-cache

no-transactions

0

1

2

3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

S
e
c

Number Of Cores

transactified

(b) Average response time

Figure 6. Medium locality workload (s = 1). STM incurs a performance penalty, but the cache provides an

improvement.

1500

2000

2500

3000

n
s
 P

e
r

S
e
c
o

n
d

no-cache

no-transactions

0

500

1000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

T
ra

n
s
a
c
ti

o
n

s

Number Of Cores

transactified

(a) Request throughput

3

4

5

6

7

e
c

o
n

d
s no-cache

no-transactions

0

1

2

3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

S
e

c

Number Of Cores

transactified

(b) Average response time

Figure 7. High locality workload (s = 2). The cache is vital, and the STM version works best.

6. Conclusions

We have reported on our experience in converting the

Apache web server to use the TM paradigm instead of

lock-based synchronization, and the lessons we learned

along the way. Our conclusions include:

• In order to cope with the scale of the software, we

had to restrict our attention to a small part of it.

Out of 340,000 lines of code in the Apache web

server, the cache module is comprised of only 6651

lines of code, of which we modified only 273. This

highlights the importance of being able to modify

only encapsulated sections of the code, and inter-

operating with legacy software, which might still

use locks. Moreover, legacy systems often interact

with software libraries whose source code is un-

available.

300

400

500

600

700

io
n

s
 P

e
r

S
e
c

o
n

d

no-cache

no-transactions

0

100

200

300

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

T
ra

n
s
a
c

ti
o

n

Number Of Cores

transactified

(a) Request throughput

0.06

0.08

0.1

0.12

e
r

T
ra

n
s

a
c

ti
o

n

0

0.02

0.04

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

A
b

o
rt

s
 P

e
r

Number Of Cores

(b) Abort rate

Figure 8. Medium locality workload (s = 1), Apache in single-process mode. The abort rate increases with the

number of cores, which explains the decline in the transaction rate.

• Having commit handlers in the STM system is not

only needed for creating efficient open transactions,

but can also aid the process of transactifying legacy

code.

• It is important to work on real-world applications, as

they may reveal challenges resulting from engineer-

ing problems and not only algorithmic and theoreti-

cal problems.

We next indicate two future directions that may fol-

low on our work. First, there are many STM systems

currently available, and one immediate direction would

be to compare them using this new TM benchmark. Do-

ing so would require writing plugins for existing TM

system to match Intel’s TM ABI. A second direction is

to transactify additional legacy applications, following

the methods we used.

Acknowledgments

The authors would like to thank Torvald Riegel from

the Transactional Memory Research group at Dresden

University of Technology, for is help with TANGER.

This work was partially supported by Semiconductors

Research Corporation (SRC), Intel, and the Israeli Min-

istry of Science Knowledge Center on Chip Multipro-

cessors.

References

[1] Albert Cohen. GCC for Transac-

tional Memory, 29 August 2008. URL

http://www.hipeac.net/system/files/TM_

for_GCC_design_0_94.pdf.

[2] Woongki Baek, Chi Cao Minh, Martin Trautmann,

Christos Kozyrakis, and Kunle Olukotun. The

opentm transactional application programming in-

terface. In Proceedings of the 16th International

Conference on Parallel Architectures and Compi-

lation Techniques, pages 376–387. Sep 2007.

[3] Chi Cao Minh, JaeWoong Chung, Christos

Kozyrakis, and Kunle Olukotun. Stamp: Stanford

transactional applications for multi-processing. In

IISWC ’08: Proceedings of The IEEE Interna-

tional Symposium on Workload Characterization,

September 2008.

[4] O. Shalev D. Dice and N. Shavit. Transactional

locking ii. In Proc. of the 20th International Sym-

posium on Distributed Computing (DISC 2006),

pages 194–208, 2006.

[5] Pascal Felber, Christof Fetzer, Ulrich Müller,

Torvald Riegel, Martin Süßkraut, and Heiko

Sturzrehm. Transactifying applications using an

open compiler framework. In TRANSACT, August

2007.

[6] Pascal Felber, Christof Fetzer, and Torvald Riegel.

Dynamic performance tuning of word-based soft-

ware transactional memory. In Proceedings of

the 13th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (PPoPP),

2008.

[7] Keir Fraser. Practical lock freedom. PhD the-

sis, Cambridge University Computer Laboratory,

2003. Also available as Technical Report UCAM-

CL-TR-579.

[8] Rachid Guerraoui, Michal Kapalka, and Jan Vitek.

STMBench7: A Benchmark for Software Trans-

actional Memory. In Second European Systems

Conference EuroSys2007, 2007.

[9] Maurice Herlihy, Victor Luchangco, Mark Moir,

and William N. Scherer, III. Software transac-

tional memory for dynamic-sized data structures.

In PODC ’03: Proceedings of the twenty-second

annual symposium on Principles of distributed

computing, pages 92–101, New York, NY, USA,

2003. ACM. ISBN 1-58113-708-7.

[10] Intel. Transactional memory ABI. URL

http://software.intel.com/file/8097.

[11] Jeffrey Fulmer. Siege HTTP regression

testing and benchmarking utility. URL

http://www.joedog.org/JoeDog/Siege.

[12] Chris Lattner and Vikram Adve. LLVM: A Com-

pilation Framework for Lifelong Program Anal-

ysis & Transformation. In Proceedings of the

2004 International Symposium on Code Genera-

tion and Optimization (CGO’04), Palo Alto, Cali-

fornia, Mar 2004.

[13] Virendra J. Marathe, Michael F. Spear, Christo-

pher Heriot, Athul Acharya, David Eisenstat,

William N. Scherer Iii, and Michael L. Scott.

Lowering the overhead of nonblocking software

transactional memory. In Dept. of Computer Sci-

ence, Univ. of Rochester, 2006.

[14] Austen Mcdonald, Jaewoong Chung, Brian D.

Carlstrom, Chi Cao Minh, Hassan Chafi, Chris-

tos Kozyrakis, and Kunle Olukotun. Architec-

tural semantics for practical transactional mem-

ory. In In Proceedings of the 33rd International

Symposium on Computer Architecture, pages 53–

65. IEEE Computer Society, 2006.

[15] Yang Ni, Adam Welc, Ali-Reza Adl-Tabatabai,

Moshe Bach, Sion Berkowits, James Cownie,

Robert Geva, Sergey Kozhukow, Ravi

Narayanaswamy, Jeffrey Olivier, Serguei Preis,

Bratin Saha, Ady Tal, and Xinmin Tian. Design

and implementation of transactional constructs

for c/c++. In OOPSLA ’08: Proceedings of

the 23rd ACM SIGPLAN conference on Object

oriented programming systems languages and

applications, pages 195–212, New York, NY,

USA, 2008. ACM. ISBN 978-1-60558-215-3.

[16] The Apache Software Foundation.

Apache HTTP Server Project. URL

http://httpd.apache.org/.

