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Abstract. A new Combinatorial Ricci curvature and Laplacian oper-
ators for grayscale images are introduced and tested on 2D synthetic,
natural and medical images. Analogue formulae for voxels are also ob-
tained. These notions are based upon more general concepts developed
by R. Forman. Further applications, in particular a fitting Ricci flow, are
discussed.

1 Introduction

Curvature analysis is of paramount importance in Image Processing, Computer
Graphics, Computer Vision and related fields, for example in applications such
as reconstruction, segmentation and recognition (e.g. [4], [10], [17], [18]). The
conventional approach practiced in most studies implements curvature estima-
tion of a polygonal (polyhedral) mesh, approximating the ideally smooth (C2)
image under study. The curvature measures of the mesh converge in this case
to the classical, differential, curvature measure of the investigated surface. In
the case of surfaces, the most important curvature is the intrinsic Gaussian (or
total) curvature.

A great deal of interest was generated recently by Perelman’s important con-
tribution to the Ricci flow [13] and by its application in the proof of Thurston’s
Geometrization Conjecture, and, implicitly of the Poincaré Conjecture ([12]),
resulting in discrete versions of the Ricci flow and related flows ([3], [6], [8],
[11]).

Ricci curvature measures the deviation of the manifold from being locally
Euclidean in various tangential directions. More precisely, it appears in the sec-
ond term of the formula for the (n − 1)-volume Ω(ε) generated within a solid
angle (i.e. it controls the growth of measured angles) – see Fig. 1. Moreover,

v · Ricci(v) =
n − 1

vol
(

Sn−2
)

∫

w∈Tp(Mn), w⊥v

K(< v,w >) ,

where < v,w > denote the plane spanned by v and w, i.e. Ricci curvature
represents an average of sectional curvatures. The analogy with mean curvature
is further emphasized by the fact that Ricci curvature behaves as the Laplacian
of the metric g ([2]). It is also important to note that in dimension n = 2, that
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Fig. 1. Ricci curvature as defect of the manifold from being locally Euclidean in various
tangential directions (after Berger [1]). Here dω denotes the n-dimensional solid angle
in the direction of the vector v, and Ω(ǫ) the (n − 1)-volume generated by geodesics
of length ε in dω.

is in the case that is the most relevant for classical Image Processing and its
related fields, Ricci curvature reduces to sectional (and scalar!) curvature, i.e. to
the classical Gauss curvature.

However, in the more classical context, as well as in new directions mentioned
above, only smooth surfaces and/or their polygonal approximations are consid-
ered. Unfortunately, smooth surfaces are at best a crude model (and usually
nothing but a polite fiction), as far as digital and grayscale images are con-
sidered, in particular for those objects that are not “natural images”, such as
images produced using ultrasound imaging, MRI or CT. It would be of practical
interest to define a proper notion of curvature for digital objects, in the spirit
of [7]. By “proper” we mean discrete, intrinsic to the nature of the spaces under
investigation, and not an approximation or rough discretization of a differential
notion. Moreover, we hope that, by doing this, we shall be able to help bridge,
at least partially, the divide between “Digital” and “Smooth” Image Processing.
In addition, since,as we shall show, each dimension displays its own Laplacian,
we believe our method can produce more types of heat flow, along edges, pixels,
etc, thus allowing for better tools for the intelligence of higher dimensional data
(such as RGB images, images with texture, etc.).

We rely in our study on the work of R. Forman [5] on Combinatorial Ricci
curvature and the so-called “Bochner Method”, where this problem is addressed
in a far more general setting of weighted cell complexes, which represent an ab-
stractization of both polygonal meshes and weighted graphs. Though we briefly
present some of the more general aspects of Forman’s work, in this paper we
focus solely on the case of grayscale images, that possess very special combi-
natorics and weights, and largely defer the study of higher dimensional (color)
images and their curvatures and Laplacians for future work [16].

The present paper represents an extension of our previous work [15]. More
precisely, we have augmented the previous version by adding: (a) The formula
for the Ricci curvature of 3-dimensional cubical complexes (that is, in the case
of images, for voxels); (b) A discussion on the purely combinatorial version of



the Ricci curvature and Laplacians; (c) A theoretical comparison of the classical
and combinatorial Laplacians; (d) A combinatorial diffusion, corresponding to
upsampling and downsampling (this aspect being augmented by a computational
example); (e) A discussion of a possible Ricci flow for our combinatorial setting,
with a concrete suggested direction of study. In addition we have illustrated
the meaning of Ricci curvature and included more detailed exposition of the
Algebraic Topology background and ideas. And, last, but not least, we bring
more (and new) experimental results: on synthetic images (that were not given
previously), on standard test images and also on medical images.

2 Forman’s Combinatorial Ricci Curvature

We sketch below some of Forman’s main ideas [5]. This requires some technical
definitions and notations. We do not introduce here the basic technical notions
in Algebraic Topology and Differential Geometry, and refer the reader to [14] for
the former and to [2] for the later.

To generalize the notion of Ricci curvature, in a manner that would include
weighted cell complexes, one starts from the following form of the Bochner-
Weitzenböck formula (see, e.g. [2]) for the Riemann-Laplace operator ¤p on p-
forms on (compact) Riemannian manifolds:

¤p = dd∗ + d∗d = ∇∗
p∇p + Curv(R) , (1)

where ∇∗
p∇p is the Bochner (or rough) Laplacian and where Curv(R) is an ex-

pression with linear coefficients of the curvature tensor (Here ∇p is the covariant
derivative operator.) Of course, for cell-complexes one cannot expect such dif-
ferentiable operators. However, a formal differential exists: in our combinatorial
context (the operator) “d” being replaced by “∂” – the boundary operator of
the cellular chain complex (see [14]),

0 −→ Cn(M, R)
∂

−→ Cn−1(M, R)
∂

−→ · · ·
∂

−→ C0(M, R) −→ 0 ,

were cells are playing in this setting the role of the forms in the classical (i.e. Rie-
mannian) one. The following definition of the combinatorial Laplacian becomes
now natural:

¤p = ∂∂∗ + ∂∗∂ : Cp(M, R) → Cp(M, R) , (2)

where ∂∗ : Cp(M, R) → Cp+1(M, R) is the adjoint (or coboundary) operator of
∂, defined by: < ∂p+1cp+1, cp > =< cp+1, ∂

∗
pcp >p+1 , where < ·, · >=< ·, · >p

is a (positive definite) inner product on Cp(M, R), i.e. satisfying: (i) < α, β >=
0,∀α 6= β and (ii) < α, α >= wα > 0 – the weight of cell α.

Forman [5] shows that an analogue of the Bochner-Weitzenböck formula holds
in this setting, i.e. that there exists a canonical decomposition of the form:

¤p = Bp + Fp , (3)

where Bp is a non-negative operator and Fp is a certain diagonal matrix. Bp

and Fp are called, in analogy with the classical Bochner-Weitzenböck formula,



the combinatorial Laplacian and combinatorial curvature function, respectively.
Moreover, if α = αp is a p-dimensional cell (or p-cell, for short), then we can
define the curvature function:

Fp =< Fp(α), α >, (4)

Fp : Cp → Cp being regarded as a linear function on p-chains. For dimension
p = 1 we obtain, by analogy with classical case, the following definition of discrete
(weighted) Ricci curvature:

Definition 1. Let α = α1 be a 1-cell (i.e. an edge). Then the Ricci curvature
of α is defined as:

Ric(α) = F1(α). (5)

While general weights are possible, making the combinatorial Ricci curvature
extremely versatile, it turns out (see [5]), that it is possible to restrict oneself
only to so called standard weights:

Definition 2. The set of weights {wα} is called a standard set of weights iff
there exist w1, w2 > 0 such that given a p-cell αp, the following holds:

w(αp) = w1 · w
p
2 .

(Note that the combinatorial weights wα ≡ 1 represent a set of standard weights,
with w1 = w2 = 1.) Using standard weights, we obtain the following formula for
polyhedral (and in fact much more general) complexes:

F(αp) = w(αp)









∑

βp+1>αp

w(αp)

w(βp+1)
+

∑

γp−1<e2

w(γp−1)

w(αp)



 (6)

−
∑

α
p

1
‖αp,α

p

1
6=αp

∣

∣

∣

∣

∣

∣

∑

βp+1>α
p

1
,βp+1>αp

√

w(αp)w(αp
1)

w(βp+1)
−

∑

γp−1<α
p

1
,γp−1<αp

w(γp−1)
√

w(αp)w(αp
1)

∣

∣

∣

∣

∣

∣



 ,

where α < β means that α is a face of β, and the notation α1 ‖ α2 signifies that
the simplices α1 and α2 are parallel, the notion of parallelism being defined as
follows:

Definition 3. Let α1 = αp
1 and α2 = αp

2 be two p-cells. α1 and α2 are said to
be parallel (α1 ‖ α2) iff either: (i) there exists β = βp+1, such that α1, α2 < β;
or (ii) there exists γ = βp−1, such that α1, α2 > γ holds, but not both simulta-
neously. (For example, in Fig. 1, e1, e2, e3, e4 are all the edges parallel to e0.)

Together with the formula above, the (dual) formula for the combinatorial
Laplacian (see [5]) is also obtained to be:

¤p(α
p
1, α

p
2) =

∑

βp+1>α
p

1
,βp+1>α

p

2

ǫα1,α2,β

√

w(αp
1)w(αp

2)

w(βp+1)
(7)



+
∑

γp−1<α
p

1
,γp−1<α

p

2

ǫα1,α2,γ

w(γp−1)
√

w(αp
1)w(αp

2)
,

where ǫα1,α2,β , ǫα1,α2,γ ∈ {−1, +1} depend on the relative orientations of the
cells.

3 Combinatorial Ricci Curvature of Images

Before developing the relevant formulae in the special combinatorial setting of
the tilling by squares of the plane, as it is usually considered in (Discrete) Image
Processing, let us first indicate that it is advantageous to use standard weights.
Such natural weights are proportional to the geometric content (s.a. length and
area). It follows that the weight of any vertex is w(v) = 0. Bearing this in mind,
and considering the combinatorics of the square tilling (see Fig. 1), the specific
form of Combinatorial Ricci curvature for 2D images is:

Ric(e0) = w(e0)

[

(

w(e0)

w(c1)
+

w(e0)

w(c2)

)

−

(

√

w(e0)w(e1)

w(c1)
+

√

w(e0)w(e2)

w(c2)

)]

. (8)

For the Laplacian there exists more than one possible choice, depending on
the dimension p. The simplest, and operating on cells of the same dimensionality
as the Discrete Ricci curvature, is ¤1. Because vertices have weight 0 and adja-
cent cells have opposite orientations, Equation (7) becomes, in this case (using
the notation of Fig. 1):

¤1(e0) = ¤1(e0, e0) =
w(e0)

w(c1)
−

w(e0)

w(c2)
. (9)

The formula for the Combinatorial Bochner Laplacian follows immediately:

B1(e0) = ¤1(e0) − Ric(e0) . (10)

Instead of computing a Laplacian along the edge e0, one can compute a
Laplacian operating across the edge, namely ¤2(c1, c2). Since no 3-dimensional
cells exist, the first sum in Equation (7) vanishes. Hence, we have (up to sign):

¤2(c1, c2) =
w(e0)

√

w(c1)w(c2)
. (11)

Remark 1. By “weighing” the combinatorial formula for the curvature function
Fp (cf, [5]) we obtain:

Fp = ♯{βp+1 > α} + ♯{γp−1 < α} − ♯{δ | δ‖α}. (12)

(Here ♯X denotes the number of elements of the set X.) For p = dimα = 1, a
simplified, purely combinatorial version of Formula (8) is also obtained:

Ric(e0) = w(c1) + w(c2) − w(e1) − w(e2) − w(e3) − w(e4) + 2. (13)

However, the above combinatorial version of the Ricci curvature does not provide
considerable geometric insight and, therefore, does not yield interesting results.
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Fig. 2. The elements appearing in the computation of the Combinatorial Ricci curva-
ture of edge e0 in the geometry of pixels.

In the case of the cubical geometric configuration present in Digital Images,
Formula 6 becomes:

Ric(e0) = w(e0)









∑

c2>e0

w(e0)

w(c2)
+

∑

c0<e2

w(c0)

w(e0)





−
∑

e‖e0,e6=e0

∣

∣

∣

∣

∣

∣

∑

c2>e,c2>e0

√

w(e0)w(e)

w(c2)
−

∑

c0<e,c0<e0

w(c0)
√

w(e0)w(e)

∣

∣

∣

∣

∣

∣



 .

Since, as we have already noted, for digital images the vertices’ weights are
always 0, we obtain the following expression for Ric(e0):

Ric(e0) = w(e0)

[

w(e0)

(

4
∑

1

1

w(ci)

)

−
√

w(e0)

(

4
∑

1

√

w(ei)

w(ci)

)]

, (14)

(see Fig. 2, right).

4 Experimental Results

Before commencing any experiments with the combinatorial Ricci curvature in
the context of images, we had to choose a set of weights for the 2-, 1- and 0-
dimensional cells of an image, that is for squares (pixels), their common edges
and the vertices of the tilling of the image by the pixels. Any such choice should,
obviously, be as natural and expressive as possible for image analysis. The choice
of weights was motivated by two factors: the context of Image Processing, where
a natural choice for weights imposes itself (see below) and the desire (and, indeed,
sufficiency, see Section 2) to employ solely standard weights.



Since natural weights have to be proportional to the dimension of the cell, it
follows immediately that the weight of any vertex (0-cell) has to be 0. Moreover,
in the beginning, it is natural to choose w1 = 1 and w2 = length of a cell. A
somewhat less arbitrary choice for the length (i.e. basic weight) of an edge,
would be Length(e) = (dimension of the picture)−1, hence that for the area (i.e.
basic weight) of a pixel α being Area(α) = (dimension of the picture)−2. The
proper weight for a cell α should, however, take into account the gray-scale level
(or height) hα of the pixel in question, i.e. wα = hα ·Area(α). This will become,
so we hope, clearer in the following paragraph. The natural weight for an edge e
common to the pixels α and β is |hα−hβ |. (A less “purely” combinatorial choice
of cells and weights is discussed in [16].)

Note that, given an edge e, the Ricci curvature Ric(e) represents in a way a
generalized mean of the weights the cells parallel to e. Therefore, it represents
a measure of flow in the direction transversal to e. It follows, that, contrary
perhaps to intuition, this type of Ricci curvature (and the Bochner Laplacian
associated to it) in direction, say, parallel to the x-axis, is suitable for the detec-
tion of edges and ridges in the y-direction. On the other hand, since scalar (i.e.
Gauss) curvature, is associated to each pixel, that is to each square of the tes-
sellation, to compute the Gaussian curvature one has to compute the arithmetic
mean of the Ricci curvatures of edges of the square under consideration – see
Fig. 2. (A similar argument holds if one wishes to compute the 1-Laplacians, ¤1

and B1, of a given pixel.) The difference between the Ricci curvature computed
in the horizontal and vertical directions, as well the “true”, i.e. average Ricci
curvature can be seen in Fig. 3 and Fig. 4. As Fig. 5 illustrates, the Combina-

Fig. 3. Computing the Ricci curvature for a pixel: Synthetic test image (left), Ricci
curvature computed in horizontal (middle) and vertical (right) directions.

torial Ricci curvature we introduced herein allows even for a non-optimal choice
of weights, a very good approximation of Gaussian curvature of surfaces (i.e.
for gray-scale images). Here, classical Gaussian curvature was computed using
finite element methods standard in Image Processing – see [17]. In contrast,
both the Bochner (and Riemann) Laplacian sharply diverge from the classical
one, e.g. the one obtained by using the standard Matlab function (see Fig. 6).



Fig. 4. Computing the Ricci curvature for a pixel: The “Camera Man” test image (top,
left), Ricci curvature computed in horizontal (top, right) and vertical (bottom, left)
directions, and the Ricci (averaged) curvature (bottom, right).

This is not too surprising, given the fact that such a comparison is, in a sense,
not relevant, due to the different dimensionality of the two concepts: The Com-
binatorial and Bochner Laplacian are, as stressed above, associated to edges,
hence 1-dimensional (this being underlined by the notation: ¤1(e0) and B1(e0),
respectively). In contrast, the classical Laplacian is a pointwise function, (and,
in its discrete setting, associated to the vertices of a mesh) hence 0-dimensional.
However, the Bochner Laplacian proves to be an excellent detector of “sharp”
edges (see Fig. 7), therefore it may prove to be useful for contour detection and
for segmentation. A “combinatorial diffusion” was also performed, either by
upsampling, that is by division of the squares (pixels) into sub-squares of length
1/2 or 1/3, or by downsampling, i.e. by the fusion of 4 or 9 squares into larger
ones. However, using the fusion of 9 squares produces more inferior results.) The



Fig. 5. Gauss (left) and Combinatorial Ricci (right) comparison. Note the edge detect-
ing capability if the Combinatorial Ricci curvature.

weight after such upsampling would be, for instance hα/4. The effect of this last
process on ¤1(e0) and on B1(e0) can be seen in Fig. 8.

5 Future Work

We briefly discuss below some of the natural and/or seemingly required direc-
tions of further study:

1. Evidently, the first task in testing the efficiency of the combinatorial Ricci
curvature and Laplacian in medical imaging is to experiment with voxels,
that is to apply the apparatus introduced herein to the analysis of volumetric
data. Such 3- (and even 4-) dimensional manifolds and their evolution in time
is most relevant, for instance, in the analysis of cardiac MRI. This brings us
to the following point:

2. As already mentioned in the introduction, the full power of the Ricci cur-
vature is revealed in the general heat-type diffusion and in discrete versions
of the Ricci flow (and other related flows), that were introduced and ex-
perimented with elsewhere ([3], [6], [8], [11])). It is only natural to strive to
develop and experiment with a discrete version of the Ricci flow correspond-
ing to the combinatorial Ricci curvature introduced herein. The Ricci flow
is given by

∂g

∂t
= −2Ric(g(t)) ,

where g denotes the metric of the manifold. (see e.g. [12]). Various discretiza-
tions are possible for this flow. However, it seems that given the fact that
the Combinatorial Ricci curvature is an edge measure, the most natural



Fig. 6. Comparison of Different Laplacians: The Combinatorial (Forman) Laplacian
¤1(e0) (left), and the Bochner (rough) Laplacian B1(e0) (right). Note that the combi-
natorial Laplacians are good detectors of “sharp” edges.

discretization in our context is the following one, inspired by [11] (see also
[8]):

∂lij
∂t

= −2Ric(eij) ,

where lij denotes the length of the edge eij . Experimental work on this type
of flow is in progress [16].

3. As already noted, while we prefer, both for theoretical as well as for practical
reasons, to work with standard weights, Forman’s combinatorial version of
Ricci curvature is extremely versatile. Even if restricting oneself to using
standard weights, i.e. proportional to the p-dimensional geometric content
(p-volume), one still has freedom in choosing the weights w2 and especially
w1 (see Section 2). Hence, to obtain best result, one can experiment in order
to empirically determine, by using, e.g. variational methods, the optimal
standard weights for a given application of the method.

4. The Combinatorial Laplacian is closely connected (by its very definition)
to the cohomology groups of the cellular complex on which it operates (see
[5]). It is natural, therefore, to apply the results and methods of [5] for the
estimation of the dimension, and in some cases even the computation, of the
cohomology groups (and by duality, of homology groups) of images. (See [9]
on this direction of study in Image Processing.)
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Fig. 7. Axial brain scan image (top, left), its Combinatorial Ricci curvature (top, right),
the Combinatorial (Forman) Laplacian ¤1(e0) (bottom, left), and the Bochner (rough)
Laplacian B1(e0) (bottom, right). (Recall that B1(e0) = ¤1(e0) − Ric(e0).)
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