

 IRWIN AND JOAN JACOBS
CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

Mitigating Congestion in
High-Speed Interconnects
for Computer Clusters

Vladimir Zdornov
and Yitzhak Birk

CCIT Report #723
March 2009

DEPARTMENT OF ELECTRICAL ENGINEERING

Electronics
Computers

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL Communications

Mitigating Congestion in High-Speed
Interconnects for Computer Clusters

Vladimir Zdornov and Yitzhak Birk

March 2009

lesley
Text Box
CCIT REPORT #723 March 2009

Contents

Abstract 1

1 Introduction 1

1.1 Modern Clusters and Interconnects 1

1.2 Network Model and Terminology . 2

1.3 The Congestion Problem . 4

1.4 Performance Measures and Goals . 6

1.5 Contributions of this Work . 7

2 Related Work 10

2.1 Adaptive Routing . 10

2.2 Rate Control . 12

2.3 Packet Injection . 16

3 Adaptive Flow Routing 18

3.1 Routing Scheme . 18

3.2 Adaptation Policy . 23

3.2.1 The Choice of Heuristic . 23

3.2.2 Adaptation Flexibility . 24

4 Explicit Rate Calculation 27

4.1 A Single Phase-Based Application . 27

4.1.1 The Optimal Completion Time 28

4.1.2 SAA Algorithm . 30

4.1.3 SAA-M Algorithm . 33

Contents

4.2 Independent Flows . 42

4.2.1 Weighted Max-Min Fairness 42

4.2.2 Centralized Algorithm . 43

4.2.3 Distributed Algorithm . 44

4.3 Multiple Phase-Based Applications 59

4.3.1 Application Rates . 59

4.3.2 Centralized Algorithm . 60

4.3.3 Distributed Algorithm . 64

4.4 Theoretical Comparison . 68

4.4.1 Single Application . 69

4.4.2 Independent Flows . 69

4.4.3 Multiple Applications . 71

5 Practical Issues of Rate Control 73

5.1 Mixed Tra�c . 73

5.2 Packet Injection Scheme . 74

5.2.1 The Scheme . 75

6 Empirical Results 79

6.1 Fat Trees . 79

6.2 Adaptive Routing . 81

6.3 A Single Phase-Based Application 87

6.4 Independent Flows . 88

6.5 Multiple Phase-Based Applications 92

6.6 Realization of Calculated Rates . 96

7 Conclusions 98

Bibliography 100

March 29, 2009

Abstract

Congestion arises in cluster-based supercomputers due to contention for links, spreads
due to oversubscription of communication resources, and reduces performance. We
mitigate it using e�cient, scalable adaptive routing and explicit rate calculation.
We use virtual circuits for in-order packet delivery; path setup is performed by
switches locally with no blocking or backtracking. For random permutations in a
slightly enriched fat-tree topology, maximum contention is reduced by up to 50%
relative to static routing, but only rate control can translate this into actual gain.
Unfortunately, TCP's window-based rate control fails because of the low bandwidth-
delay product, and small bu�ers moreover cause congestion spreading even with a
single-packet window. In�niBand's CCA employs multiple parameters, which must
apparently be tuned per topology and tra�c pattern. Instead, we present distributed
explicit rate-assignment algorithms, which are designed under three cluster-speci�c
performance goals. Also, we propose a packet injection scheme, and show that de-
sired rates can be realized even with very small bu�ers. Simulation results suggest
that adaptive routing alone o�ers little bene�t, rate control's e�ectiveness varies with
tra�c pattern, but together they boost performance by tens of percents. Finally,
our explicit algorithms are faster than current reactive schemes.

Chapter 1

Introduction

1.1 Modern Clusters and Interconnects

Computer clusters are presently the architecture of choice for most supercomput-

ers for various applications. Such clusters usually comprise hundreds to tens of

thousands of o�-the-shelf, general purpose computing elements interconnected by

a high-speed network [2]. In many cases, performance of these parallel machines

highly depends on the properties of their interconnects. These can be proprietary

(such as in IBM Blue Gene) or standard, with the latter being the common choice.

The interconnect standards currently dominating the supercomputer market are

In�niBand [17] and Gigabit Ethernet [16] (approximately 24% and 58% of top-

500 supercomputers, respectively). In�niBand, from its inception, was oriented to

operate in high-performance, clustered environments. It introduced many important

features, some of which are discussed below, that match the communication needs of

clusters. Ethernet, on the other hand, entered the market from the world of general

purpose LAN and WAN communication, in an attempt to unify di�erent types of

interconnects under the same standard. Interestingly, we observe cluster versions

of Ethernet adopting more In�niBand-like properties, bringing the two standards

closer over time. For that reason, we chose In�niBand as the platform for our work,

while expecting the results to be relevant for cluster interconnects in general.

In this work we will concentrate only on several important characteristics of

In�niBand. First, In�niBand networks use virtual cut-through switching, which

1

1.2. Network Model and Terminology 2

greatly reduces the bandwidth-delay product. Second, similarly to other domains,

virtual-output queuing is used by switches, placing the bu�ers at the inputs of the

switch. The size of the bu�ers is practically very small, designed to hold only several

MTU-size packets. Third, the fabric is lossless, which means that no packets are

dropped due to an attempt to transmit them into a full bu�er. Instead, hop-by-hop

�ow control is used to prevent the transmission in this case. Finally, switches use

oblivious, destination-based routing to forward packets. The combination of oblivi-

ous routing with lossless communication has a dramatic impact on the performance

and implementation complexity, since together they guarantee in-order packet de-

livery. As a result, no retransmissions are required, unless a (rare) physical packet

corruption occurs.

From the management point of view, In�niBand networks have three fundamen-

tal traits. To begin with, these networks constitute a managed environment. This

means that all network elements (switches, HCAs) can be con�gured to operate

according to some chosen protocol, without being concerned about interoperabil-

ity or malicious behavior. Reliable communication is the second cardinal property,

since it allows us to formulate management algorithms under the assumption that

every packet eventually reaches its destination, while passing through each link ex-

actly once. Of course, physical failures may occur but, being very rare, they can be

treated in an exceptional manner, without worrying about e�ciency. Finally, small

network diameter (both in terms of hops and actual distance), high data rates and

low-latency switches result in a very low end-to-end packet delay. This low delay

reduces the cost of global management operations such as broadcasts and barriers.

1.2 Network Model and Terminology

A network comprises switches, host channel adapters (HCAs), and bi-directional

links. We use H and SW to denote the sets of HCAs and switches, respectively.

Switches and HCAs are collectively referred to as network elements, denoted E =

SW ∪ H. A bi-directional link is a pair of uni-directional links,with link referring

to the latter. The set of links is denoted by L. (Note the deviation from common

March 29, 2009

1.2. Network Model and Terminology 3

graph notation.) Although In�niBand allows the use of multiple virtual lanes (VLs)

for QoS segregation of tra�c, unless stated otherwise, we will assume networks to

have a single VL. Also, for clarity of presentation we assume all links in the network

to have a �xed capacity cl = 1.

A connection is a (�logical sender�, �logical receiver�) pair. (Any given logical

sender or receiver resides in a single physical entity.) Packets sent over the same

connection must be delivered in their transmission order. A connection may repre-

sent a reliable connection (the In�niBand equivalent of TCP-like socket association)

but is not limited to it. Every source can have multiple concurrent connections, each

being uniquely identi�ed by a combination of (physical) source address (SLID), des-

tination address (DLID), and a source-unique connection identi�er (CID) 1.

Data is transmitted over a connection as a contiguous sequence of �ows, each �ow

comprising a contiguous sequence of packets belonging to said connection. Flow is a

management abstraction; it may comprise anything between part of an In�niBand

message and a contiguous sequence of such messages.

Unless stated otherwise, we consider an interconnect that operates as follows.

Only hop-by-hop �ow control is used, whose only function is to prevent packet

drops. Thus, sources and switches push packets onto links as long as free bu�ers are

available at a link's remote end. The switches have bu�ers at input ports, and every

output port is allowed to send at most one packet over its link in every time step. An

output port serves pending packets from di�erent inputs using a First-Come-First-

Served (FCFS) policy, and there is no restriction on the number of packets that can

leave an input port's bu�er for transmission over di�erent output links in a single

time step. (This is known as in�nite speedup.) Under this assumption, packets at

a given input port's bu�er that are destined to di�erent outputs do not su�er from

head-of-line blocking, yet they do share a common set of bu�ers.

1In In�niBand queue-pair number (QPN) can be used when possible.

March 29, 2009

1.3. The Congestion Problem 4

sw1
sw2

s1
s2
s3
s4
s5
s6

d1
d2

f1=(s1->d1)
f2=(s2->d1)
f3=(s3->d2)
f4=(s4->d2)
f5=(s5->d2)
f6=(s6->d2)

f1
f2
f3
f4
f5
f6

f1,f2,f3,f4
f1,f2

f3,f4,f5,f6
(1/4,1/4,1/4,1/4)

(1/6,1/6,1/3,1/3)

(1/6,1/6)

(1/6,1/6,1/6,1/6)

Figure 1.1: The damage of congestion

1.3 The Congestion Problem

In an ideal network, �ows do not compete for link capacity, and every �ow is trans-

mitted at the line speed, leading to a situation in which no additional management

is needed. In practice, however, �ows share links, contend for capacity, and their

transmission rates are directly a�ected by the contention. If k �ows cross a link l,

then at least one of the �ows will have an average rate of at most 1
k
. Also, as some

of the �ows increase their rates above 1
k
, other �ows are forced to reduce their rates

towards zero. Consequently, reducing contention by means of adaptive routing is

expected to improve overall network performance.

Even if optimal routing is used, link sharing may still lead to ine�ciencies caused

by poor management of shared bu�er space. We demonstrate this phenomenon

below, but �rst state our assumptions on the network model. Assume that only

hop-by-hop �ow control is used, whose only function is to prevent packet drops.

Thus, sources and switches push packets to links as long as free bu�ers are available

at a link's remote end. The switches have bu�ers at input ports, and every output

port is allowed to send at most one packet over its link in every time step. Assume

also that an output port serves pending packets from di�erent inputs using a Round-

Robin (RR) policy, and that there is no restriction on the number of packets that

can leave an input-queue for transmission over di�erent output links in a single time

step. (This is known as in�nite speedup.) Under this assumption, packets destined

to di�erent outputs do not su�er from head-of-line blocking, yet they do share a

common set of bu�ers.

Consider the scenario in Figure 1.1. Six �ows, f1, ..., f6, traverse a network that

March 29, 2009

1.3. The Congestion Problem 5

includes two switches, sw1 and sw2. The sources start injecting packets into the

network at time t = 0. For clarity of presentation, here only, we assume that output

ports serve pending packets from di�erent inputs using a Round-Robin (RR) policy.

Initially, every �ow f1, ..., f4 is transmitted at rate 1
4
on link sw1 → sw2. The

output port sw2 → d2 serves incoming packets in round robin (RR) order among

input ports. Therefore, f5, f6 each get a rate of 1
3
, while f3, f4 each get 1

6
. Initially,

the packet insertion rate of f3, f4 into sw2 is thus higher than their service rate.

Consequently, regardless of the size of bu�ers, the input bu�er at the end of the

link sw1 → sw2 becomes full, which causes the link to reduce its transmission rate.

(At moments when no free bu�ers are present no packet can be transmitted). A

simple simulation shows that in the steady state, sw1 → sw2 transmits only at rate

2
3
. Using the accepted terminology, sw2 → d2 is the root of congestion, because it

is oversubscribed yet transmits at full rate, while sw1 → sw2 is a congestion victim,

since it is not saturated despite the fact that it has more data to push. As long as

the �ows do not end, the rate assignment vector is (1
6
, 1

6
, 1

6
, 1

6
, 1

3
, 1

3
).

From the link capacity perspective, the above result is sub-optimal, because in

this situation f1, f2 should apparently be able to increase their rates to 1
3
. The

assignment is moreover unfair, since �ows are assumed to be equally important, yet

f5's transmission rate is double that of f4.

If we consider �nite �ows of the same size, we notice that the overall completion

time (by which all �ows end) su�ers as well. Assume that all �ows have the same

large size of a unit of data, which takes a unit of time to transmit at line speed. After

three units of time, �ows f5 and f6 end. At this point sw1 → sw2 has transmitted

two units of data and its rate is increased to 1. It will take two more time units to

transmit its remaining two data units, making the total completion time to be �ve

units of time. This is 25% worse than the lower bound for a setup in which each

link is required to pass at most four units of data.

The above example demonstrates congestion spreading, which is a form of high-

order head-of-line blocking. It was �rst described in [33] as tree saturation. In larger

networks, the congestion root can create a tree of full bu�ers. Every �ow crossing

one of the bu�ers in the tree, even if it avoids the root, can be adversely a�ected.

March 29, 2009

1.4. Performance Measures and Goals 6

Note that the poor performance cannot be improved by means of changing the

routing, since the core problem is not load-balancing, but rather the ine�cient bu�er

sharing. The fundamental cause underlying the phenomenon is that sources attempt

to push more tra�c than the network is capable of accommodating. Therefore, an

appropriate rate control mechanism that limits the injection rate of the sources is

expected to remedy the matter and ensure fairness. For instance, in the above

examples a suitable solution would be for all �ows to be transmitted by the sources

at rate 1
4
.

1.4 Performance Measures and Goals

In order to assess the quality of various solutions, we must �rst state the performance

measures of interest. We derive those form three general scenarios considered in this

work:

1. A single phase-based application � the cluster is used by a single applica-

tion that alternates between computation and communication phases. Each

communication phase is followed by a global barrier. At the beginning of a

communication phase each source knows its destinations and the exact amount

of data to be transferred.

2. Independent �ows � di�erent �ows have no meaningful relations among each

other. Sources not necessarily know the size of their �ows and how the set of

these �ows is about to change in the future.

3. Multiple phase-based applications � the cluster is shared by multiple phase-

based applications running concurrently. Di�erent applications enter and leave

their communication phase independently.

In addition, we assume �ows in all the scenarios to have a large size (hundreds to

thousands of packets). This assumption is motivated by relatively high overhead,

for any control scheme, when (very) short �ows are considered. It is assumed that

�ows have a bulk, rather than sporadic, nature: every time a packet is transmitted,

a new one is ready for transmission until the �ow ends.

March 29, 2009

1.5. Contributions of this Work 7

The phase-based applications are typical of High-Performance Computing (HPC),

and they usually exhibit regular tra�c patterns. As mentioned above, the commu-

nication phase is concluded by a synchronization barrier. Therefore, the length of

the phase is determined by the latest completion time of the participant �ows (the

total completion time). Whenever a single application is considered, our goal is to

minimize the total completion time.

The independent �ows scenario is the default scenario in the research of network-

ing. It may arise in a cluster used for processing of large quantities of data, such

as video or 3D graphics. In this scenario, the �ows can be considered as consumers

contending for shared, limited resources. We want to allocate the resources in a

fair and e�cient manner. Therefore, our goal is to maximize instantaneous rates of

individual �ows in a fair manner. We choose to stick to a broadly accepted max-min

notion of fairness [4]. We intentionally avoid using completion time of the �ows as

the optimality criterion, since �ows start at arbitrary times and are unrelated, so

ensuring the instantaneous progress is a more natural requirement.

The scenario of multiple phase-based applications can be regarded as a combi-

nation of the previous two. As with independent �ows, our goal is to maximize the

instantaneous progress of di�erent applications in a fair manner. At the same time,

we use the instantaneous rate of an application's slowest �ow as that application's

progress indicator, since it is expected to determine the length of its communication

phase. Here we will use max-min fairness again, this time at the inter-application

level.

1.5 Contributions of this Work

Our discussion of the congestion problem mentioned that congestion can be mit-

igated by adaptive routing and rate control. In this work, we propose novel ap-

proaches for these two mechanisms and examine their combination. In the consid-

ered networks, a large number of �ows may traverse a network element. As a result,

storing and manipulating per-�ow state at the elements is an impractical task. For

this reason, all our solutions require switches and HCAs to hold state, whose size is

March 29, 2009

1.5. Contributions of this Work 8

independent of number of �ows traversing the network, or its topology.

Our �rst contribution is the adaptive routing scheme described in Chapter 3. The

scheme relies on local heuristic decisions. Importantly, it guarantees in-order packet

delivery by means of a kind of virtual circuit (VC) mechanism. However, we avoid

the scalability issues typical of �classic� VC schemes. The heuristic nature of the

routing is obviously not optimal, and is used similarly in the di�erent characteristic

scenarios.

Our second contribution is a set of rate control algorithms, presented in Chap-

ter 4, that are capable of setting optimal rates according to di�erent performance

measures for any �xed choice of routing. (In principle, we �rst adaptively �x a rout-

ing and then compute the rates). All our algorithms rely on explicit rate calculation.

The rate calculation algorithms are initially developed and evaluated under an

assumption of the so-called ��uid model�; i.e., any rate assignment is considered

feasible if it does not violate the capacity constraints of any of the links. This

approach ignores the discrete nature of packet networks, queuing issues, and limited

bu�ers. As a result, it is not clear whether the theoretically feasible rates can be

indeed implemented in practice.

To this end, we show through simulation that an adapted Shaped Virtual Clock

(SVC) packet injection scheme [38] is capable of realizing calculated rates even with

a very moderate size of bu�ers in switches. The injection scheme is designed to

suppress bursts of individual �ows and the aggregate tra�c leaving a source. The

matter of realization of calculated rates is discussed in Chapter 5.

Finally, we collect and present experimental results achieved through simulation.

When adaptive routing or rate control are used individually, minor performance

improvement is witnessed. (The only exception is the independent �ows scenario,

in which rate control alone has a major impact.) In fact, adaptive routing can

even hurt. However, when used together, the results demonstrate a very signi�cant

performance boost according to the relevant performance measures.

The rest of the work is organized as follows. Chapter 2 describes the related

work in adaptive routing, rate control, and packet injection areas. Our proposals

on adaptive routing and rate control are presented in Chapter 3 and Chapter 4,

March 29, 2009

1.5. Contributions of this Work 9

respectively. In Chapter 5, practical issues of rate control are addressed, with the

realization of calculated rates among them.

Chapter 6 presents and discusses the empirical results collected through simu-

lation. These results were acquired through simulation in OMNeT++ event-driven

simulation framework [1]. We created special In�niBand models for that purpose.

Since our goal was to simulate large networks with thousands of nodes, our models

operate at the functional, rather than cycle-accurate, level. Although the methods

proposed in this work are topology agnostic, we used the k-ary n-tree [31], which is a

variant of a practical fat tree [24], as the basis for all our experiments. This topology

is popular in modern clusters. Finally, Chapter 7 o�ers concluding remarks.

March 29, 2009

Chapter 2

Related Work

2.1 Adaptive Routing

As de�ned by the standard, In�niBand networks rely on oblivious routing. This

choice has some key advantages: it greatly simpli�es the routing procedure of in-

dividual packets, and guarantees in-order delivery. However, this type of routing

cannot react dynamically to the applied tra�c pattern. No matter how good the

a-priori routing con�guration is, it will always be possible to �nd a pattern for which

the chosen routing will cause high contention, resulting in poor performance. The

alternative is to use adaptive routing, namely to let the network route packets from

the same source to the same destination along di�erent paths, according to the

existing conditions. Finding an optimal routing, under various optimality criteria,

generally leads to one of the variants of the Multi-commodity Flow problem, which

is NP-complete problem [13]. Consequently, in practice heuristic approaches are

used.

Lossless networks are prone to deadlocks that arise whenever a group of packets

can't advance due to a cyclic dependency among them. Therefore, deadlock avoid-

ance is a crucial property of any routing scheme, either static or adaptive. In a

fundamental work [10], authors formulate the necessary and su�cient condition for

deadlock-free routing. This condition is used as a basis for several topology agnostic

routing schemes [30,37].

In some cases, the deadlock-freedom is inherently supported by the topology of

10

2.1. Adaptive Routing 11

a network. This is particularly true for practical fat trees (see Section 6.1), in which

no cyclic dependency can arise if minimal paths are used1. Topology-aware static

routing schemes for fat trees were proposed in [15, 45], while adaptive routing for

the same topology was examined in [15,23]. The latter proposed to use packet-level

adaptation, routing di�erent packets of the same �ow independently. This approach,

taken also in [29], is fairly simple to implement, but it breaks the in-order delivery

guarantee, thus violating one of the fundamental properties of In�niBand.

An alternative approach that preserves in-order delivery was proposed in [25,

27, 42]. In�niBand allows assigning more than one address (LID) to every HCA,

so the same destination can be addressed using multiple LIDs. Since the routing

for each LID is �xed independently, multiple paths can be de�ned for each source-

destination pair at network con�guration. The source is given the power to choose

a speci�c path by choosing a LID from among those assigned to the destination.

This approach enforces packet order, provided that the entire �ow is routed using

the same LID (otherwise additional care must be taken). Multiple-LID routing does

not provide full routing �exibility, because the alternative paths are set once, at

network con�guration time. Moreover, a limited (64K) number of LIDs introduces

a tradeo� between the cluster size and its routing capabilities.

Flexibility and in-order delivery are achieved if routing is incorporated into a

virtual circuit (VC) mechanism, as proposed in [11, 40]. Generally, virtual circuits

is a technique for resource reservation along the path of a connection in packet

switched networks. The resources, which can include link capacity, bu�ers, routing

entries etc., are reserved during the setup of a circuit, which occurs before the �rst

packet of the connection is sent. When a connection ends, its resources are released

in a tear-down procedure. Since the path is set up once, and all packets follow it,

the in-order delivery is guaranteed even if the path is chosen adaptively.

When VCs are used, �nite resources in switch routing tables limit the number of

connections that can cross a switch. As a result, some circuits can fail to be set up.

If this happens, the connection is said to be blocked and its setup has to be restarted

1In a practical fat tree, unlike an ideal one, multiple routing alternatives exist for the same
source-destination pair.

March 29, 2009

2.2. Rate Control 12

later. In some schemes alternative paths are tried, but unfortunately those may also

be blocked. So, the penalty of blocking may be very high. In Chapter 3, we propose a

scheme that uses virtual circuits to route individual �ows (rather than connections).

Our circuits reserve only routing resources, and e�ciently avoid blocking.

2.2 Rate Control

As we saw in Chapter 1, the basic hop-by-hop �ow control provides neither e�cient

nor fair exploitation of link capacity. The undesired e�ects can be potentially re-

moved if injection rates of �ows are appropriately throttled. The goal of rate control

is to avoid link oversubscription and the resulting clogging of bu�ers, while ensuring

fair and e�cient utilization. We classify existing rate control schemes into four main

groups: reactive window-based, reactive rate-based, precise explicit rate calculation

and approximate explicit rate calculation. To the best of our knowledge, all existing

solutions were designed for the independent �ows scenario.

In reactive schemes, a source increases the load of a �ow optimistically, until it

receives some kind of indication that the �ow passes through a congested link. The

source reacts by reducing the applied load until the �ow is believed not to cross

congested links again. Reactive schemes usually never reach a truly steady state;

instead, they exhibit small oscillations around the desired solution.

Every reactive scheme can be characterized by three main criteria. First, the

amount of load that a �ow may apply on the network is determined either by the

size of a congestion window, or using an explicit rate value. Second, the congestion

indication can be implicit or explicit. Implicit indication is derived from long round-

trips or (in lossy networks) from sudden packet loss. In the explicit case, switches

play an active role in informing the source, usually by marking data packets cross-

ing the congested link. Finally, various schemes di�er in the increment/decrement

policy, where the change in applied load is optionally dependent on the acquired

feedback. With Additive-Increase, Multiplicative-Decrease (AIMD) [9], for exam-

ple, the new load is a function of its current state only.

Probably the most commonly known congestion control mechanism is that of

March 29, 2009

2.2. Rate Control 13

TCP. It is a reactive, window-based scheme, which has spawned many variations

over the years to suit di�erent network environments [5, 14, 22, 43, 44]. The conges-

tion window controls the number of unacknowledged packets that may be injected

into the network. The typical network traversed by TCP tra�c is characterized

by relatively long round-trip delay (high bandwidth-delay product) and switching

elements with large bu�ers, which makes the congestion window a convenient tool.

Cluster networks, in contrast, do not exhibit these properties. Virtual cut-

through switching makes the bandwidth-delay product very low even for networks

with large radii. In fact, in most practical scenarios, the maximum window size

should be no more than several MTU packets per �ow, leaving littel space for any

substantial control. Moreover, with very small bu�ers, congestion spreading can

occur even if the window size is �xed to one packet, as demonstrated in [35]. For

these reasons, In�niBand Congestion Control Architecture (CCA) uses Inter-Packet

Delay (IPD), rather than window size, to set the desired load. Thus, CCA is a

reactive, rate-based control scheme.

The components of CCA are presented in Figure 2.1. Switches monitor the

number of packets awaiting transmission on each of the output ports. If an output

port transmits at full line speed, yet the number of awaiting packets exceeds a

prede�ned threshold, the port is said to be a congestion root. If the threshold is

crossed, but the port does not operate at full speed (due to the back pressure), it is

called a congestion victim. Basically, congestion roots generate the back pressure,

which creates congestion spreading and congestion victims.

When a switch detects one of its ports to be a congestion root, it starts marking

packets that use the port with Forward Explicit Congestion Noti�cation (FECN)

bit. The marking rate is a parameter of the scheme. A marked packet proceeds to

its destination; upon its arrival, a special Backward Explicit Congestion Noti�cation

(BECN) packet is sent back to the source. Sources hold a table of increasing IPDs,

known as the Congestion Control Table (CCT) and an index variable pointing to

the table. When a source receives a BECN, the index is incremented and the rate is

e�ectively reduced. A timer is used to decrease the index (increase rate) over time,

as long as no BECNs are received.

March 29, 2009

2.2. Rate Control 14

Source HCA

CCT

Index

Timer

Switch

Packets

Threshold

Destination
HCA

Marked Packets
(FECN)

Cong. Notification
(BECN)

Figure 2.1: Congestion Control Architecture

The multitude of parameters (threshold, marking rate, CCT values, decrease

time) is a serious obstacle for correct con�guration of the scheme. The multitude

of parameters (threshold, marking rate, CCT values, decrease time) is a serious

obstacle for correct con�guration of the scheme. Our attempts to choose CCA

parameters lead to a grim conclusion whereby a setting (set of control parameters,

not a speci�c transmission rate) that is optimized for one tra�c pattern can have

catastrophic results for another.

For example for "all-to-one" tra�c pattern the link connected to the destination

HCA is a congestion root, as it bears a very large number of �ows. Consequently, the

switch should mark every crossing packet in order to provide feedback to all �ows in

a reasonable time. However, marking every packet when permutation tra�c, with

much lower contention, is applied, causes switches to over-react and leads to rate

oscillation without convergence. The reduced marking rate that �ts the permutation

tra�c does not avoid bu�er clogging and the congestion spreading under the all-to-

one tra�c.

Nevertheless, attempts to set CCA parameters were made in previous works.

Analytic derivation such as those in [35] and [45] were never tested in networks of

a realistic size with non-trivial tra�c. At the same time the systematic simulation

method chosen in [32] su�ers from partial sample space coverage, typical for this

approach. The apparent conclusion is that CCA requires careful tuning for each

particular topology and tra�c pattern in order to control the fabric e�ciently.

Unlike their reactive counterparts, explicit rate calculation schemes actively com-

pute rate values to be assigned to �ows. The rate assignment is chosen to utilize

links e�ciently and fairly, while preserving the feasibility. Explicit rate calculation

March 29, 2009

2.2. Rate Control 15s1 d1s2 d2
1/31/31/31/21/2

a1a1a1a1a2
Figure 2.2: Failure of existing rate control

makes it easier to de�ne clear and �exible design goals that provide �rm guarantees

on performance. The calculation itself is usually performed in a distributed man-

ner. Precise algorithms [7, 8, 20] do not depend on speci�c network characteristics

and are guaranteed to converge to a steady solution under very weak assumptions.

Approximate algorithms [3, 12, 19, 21, 41] are expected to operate faster, but they

rely on parameter tuning and may exhibit oscillatory behavior.

More details on various rate control techniques can be found in [18, 28]. We

note that even when operating ideally, the existing approaches to rate control have

inherent limitations. First, most of the existing schemes do not include �ow weights,

as an instrument of prioritization, which will be used in Chapter 4. Second, none

of them can operate correctly in the multiple application scenario (as de�ned in

Section 1.4). We demonstrate this using the example in Figure 2.2.

The example features �ve �ows. Three of them traverse the link s1 → d1 and

belong to application a1. The other two traverse the link s2 → d2, such that one

of the �ows belongs to a1and the other to a2. Since existing rate control schemes

have no information on the association between �ows and applications, the only

reasonable result for them would be assigning a rate of 1
3
to the �ows on s1 → d1

and 1
2
to those on s2 → d2. Recall that the progress of each application is de�ned by

the progress of its slowest �ow. Therefore, a1 unnecessarily uses too much capacity

on s2 → d2, which could improve the progress of a2.

The algorithm that uses precise, explicit rate calculation to assign correct rates

for the example is presented in Section 4.3. Additional algorithms for rate assign-

ment in single application and independent �ows scenarios are described in Sec-

tion 4.1 and Section 4.2, respectively.

March 29, 2009

2.3. Packet Injection 16

2.3 Packet Injection

When explicit rate calculation is used for rate control, an additional e�ort has to be

made to realize the acquired rates. In this context, the packet injection scheme em-

ployed by a source has a key role. Such a scheme has to enforce the calculated rates

and to multiplex di�erent �ows onto a common outgoing link. We assume that �ows

have packets of a �xed size (to be partly relaxed later). Since In�niBand switches

typically have very small bu�ers, it is highly desired that bursts be suppressed in

the aggregate outgoing tra�c. Because and long �ows are delay insensitive, so doing

does not hurt them.

Although the injection problem appears related to the domain of real-time schedul-

ing (E.g., rate-monotonic scheduling [26]), the fundamental goals in the two cases

di�er. As in real-time scheduling, we are interested to co-schedule periodic processes

(�ows originating packets at the computed rate). However, unlike there, we are also

interested to reduce burstiness of the tra�c.

Leaky bucket [39] is a well known technique for tra�c shaping of an individual

�ow. It is designed to enforce average transmission rate, while allowing bursts of

a bounded size (�xed bound). When multiple �ows are considered, packets exiting

di�erent buckets (each associated with a di�erent �ow) are inserted into a FIFO

queue, from which they are sent out at line speed [6, 34]. Assessing compatibility

of this mechanism for our needs, we draw the following conclusions: 1) the allowed

burst size of each �ow would have to be set to one packet, and 2) the FIFO at the

output could still potentially create bursts when the aggregate tra�c is considered.

An alternative approach to packet injection is Shaped Virtual Clock (SVC) [38].

Its basic operation can be described as follows. When transmission of some packet is

�nished, the �ow f to provide the next packet is selected such that: 1) the immediate

transmission of f 's packet would not exceed f 's calculated rate, and 2) f has so far

transmitted the smallest amount of data relative to its rate. SVC inherently prevents

bursts of any single �ow, but bursts of the aggregate tra�c can still occur.

In Chapter 5, we adapt the SVC approach to our needs by forcing the source to

transmit packets at most at its aggregate (over all its �ows) rate, thereby completely

eliminating bursts. We empirically verify the realizability of calculated rates under

March 29, 2009

2.3. Packet Injection 17

realistic sizes of input bu�ers in switches.

March 29, 2009

Chapter 3

Adaptive Flow Routing

In Chapter 2, the existing approaches to adaptive routing were surveyed. There, we

concluded that using virtual circuits for routing is the only approach that combines

in-order packet delivery with routing �exibility. In this chapter, we propose a generic

routing scheme based on �ow-level VC-like routing. Our main goal is to obviate the

need in storing routing information for every �ow crossing a switch, hence e�ectively

avoiding scalability limitations that are inherent to �classical� VCs. The application

of the generic scheme in the fat-tree topology and the associated empirical results

are discussed in Chapter 6.

3.1 Routing Scheme

As de�ned in Section 1.3, a connection is a sequence of �ows, each of which is a

sequence of packets. In-order delivery is required among all packets of a connection.

Each packet carries a combination of source address (SLID), destination address

(DLID), and a source-unique connection identi�er (CID), which jointly constitute a

globally unique connection identi�er (GCID). Our approach is to adapt the routing

at �ow boundaries, with all packets of any given �ow following the same path.

Furthermore, transmission of packets of given �ow does not commence until the

source ensures that all packets of the previous �ow of the same connection have

arrived.

18

3.1. Routing Scheme 19

Data Structures

In large clusters using high-radix switches, the number of �ows traversing any given

switch may be very large. When �classical� VCs are used, this gives rise to a scal-

ability issue (since per-�ow routing information has to be stored) and to a possible

performance problem (associative lookup in a large table). We avoid this problem

through intelligent use and extension of the standard In�niBand routing table (In-

�niBand RT). This table has a constant size equal to the maximum allowed number

of destinations (de�ned by the standard), and is addressed (as a regular table, not

associatively) by DLID. Therefore, In�niBand RT is accessed very quickly. Each

entry in In�niBand RT holds a port number.

We assume each switch to have a single extended routing table (ERT), which is

an extension of the regular In�niBand RT. Similarly to the In�niBand RT, it has an

entry for each destination in the network, and is directly addressed by the DLID.

However, ERT entries have two �elds. The �rst, as before, holds a port number,

which we refer to as the default port (DP) for the DLID. The second �eld is used to

store a list of several alternate ports (APs) for the destination.

We refer to the table of VC routing entries as route cache (RC). It stores port

numbers, and is associatively addressed by GCID. Since we aim to provide a scalable

solution, the size of this table is irrelevant for correctness (but of course has an

impact on performance). For the same reason, unlike in �classical� VC, not all �ows

crossing a switch have an entry in RC. Packets belonging to �ows that do not have

an associated entry in RC are routed by the switch to a DP according to their DLID.

We �nd it preferable not to hold a centralized RC, but rather to distribute it

in the form of a port routing cache (PRC) for each input port. In this manner

only information regarding �ows crossing a speci�c input port are stored in any

given table, and di�erent PRCs can be accessed in parallel. The PRC still has to

be associatively addressed by GCID. For that purpose, it can be implemented as a

Content Addressable Memory (CAM) or as a hash table.

March 29, 2009

3.1. Routing Scheme 20

ps DLID
 ERTDLID DP APs

PRC full?ORBest=DPDPBest Yes Route to DPNo Route to BestPort SelectorDP+APsAuxillary Capacity Best
PRCSLID+DLID+CID Port

Figure 3.1: Route setup

Route Setup

When a �ow f starts, a control packet ps is sent to set up the route. Each switch on

ps's path routes the packet, basing its heuristic decision on local information. The

routing procedure is presented in detail in Figure 3.1. Upon arrival of ps to an input

port, both the ERT and the PRC are accessed. The ERT is accessed by DLID, and

it passes a list of all the matching output ports to a port selector unit (PSU). The

PSU retrieves the heuristic measure for each port and selects the best available port,

based on the heuristic and other optional information (to be discussed below). At

the same time, the PRC returns its free capacity. If the PRC appears to be full,

or the DP is found to be the best output port, then ps is routed to the DP, and

no entry is added to the PRC. Otherwise, ps is routed through a chosen alternate

port. In the latter case, the chosen output port is stored in the PRC along with

ps's GCID. Note that after being routed on a DP at some switch, ps can still be

adaptively routed at later switches on its path.

Since ps advances through switches regardless of the state of RC, it should even-

tually reach its destination. Once this happens, the packet is sent back to the source

on a default path (de�ned by default ports). On its way back, ps does not a�ect the

state of the switches.

Upon ps's return, the route setup procedure is complete, and the source starts

sending data packets. These packets are routed by switches according to PRC entries

that match their GCID. If at some switch no matching entry is found, the packet is

March 29, 2009

3.1. Routing Scheme 21

sent to an appropriate DP based on its DLID. As shown below, data packets of any

given �ow are guaranteed to traverse the network on the same path and to arrive at

the destination in order.

Route Tear-Down

After a �ow's last data packet is sent, the source waits until the receipt of this packet

is acknowledged by the destination. This is the only data packet that requires an

acknowledgment (control packets are returned to the source as well though). When

the acknowledgment arrives, a control packet pt is sent to perform the tear-down of

�ow's path. This packet is routed like a regular data packet, and it erases matching

PRC entries on its way.

The source will not set up a route for a new �ow within the same connection

until pt returns. This behavior guarantees that a new �ow is routed only after the

source learns that all packets of the previous �ow have arrived and the path has been

torn down. (Tear-down completion enables the reuse of the GCID without a risk

of confusion between new and old routes, which could occur if a ps sets up a faster

route that overtakes the pt of the previous �ow along an alternate sub-path, and

subsequently rejoins its route, now ahead of it.) Optionally, pt can be piggy-backed

on the last data packet of the �ow.

Correctness

The above generic scheme does not state how the path of ps is chosen among the

alternatives; i.e., how the ERT is con�gured and the ports are selected by the PSU.

However, the correct operation requires this path to include no cycles. Note that

this is a necessary condition for deadlock-freedom as well. The correctness of our

approach is summarized in Theorem 3.1.1.

Theorem 3.1.1. If for every �ow f ∈ F the path of ps is acyclic, and in every

switch, packets advance between any given (input port, output port) pair in the order

of their arrival, then the in-order delivery within every connection is preserved.

Proof. Consider an arbitrary connection with I being its GCID. Let f1 be the �rst

�ow belonging to the connection. Since GCIDs are globally unique and f1 is the

March 29, 2009

3.1. Routing Scheme 22

�rst �ow, when f1 starts, no RC in the network contains a matching entry for I.

Let π1 be the path (a sequence of network elements) of ps.

Since inside switches the order of the packets is preserved, it is su�cient to show

that all f1's packets follow π1, to prove the in-order delivery within f1. Assume by

contradiction, that there exists some packet of f1 (including pt among the considered)

that doesn't follow π1. Let p be such a packet, whose path has a shortest common

pre�x with π1. Denote by e the last element on the common pre�x. Note e must be

a switch.

First assume p to be a data packet. Let t be the arrival time of p to e. If at t

the last data packet of f , denoted as p′, is already sent by the source, then it still

follows p on π1. To see this, recall that p′ shares the path with p at least until e,

and that packets on the same path are advancing in their original order.

As a result, at t, pt is not sent yet⇒ no other �ows with GCID of I have started.

In addition, we know that ps visits e only once (π1 is acyclic). Therefore, at t, the

state of e's RC in regards to I is similar to its state just after the routing of ps (by

e). Note that this conclusion is also true if p = pt, because a new �ow cannot start

before pt returns to the source. Therefore, in any case, p follows ps for one more

hop after e ⇒ a contradiction.

To this end, we showed that all packet of f1, including pt, follow the path of ps.

Particularly, this means that when pt returns to the source, no RC in the network

contains a matching entry for I. Therefore, the above proof is trivially repeated for

a new �ow f2 within the connection I.

More generally, using induction on the serial number of a �ow within the observed

connection, we show that: 1) all packets of the same �ow follow the same path, 2) all

packets of a �ow reach its destination before a new �ow starts. These two conditions

are su�cient for the correctness of the theorem.

Reducing the ERT Size

The regular In�niBand RT stores an entry per every possible destination in the

network (currently 64K entries according to the standard), which holds a single

port number. According to the description above, every ERT entry is required to

March 29, 2009

3.2. Adaptation Policy 23

hold multiple port numbers (up to the radix of the switch). As a result, the relatively

large size of the In�niBand RT is multiplied, which may make the implementation

of the ERT impractical. It would, therefore, be useful to try and reduce its size.

To this end, we observe that oftentimes there is a large overlap among the sets

of ports that can be used to reach any given destination. Accordingly, we construct

groups of alternate ports (GAPs). (Any given port can be in multiple groups.) An

ERT entry holds a port number of a DP and a group number (no more than 5-6

bits) of one (or more) GAP. A separate port group table (PGT), indexed by group

number, provides the set of output ports belonging to the group. Consequently, the

size of the ERT is only slightly increased compared to the In�niBand RT, while the

size of the additional PGT is expected to be very small (32-64 entries).

Importantly, the PGT is accessed only during route setup because for data pack-

ets just the DP is used. Therefore, the access time to the ERT in the common case

is una�ected.

3.2 Adaptation Policy

3.2.1 The Choice of Heuristic

Our adaptation scheme, similarly to other local adaptation approaches, relies on the

ability of an individual switch to asses the quality of its output ports using some

local heuristic. Obviously, successful adaptation depends on the correct choice of

the applied heuristic (along with some good luck).

Packet level adaptation approaches [15,23,29] typically rely on bu�er occupancy

at the far end of port's outgoing link as the quality metric for that port. Such

information is short-lived and it only re�ects the instantaneous state of the link. We

�nd it unsuitable for routing whole �ows because we don't want long-term decisions

to be taken based on a short-term measure.

The number of �ows crossing a link, or in the weighted case their aggregate

weight, is a simple and more appropriate alternative. To keep track of the number

of �ows, we need switches to hold a counter per output port. This counter is incre-

mented when a �rst packet of a �ow ps passes through the port and decremented in

March 29, 2009

3.2. Adaptation Policy 24

SW1 SW2 SW3 SW4d012 34 012 34 012 34 012 34
Figure 3.2: Dynamic use of alternate ports

response to the last packet pt. Other more sophisticated heuristics can be considered

in future work.

3.2.2 Adaptation Flexibility

In order to allow for maximal adaptation �exibility, the adaptation policy may

require that the same switch, for the same state of the ports, route two �ows heading

to the same destination di�erently.

For example, consider the topology depicted in Figure 3.2. Flows arrive to the

switches, and need to be routed to the destination node d. In order to provide routing

�exibility, we want �ows to be allowed to move horizontally before descending to d,

as long as the heuristic measure for horizontal ports is strictly better than that of

the descending one.

The resulting paths must not include cycles, so we restrict any given �ow to follow

(at most) a single horizontal direction (right/left). Since we want to maximize the

number of available horizontal hops, �ows initially arriving to switch SW2 are routed

to the right (same with SW1; �ows initially arriving to SW3, SW4 are routed to the

left). However, �ows arriving to SW2 from SW3 must be routed left. Therefore,

aside from the heuristic, additional information has to be used in order to achieve a

desired result.

Now, we will discuss a possible solution for the above example. Actually, we

are interested in this scenario because we will use a similar adaptation policy in

Chapter 6 for routing in a modi�ed fat-tree topology. Although we concentrate on a

particular case, the presented concepts can be considered as a part of a larger, general

March 29, 2009

3.2. Adaptation Policy 25

adaptation framework. Such a framework should allow switches to be con�gured in

a simple manner to implement di�erent adaptation policies in various topologies.

This framework is outside the scope of the current work.

Returning to our example, we begin by selecting the descending port (output

port 0, OP-0) at every switch as the DP, such that when the PRCs are full, the

switches route �ows directly to d. The de�nition of the problem requires that the

PSU prefer the DP over every alternative port if the heuristic measure for both is

equal. Therefore, OP-0 is con�gured to have a higher static priority, which serves

as a tie-breaker.

Additionally, we can conclude that the choice of horizontal direction when routing

a �ow depends on the identity of the input port from which that �ow arrives to the

switch. Consider SW2 again. It has �ve outputs that can be potentially used for

routing an arriving �ow. All these outputs appear in the ERT and are passed to the

PSU for the adaptive selection. If a �ow arrives to SW2 from the upward direction or

from SW1, the PSU removes OP-1 and OP-2 from consideration before proceeding

to the best port selection. Otherwise (the �ow arrives from SW3), OP-3 and OP-4

are ignored. The remaining switches are con�gured in a similar manner. Note that

such con�guration of the PSU only requires a small table that holds a list (binary

vector) of the �allowed� outputs per every input.

If the number of switches in the example of Figure 3.2 were high (rather than

four), we might choose to limit the number of horizontal hops a �ow can take before

descending, to prevent the creation of extremely long paths. For this purpose, the

route setup packet ps should carry a hop-counter �eld. The counter is initialized to

the allowed number of horizontal hops when the �rst horizontal hop is taken, and

is decremented after every advance in the horizontal direction. Once the counter

reaches zero, the PSU sends the packet to the DP.

Implementation of sophisticated adaptation schemes, such as the one presented

above, is expected to increase the routing delay of ps compared to the existing

static routing. However, the penalty is incurred only once per �ow, during the path

setup. The routing of data packets is performed by just accessing the ERT and the

PRC tables. Therefore, for long �ows, the overhead of the setup is expected to be

March 29, 2009

3.2. Adaptation Policy 26

e�ectively amortized.

March 29, 2009

Chapter 4

Explicit Rate Calculation

In Chapter 1, we de�ned our performance goals, and introduced the need for the

combination of adaptive routing and rate control to mitigate congestion. The exist-

ing work on both subject was discussed in Chapter 2. In this chapter, we propose a

rate control method based on precise explicit rate calculation. For each of the three

representative scenarios and associated performance goals, we propose one or more

optimal algorithms for rate calculation under the assumption of a ��uid model�,

and present its distributed version. In addition, we formally compare the di�erent

algorithms. The discussion of implementation of the calculated rates is postponed

to Chapter 5. The simulation results associated with rate control are presented in

Chapter 6.

4.1 A Single Phase-Based Application

As mentioned in Chapter 1, the goal is minimization of total completion time of the

communication phase. This means that we do not care about the behavior of indi-

vidual �ows, as long as their completion time does not exceed the total completion.

Below, we present two distributed algorithms that achieve the optimal total com-

pletion time. Importantly, the algorithms require network elements to store a small

amount of state information, independent of number of �ows or network topology.

Moreover, the size of control packets that are used for calculations is �xed as well.

27

4.1. A Single Phase-Based Application 28

4.1.1 The Optimal Completion Time

Let us begin by presenting a precise mathematical model. We assume the routing

to be �xed for the duration of the calculation. Let all links l ∈ L have the same

capacity of 11. Denote by Fl the set of �ows crossing link l, and by Lf the set of

links on the path of �ow f . Let every f ∈ F have an associated weight wf being

equal to its size df . Later we will regard wf in units of time, i.e., the time it takes

to transmit f at the line speed2. Let Wl be the aggregate weight of �ows crossing

l ∈ L. Denote by Wf the maximum Wl among links in Lf . Finally, let W be the

maximum link weight in the network. The precise relations between di�erent values

are given by:

Wl =
∑
f∈Fl

wf , Wf = max
l∈Lf

{Wl} , W = max
l∈L
{Wl} = max

f∈F
{Wf} . (4.1)

Since we consider long �ows, we ignore small disparities among the starting

times of di�erent �ows, and assume all �ows belonging to the communication phase

to start at t = 0 (the beginning of the phase). Particularly, we forbid �ows to start

in the middle of the phase. The control of the network is reduced to assigning each

�ow f ∈ F , at any given time τ , an instantaneous rate r(f, τ), without violating the

capacity of the links. The amount of data transmitted for f , by time t is given by:

D(f, t) =

t∫
0

r(f, τ)dτ. (4.2)

The total completion time is de�ned to be the smallest time by which the data

of all �ows has been transmitted3. Our goal is to �nd a feasible rate assignment

vector r that is constant in time, i.e. r(f, τ) = r(f), and guarantees the shortest

total completion time (later we prove that the optimum can be achieved by constant

rate assignment).

First, consider a scenario in which all �ows have the same size and weight wf = 1.

1This assumption is used for facility of exposition; all our methods can be trivially extended
for the general case.

2We assume potential disparities in units to be solved by appropriate constant coe�cients.
3Long �ow length allows us to neglect the di�erence between transmission and arrival time.

March 29, 2009

4.1. A Single Phase-Based Application 29

Thus, the maximum link weight W is, in fact, an integer. Giving r(f) = 1
W

to all

�ows minimizes completion time. It is furthermore the most resource conserving, as

it assigns to each �ow the minimum rate required for minimizing completion time.

Unfortunately, however, it requires some kind of global coordination mechanism (a

type of broadcast)4.

We next make two important observations: 1) giving �ows higher rates than

the above minimum does not delay the completion time, and 2) so doing does not

increase the amount of transmitted data, as a completed �ow will cease to consume

bandwidth. With this in mind, we next propose a simpler rate assignment.

Setting ∀f ∈ F : r(f) = 1
Wf

results in a feasible rate assignment. Moreover,

since 1
Wf
≥ 1

W
, the optimum total completion time is still guaranteed. When �ows

of di�erent size are considered, we de�ne the normalized rate to be r̄(f) = r(f)
wf

.

Theorem 4.1.1 shows that setting r̄(f) = 1
Wf

results in an optimal assignment,

which we refer to as Single Application Assignment (SAA).

Theorem 4.1.1. Given a set of �ows with respective sizes and a route for each �ow,

assigning to every f ∈ F a rate r(f) =
wf

Wf
(equivalently r̄(f) = 1

Wf
) is feasible and

achieves a completion time W, which is the minimum.

Proof. ∀l ∈ L, ∀f ∈ Fl : r(f) ≤ wf

Wl
. Therefore, ∀l ∈ L :

∑
Fl
r(f) ≤ 1, so the

assignment is feasible.

The link bearing W needs at least W units of time to transmit all of the applied

data, so the lower bound on the completion time is W .

Finally, ∀f ∈ F , the completion time is given by
wf

r(f)
= Wf ≤ W , so the lower

bound is achieved.

Corollary 4.1.2. A routing that minimizes W , combined with SAA, achieves the

globally optimal completion time

Although our adaptive routing, described in Chapter 3, does not achieve the

minimum W , as required in Corollary 4.1.2, it is designed to reduce the maximum

4This can be the best approach from the practical point of view when the problem is extended
to include multicast �ows.

March 29, 2009

4.1. A Single Phase-Based Application 30

contention heuristically which leads to a direct improvement of the performance as

well.

Now, let us make some additional de�nitions. We say that a rate assignment

satis�es SAA requirement if ∀f ∈ F : r̄(f) ≥ 1
Wf

. An algorithm that satis�es SAA-

requirement is said to implement SAA. It is important to note that SAA does not

maximally exploit link capacity; i.e., some �ows may be capable to increase their

rates without a�ecting others.

An algorithm that satis�es both the SAA-requirement and maximality is said to

implement SAA-M. In the same network, with the same �ows and routing, di�erent

SAA-M assignments can be found with potentially di�erent
∑

F r(f). All of them

are, however, maximal from the �ow perspective. Note that SAA-M does not a�ect

the total completion time, but does allow some �ows to end earlier. We will �nd

this type of algorithms useful in Section 4.2 for the independent �ows scenario.

In the following subsections, we present algorithms that implement SAA and

SAA-M. The algorithms are easily adapted to operate in a network with links of

varying capacity by rede�ning link weights to be:

Wl =

∑
f∈Fl

wf

cl
. (4.3)

4.1.2 SAA Algorithm

In SAA, the rate of an individual �ow depends on a single parameter, Wf . Our

goal is to enable every �ow to derive its Wf value. In order to do so, links must

track their weights (similarly to the proposed for adaptive routing in Chapter 3),

and �ows to periodically check link weights along their paths. Note, that a single

sample at the starting time of a �ow is not su�cient, since �ows are allowed to start

at slightly di�erent times at the beginning of a communication phase.

The detailed behavior of �ows and links is summarized in Algorithm 4.1. The

subroutines of the main algorithm are presented in Algorithm 4.2. The subroutines

are used for communication between a �ow f and links in Lf . In fact, it is the

source of f that communicates with network elements on f 's path, but we �nd it

convenient to use the �ow-link abstraction and terminology.

March 29, 2009

4.1. A Single Phase-Based Application 31

Algorithm 4.1 SAA

Initialization (at network setup):
∀l ∈ L : Wl ← 0

Upon the start of �ow f :
1. Wf ← AnnounceStart(wf)

2. r(f)← wf

Wf

Periodically:
1. Wf ← ProbeLinks()

2. r(f)← wf

Wf

Upon the end of �ow f :
1. AnnounceEnd(wf)

Algorithm 4.2 SAA subroutines

real AnnounceStart(wf)

1. send p : p.wf ← wf , p.Wf ← 0
2. foreach l ∈ Lf upon receipt of p

2.1 Wl ←Wl + p.wf /*Update weight*/

2.2 p.Wf ← max {p.Wf ,Wl} /*Collect 1
Wf

*/

3. return p.Wf when p arrives back to the source

void AnnounceEnd(wf)

1. send p : p.wf ← wf

2. foreach l ∈ Lf upon receipt of p
2.1 Wl ←Wl − p.wf /*Update weight*/

real ProbeLinks()

1. send p : p.Wf ← 0
2. foreach l ∈ Lf upon receipt of p

2.1 p.Wf ← max {p.Wf ,Wl} /*Collect 1
Wf

*/

3. return p.Wf when p arrives back to the source

Each subroutine involves sending a control packet p to the destination of f ,

which carries information, from f to links in Lf . In addition, at each link, p's

arrival triggers a certain action that a�ects the state of the link, and p potentially

collects some data from the link. Whenever p reaches the destination, it is sent back

to the source with the collected data (on the returning path p is simply forwarded

without a�ecting link state). The collected data is returned to f at the end of the

subroutine.

March 29, 2009

4.1. A Single Phase-Based Application 32

We make the following remarks. First, we make no assumptions on the return

path of p; in particular, it can di�er from the forward path. In addition, during the

invocation of a subroutine a single control packet is sent, and the subroutine ends

only after its return. Therefore, only a single control packet per �ow can be in-�ight

at any given time. We will make similar use of subroutines when describing other

algorithms later.

At the beginning of a communication phase, each �ow (independently) executes

AnnounceStart(), which updates the weight of links in Lf and collects an initial

Wf . In practice, this procedure uses the �rst packet of the �ow, and can thus be

combined with establishing the route of f adaptively. When f ends, it updates the

links again by executing AnnounceEnd(). In between, the �ow samples the relevant

weights using ProbeLinks(), which can potentially be piggy-backed on data packets.

In this case, the need to use ACKs to return the collected weight can be obviated

in the following manner.

Let each data packet carry two weight �elds p.W c
f and p.W u

f . The �rst holds Wf

as it was known to f at the time when p left the source, and the second collects the

updated maximum encountered link weight. The source has to be noti�ed only if

the two weights do not agree when p reaches its destination.

It is not hard to see that after all �ows enter the network and set correct weights

on the links, every �ow is guaranteed to eventually acquire a correct Wf . From then

on, for each f ∈ F , the known Wf stays unchanged until f ends. To see this, note

that �ows crossing l ∈ Lf for which Wl = Wf cannot end before f . As a result, f

is assigned the correct rate throughout its transmission. Finally, we note in passing

that if the tra�c pattern remains the same for several communication phases, rate

assignments can be reused.

Calculation Time

After all �ows announce start, it takes each �ow a single probing to acquire the

correct rate. The frequency of sampling can be tuned (statically or dynamically),

and as mentioned above, it can be piggy-backed on data packets. The probing itself

is completed within a single round-trip delay.

March 29, 2009

4.1. A Single Phase-Based Application 33

The frequency of sampling can be tuned (statically or dynamically), and as

mentioned above, it can be piggy-backed on data packets. The probing itself is

completed within a single round-trip delay. This delay comprises propagation and

queueing components. (Even if control packets are given absolute priority, they still

wait for each other.) The queueing delay, however, is greatly reduced by the fact

that each �ow has in �ight at most a single control packet at any time.

The propagation delay may vary with topology and routing. Generally, we expect

it to be bounded from above by around 10µs. The queueing delay highly depends on

the tra�c pattern. In presence of higher contention, the queueing delay and the cal-

culation time grow. However, if we consider calculation overhead to be the product

of calculation time and a �ow's transmission rate, the queueing delay is not directly

translated into overhead, as lower transmission rates are expected. Nevertheless, the

calculation time of SAA is by far lower than of any existing scheme (which requires

multiple round-trips to converge). Finally, we note in passing that if the tra�c

pattern remains the same for several communication phases, rate assignments can

be reused.

4.1.3 SAA-M Algorithm

By de�nition, an algorithm that implements SAA-M has to guarantee each �ow a

normalized rate of 1
Wf

and to distribute any excess claimable capacity left (some

of this capacity can't be claimed simply because all �ows crossing a link are bot-

tlenecked by other links). Importantly when SAA-M is employed, as opposed to

DFFA, changes ofF in the steady state, trigger only local recalculations, as will

be shown later.

In order to simplify the algorithm and make it work faster, we choose to let every

�ow attempt to claim as much excess capacity as it can in a greedy manner. The

greedy capacity claiming can lead to a situation in which several �ows contend for the

same free capacity. The unnecessary oversubscription is avoided by forcing the �ows

to reserve the intended capacity before actually claiming it. If the reservation fails,

the �ow backs o� for a random amount of time before retrying. Nevertheless, as �ows

come and go, some links can become oversubscribed (i.e., the sum of claimed rates

March 29, 2009

4.1. A Single Phase-Based Application 34

of �ows in Fl is greater than the total capacity). In this case, an oversubscribed link

forces its �ows to reduce their normalized rates to 1
Wl
, by marking control packets

that cross it. Unlike in In�niBand CCA, marking rate is not a parameter as all

crossing packets are marked (which has no negative impact on the convergence).

In order to support the desired behavior, we require each link to store a small,

�xed amount of state in three variables:

• Wl � link weight

• cl � free link capacity, initially (at network setup) 1, can be negative when link

is oversubscribed

• crl � reserved, not yet claimed, capacity

Detailed Algorithm

The detailed description of the algorithm is given in Algorithm 4.3; its subroutines

are found in Algorithm 4.4. Similarly to SAA, a new �ow f uses AnnounceStart()

to update the weights of links in Lf and to collect the initialWf , which is used to set

the rate r(f) ← wf

Wf
. Unlike in SAA, the links in Lf need to be updated about the

rate increase, so that they can track cl correctly. For this purpose, UpdateLinks()

is called with r(f) as its �rst argument ∆. The execution of UpdateLinks()reduces

cl by ∆ for all links in Lf . The second argument is used to cause the links to reduce

crl when reserved capacity becomes claimed.

Again like in SAA, after the start of f is completed, the �ow periodically samples

the state of its path with ProbeLinks(). However, now, ProbeLinks() collects three

types of data from the links along the probing �ow's path: 1) the up-to-date Wf

value, 2) free potentially claimable capacity cu (which is the minimum free capacity

on the path), and 3) an indication whether an oversubscription occurs on one of

the links, in form of a weight value Wo. When no oversubscription is present, the

returned value is Wo = 0. Otherwise, Wo equals the maximum Wl among the

oversubscribed links in Lf . Note that a link l is guaranteed not be oversubscribed

if ∀f ∈ Fl : r(f) ≤ wf

Wl
.

March 29, 2009

4.1. A Single Phase-Based Application 35

Algorithm 4.3 SAA-M

Initialization (at network setup):
∀l ∈ L : cl ← 1, Wl ← 0, crl ← 0

Upon the start of �ow f :
1. Wf ← AnnounceStart(wf)

2. r(f)← wf

Wf
/* Start by assigning SAA rate*/

3. UpdateLinks(r(f), 0)

Periodically:
1. [Wf , Wo, cu] ← ProbeLinks()

2. if r(f) < wf

Wf
then /*Current rate below SAA rate*/

2.1 ∆← wf

Wf
− r(f)

2.2 r(f)← wf

Wf
/* Increase rate to SAA rate*/

2.3 UpdateLinks(∆, 0)
3. elseif Wo > 0 then /*Oversubscribed link encountered*/

3.1 ∆← min
{

wf

Wo
, r(f)

}
− r(f) /*Reduce rate if necessary*/

3.2 r(f)← min
{

wf

Wo
, r(f)

}
3.3 UpdateLinks(∆, 0)

4. elseif cu > 0 then /*Claimable capacity found*/

4.1 res ← MakeReservation(cu)
4.2 if res = true then /*Reservation successful*/

4.2.1 r(f)← r(f) + cu
4.2.2 UpdateLinks(cu, cu)

4.3 else /*Reservation failed*/

4.3.1 CancelReservation(cu)
4.3.2 back-off for random amount of time

Upon the end of �ow f :
1. AnnounceEnd(wf , r(f)) /*Update link weights and capacity*/

The reaction of f after ProbeLinks() di�ers depending on the returned values.

If r(f) is found to be lower than
wf

Wf
(not satisfying the SAA requirement), f increases

its rate to
wf

Wf
and runs UpdateLinks() with ∆ =

wf

Wf
− r(f). If one of the links in

Lf is oversubscribed, then the returned Wo > 0. In this case, the �ow reduces its

rate to min
{

wf

Wo
, r(f)

}
. Finally, if neither of the previous two conditions hold, the

possibility to increase rate greedily is checked (cu > 0).

If cu is found to be positive, f attempts to reserve all of the capacity before

claiming it by calling MakeReservation() with cu as its argument. This subroutine

increases crl of links in Lf . The reservation is deemed successful only if at all links

March 29, 2009

4.1. A Single Phase-Based Application 36

Algorithm 4.4 SAA-M subroutines
real AnnounceStart(wf)

1. send p : p.wf ← wf , p.Wf ← 0
2. foreach l ∈ Lf upon receipt of p

2.1 Wl ←Wl + p.wf

2.2 p.Wf ← max {p.Wf ,Wl} /*Collect 1
Wf

*/

3. return p.Wf when p arrives back to the source

void AnnounceEnd(wf ,∆)

1. send p : p.wf ← wf , p.∆← ∆
2. foreach l ∈ Lf upon receipt of p

2.1 Wl ←Wl − p.wf

2.2 cl ← cl + p.∆

[real,real,real] ProbeLinks()

1. send p : p.Wf ← 0, p.W0 ← 0, p.c← 1
2. foreach l ∈ Lf upon receipt of p

2.1 p.Wf ← max {p.Wf ,Wl} /*Collect 1
Wf

*/

2.2 p.c← min {p.c, cl − crl } /*Collect claimable capacity*/

2.3 if cl < 0 then

2.3.1 p.Wo ← max {p.Wo,Wl} /*Oversubscribed link*/

3. return [p.Wf , p.Wo, p.c] when p arrives back to the source

void UpdateLinks(∆, cr)

1. send p : p.∆← ∆, p.cr ← cr

2. foreach l ∈ Lf upon receipt of p
2.1 cl ← cl − p.∆
2.2 crl ← crl − p.cr

bool MakeReservation(cr)

1. send p : p.cr ← cr, p.s← true
2. foreach l ∈ Lf upon receipt of p

2.1 crl ← crl + p.cr /*Update reservation*/

2.2 if cl − crl < 0 then

2.2.1 p.s← false /*Reservation fails*/

3. return p.s when p arrives back to the source

void CancelReservation(cr)

1. send p : p.cr ← cr

2. foreach l ∈ Lf upon receipt of p
2.1 crl ← crl − p.cr /*Update reservation*/

cl − crl ≥ 0 after the update. The latter indicates that no oversubscription will

arise when the reserved capacity is actually claimed. If the reservation succeeds, f

increases its rate by cu and runs UpdateLinks() to notify the relevant links about

March 29, 2009

4.1. A Single Phase-Based Application 37

the change. Here, the second argument is used to cause the links to reduce crl by cu,

as they reduce cl by the same amount.

If the reservation fails, the reserved capacity is released using CancelReservation(),

which reduces back the crl values. In order to avoid livelock in some pathological sce-

narios (to be discussed below), the �ow is required to back o� for a random amount

of time.

It is possible that the result of ProbeLinks() triggers no special activity. In fact,

if the set of �ows F stops changing and the algorithm converges (yet to be shown),

it is expected to happen most of the time. Finally, whenever a �ow ends it executes

AnnounceEnd(), reducing the weights of the links in Lf by wf and increasing the

free capacity by r(f).

Discussion of the Reservation Policy

The proposed reservation policy can be summarized as follows. Upon discovering

free, claimable capacity cu, a �ow attempts to reserve all of it. If this attempt fails

the reservation is completely canceled, and the �ow backs o� for a random amount

of time. Now, we turn to discuss the motivation for each component of this policy.

To begin with, reserving cu (maximum available capacity) is chosen for its sim-

plicity. Other more sophisticated alternatives may also be considered. For example,

a �ow can reserve only a fraction of cu if it is higher than some prede�ned, small

value. This approach is expected to provide a more �fair� result when several �ows

contend for the same excess capacity. In the case of a single contender, the capacity

would be claimed in several iterations of the reserve-claim procedure.

We forbid control packets to carry per-hop information. This choice is made

to keep the algorithm simple and because in some cases a �ow's path be relatively

long. As a result, each packet carries out the same operation on all links on its path.

For this reason, if the desired capacity is not available for reservation on one of the

links, the reservation fails even if that link has a smaller amount of free capacity.

Therefore, we apply the �all or nothing� reservation policy.

Finally, let us demonstrate the need for randomized back-o� when a reservation

fails. Consider the scenario depicted in Figure 4.1. Two �ows f1, f2 originate at

March 29, 2009

4.1. A Single Phase-Based Application 38s1s2 d1d2f1f2 l1 l2
Figure 4.1: The possibility of livelock

sources s1, s2 and are destined to d1, d2, respectively. The �ows share two links on

their paths, l1 and l2. At some point in time, both �ows attempt to reserve available

free capacity on their paths. Assume that, due to the network topology, f1 is always

the �rst to make reservation on l1, while f2 is the �rst to reserve capacity on l2. As a

result, both �ows fail to complete the reservation and engage in a never-ending cycle

of reservation and cancellation. The randomized back-o� gives a positive probability

for one of the �ows to succeed in the reservation and claim the capacity.

Correctness

In order to show correctness of the proposed algorithm, we assume that at some

point in time the set of �ows F stops changing. It is not hard to see that as a result,

link weights eventually become steady as well. Ideally, we would like to prove that

our algorithm is guaranteed to converge to a state in which �ow rates are constant

and comply with feasibility, SAA, and maximality requirements. In practice, due

to the use of randomized back-o� we prove a slightly weaker Theorem 4.1.5, which

guarantees that eventually, rates satisfy feasibility, SAA requirement, and are mono-

tonically non-decreasing. The success of reaching maximality depends on a correct

choice of the random back-o� times.

Next, we assume that a steady state rate assignment (which satis�es all require-

ments, including maximality) is reached and a single �ow starts/ends. We prove

that as a result only a local recalculation takes place.

De�nitions:

• t0 � a time after which ∀l ∈ L : Wl is �xed.

• Wf (∞) � steady state value of Wf , Wf (∞) = maxl∈Lf
{Wl(t0)}.

March 29, 2009

4.1. A Single Phase-Based Application 39

• ξs
l (t) � a �shadow� variable, used for proof purposes only, that holds the total

capacity reserved on link l at time t by packets that succeed in reservation.

This value grows when capacity is reserved by a packet that succeeds to make

the reservation on all links on its path (this knowledge actually violates causal-

ity). It is reduced when the reserved capacity is claimed.

• ξf
l (t) � a �shadow� variable, used for proof purposes only, that holds the to-

tal capacity reserved on link l at time t by packets that eventually fail in

reservation (crl (t) = ξs
l (t) + ξf

l (t)).

• r(f, t) � the local rate variable of f .

• rl(f, t) � a �shadow� variable used for proof purposes only, it holds the rate of f

as known by l. The value is assumed to be updated with cl in UpdateLinks().

The following equality holds cl(t) = 1−
∑

f∈Fl
(rl(f, t)).

Lemma 4.1.3. There exists a time t1 > t0 such that for every t > t1, ∀f ∈ F :

r(f, t) ≥ wf

Wf (∞)
, and UpdateLinks() is called only from lines 3.3 and 4.2.2 after the

periodic probing.

Proof. Consider a �ow f at time t > t0 just after an invocation of ProbeLinks().

If r(f, t) <
wf

Wf (∞)
, then it is immediately set to r(f, t) =

wf

Wf (∞)
. After t, r(f) is

reduced only if a later ProbeLinks() returns Wo > 0. However, after t0 ∀l ∈ L : Wl

is stable, so a collected Wo ≤ maxl∈Lf
{Wl(t0)} = Wf (∞). Therefore, r(f) is never

reduced below
wf

Wf (∞)
. As a result, after later invocations of ProbeLinks() the

condition of line 2 is never true.

Lemma 4.1.4. There exists a time t2 > t1 such that ∀t > t2,∀l ∈ L : cl(t) ≥ 0

Proof. Consider a link l at time t > t1. We divide the proof into two cases:

1. cl(t) − ξs
l (t) ≥ 0. We need to show that ∀t′ > t the inequality holds and

thus cl(t
′) ≥ 0. Following Lemma 4.1.3, cl(t) and ξs

l (t) can change only as

a result of lines 3.3, 4.1, 4.2.2 executed by a �ow f ∈ Fl. Line 3.3 involves

a negative ∆, which increases cl. Line 4.2.2 decreases cl and ξ
s
l by the same

amount. Therefore, these two lines preserve the non-negative cl(t)−ξs
l (t). Line

March 29, 2009

4.1. A Single Phase-Based Application 40

4.1 invokes MakeReservation(), which can potentially increase ξs
l . However,

such an increase cannot turn cl(t)− ξs
l (t) to be negative, because in this case

the reservation would fail (causing an increase in ξf
l (t) instead).

2. cl(t) − ξs
l (t) < 0. Here, all we need to show is that at some t′ > t cl(t

′) −

ξs
l (t′) ≥ 0, because then we return to case 1. Assume by contradiction that

the given situation persists. From t on, every f ∈ Fl will get Wo ≥ Wl after

invoking ProbeLinks(). In addition, eventually all successful reservations will

be translated into decreases of cl and no new reservations are made. Thus, at

some t̃ > t we have cl(t̃) < 0, ξs
l (t̃) = 0, this state is expected to stay true

from t̃ on. However, as ordered by Wo ≥ Wl, �ows f ∈ Fl reduce their rates

to r(f) ≤ wf

Wl
. The rl(f) values are updated in the same manner, which causes

cl to become non-negative, a contradiction.

Theorem 4.1.5. The SAA-M algorithm eventually guarantees the following:

1. ∀f ∈ F : r(f) ≥ wf

Wf (∞)

2. ∀f ∈ F : r(f) is monotonically non-decreasing with time

3. ∀l ∈ L :
∑

f∈Fl
(r(f, t)) ≤ 1 (feasibility)

4. ∀f ∈ F : minl∈Lf
{cl} = 0 (maximality)

Proof. Let's prove the guarantees one by one

1. Immediate from Lemma 4.1.3

2. Lemma 4.1.3 states that eventually the condition of line 2 is constantly false.

Lemma 4.1.4 indicates the same about the condition of line 3. As a results

eventually all �ows will only attempt to increase their rates or do nothing.

3. Lemma 4.1.4 states that there exists time t1, such that ∀t > t1 : 1 − cl(t) =∑
f∈Fl

(rl(f, t)) ≤ 1. Assume by contradiction that at some t2 > t1
∑

f∈Fl
(r(f, t2)) >

1 (capacity violation). Since rl(f) is updated (with delay) to r(f), and r(f)

is monotonically non-decreasing, eventually at t3 > t1 it would be true that∑
f∈Fl

(rl(f, t3)) > 1, a contradiction.

March 29, 2009

4.1. A Single Phase-Based Application 41

4. Consider a �ow f ∈ F at time t when the �rst three guarantees already hold

(and are not violated later). Assume that minl∈Lf
{cl} > 0. Because �ows

continue the periodic probing inde�nitely, and randomized backo� probabilis-

tically resolves reservation con�icts, eventually this capacity will be claimed

by f and/or �ows that share links with it.

Locality

Now, we show the locality of change when a single �ow starts/ends after a steady

state rate assignment is reached. Consider a �ow f ∈ F , denote F0(f) = {f}. Next,

we make the following recursive de�nition: Fi(f) is a set of �ows not belonging to

any Fj(f) for j < i that share a link with a �ow in Fi−1(f). Propositions 4.1.6, 4.1.7

state the locality properties.

Proposition 4.1.6. Let �ow f start after a steady state rate assignment is reached.

As a result, only rates of �ows in F1(f) and F2(f) may change.

Proof. The start of f increases the claimed capacity on links in Lf , some of which

may become oversubscribed. As a result, some �ows in F1(f) may be ordered to

reduce rates. Thus, some �ows in F2(f) may greedily claim the freed capacity. The

rates of �ows in F3(f) cannot change because for each f ′ ∈ F3(f) there was a

saturated link before f started and �ows in F2(f) only increase rates in a manner

that doesn't force other �ows to reduce theirs. Consequently, ∀i ≥ 3 the rates of

Fi(f) stay unchanged.

Proposition 4.1.7. Let �ow f end after a steady state rate assignment is reached.

As a result, only rates of �ows in F1(f), F2(f) and F3(f) may change.

Proof. The end of f frees capacity and decreases weights on links in Lf . As a

result, some �ows in F1(f) increase their rates due to the change in their Wf . This

potentially causes rate reduction of some �ows in F2(f) (greedy capacity claiming

by �ows in F1(f) on its own does not). Like in the proof of Proposition 4.1.6

above, �ows in F3(f) may increase their weights, but ∀i ≥ 4 the rates of Fi(f) stay

unchanged.

March 29, 2009

4.2. Independent Flows 42

Calculation Time

Here, like in SAA, after all �ows announce start (assuming that a period of changes

is followed by a steady period), it takes each �ow f a single probing to set its rate

to
wf

Wf
. It is natural to increase the frequency of sampling during the active stage

of calculation and to reduce it when a �ow assumes that a steady state is reached.

During the latter, one can piggy-back the sampling on data packets. Here, it su�ces

to let data packets somehow detect events of oversubscription, existence of claimable

capacity, and changes in Wf . Later, control packets can be used to collect the exact

values and to perform the calculation.

After getting the guaranteed rate, a �ow may attempt to reserve and claim

excess capacity. The time required for that, until no further excess capacity is

available, highly depends on the reservation policy and particularly on the choice of

the backo� distribution. In principle, we can decide to make �ow give up claiming

additional capacity after several failed reservations attempts. The tuning of the

reservation policy is an interesting topic for further research. We note again that

SAA-M bounds the set of a�ected �ows when changes in F occur.

4.2 Independent Flows

In the independent �ows scenario, there is no meaningful relation between di�erent

�ows and they can potentially start and end in an unpredictable manner. As a

result, our goal is to �nd an e�cient and fair assignment of instantaneous rates for

a given set of �ows. As before, we assume the routing to be �xed for the duration of

the calculation. In addition, we seek a solution in form of a distributed algorithm,

which makes uses control packets of a �xed size, and stores no per-�ow state at the

network elements.

4.2.1 Weighted Max-Min Fairness

Fairness can be de�ned in various ways; we use max-min fairness for our purposes.

De�nition 4.2.1. Let r be a feasible rate assignment. We say that r is max-min fair

March 29, 2009

4.2. Independent Flows 43

if for every other feasible assignment r′ it holds that, r′(f) > r(f) implies existence

of fvictim, for which r(fvictim) ≤ r(f) and r′(fvictim) < r(fvictim).

In other words, a rate assignment r is max-min fair if for each �ow f , r(f)

cannot be increased without decreasing r(fvictim) for some �ow fvictim for which

r(fvictim) ≤ r(f). Alternatively, we can say that max-min fair assignment recursively

maximizes the minimum rates; i.e., it maximizes the minimum rate, then the second

smallest rate, then the third one, etc (hence the name max-min).

Note that the max-min fairness incorporates the e�ciency requirement. An

ine�cient rate assignment, one that allows the rate of some �ow to be increased

without a�ecting others, clearly violates the de�nition. In addition, max-min fair

assignment can be shown to be unique for given network and �ow set.

As before, �ows may have associated weights wf . Here, however, the weight can

be chosen arbitrarily to represent �ow priority rather than size. If we replace the

rate r(f) with a normalized rate r̄(f) = r(f)
wf

in the above de�nition, we end up

with the weighted max-min fairness. We will use the latter as a general optimality

criterion in the following discussion.

4.2.2 Centralized Algorithm

The centralized algorithm for calculation of the max-min fair rate assignment under

a �xed set of �ows is well known, and can be found in [4]. We present its weighted

version in Algorithm 4.5, and refer it as a �ow-fair algorithm (FFA). The basic

operation of FFA can be described as follows. Start with zero normalized rates.

Increase the normalized rates of all �ows continuously at the same speed, until one

of the links in the network becomes saturated. Remove saturated links and �ows

crossing them from the network. Continue in the residual network with remaining

link capacities.

More precisely, Algorithm 4.5 works in iterations. At the beginning of every

iteration, the set of unsaturated links is L and the set of active, non-bottlenecked,

�ows is F . The normalized rate of all active �ows is increased by ∆̄ = minl∈L

{
cl

Wl

}
,

where cl is the residual capacity of a link l and Wl is aggregate weight of active

�ows crossing it. It can be shown that the increase by ∆̄ feasibly reduces cl, and is

March 29, 2009

4.2. Independent Flows 44

Algorithm 4.5 FFA

Initialization:
∀l ∈ L : cl ← 1
∀f ∈ F : r̄(f)← 0

Loop:

1. ∆̄← minl∈L

{
cl
Wl

}
/*Find the allowed increment*/

2. r̄(f)←

{
r̄(f) + ∆̄ f ∈ F
r̄(f) f /∈ F

/*Update active �ows*/

3. L← {l|cl −
∑

Fl
r̄(f) · wf > 0} /*Remove saturated links*/

4. F ← {f |Lf ⊆ L} /*Remove bottlenecked �ows*/

5. if |F | = 0 terminate, else go to 1

guaranteed to saturate some of the links. As a result, some of the �ows are removed

from F , which (implicitly) changes the weights of the links. After a �ow is removed

from the network, its actual rate is given by r(f) = r̄(f) · wf .

The correctness of Algorithm 4.5 is based on a trivial generalization of the cor-

rectness proof for the basic algorithm in [4]. Intuitively, the algorithm allows every

�ow to claim as high a normalized rate as it can, in a fair manner. Once the �ow

becomes bottlenecked, the rest of the capacity of links in Lf is further fairly dis-

tributed. As a result, when the algorithm ends, increasing rate of any �ow f neces-

sarily violates fairness at some saturated link on which f has the highest normalized

rate.

4.2.3 Distributed Algorithm

Previous Work

A popular distributed implementation of non-weighted FFA was proposed in [7]. The

algorithm is designed to operate in an asynchronous environment and guarantees

convergence to the max-min fair rate assignment, given that the network reaches a

steady state (constant �ow set and routing). Unfortunately, however, this algorithm

requires every link to keep state information for every �ow that traverses it. Also,

it requries O(|Fl|) computations at each link in Lf for every crossing control packet.

March 29, 2009

4.2. Independent Flows 45

The variation proposed in [20] reduces the computational complexity to O(1) but

leaves memory requirements unchanged. Keeping per-�ow state may reduce con-

vergence time when dynamically changing network state is considered, but it comes

at a price. Unlike in Chapter 3, where a limited size of routing cache only a�ected

performance, in [7, 20] the lack of �ow state bu�ers violates the correctness.

The desire to reduce memory complexity lead to a synchronous algorithm [8],

however, it has three major drawbacks: 1) it relies on setting correct network-

dependent time parameters, 2) periodic transmission of control packets is required

for each �ow, and moreover cannot be piggy-backed on data packets, and 3) a �nite

and limited set of rate values is used.

Below, we propose an alternative algorithm, named distributed FFA (DFFA).

DFFA stores no per-�ow state, is designed to operate in asynchronous environment,

uses continuous rate levels, and quiesces. Moreover, similarly to SAA and SAA-M

in Section 4.1, control packets used for calculation carry no per-hop information. Fi-

nally, our algorithm is capable of dealing with weighted �ows and achieves weighted

max-min fairness.

DFFA*

As a �rst step, we formulate a distributed algorithm that is designed to perform

a single calculation for a given set of �ows, after initialization of state of links

and �ows. We call this algorithm DFFA*; it will be used as a building block in a

broader scheme later, so for now we do not care how the initialization is performed.

Intuitively, a distributed implementation of FFA should allow �ows to claim �excess�

capacity (above normalized rate of 1
Wf

) only after it is explicitly given up by other

bottlenecked �ows, when they become inactive. For that purpose, each link holds a

fair share value sl. Flows in Fl are allowed to set their normalized rate as high as

sl, which grows only when one of the �ows turns inactive without fully exploiting

its share.

In DFFA*, each link is required to hold the following variables, that constitute

an O(1) size state:

• Wl � link weight, the aggregate weight of crossing �ows:
∑

Fl
(wf). Decreases

March 29, 2009

4.2. Independent Flows 46

Algorithm 4.6 DFFA*

Initialization:
∀l ∈ L : cl ← 1, Wl ←

∑
f∈Fl

(wf) , sl ← cl
Wl

∀f ∈ F : r̄(f)← 0

In parallel by each �ow for itself:
1. ∆̄←CollectMinShare()−r̄(f) /*Collect the allowed increment*/

2. r̄(f)← r̄(f) + ∆̄
3. active ← UpdateLinks(∆̄ · wf) /*Distribute the increment*/

4. if (active = true) goto 1 /*Check if �ow is bottlenecked*/

5. else

5.1 DeclareInactive(r̄(f), wf) /*Notify links*/

5.2 terminate

Algorithm 4.7 DFFA* subroutines

real CollectMinShare()
{

1. send p with p.share =∞
2. foreach l ∈ Lf upon receipt of p

2.1 p.share← min(p.share, sl)
3. return p.share when p arrives back to the source

}

boolean UpdateLinks(∆)
{

1. send p with p.∆ = ∆, p.active = true
2. foreach l ∈ Lf upon receipt of p

2.1 cl ← cl − p.∆ /*Reduce free capacity*/

2.2 if cl = 0 /*Check if saturated*/

2.2.1 p.active← false
3. return p.active when p arrives back to the source

}

void DeclareInactive(r̄(f), wf)
{

1. send p with p.r̄(f) = r̄(f), p.wf = wf

2. foreach l ∈ Lf upon receipt of p
2.1 Wl ←Wl − p.wf /*Reduce link weight*/

2.2 if Wl > 0
2.2.1 sl ← sl + (sl−p.r̄(f))·p.wf

Wl
/* Increase share*/

}

as �ows become inactive.

March 29, 2009

4.2. Independent Flows 47

• cl � free capacity, non-negative

• sl � the fair share

The algorithm itself is presented in Algorithm 4.6. It starts with an initialization af-

ter which the main loop is executed independently and concurrently by each �ow for

itself. The main loop uses three subroutines that are summarized in Algorithm 4.7.

For every �ow, each iteration consists of the following actions.

First, a minimum sl among the links in Lf is collected using CollectMinShare().

This value is used to update the current normalized rate r̄(f). As a result, r̄(f) can

grow or stay unchanged (yet to be shown). The change in absolute (not normalized)

rate is distributed using UpdateLinks(), which reduces cl of links in Lf accordingly.

In addition, if one of the links becomes saturated (cl = 0), the �ow is noti�ed by

active being set to false (after a link becomes saturated it might take another

iteration for a �ow to discover this fact). In this case, f announces becoming inactive

by executing DeclareInactive(). This subroutine reduces the weights of links in

Lf by wf and updates the fair shares for links where r̄(f) < sl.

The fair share is, in fact, the rate per unit of weight that the active �ows can

claim, and saturate the link. Therefore, when one of the �ows becomes inactive

it leaves (sl − r̄(f)) · wf of unclaimed capacity. This capacity is divided by the

remaining weight Wl to acquire the increase in sl.

DFFA* Correctness

We prove that DFFA* terminates for all �ows and leads to a weighted max-min fair

rate assignment. Our only assumption on the order of events is that the processing

of control packets is atomic for individual links (lines 2.1-2.2 in the subroutines).

We use the following de�nitions:

• r̄l(f, t) � a �shadow� variable used for proof purposes only. It holds the nor-

malized rate of f as known by l. The value is assumed to be updated with

cl in UpdateLinks() by p.∆
p.wf

(for that purpose, assume that p carries wf as

well). The following equality holds cl(t) = 1−
∑

f∈Fl
(r̄l(f, t) · wf).

• Fl � all �ows crossing l be they active, inactive, or terminated.

March 29, 2009

4.2. Independent Flows 48

• F̂l(t) � subset of Fl consisting of �ows that didn't execute DeclareInactive()

on l yet, i.e. �ows known as active to l.

• x(t−), x(t+) � values of variable x just before, and immediately after, a change

at time t.

Lemma 4.2.2. If a �ow f enters DeclareInactive() at time t1, then ∀t2 >

t1, ∀l ∈ Lf : r̄(f, t2) = r̄l(f, t2) = r̄(f, t1)

Proof. Every increase in r̄(f, t) is followed by an execution of UpdateLinks(), which

distributes the new ∆ to links in Lf . Therefore, at a moment when UpdateLinks()

returns, ∀l ∈ Lf : r̄(f, t) = r̄l(f, t). At t1 the call to DeclareInactive() imme-

diately follows the return from UpdateLinks(), thus ∀l ∈ Lf : r̄(f, t1) = r̄l(f, t1).

After the call, the di�erent rate variables stay unchanged.

Lemma 4.2.3. During a run of DFFA*, for every link l the following conditions

hold: 1) sl(t) is monotonically non-decreasing, 2) ∀l ∈ Lf at any time t, r̄(f, t) ≤

sl(t) (where r̄(f, t) is the local value stored at the source).

Proof. Both conditions hold at t = 0. Assume by contradiction that t1 is the smallest

time when one of the conditions is violated.

1. ∃l ∈ L : sl(t
+
1) < sl(t

−
1). The decrease can occur only as a result of some

�ow f executing line 2.2 of DeclareInactive() on l with p.r̄(f) > sl(t
−
1)

(Wl(t
−
1) > 0). However, since sl(t) is known to have been monotonically non-

decreasing until t1, we must conclude that at the time t0 < t1, when p left the

source, we had sl(t0) < r̄(f, t0). This is a contradiction to minimality of t1

because claim 2 is violated at t0.

2. ∃f ∈ F, l ∈ Lf : r̄(f, t+1) > sl(t
+
1). The increase in r̄(f, t) follows the execution

of CollectMinShare(). The control packet p, that collected the fair share,

visited l at t0 < t1. As a result, the return value of CollectMinShare() is

bounded from above by sl(t0). Since sl(t) does not decrease until t1, we have

r̄(f, t1) ≤ sl(t0) ≤ sl(t
+
1), a contradiction to r̄(f, t+1) > sl(t

+
1).

March 29, 2009

4.2. Independent Flows 49

Corollary 4.2.4. The following conditions hold: 1) r̄(f, t) is monotonically non-

decreasing, 2) cl(t) is monotonically non-increasing, 3) ∀l ∈ Lf at any time t,

r̄l(f, t) ≤ r̄(f, t) ≤ sl(t).

Proof. Shortly explaining every claim:

1. r̄(f, t) is periodically updated to the minimum sl on links in Lf . This minimum

is monotonically non-decreasing.

2. cl(t) is updated when for some �ow in Fl, r̄(f) changes. Claim 1 states that

all rates are monotonically non-decreasing, so cl(t) cannot grow.

3. r̄l(f, t) is updated to r̄(f, t) by UpdateLinks(). Since r̄(f, t) is non-decreasing

r̄l(f, t) ≤ r̄(f, t).

Lemma 4.2.5. At any given moment t, if |F̂l(t)| > 0, then the following equation

holds:

∑
f∈F̂l(t)

wf · (sl(t)− r̄l(f, t)) = cl(t). (4.4)

Proof. Let l be a link with |F k
l (0)| > 0. At t = 0, the right side of the equation

is cl(0) = 1, and the left side is Wl(0) · 1
Wl(0)

= 1. From then on, the equation can

become invalid only when UpdateLinks() or DeclareInactive() subroutines are

executed for some �ow f ′ on l at time t1.

1. When UpdateLinks()is executed, both sides of the equation are reduced by

the same amount p.∆ (r̄l(f
′, t1) increases by p.∆

p.wf ′
).

2. When DeclareInactive()is executed, yet there are other active �ows that

still traverse l, the right side of the equation stays unchanged. Let p be the

control packet sent by the source. Following Lemma 4.2.2, p.r̄(f ′) = r̄l(f
′, t1).

The left side of the equation is decreased by wf ′ · (sl(t
−
1)− r̄l(f

′, t1)) since the

element of f ′ is removed from the sum. On the other hand, however, this side

is increased, due to the increase in sl(t
+
1), by:

March 29, 2009

4.2. Independent Flows 50

∑
f∈F̂l(t

−
1)r{f ′}

(
wf ·

(sl(t
−
1)− p.r̄(f ′)) · p.wf ′

Wl(t
−
1)− p.wf ′

)
= wf ′ · (sl(t

−
1)− r̄l(f

′, t1)). (4.5)

Hence, the left hand side of the equation stays unchanged.

Lemma 4.2.6. At any given moment t, ∀l ∈ L : cl(t) = 1−
∑

f∈Fl
(r̄l(f, t) · wf) ≥ 0

Proof. If Fl = φ, the condition trivially holds for any moment. Otherwise, we have

the following two cases at time t1:

1. If |F̂l(t1)| > 0, then the condition of Lemma 4.2.5 holds. Applying Corol-

lary 4.2.4, we conclude that cl(t1) ≥ 0.

2. If |F̂l(t1)| = 0, consider a moment t0 when the last �ow in Fl updates l about

becoming inactive (executing DeclareInactive() on l). At t−0 , according to

case 1, cl(t
−
0) ≥ 0. After t0 the capacity stays unchanged.

Lemma 4.2.7. Eventually all �ows exit the main loop, and DFFA* terminates.

Proof. Assume by contradiction that at time t1 there are active �ows in the network,

and none of them executes DeclareInactive() at or after t1. Since sl(t) values

change only when �ows become inactive, we conclude that ∀t > t1, ∀l ∈ L : sl(t) =

sl(t1). Let l′ be a link with the smallest sl(t1) among links for which |F̂l(t1)| > 0.

Let t2 > t1 be the time by which every f ∈ F̂l′(t1) starts and completes at least

one iteration of the main loop after t1. As a result, both r̄(f, t2) and r̄l′(f, t2) are

equal to sl′(t1). According to Lemma 4.2.5, this implies that cl(t2) = 0, which must

eventually cause �ows in F̂l′(t1) to become inactive, a contradiction.

Theorem 4.2.8. The rate assignment calculated by DFFA* is max-min fair in

regards to r̄(f).

Proof. Following Lemma 4.2.7, all �ows eventually become inactive and terminate.

A �ow f ′ ∈ F terminates only after it �nds, at time t1, that one of the links l in

Lf ′ has cl(t1) = 0. Since cl(t) is known to be monotonically non-increasing and,

according to Lemma 4.2.6, non-negative, ∀t ≥ t1 : cl(t1) = 0.

March 29, 2009

4.2. Independent Flows 51

Consider a moment t2 > t1 when f
′ noti�es l about becoming inactive. According

to Lemma 4.2.5, since cl(t2) = 0, r̄l(f
′, t2) = sl(t

−
2). According to Lemma 4.2.2, we

also have r̄(f ′, t2) = sl(t
−
2), which is the �nal rate of f ′. In fact, ∀f ∈ F̂l(t2) :

r̄(f, t2) = sl(t
−
2). Therefore, sl can't be increased anymore, i.e., ∀t ≥ t2 : sl(t) =

sl(t
−
2).

Following Lemma 4.2.3, by the end of the run ∀f ∈ Fl : r̄(f,∞) ≤ sl(t2) =

r̄(f ′,∞). As a result, any attempt to increase r̄(f ′), while preserving feasibility, will

reduce a normalized rate of a weaker �ow. This means that r is max-min fair in

regards to r̄(f), or (equivalently) weighted max-min fair in regards to r(f).

Although the correctness is summarized in Theorem 4.2.8, there are several more

properties we choose to present.

Eliminating Centralized Initialization and Startup

Since, aside from the initialization, the algorithm is capable of operating in an

asynchronous environment, di�erent �ows can begin the execution of the DFFA*

main loop at di�erent times after the initialization. Moreover, Lemma 4.2.9 states

that there is no necessity in a centralized initialization of the state of links.

Lemma 4.2.9. If ∀f ∈ F, ∀l ∈ Lf the parameters Wl, cl, sl are initialized correctly

before f starts the execution of DFFA* loop, then the algorithm preserves correctness.

Proof. Consider a run in which initialization happens not in a centralized manner.

Since no �ow is allowed to see an uninitialized link's state, and an asynchronous

environment is considered, we can arbitrarily move the initialization events back in

time to happen at the same moment, without violating the behavioral correctness

of the run. As a result, we achieve a correct run with a centralized initialization,

whose output is identical to the initial run.

Reducing Calculation Time

It can readily be seen that the main loop can be shortened by allowing UpdateLinks()

to also to collect the minimum fair share, in addition to its other activities. This

March 29, 2009

4.2. Independent Flows 52

Algorithm 4.8 Optimized DFFA*

Initialization:
∀l ∈ L : cl ← 1, Wl ←

∑
f∈Fl
{wf} , sl ← cl

Wl

∀f ∈ F : r̄(f)← 0

In parallel by each �ow for itself:
1. ∆̄← 0
2. [active,s] ← UpdateLinks(∆̄ · wf)

3. ∆̄← s− r̄(f)
4. r̄(f)← r̄(f) + ∆̄
5. if (active = true) goto 2 /*Check if �ow is bottlenecked*/

6. else

6.1 DeclareInactive(r̄(f), wf) /*Notify links*/

6.2 terminate

Algorithm 4.9 Optimized DFFA* subroutines

[boolean,real] UpdateLinks(∆)
{

1. send p with p.∆ = ∆, p.active = true, p.share =∞
2. foreach l ∈ Lf upon receipt of p

2.1 cl ← cl − p.∆ /*Reduce free capacity*/

2.2 if cl = 0 /*Check if saturated*/

2.2.1 p.active← false
2.3 p.share← min(p.share, sl)

3. return p.active, p.share when p arrives back to the source

}

void DeclareInactive(r̄(f), wf)
{

1. send p with p.r̄(f) = r̄(f), p.wf = wf

2. foreach l ∈ Lf upon receipt of p
2.1 Wl ←Wl − p.wf /*Reduce link weight*/

2.2 if Wl > 0
2.2.1 sl ← sl + (sl−p.r̄(f))·p.wf

Wl
/* Increase share*/

}

e�ectively removes the call to CollectMinShare(), without compromising the cor-

rectness of the algorithm. The optimized algorithm is found in Algorithm 4.8; its

subroutines are presented in Algorithm 4.9.

March 29, 2009

4.2. Independent Flows 53

Calculation Time Analysis

We prove an upper bound on the convergence time of the optimized algorithm, using

the following de�nitions:

• Trt � an upper bound on the total round-trip delay (including queuing and

computation at links) of control packets. The computation time at the sources

is assumed to be negligible.

• R � the set of distinct rate values as computed by the centralized FFA (and

consequently by the DFFA*). |R| equals the number of iterations of FFA. Let

L′ be the set of links with |Fl| > 0. Since in each iteration at least one link

and one �ow are removed from the network, |R| ≤ min {|F |, |L′|}. In practice,

R can have a small size (we witnessed |R| = 40 in a network with thousands

of �ows and links). However, in the worst case |R| = min {|F |, |L′|}.

• F̃l(t) � subset of Fl consisting of �ows that didn't terminate the main loop yet,

including those that are known to l as inactive .

• L̃(t) � set of links for which |F̃l(t)| > 0.

• lm(t) � link with the minimum fair share, among links in L̃(t).

• sm(t) � the minimum fair share, among links in L̃(t), sm(t) = slm(t)(t). If

L̃(t) = φ, then sm(t) =∞.

Lemma 4.2.10. If sm(t1) <∞, then at t2 = t1 + 6Trt, sm(t2) > sm(t1)

Proof. sm(t) only changes as a result of either of the following two events: 1) a

change in the fair share of some l ∈ L̃(t) (according to Lemma 4.2.3, it can only

increase), and 2) the removal of a link from L̃(t) when all its �ows terminate. In

both cases, sm(t) increases, so sm(t2) ≥ sm(t1).

Assume by contradiction, that sm(t2) = sm(t1). Therefore, there exists a link

l′ = lm(t1) = lm(t2). By t1 + 2Trt, every active �ow in Fl′ is guaranteed to collect

sm(t1) as the allowed rate. By t1 + 3Trt, l
′ is saturated, after being updated by the

�ows. No later than t1 +5Trt, all �ows crossing l
′ discover its saturation and execute

March 29, 2009

4.2. Independent Flows 54

DeclareInactive(). As a result, by t2, we have |F̃l′(t2)| = 0, a contradiction to

l′ = lm(t2).

Lemma 4.2.11. If sm(t) changes at t1, then sm(t−1) ∈ R

Proof. Let l′ = lm(t−1). We want to show that l′ /∈ L̃(t+1). Assume by contradiction

that this is not true. Therefore, sl′(t
+
1) > sl′(t

−
1) and |F̃l′(t

+
1)| > 0. The increase in

the fair share of l′ implies that one of the �ows f ∈ Fl′ executes DeclareInactive()

on l′ at t1, yet r̄(f, t1) < sl′(t
−
1). This, in turn, implies (proof of Theorem 4.2.8) that

there exists another link l′′ ∈ L̃(t−1), such that r̄(f, t1) = sl′′(t
−
1) < sl′(t

−
1), which is

of course a contradiction to the de�nition of lm(t).

Therefore, sm(t−1) changes when the last �ow f ∈ Fl′ terminates. From the proof

of Theorem 4.2.8, we conclude that at the end of the run r̄(f,∞) = sm(t−1).

Theorem 4.2.12. After all �ows start the main loop, the execution time of DFFA*

is bounded by 6|R|Trt.

Proof. Following Lemma 4.2.10, until t = 6|R|Trt the sm(t) changes at least |R|

times. Lemma 4.2.11 states that each change is associated with a distinct rate in R.

Therefore, no more changes can possibly occur, i.e. ∀l ∈ L : |F̃l(6|R|Trt)| = 0.

DFFA

DFFA* allows us to calculate the weighted max-min fair rate assignment for a �xed

�ow set F , if for every �ow f the state of the links in Lf is initialized before f starts

execution of the main loop. Now, our goal is to use DFFA* as a tool when F (t) is

allowed to change dynamically before reaching the steady state F (∞). We seek to

acquire a rate assignment that is optimal for F (∞).

Ideally, we could wait until F (t) stabilizes, then initialize link state and execute

DFFA*. However, we don't know when the steady state is reached. Therefore we

restart the calculation every time a change in F (t) occurs, i.e. a �ow starts or ends.

In order to detect these changes, we assign every network element (switch or HCA)

a round variable rnde. It serves for triggering �ows to restart the DFFA* loop, and

for distinguishing between packets of older and newer instances of the loop of the

same �ow.

March 29, 2009

4.2. Independent Flows 55

Algorithm 4.10 DFFA

Initialization (at network setup):
∀e ∈ E : rnde ← 0
∀l ∈ L : W̃l ← 0

HCA hs upon start/end of �ow f:
1. rndhs ← rndhs + 1
2. Restart DFFA*()

3. send an announcement packet pa to destination hd

3.1 pa.rnd← rndhs

4. for each sw ∈ SWf upon receipt of pa

4.1 rndsw ← max {rndsw + 1, pa.rnd}
4.2 update W̃l of the relevant link

4.3 pa.rnd← rndsw

4.4 ResetLinks() /* Initialize according to current �ows*/

5. HCA hd upon receipt of pa

5.1 rndhd
← max {rndhd

+ 1, p.rnd}
5.2 send broadcast packet pb to all adjacent switches

5.2.1 pb.rnd← rndhd

5.3 RestartDFFA*()

HCA h upon receiving broadcast packet pb: /*All HCAs*/

1. if pb.rnd > rndh

1.1 rndh ← pb.rnd
1.2 RestartDFFA*()

Switch sw upon receiving broadcast packet pb from port I:
1. if pb is the first received packet with pb.rnd = rndsw

1.1 forward pb on all ports except I
2. if pb.rnd > rndsw

2.1 rndsw ← pb.rnd
2.2 ResetLinks() /* Initialize according to current �ows*/

2.3 forward pb on all ports except I

Because the calculation can be restarted several times, each link has to hold two

weight variables. The �rst,Wl is the one used in DFFA* and it decreases throughout

the execution. The second, W̃l is the �true� link weight which changes only when

�ows crossing link l join or leave the network.

The details of round usage are given in Algorithm 4.10 and Algorithm 4.11.

We use SWf to denote the set of switches crossed by a �ow f on its path. At

network setup, all rounds are set to zero. When a �ow f starts/ends, the source

HCA hs increments rndhs and sends a control packet p, with p.rnd = rndhs , to the

March 29, 2009

4.2. Independent Flows 56

Algorithm 4.11 DFFA subroutines
void RestartDFFA*()

{

1. foreach originating flow f
1.1 Stop ongoing: /* If any*/

1.1.1 Waiting for ∀sw ∈ SWf : rndsw = rndh

1.1.2 Execution of DFFA* loop

1.2 Wait/probe until ∀sw ∈ SWf : rndsw = rndh

1.3 r̄(f)← 0
1.4 Restart execution of DFFA* loop

}
void ResetLinks()

{

1. foreach link l
1.1 Wl ← W̃l

1.2 cl ← 1
1.3 sl ← cl

Wl

}

destination hd. This packet updates W̃l of links in Lf , and performs the following

round related activities.

As p traverses the network, it increments the rounds of switches in SWf and the

destination HCA hd. In addition, p collects the maximum resulting round along its

path. After hd is reached, the collected result is broadcast to all network elements.

A broadcast packet pb is forwarded by a switch sw on all its ports except the one

through which it was received if pb.rnd > rndsw, or pb.rnd = rndsw and pb is the

�rst broadcast packet received with this round value. The broadcast round value is

adopted by an element e only if pb.rnd > rnde.

When round variable is increased in a switch for some reason (after receiving

an announcement or broadcast packet), the state of all its links is reset through

re-initialization of Wl, cl and sl variables according to the current state of Fl. When

rndh is increased in HCA h, the execution of DFFA* loop is restarted for each of

its �ows, in the following manner.

First, all activities related to the previous execution (if any) are stopped. These

include the actual execution of DFFA* loop and waiting for ∀sw ∈ SWf : rndsw =

rndh. Then, the HCA waits until ∀sw ∈ SWf : rndsw = rndh; it discovers this

March 29, 2009

4.2. Independent Flows 57

by repeatedly probing the rounds with control packets. Finally, r̄(f) is reset and

DFFA* loop restarted. Not surprisingly, this order of operation ensures that the

state of all links in Lf is correctly initialized before the execution begins.

During the execution of DFFA* loop, all control packets sent by f are marked

with rndh of its HCA. Switches, in turn, ignore DFFA* packet if its rndh < rndsw.

This prevents earlier DFFA* loop instances from a�ecting link state after a round

change. The correctness of DFFA is summarized in Theorem 4.2.14.

Lemma 4.2.13. Following the cessation of changes in F (t), all network elements

eventually have the same round value.

Proof. Every change in F (t) can cause at most two increases of rnde at some e ∈ E:

1) when an announcement packet pa crosses e, and 2) when a broadcast packet pb

triggered by pa is received. Since the number of changes in F (t) is �nite, round

values of all elements eventually reach stability.

Let rndmax be the maximum round in the network in the steady state. This value

initially appears when an announcement packet pa crosses some network element.

When pa reaches its destination hd, a broadcast packet pb with pb.rnd = rndmax is

sent. It is not hard to see that a broadcast packet with rndmax is guaranteed to

reach every network element, and is and consequently adopted.

To show this, assume by contradiction that some element e never receives a

broadcast packet with rndmax. Consider the minimum hop path between hd and e

in the network. Let sw be the closest switch to hd on this path that never forwards a

broadcast packet with rndmax (there must be such a switch). The sw is guaranteed

to receive a broadcast packet with rndmax at some time t. We know that at t,

rndsw ≤ rndmax and that sw have not forwarded a broadcast packet with rndmax

before t. Therefore, sw forwards the broadcast packet at t, a contradiction.

Theorem 4.2.14. The DFFA eventually terminates and calculates a max-min rate

assignment in regards to r̄(f).

Proof. For every f ∈ F (∞) originating at HCA hs, according to Lemma 4.2.3,

there exists the earliest t1 such that ∀sw ∈ SWf : rndsw(t1) = rndh(t1) = rndmax.

Consider a switch sw ∈ SWf ; let t0 ≤ t1 be the earliest moment when rndsw(t0) =

March 29, 2009

4.2. Independent Flows 58

rndmax. We know that at t0, sw resets Wl, cl and sl of all its links, according to

Fl(∞) (the arrival of new �ows would trigger more round changes). In addition,

the latest execution of DFFA* loop by f starts after t1 ≥ t0 (when rndh becomes

rndmax, f waits until ∀sw ∈ SWf : rndsw = rndmax and restarts DFFA* loop).

Therefore, the conditions of Lemma 4.2.9 hold for the latest execution of DFFA*

loop by every �ow and F (∞).

The Lack of Steady State

In practical networks, F (t) never truly reaches a steady state. The strongest practi-

cal assumption we can make is that short periods of changes in F (t) are interleaved

with long periods when no such changes occur. In principle, DFFA is suitable for this

case too, as it is expected to calculate the correct rate assignment for the long steady

periods of time. However, as changes in F (t) become more frequent, the overhead

of recalculations can potentially grow to be intolerable. Moreover, if the frequency

is too high, the algorithm can actually be in a constant state of calculation.

The main drawback of DFFA is that it potentially performs a from-scratch, global

recalculation per every change in F (t). An alternative is to invoke DFFA periodi-

cally, using time or number of changes as the trigger. In between the invocations, we

seek to use some simpler mechanism for distribution of capacity. This mechanism

has to provide some guarantee on the minimum rates of �ows, including the newly

starting ones. At the same time, it should operate quickly when distributing the

excess capacity. A suitable candidate having similar properties is the SAA-M, pre-

sented in Subsection 4.1.3. The exact combination of DFFA and SAA-M is beyond

the scope of this work and is left for the future work.

March 29, 2009

4.3. Multiple Phase-Based Applications 59

4.3 Multiple Phase-Based Applications

4.3.1 Application Rates

Goals

The third characteristic scenario, in which several phase-based applications run con-

currently in the same cluster, can be considered as a combination of the previous

two. Since di�erent applications enter and leave the communication phase inde-

pendently, we want to maximize the progress of each application fairly, as for the

independent �ows. At the same time, at the level of an individual application, we

are interested to minimize the total completion time of the communication phase.

Therefore, similarly to the single application scenario, we choose its slowest �ow to

de�ne the progress of the application.

Recall that in the single application case, setting the same rate to all �ows of an

application was one of the alternatives, though increasing rates of some �ows above

the common minimum created no problem. Here, in contrast, exploiting such excess

capacity may come at expense of other applications. Therefore, we stick to the

same-rate solution because it preserves the progress of an application, and doesn't

unnecessarily use excess bandwidth. We use the following de�nitions:

• A(t) � the set of applications that are in the midst of their communication

phase at time t

• a � application, set of �ows, a ∈ A(t)

• βa � application priority factor

• wf � �ow weight of f ∈ a, wf = βa · df , where df is the initial size of f

• r̄(a, t) � the progress/rate of application a, r̄(a, t) = minf∈a {r̄(f, t)}

Our goal is to �nd a rate assignment that is max-min fair with regards to r̄(a, t).

As mentioned above, we set ∀f ∈ a : r̄(f, t) = r̄(a, t). In this context, the weight

of �ow wf has a dual purpose, as expressed by its two factors. The size of �ows

df is used to give higher absolute rates to longer �ows of the same application,

March 29, 2009

4.3. Multiple Phase-Based Applications 60

so that all �ows progress equally, relatively to their size. The application priority

factor βa prioritizes some applications over others. Among other purposes, it can be

used to prevent applications with long �ows from getting priority in weights (and

consequently higher transmission rates).

Below, we propose centralized, parallel and distributed algorithms for �nding

the desired rate assignment under a �xed sets of applications and �ows. Then, we

further enhance the distributed algorithm to operate under changing conditions as

applications enter and exit the communication phase. Here, unlike in the previous

two scenarios, in the distributed algorithm we let network elements to store O(|A|)

amount of state (instead of O(1)). Yet, we assume that |A| � |F | and that it can be

�xed (limited) a-priori. Similarly, control packets used in the distributed calculation

include |A| bits of information.

Dynamic Environment E�ects

Although setting ∀f ∈ a : r̄(f, t) = r̄(a, t) reduces the interference between ap-

plications, it potentially causes the assignment to be non-maximal. Exploiting the

residual capacity will not improve immediate progress of applications, but as other

applications join and leave the network it can potentially shorten the completion

time. An application bene�ts from the excess capacity only if all its �ows succeed to

increase their average (over the communication phase time) normalized rate. This

observation implies that the potential advantage of maximizing link utilization may

be small, as it is still dependent on the worst case among �ows.

In general, the residual capacity left after ensuring max-min fairness of applica-

tion rates can be further distributed using some kind of �ow-level rate assignment

algorithm. However, given the questionable contribution to the overall performance,

we leave this matter outside the scope of this work.

4.3.2 Centralized Algorithm

A centralized, one-time application-fair algorithm (AFA) that �nds a max-min fair

assignment of application rates can be implemented as a slightly modi�ed version

of FFA. In fact, it is su�cient to change line 4 in Algorithm 4.5 to:

March 29, 2009

4.3. Multiple Phase-Based Applications 61

A′ ← {a ∈ A|∀f ′ ∈ a : Lf ′ ⊆ L}

F ←
⋃

a∈A′

{f |f ∈ a}.

AFA, similarly to FFA, increases the normalized rate of active �ows at an equal

speed until one of the links becomes saturated. This time, however, all �ows of an

application are removed from the network once one of them traverses a saturated

link (even if others do not). After the �ows and saturated links are removed from

the network, the operation is restarted in the residual network. We next prove the

correctness of AFA in Theorem 4.3.1.

Theorem 4.3.1. AFA terminates. Its rate assignment is feasible and max-min fair

with regards to r̄(a).

Proof. AFA inherits two key properties from FFA. First, it doesn't violate link

capacity at any iteration. Second, at least one link becomes saturated during every

iteration. As a result, AFA terminates with a feasible rate assignment.

Next, consider an application a ∈ A, whose �ows are removed from the network

at the end of iteration i. This means that for some f ∈ a, a link l ∈ Lf becomes

saturated at the end of that iteration. If no a′ 6= a uses l, then an increase in r̄(a)

requires increasing rates of all �ows in Fl, which clearly violates feasibility.

Otherwise, we know that every �ow f ′ ∈ a′ is removed from the network by the

end of iteration i (possibly at earlier iterations). Therefore, in view of the monotonic

increase in rates over time, r̄(f ′) ≤ r̄(f). The algorithm assigns the same normalized

rate to all �ows of an application, thus r̄(a′) = r̄(f ′) ≤ r̄(f) = r̄(a). As a result, r̄(a)

cannot be increased in a feasible manner without harming weaker applications.

Algorithm 4.12 provides an alternative implementation of AFA, which we will

use as a basis for a distributed algorithm later. This implementation does not deal

with individual �ows. Instead, the following variables are used:

• Wl � the aggregate weight of active �ows crossing l

March 29, 2009

4.3. Multiple Phase-Based Applications 62

Algorithm 4.12 AFA

Initialization:
ρ← 0
∀l ∈ L : cl ← 1,W a

l ←
∑

f∈Fl∩a (wf),Wl ←
∑

a∈A (W a
l),Al ← {a|∃f ∈ a :

f ∈ Fl}

Loop:
1. ∆̄←∞
2. foreach l ∈ L /*Calculate new increment*/

2.1 δl ← cl
Wl

/* If Wl = 0,δl ←∞*/

2.2 ∆̄← min
{

∆̄, δl
}

3. if (∆̄ =∞) terminate /*Check termination condition*/

4. else ρ← ρ+ ∆̄
5. B ← φ /*Reset newly bottlenecked apps set*/

6. foreach l ∈ L
6.1 cl ← cl − ∆̄ · wl /*Update residual capacity*/

6.2 if (cl = 0) B ← B ∪Al /*Newly bottlenecked apps*/

7. foreach l ∈ L, a ∈ B /*Update weights*/

7.1 Wl ←Wl −W a
l

7.2 Al ← Al \ {a}
8. ∀a ∈ B : r̄(a)← ρ /*Assign rate*/

• W a
l � the aggregate weight of active �ows belonging to a crossing l

• Al � set of active applications crossing l

• δl � rate increment allowed by link l

• ρ � cumulative rate variable

• B � set of applications that are active at the beginning of an iteration, and

become inactive by its end

The operation of Algorithm 4.12 is almost identical, and completely equivalent

to the operation of the modi�ed FFA. At the beginning of an iteration, a new

allowed normalized rate increment ∆̄ for active applications is calculated. If ∆̄ =∞

there are no active applications left in the network, and the algorithm terminates.

Otherwise, ρ is increased by ∆̄. Later, the residual capacity of links is computed,

and active applications whose �ows traverse newly saturated links are added to the

set B (which is emptied at the beginning of the iteration). Applications in B are

March 29, 2009

4.3. Multiple Phase-Based Applications 63...1 2 Nafirst
present prev next

Figure 4.2: Doubly-linked list

removed from all links, as Wl and Al are updated, accordingly. Finally, the newly

removed applications are assigned the �nal rate of ρ.

For complexity analysis we assume that Al and B are doubly-linked lists imple-

mented in an array of size |A|. The data structure is presented in Figure 4.2. The

position of an element corresponding to every application in both arrays is �xed

by the index of an application. Every element has the following �elds: 1) present

�eld states whether the application is in the list, 2) prev (array index) points to a

predecessor in the list, 3) next (array index) points to a successor. The �rst vari-

able (array index) points to the head of the list. The list holds the actually present

applications in the structure.

The complexity of operations on the proposed linked list is as follows: initializa-

tion � O(|A|), inserting an element to the head of the list � O(1), removing element

by index � O(1), list traversal � O(1) per step. The complexity of Algorithm 4.12,

assuming that the linked lists are used, is given in Theorem 4.3.2.

Theorem 4.3.2. The time complexity of Algorithm 4.12 is O(|A| · |L|).

Proof. Let Bk be the content of the list B at the end of iteration k. The complexity

of iteration k can be analyzed in the following manner. The complexity of the loop

in line 2 is O(|L|). The complexity of line 5 is O(|Bk−1|), because |Bk−1| elements

are removed from the list. Since the size of every Al is bounded from above by |Bk|,

the complexity of the loop in line 6 is O(|L| · |Bk|). The loop in line 7 has a similar

complexity, as lines 7.1-7.2 are executed in O(1). Line 8 is executed in O(|Bk|). The

total complexity of iteration k is O(|L| · |Bk|+ |Bk−1|). We know that Σk|Bk| = |A|,
March 29, 2009

4.3. Multiple Phase-Based Applications 64

so the cumulative complexity of all iterations is O(|A| · |L|).

4.3.3 Distributed Algorithm

We next develop a distributed version of Algorithm 4.12. Initially, we present PAFA,

a parallel algorithm that relies on synchronized information transfer primitives.

Then, we present distributed mechanisms that implement the required primitives,

culminating in the distributed algorithm, dubbed DAFA.

Parallel AFA (Algorithm 4.13)

The algorithm uses a single main thread, called the leader, and one worker thread

per link. The leader uses the following two variables (of �xed size):

• ρ � cumulative rate variable

• B � set of newly bottlenecked applications. Collected from scratch during the

current iteration, to be removed at the beginning of the next iteration.

Each worker holds the following state, whose size is O(|A|):

• cl � residual link capacity

• Wl � the aggregate weight of active �ows crossing l

• W a
l � the aggregate weight of active �ows belonging to a crossing l

• Al � set of active applications crossing l

• Bl � set of newly bottlenecked applications as known to the worker of link l

• δl � rate increment allowed by link l

The computation proceeds as the main thread distributes and collects results from

the worker threads, in a synchronized manner. For instance, in the shared memory

model, distribution involves workers reading a global variable, while collection is

performed by the leader reading local worker variables.

The main loop can be logically decomposed into two phases. During the rate

collection phase (RCP) � lines 1-6, B is distributed to workers. Each worker removes

March 29, 2009

4.3. Multiple Phase-Based Applications 65

Algorithm 4.13 Parallel AFA

Initialization:
B ← φ, ρ← 0
∀l ∈ L : cl ← 1,W a

l ←
∑

f∈Fl∩a (wf),Al ← {a|∃f ∈ a : f ∈ Fl}

Loop:
1. distribute B to links

2. In parallel foreach l ∈ L
2.1 foreach a ∈ B /*Remove newly bottlenecked apps*/

2.1.1 W a
l ← 0

2.1.2 Al \ {a}
2.2 Wl ←

∑
a∈A (W a

l) /*Calculate new aggregate weight*/

2.3 δl ← cl
Wl

/* If Wl = 0,δl ←∞*/

3. collect δl from links

4. ∆̄← minl∈L {δl} /*Aggregate allowed normalized rate*/

5. if (∆̄ =∞) terminate /*Check termination condition*/

6. else ρ← ρ+ ∆
7. distribute ∆̄ to links

8. In parallel foreach l ∈ L
8.1 Bl ← φ /*Reset newly bottlenecked app set*/

8.2 cl ← cl − ∆̄ ·Wl /*Update residual capacity*/

8.3 if (cl = 0) Bl ← Al /*Bottlenecked apps*/

9. collect Bl from links

10. B ←
⋃

l∈L {Bl} /*Aggregate bottlenecked apps*/

11. ∀a ∈ B : r̄(a)← ρ /*Assign rate*/

inactive applications from Al, updates Wl, and computes its local δl. When all

workers �nish, δl results are collected by the leader. The leader aggregates the

collected information by �nding minimum and storing it in ∆̄. If the new ∆̄ value

happens to be∞, the algorithm terminates. Otherwise, the new ρ value is computed

and the execution moves to the rate distribution phase (RDP) � lines 7-11.

The RDP begins by distribution of ∆̄ to workers. Each worker updates its cl;

if this results in the link becoming saturated, its Bl is set to be Al. Once all the

workers �nish, the leader collects Bl sets and aggregates them into their union B.

These are the applications that are going to be removed from the network in the

next iteration; their rates are set to ρ.

March 29, 2009

4.3. Multiple Phase-Based Applications 66

DAFA*

Algorithm 4.13 is suitable for any parallel environment that supports synchronized

information distribution and collection semantics. In fact, it can be used in a dis-

tributed network environment as well. For this purpose, each network element

(switch, HCA) is required to store the state of the worker thread for each of its

links. Here, for practical reasons, the number of applications must be small and

constant (�xed in the hardware)5. In this context, Al and Bl sets can be imple-

mented as �xed size binary vectors. Similarly, the set of W a
l values is a vector of

real numbers.

Every network element has to be capable of executing lines 2.1-2.3, 8.1-8.3 for

each of its outgoing links. These computations can be performed by dedicated

hardware for each link, or by a centralized controller of the network element. One

of the elements is designated as the leader. Now, we only need to de�ne how the

information is distributed, collected, and aggregated.

Since aggregation involves associative reduction operations of �nding minimum

and set union, it is convenient to use a technique similar to "map-reduce" (or

"scatter-gather") on a spanning tree of network elements rooted at the leader. The

RCP and RDP are executed on the spanning tree as follows. The relevant informa-

tion is disseminated over the tree from the root towards the leaves. After receiving

the distributed information, every node computes δl/Bl for its �outbound� links and

waits for additional results from its sons. Upon arrival of the additional inputs, the

node �nds the minimum/union of all values. The output is sent to the parent of the

node. In this manner, when information converges to the root, the leader gets the

aggregated result and can begin a new phase.

The spanning tree can be explicitly constructed and maintained over time. Al-

ternatively, we can use Segall's PIF algorithm [36] to build the tree implicitly during

every execution of RCP or RDP. The operation of PIF itself is logically divided into

two phases. During the forward phase, PIF distributes a message sent by the leader

to all network elements. In addition, during this phase a logical spanning tree is

5We believe that in reality 32 to 128 applications should be su�cient for the needs of utility
clusters.

March 29, 2009

4.3. Multiple Phase-Based Applications 67

de�ned by the "�rst-heard-from" relation. During the feedback phase, just as we

need, each network element (except for the leaves) waits to receive feedback mes-

sages from its sons. When this happens, it sends a feedback message to its parent

and �nishes the execution of PIF.

The use of Algorithm 4.13 in conjunction with PIF for information distribution

and collection provides us with a distributed algorithm for a one-time rate calcula-

tion, given that the links' state is updated a-priori. The behavior of this algorithm,

which we call DAFA*, is analogous to the behavior of DFFA* from Section 4.2.

DAFA

As with DFFA in Section 4.2, we want DAFA* to be executed anew every time

a change in F (t) occurs. However, in the multiple applications scenario, F (t) is

expected to change only when some application enters or leaves its communication

phase. Therefore, in distributed AFA (DAFA) the leader should restart DAFA*

at these occasions. In order to let network elements know that the execution is

restarted, rounds are used again.

Similarly to DFFA, each link must hold both W a
l , Al and W̃

a
l , Ãl variables. The

former change during every DAFA* calculation, while the latter constitute the �true�

values that are a�ected only when a �ow crossing l starts or ends.

DAFA is summarized in Algorithm 4.14. It states the behavior of three entity

types: the leader, network elements, and processing nodes of applications. All round

values are initialized to zero. The leader waits for an external trigger to restart

the execution of DAFA*. When the trigger is received, rndlead is incremented to

distinguish new control packets from the old ones. Every network element e ∈ E

has its own round rnde. Network elements ignore control packets marked with

rndlead < rnde. Upon receipt of a packet with rndlead > rnde, the state of all links

together with the PIF state are reset, and the element joins the new execution of

DAFA*.

When an application starts/ends a communication phase, and before it sends

a trigger to the leader, links have to be updated about �ows joining/leaving the

network. For this purpose, the relevant sources send control packets to make the

March 29, 2009

4.4. Theoretical Comparison 68

Algorithm 4.14 DAFA

Initialization (at network setup):
rndlead ← 0
∀e ∈ E : rnde ← 0

Leader upon receipt of a trigger:
1. rndlead ← rndlead + 1
2. ρ← 0
3. Restart DAFA*

Leader upon completion of DAFA*:
1. Distribute r̄(a) to ∀e ∈ E

Network element e upon receipt of a packet with rnde < rndlead:
1. rnde ← rndlead

2. foreach l of e
2.1 cl ← 1
2.2 W a

l ← W̃ a
l , Al ← Ãl

2.3 Join the new execution of DAFA*

Processing nodes of application a upon start/end of communica-
tion phase:
1. Send control packets to update W̃ a

l and Ãl on the path

2. Wait for packets to return

3. Perform synchronization barrier

4. Let one of the nodes send a trigger to the leader

necessary announcements. The announcement packets carry the weight of a �ow

and the index of the application. As a result, W̃ a
l and Ãl values are updated (a ∈ Ãl

i� W̃ a
l > 0). Once the packets return, a synchronization barrier is executed, to make

sure that when the trigger is sent, all links have a correct, updated state. When

the barrier ends, the trigger is �nally sent to the leader. After the new execution of

DAFA* ends, the leader distributes r̄(a) values to all network elements.

4.4 Theoretical Comparison

The various algorithms, each of which was introduced in the context of a particular

scenario with the corresponding performance goal in mind, all end up prescribing

a transmission rate for every �ow. Thus, some of them can be used for multiple

scenarios, albeit possibly yielding sub-optimal rate assignments and/or being overly

March 29, 2009

4.4. Theoretical Comparison 69

complex. This section addresses this issue by formally examining the properties

of the algorithms. The discussion is arranged by scenario. The formal nature of

the examination leads to worst case analysis. The empirical counterpart of the

comparison appears in Chapter 6.

4.4.1 Single Application

Three algorithms that achieve optimal rate assignments for the single application

scenario were presented in Section 4.1. Those are: SAA, SAA-M, and assigning

wf

W
to all �ows. In fact, the optimality condition for a feasible rate assignment was

shown to be ∀f ∈ F : r̄(f) ≥ 1
W
. It is not hard to see that FFA and also AFA

satisfy this condition. As a result, these algorithms yield optimal results for the

single application scenario as well. However, the algorithms di�er signi�cantly in

their e�ciency in terms of running time, number of messages and required state

information. It is therefore not recommended to use multi-application algorithms

for single-application systems.

4.4.2 Independent Flows

FFA was shown in Section 4.2 to provide the optimal rate assignment for indepen-

dent �ows. The problem of �nding weighted max-min fair rate assignment for inde-

pendent �ows can be reduced to �nding weighted max-min fair rate assignment for

single-�ow applications. Therefore, theoretically, AFA can be used for this calcula-

tion. One has to remember though, that in its distributed implementation, network

elements are required to store O(|A|) size state, which may become impractical as

it becomes O(|F |).

Now, let's examine the behavior of SAA. As was mentioned in Section 4.1, this

algorithm does not provide maximality. As a result, it obviously cannot be optimal

for independent �ows. For a �xed �ow set and routing, Proposition 4.4.1 bounds

the slowdown that an individual �ow may experience due to use of an assignment

calculated by SAA instead of one calculated by FFA.

Proposition 4.4.1. If maximum link weight is W and ∀f ∈ F : wf ≥ 1, then the

March 29, 2009

4.4. Theoretical Comparison 70

following is the tight upper bound on the relative normalized rates assigned to a �ow

by FFA and SAA:

∀f ∈ F :
r̄FFA(f)

r̄SAA(f)
≤ (W + 1)2

4W
. (4.6)

Proof. First, we need to show that the proposed expression indeed constitutes an

upper bound. Consider a �ow f ′. Let l be the link that determines r̄SAA(f ′) = 1
Wl
,

and let F−l = Fl r {f ′}. Maximum link weight is W , so ∀f ∈ F : rFFA(f) ≥ wf

W

(rFFA(f) is an absolute, rather than normalized, rate). As a result:

r̄FFA(f ′) ≤
1−

∑
f∈F−l

(wf

W

)
wf ′

, (4.7)

r̄FFA(f ′)

r̄SAA(f ′)
≤ Wl

wf ′

1− 1

W

∑
f∈F−l

wf

 =

1 +
1

wf ′

∑
f∈F−l

wf

 ·
1− 1

W

∑
f∈F−l

wf

 .

(4.8)

The second equation is attributed to the fact that Wl = wf ′ +
∑

f∈F−l
(wf).

If we denote ω =
∑

f∈F−l
(wf) and recall that wf ≥ 1, we achieve the following

inequalities:

r̄FFA(f ′)

r̄SAA(f ′)
≤
(

1 +
1

wf

· ω
)
·
(

1− 1

W
· ω
)
≤ (1 + ω) ·

(
1− 1

W
· ω
)
. (4.9)

Applying basic calculus, we �nd the maximum of the rightmost expression. The

maximum is achieved for ω = W−1
2

and its value is (W+1)2

4W
, as required.

Now, we present an example in which the upper bound is achieved. Consider

the scenario in Figure 4.3. Three �ows, represented by dashed arrows, cross a

switch sw1. Respective weights are wf1 = 1, wf2 = W−1
2

, wf3 = W+1
2

. In SAA,

the normalized rate of f1 is determined by link sw1 → d1 to be r̄S(f1) = 2
W+1

. In

FFA, the normalized rate of f2 is determined by link s2 → sw1 to be r̄F (f2) = 1
W
.

The normalized rate of f1 in this case is determined by the residual capacity on

sw1 → d1. As a result, r̄F (f1) = W+1
2W

. The desired ratio immediately follows.

March 29, 2009

4.4. Theoretical Comparison 71sw1s1s2 d1d2(W-1)/21(W+1)/2f1f2f3
Figure 4.3: SAA vs. FFA bound

Unlike SAA, SAA-M calculates a maximal rate assignment. It also guarantees

∀f ∈ F : r̄(f) ≥ maxl∈Lf

{
1

Wl

}
. As a result, (W+1)2

4W
can be shown to constitute

an upper bound for SAA-M, as well. Since SAA-M distributes the excess capacity

greedily, it is possible that some �ows do not bene�t from it. Therefore, we conjec-

ture without proof that a more complex example can be constructed to demonstrate

the tightness of the bound, or at least to show that for large W the tight bound is

very close to (W+1)2

4W
.

4.4.3 Multiple Applications

AFA is fundamentally di�erent from FFA and SAA, as it accounts for �ows' be-

longing to di�erent applications. As a result, AFA is capable of setting the same

normalized rate to all �ows of an application, while leaving more free capacity to

other applications. For a �xed routing and sets of �ows and applications, Proposi-

tion 4.4.2 bounds the slowdown that an individual application can experience due

to the use of FFA or SAA in lieu of AFA. Surprisingly, the bound is equal to the

one presented in Proposition 4.4.1.

Proposition 4.4.2. If maximum link weight is W and ∀f ∈ F : wf ≥ 1, then the

following tight upper bounds hold:

∀f ∈ F :
r̄AFA(a)

r̄SAA(a)
,
r̄AFA(a)

r̄FFA(a)
≤ (W + 1)2

4W
. (4.10)

Proof. We show the proof for FFA, and state that it is trivially repeated for SAA.

Consider an application a. Let f ′ = arg minf∈a {r̄FFA(f)}; according to our de�ni-

tions r̄FFA(a) = r̄FFA(f ′). The behavior of FFA dictates that at the end of its run,

March 29, 2009

4.4. Theoretical Comparison 72s1
s2

d1
d2(W-1)/21

W
f1ϵa1f2ϵa2f3ϵa2

Figure 4.4: SAA, FFA vs. AFA

there exists a saturated link l ∈ Lf ′ for which ∀f ∈ Fl : r̄FFA(f) ≤ r̄FFA(f ′). Since

l is saturated and f ′ has the highest normalized rate, we get:

r̄FFA(f ′) = r̄FFA(a) ≥ 1

Wl

. (4.11)

Let F−l = Fl\{f ′}; maximum link weight is W , so ∀f ∈ F : rAFA(f) ≥ wf

W
, thus:

r̄AFA(a) = r̄AFA(f ′) ≤
1−

∑
f∈F−l

(wf

W

)
wf ′

. (4.12)

From here, we repeat the proof of Proposition 4.4.1 and achieve r̄AFA(a)
r̄FFA(a)

≤ (W+1)2

4W
.

The example in Figure 4.4 shows that the bound is tight. Flows f1, f2, f3

belong to applications a1, a2, a2, respectively. The weights are given by: wf1 = 1,

wf2 = W−1
2

, wf3 = W .

When AFA is applied we have:

r̄AFA(a2) =
1

W
⇒ r̄AFA(a1) =

1− wf2

W

wf1

=
W + 1

2W
. (4.13)

When FFA is applied we have:

r̄FFA(a1) = r̄FFA(f1) =
1

W+1
2

=
2

W + 1
. (4.14)

Due to their formal nature, the above bounds describe the worst-case behavior.

An empirical comparison of di�erent algorithms is found in Chapter 6.

March 29, 2009

Chapter 5

Practical Issues of Rate Control

In the discussion in Chapter 4, two simplifying assumptions were deliberately made:

1) we assumed that all tra�c in the network consists of long, steady �ows, and 2)

the calculated rates were believed to be realizable in practice. In this chapter, we

consider implications of these practical issues and o�er solutions that allow a correct

and bene�cial application of our method.

5.1 Mixed Tra�c

In practical networks, the long bulk transfer �ows may at times be accompanied

by additional, low-volume sporadic communication. The unstable, swiftly changing

nature of the latter makes its control a doubtful task. Instead of trying to control

the behavior of these di�erent types of tra�c in a uni�ed manner, we propose to

deal separately with each one of them.

The use of virtual lanes (VLs) in In�niBand enables the partitioning of a physical

network into two or more logical networks with private resources. The only common

resource shared by all VLs is the capacity of physical links, access to which is

governed by a priority mechanism.

We can use one dedicated logical network for long �ows and another for spo-

radic tra�c. Because long �ows are controlled and well-behaving, we can limit the

maximum capacity they use on every link, and leave the rest to the sporadic tra�c.

This is easily achieved by declaring only 1 − αl of a link's capacity as available to

73

5.2. Packet Injection Scheme 74

the rate calculation algorithms. The value of αl may vary for di�erent links, and is

expected to be the capacity allocated to the sporadic tra�c on link l.

How the chosen capacity division is implemented requires further investigation.

On the one hand, it seems reasonable to give long �ows an absolute priority in access

to the physical link since, unlike the sporadic tra�c, long �ows can't claim more

than their allowed capacity (1 − αl). (In addition, as will be shown below, long

�ows may exhibit a periodic pattern of link utilization, which prevents temporary

starvation of the sporadic tra�c packets.) On the other hand, the sporadic tra�c

may be more latency sensitive which suggests that it should be prioritized.

In general, an overestimation of αl might leave link capacity underutilized, while

its underestimation would starve the sporadic communication. Perhaps the values

should be adjusted from time to time. The choice of αl values is beyond the scope

of this work and this may be an interesting topic for future research.

5.2 Packet Injection Scheme

The discrete nature of packet networks was abstracted away from the discussion in

Chapter 4. There, we considered the tra�c to be �uid and governed only by the

capacity of the links. While this approach facilitates the formal reasoning, it does not

accurately re�ect reality. Three major factors a�ect the gap between the �uid model

and practical networks. First, the packet injection policy at sources determines the

size and frequency of bursts of the injected tra�c. We concentrate on a policy for

individual sources, since it is impractical to coordinate injection of multiple sources.

Second, bu�ering can smooth quantization-related phenomena. Unfortunately, as

mentioned in Chapter 1, In�niBand switches typically have relatively small bu�ers.

Finally, the e�ect of scheduling of packets contending for the same output port may

a�ect the ability of the fabric to keep up with the injected tra�c.

Our goal in choosing an injection scheme is to restrain the burstiness of the tra�c,

in order to reduce the dependency on bu�er smoothing. As a result, we propose to

let sources transmit packets periodically, while applying a selection (among �ows)

mechanism for every transmission.

March 29, 2009

5.2. Packet Injection Scheme 75

)(

),(

1

1

fr

tfD... R

d
T p=

)(
),(

k

k

fr

tfD

Selector
Figure 5.1: Periodic Selection injection scheme

In Section 6.6, we evaluate the success of the realization of calculated rates by

means of simulation with varying bu�er size and the following assumptions on the

behavior of switches: 1) output ports apply a �rst come � �rst served (FCFS) service

policy ; i.e., an output port sends packets from di�erent input ports in the order of

their arrival to the switch, and 2) an input port can send a packet to every output

port during the same time step (in�nite speedup).

5.2.1 The Scheme

Assume that a single �ow f with packets of a �xed size dp originates at the source.

The source can set the inter-packet delay (IPD) to dp

r(f)
and transmit a single packet

every IPD. This approach can be generalized to deal with several �ows having the

same rate. Now, the injection is performed in cycles of the same IPD, but more

than one �ow transmits a packet during the cycle, as the period is divided between

the �ows in a simple time-division multiplexing manner. When several �ows with

di�erent rates, yet the same packet size dp, are considered, the multiplexing of

multiple �ows onto a single output link is a challenge.

We propose the periodic selection (PS) injection scheme that is an adapted ver-

sion of SVC [38]. Let D(f, t) stands for the amount of data sent by the source for a

�ow f until time t. In the SVC, every time a source ends transmission of a packet,

the next packet is chosen from a �ow f that satis�es the following conditions: 1) f

is �eligible� to send a packet; i.e., the time that passed from the last transmission of

f 's packet is at least dp

r(f)
(the transmission of the new packet would not violate f 's

rate), and 2) f = arg min
{

D(f,t)
r(f)

}
among eligible �ows. If no eligible �ow is found,

the transmission of the next packet is delayed until one of the �ows becomes eligible.

March 29, 2009

5.2. Packet Injection Scheme 76

Note that while the SVC prevents bursts of individual �ows, it allows bursts of

aggregate tra�c leaving the source. In PS, which is illustrated in Figure 5.1, unlike

in SVC, the source transmits a single packet every dp

R
. Yet again, the transmitted

packet is (logically) selected just before the transmission. The �ow to provide a new

packet at time t is f = arg min
{

D(f,t)
r(f)

}
. In this manner the aggregate tra�c leaving

the source has a periodic nature as well.

If a packet cannot be transmitted due to back-pressure, its transmission is delayed

until free bu�er space on the receiving side is available again. The waiting time

is considered lost, so once possible, the source will resume its periodic operation

without attempting to compensate for the lost work. Therefore, such waiting can

be seen as added to the time until completion of all participating �ows.

The PS scheme can be implemented in two di�erent practical ways. The simple

implementation performs selection of the next packet by comparing all �ows when

a transmission of a current packet begins. If dedicated hardware is used for that

purpose, the comparison can be performed in a logarithmic time on a comparison

tree. Otherwise, the �ows must be compared serially, which might increase the

delay considerably. Another alternative is to hold �ows in a sorted list structure.

The head of the list provides the next packet, and when a new packet is sent to

transmission the head is moved to a new place as its D(f,t)
r(f)

changes. (This ratio

remains unchanged for other �ows.)

Now let us prove a fundamental property of the PS injection scheme: if the

source succeeds to send a packet every dp

R
, then in the steady state (t → ∞) the

average rates of all �ows converge to the calculated ones (see Theorem 5.2.2 below).

Lemma 5.2.1. Assume that �ows have an in�nite length, and let np(t) be the total

number of packets actually transmitted by the source until time t. When t → ∞, if

np(t)→∞, then ∀f1, f2 : D(f1,t)
D(f2,t)

→ r(f1)
r(f2)

.

Proof. Consider some moment t1. Let f
′ = arg max

{
D(f,t1)

r(f)

}
, and let t0 < t1 be the

time when f ′ sent its last packet. It follows that f ′ = arg min
{

D(f,t0)
r(f)

}
. Obviously,

∀f ∈ F : D(f,t)
r(f)

is monotonically non-decreasing. It follows that

March 29, 2009

5.2. Packet Injection Scheme 77

D(f ′, t0)

r(f ′)
≤ min

f∈F

{
D(f, t1)

r(f)

}
. (5.1)

f ′ sends no packets after t0, so

D(f ′, t1)

r(f ′)
=
D(f ′, t0)

r(f ′)
+

dp

r(f ′)
. (5.2)

As a result, we conclude that

max
f∈F

{
D(f, t1)

r(f)

}
−min

f∈F

{
D(f, t1)

r(f)

}
≤ dp

r(f ′)
≤ max

f∈F

{
dp

r(f)

}
. (5.3)

Therefore, as t → ∞, given that np(t) → ∞, it is not hard to show that ∀f :

D(f, t)→∞. Therefore:
D(f1, t)

r(f1)
' D(f2, t)

r(f2)

Theorem 5.2.2. If a packet is injected to network every dp

R
(without back-pressure),

then D(f,t)
t
→ r(f) as t→∞.

Proof. First, if no back-pressure is applied on the source, then the condition of

Lemma 5.2.1 is true. Let D(t) be the total amount of data sent by the source by

time t. Because a packet of length dp is transmitted by the source every dp

R
, when

t→∞ we have:

∑
r(fi) = R ' D(t)

t
=
∑ D(fi, t)

t

Assume by contradiction, that for some i, D(fi,t)
t

< r(fi). If so, from the above

equality we must conclude that for some j,
D(fj ,t)

t
> r(fj). However, this leads to a

contradiction of Lemma 5.2.1, since:

r(fj)

r(fi)
<
D(fj, t)

D(fi, t)

As a �nal step, we extend the PS injection scheme to operate correctly when

�ows use varying packet size. We restrict the length of packets to be an integer

March 29, 2009

5.2. Packet Injection Scheme 78

multiple of some basic size dp. The extended scheme still operates in cycles of dp

R
.

However now, when the transmission of packet of size k · dp starts, no new packet is

injected for k · dp

R
time, i.e. the next k − 1 �clock ticks� are dedicated to the same

packet. As in the simpler case, it is not hard to see that a dp amount of data is sent

every dp

R
amount of time on average. Therefore, the overall transmission rate is R.

In addition, given that the packet size is bounded from above, Theorem 5.2.2 can

be proved to be right for the general case.

The PS injection scheme on its own cannot guarantee successful realization of

calculated rates. As stated above, bu�ers' size and service policy in switches play

a crucial role as well. In Section 6.6 we test empirically (through simulation) the

behavior of the proposed scheme under FCFS service policy and varying size of in-

put bu�ers. The results presented there indicate that the proposed injection scheme

implements calculated rates with practical bu�er sizes. Therefore, in all later ex-

periments the calculated rates are regarded as the actual behavior of the �ows.

March 29, 2009

Chapter 6

Empirical Results

In this chapter, we present and discuss empirical results for the proposed adaptive

routing (Chapter 3) and rate calculation (Chapter 4) schemes. The results were

acquired through simulation in a large scale fat tree topology. This topology was

chosen due to its high popularity in clustered computing.

Following the conclusions of Chapter 5, in tests that apply rate control, we rely

on calculated results, without actually simulating the injection of the tra�c and its

propagation through the network. In addition, although the algorithms in Chapter 3

and Chapter 4 support weighted �ows, our experiments assume all �ows to have the

same length/weight.

6.1 Fat Trees

Topology

The ideal fat tree topology is almost identical to the regular tree. The two topologies

di�er only in the capacity of their links. While in the regular tree links have an

equal capacity, in ideal fat tree the capacity grows (is multiplied by radix) for every

ascending step. The increased capacity is intended to prevent creation of a severe

bottleneck at the higher switches of the tree, in particular the root.

For instance, consider the ideal binary fat tree of height three (only switch levels

are counted in height) presented in Figure 6.1-a. The end nodes are connected to

switches by links of unit capacity. The capacity of links is doubled as the root

79

6.1. Fat Trees 80

x2 x2 x2 x2x4 x4
(a) Ideal binary fat tree

D0,1
D1,2U1,0

U2,1
(b) 2-ary 3-tree

Figure 6.1: Fat Trees

is approached, such that the capacity of links connected to the root is four times

higher.

In practice, the increased link capacity is implemented by placing several parallel

links of a constant, unit capacity. This leads to an unreasonable requirement on the

number of ports at the higher levels of larger ideal trees. As a result, the �ideal�

topology cannot be used in reality.

A practical implementation of the ideal fat tree is the k-ary n-tree [31]. Such

binary tree with height of three is depicted in Figure 6.1-b. The k-ary n-tree replaces

every logical node of the ideal tree with a number of physical switches. This number

is multiplied with every ascending step. In the example, the root is realized as four

switches and its children by two switches each. Importantly, the set of end-nodes

that can be reached by descending from any given switch is identical to the one that

can be reached from the associated logical node in the ideal tree.

Routing

In an ideal fat tree, just like in a regular tree, routing is simple because a single

minimal path exists for every source-destination pair. Such a path includes ascending

to the closest common ancestor of the two, and then descending to the destination.

The minimal routing in k-ary n-tree implies the same procedure (see example in

Figure 6.1-b). Here, however, multiple minimal paths connect each source with every

destination. In fact, the ascending can be performed arbitrarily until a switch be-

longing to a closest common ancestor in the ideal tree is (guaranteed to be) reached.

Once the ascent is complete, the descending path is unambiguously determined.

March 29, 2009

6.2. Adaptive Routing 81

As a static baseline in the following experiments, we used the oblivious routing

algorithm proposed in [15]. This algorithm has two interesting properties. First, it

guarantees complete contention avoidance for shift permutation tra�c. In addition,

for any permutation, �ows do not collide on the descending part of the path.

Note that the k-ary n-tree topology is known to be rearrangeably non-blocking,

i.e., for every given permutation, contention-free routing can be found (valid for that

permutation). However, even if only permutation tra�c is considered, achieving this

optimum result requires globally re-computing the routing every time the pattern

changes.

6.2 Adaptive Routing

As mentioned in Chapter 1, the purpose of adaptive routing is to reduce the con-

tention on links through load balancing. Note that when multiple �ows target the

same destination, no load-balancing can relieve the contention on its incoming link.

For our initial capabilities test and parameter setting, we therefore chose a random

permutation tra�c pattern, for which every end-node has a single incoming and

outgoing �ow. Later, our adaptive routing combined with rate control were tested

under additional tra�c patterns.

Adaptive Ascent

As a �rst step, we examined the possibility of letting �ows to be routed adaptively

during the ascent, i.e., at each ascending step the port to be used is chosen adap-

tively. As mentioned above, no adaptation is possible on the descent. We collected

simulation results for 1000 random permutations in 16-ary 3-tree (4096 end-nodes).

Here and later, we used the number of �ows crossing a link as a heuristic measure

of dynamic link quality, and the size of the RC table was assumed to be unlimited1.

For each permutation, we measured the number of �ows crossing every link in

the network under oblivious [15] (variants of this static routing are popular in real-

1The tra�c patterns used in our simulations did not result in large numbers of �ows crossing
switches. Nevertheless, performance dependency on size of the RC table has yet to be examined.

March 29, 2009

6.2. Adaptive Routing 82

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Contention factor

P
ro

ba
bi

lit
y

D

0,1
D

1,2
U

1,0
U

2,1

(a) Oblivious

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Contention factor

P
ro

ba
bi

lit
y

D

0,1
D

1,2
U

1,0
U

2,1

(b) Adaptive ascent

Figure 6.2: Distribution of congestion factors in k-ary n-tree

life clusters) and adaptive ascending routing. We concentrated on four sets of links:

D0,1, D1,2, U1,0, and U2,1, which are illustrated in Figure 6.1-b. D/U stand for down

and up, respectively; the subscript describes the connected switch levels. Figure 6.2

depicts the probability of di�erent levels of contention in each of these sets.

The baseline oblivious routing (Figure 6.2-a) avoids contention on the descend-

ing links under permutation tra�c. For the ascending links, however, the tail of the

distribution reaches as far as seven �ows. The tail is important when total comple-

tion time is considered. When adaptive ascending was applied (Figure 6.2-b), the

contention on the ascending links was e�ectively relieved, but local adaptation on

the ascent failed to guarantee successful descent.

We conclude that the suggested adaptive ascending routing has no positive e�ect

on the measured contention. Instead of trying to improve the heuristic by informa-

tion exchange between switches, we propose to enrich the k-ary n-tree so as to enable

adaptation for descending �ows. We call the enriched topology modi�ed k-ary n-tree.

Modi�ed k-ary n-tree

In modi�ed k-ary n-tree, switches belonging to the same logical node in the ideal

tree are connected by horizontal links, as depicted in Figure 6.3. Due to the afore-

mentioned properties of the k-ary n-tree topology, horizontal movement between

such switches preserves reachability of a destination through descent.

March 29, 2009

6.2. Adaptive Routing 83

Figure 6.3: Modi�ed k-ary n-tree

The routing in the enriched topology is still composed of the ascending and

descending phases. It is depicted in Figure 6.3. The ascent is performed adaptively,

exactly as in a regular k-ary n-tree. During the descending phase the routing is

identical to that presented in Section 3.2, and is shortly described below.

A �ow is allowed to take multiple horizontal hops, at every level of switches, be-

fore proceeding to a lower level. The horizontal direction (right/left) is chosen once,

before the �rst horizontal hop, and is preserved until further descent. The direction

is chosen at each level so as to maximize the permissible number of horizontal hops

before reaching the boundary of a logical node. Thus, �ows initially arriving to a

switch in the left half of a logical node are sent to the right, and otherwise, to the

left.

It is obvious that the proposed routing in the modi�ed k-ary n-tree avoids cyclical

dependency between links, and therefore is deadlock-free. In addition, the resulting

�ow paths do not contain cycles. The conditions of Theorem 3.1.1 are thus satis�ed,

and correct operation of our generic adaptive routing scheme is ensured.

We tested the modi�ed topology and the proposed routing by repeating the

random permutations experiment. The capacity of the horizontal links, i.e., the

number of parallel links with unit capacity, referred to as horizontal width, was used

as a parameter. This time, in every run, we measured the contention experienced

by individual �ows (maximum among links in Lf). The maximum and the average

(over �ows) results are summarized in Figure 6.4, which presents these measures for

the oblivious and adaptive routing cases. Here and later, we averaged results over

the (1000) runs.

We can conclude that with a horizontal width of two or more, the maximum con-

March 29, 2009

6.2. Adaptive Routing 84

1 2 4 8
1

2

3

4

5

6

7

Horizontal width

C
on

te
nt

io
n

OBL−M
HOR−M
OBL−A
HOR−A

Figure 6.4: Number of horizontal links versus maximum congestion

tention is reduced by approximately 50%, while the average contention is reduced

by more than 20%. We stuck to horizontal width of two in the following experi-

ments since it provides the best tradeo� between performance and overhead (to be

discussed below).

Remark: Here and later, we compare the coupling of additional bandwidth with

adaptive routing (which we commonly refer to as �adaptive routing�) to static routing

in non-modi�ed tree. Apparently, in presence of unknown tra�c pattern, no static

routing can make e�cient use of the horizontal links. We found it inconvenient to

divide the additional bandwidth among the links in non-modi�ed tree when static

routing is applied, because this enhancement cannot be practically implemented.

Radix and Height

We tested the behavior of our adaptive routing under varying tree parameters in

two experiments. In both, we used 1000 random permutations and measured the

same quantities as in the previous setup. For the �rst experiment, we �xed the tree

height to three and left radix as a parameter. In the second experiment, the radix

was �xed to twelve, and the height was changed between two and four. Figure 6.5

summarizes the results.

The general observed trend is that the improvement achieved by our adaptive

routing is higher for larger trees. This is especially true for maximum contention

since in larger trees higher maximum contention is witnessed, as expected. The

March 29, 2009

6.2. Adaptive Routing 85

2 3 4
1

2

3

4

5

6

7

8

Height

C
on

te
nt

io
n

OBL−M
AR−M
OBL−A
AR−A

(a) Radix = 12

4 8 12 16
1

2

3

4

5

6

7

8

Radix

C
on

te
nt

io
n

OBL−M
AR−M
OBL−A
AR−A

(b) Height = 3

Figure 6.5: Adaptive routing under changing tree parameters

results suggest that the adaptation successfully balances the load.

Horizontal Movement Policies

So far, we �xed the horizontal direction based on the position of a switch within

a logical node. Moreover, a �ow was allowed to make an unlimited number of

horizontal hops until the boundary of the logical node is reached. Now, we want to

examine these adaptation policy decisions. For this purpose, we de�ne two types

of policies, FreeDir(i) and ForcedDir(i), where i stands for the maximum allowed

number of horizontal hops.

In FreeDir, the direction of the �rst horizontal movement at any given tree level is

greedily chosen by a switch based on the heuristic quality of its ports, and the chosen

direction remains �xed while at this level. By allowing additional freedom of choice,

we apparently strengthen the adaptation mechanism. However, if a deciding switch

is close to the boundary of its logical node, a greedy decision can severely limit the

number of horizontal hops a �ow can take before being forced to descend. ForcedDir

is the policy we applied so far, in which the horizontal direction is unambiguously

determined by the physical position of a switch within the logical node of which it

is part.

This time, we measured the maximum contention for 1000 random permutations

in modi�ed 16-ary 3-tree. Figure 6.6 presents results for changing number of allowed

March 29, 2009

6.2. Adaptive Routing 86

0 1 2 4 8 inf
1

2

3

4

5

6

7

Allowed Horizontal Hops

M
ax

im
um

 c
on

te
nt

io
n

ForcedDir(i)
FreeDir(i)

Figure 6.6: E�ects of horizontal routing policies

horizontal hops between i = 0 (no horizontal movement) to i =∞ (no limit on the

number of allowed horizontal hops). Notice the unusual structure of the X-Axis. As

we see, ForcedDir is generally better than FreeDir. The only exception is i = 1,

when FreeDir provides more freedom of choice for the single allowed horizontal step.

In addition, we notice that there is virtually no di�erence between the results for

i = 8 and i =∞.

From the practical perspective, setting i = 8 is preferable since it prevents cre-

ation of extremely long paths (the number of root switches in 16-ary 3-tree is 256).

We stick to ForcedDir(8) in the rest of the experiments, in this chapter.

Overhead

The transition from a regular k-ary n-tree to the modi�ed one entails adding ports

and links to the topology. Table 6.1 summarizes the ratio between the number of

added and existing switch ports, for varying radix and height parameters under

horizontal width of two. We notice that for large clusters (height 3-4, radix 12-16)

the overhead falls into the range of 10%-14%. As a reminder, applying adaptive

routing in clusters of the same size leads to 40%-50% reduction in the maximum

congestion factor. In light of these �ndings, the contention reduction more than

justi�es the investment in additional ports.

So far we only discussed adaptive routing. It is important to understand that

the above results deal with contention, i.e., how many �ows share a link, and not

March 29, 2009

6.3. A Single Phase-Based Application 87

h \ r 4 8 12 16
2 0.33 0.17 0.11 0.08
3 0.40 0.20 0.13 0.10
4 0.43 0.21 0.14 0.11

Table 6.1: Additional ports overhead of modi�ed k-ary n-tree (horizontal width=2)

with the performance measures de�ned in Section 1.4. Now we add rate control and

consider it both alone and in conjunction with adaptive routing. The discussion is

organized by the three characteristic scenarios.

6.3 A Single Phase-Based Application

We tested the e�ect of SAA and adaptive routing on the length of the communication

phase in a modi�ed 16-ary 3-tree (4096 end-nodes). The application was assumed to

send �ows of a �xed size, that constitute a superposition of random permutations.

Under this tra�c pattern, every end node sends and receives a constant number of

�ows (equal to the number of permutations). Switches were con�gured to have input

bu�ers with size of eight MTU packets. We demonstrate this size to be su�cient to

implement calculated rates in Chapter 5 above.

The total completion time (in normalized units, averaged over 50 runs) for dif-

ferent control schemes is presented in Figure 6.7. We witness an interesting phe-

nomenon. SAA alone (without adaptive routing) provides a slight improvement, of

up to 13%, compared to the non-controlled baseline NC (no rate control, no adaptive

routing). Adaptive routing alone (AR) increases the completion time when three

or more permutations are used. However, when the two are combined (SAA+AR)

they yield a major improvement of up to 50%.

We explain this apparently counter-intuitive behavior as follows. The adaptive

routing reduces the maximum contention in the network, but, as a side e�ect, the

path length of some �ows increases signi�cantly. As a result, those �ows have an

increased probability of being a�ected by congestion spreading. However, when the

rate control (SAA) is applied, congestion spreading is avoided, and the reduced con-

tention causes a major improvement in the total completion time. Thus, for a single

March 29, 2009

6.4. Independent Flows 88

1 2 3 4 5
0

1

2

3

4

5

Number of permutations

C
om

pl
et

io
n

tim
e

NC
AR
SAA
SAA+AR

Figure 6.7: SAA performance

permutation, SAA+AR reduces the completion time twofold compared to SAA,

as dictated by the twofold reduction of the maximum contention by the adaptive

routing.

Note that the results in Figure 6.7 stay unchanged when SAA is replaced by

SAA-M because both algorithms guarantee the same optimal completion time.

6.4 Independent Flows

Performance Analysis

In the independent �ows scenario, we assessed the performance of adaptive routing

and compared the performance of three rate control algorithms: SAA, SAA-M, and

FFA. The FFA provides the optimal outcome according to the max-min fairness

criterion. Also, recall that the SAA is obviously sub-optimal since it doesn't even

guarantee maximality of capacity usage, i.e., some �ows could increase their rates

in a feasible manner, without a�ecting others.

The empirical data on the three algorithms was collected in the following setup.

A modi�ed 16-ary 3-tree topology was used. Yet again, switches were con�gured to

have input bu�ers with size of eight MTU packets. A single parameter max_�ows

determined the actual tra�c pattern. Before the beginning of a run, every source

randomly (uniformly) chose an integer nf in the interval [1,max_�ows]. Then, the

source sent nf concurrent �ows, each to a random destination. All �ows had the

March 29, 2009

6.4. Independent Flows 89

1 2 3 4 5
0

0.5

1

1.5

2

Max flows per source

M
ea

n
ra

te
 r

at
io

AR
FFA
FFA+AR
SAA+AR
SAA−M+AR

(a) Mean speedup

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Flow index

R
at

e
ra

tio

AR
FFA
FFA+AR
SAA+AR
SAA−M+AR

(b) Rate vectors ratio (max_�ows=5)

Figure 6.8: Rate control for independent �ows

same weight.

In every run, the rates of all �ows were collected for six control schemes: 1)

no control (NC), 2), adaptive routing (AR) 3) FFA, 4) SAA with adaptive routing

(SAA+AR), 5) SAA-M with adaptive routing (SAA-M+AR), and 6) FFA with

adaptive routing (FFA+AR). For each control scheme, we derived the mean (among

�ows) rate and a sorted (by rate) vector of rates.

Figure 6.8-a presents, for each of the control schemes 2-6, the ratio between

the mean rate with that scheme and with NC (averaged over 50 runs). We draw

several important conclusions. To begin with, adaptive routing alone still has a

potentially negative impact. However, now, if we compare FFA to FFA+AR, we

notice that the contribution of rate control on its own is much more signi�cant than

in the single application scenario test. This result is attributed to two factors: 1)

in independent �ows performance does not depend on the worst case �ow, and 2)

under the chosen tra�c pattern some �ows su�er from congestion at destination,

which cannot be relieved by the adaptive routing. Interestingly, the performance

boost of SAA-M+AR is identical to that of FFA+AR. Overall, FFA+AR provides

up to 43% increase in the mean rate.

Additional insight into the behavior of the di�erent algorithms is gained if the

element-wise ratio of the sorted rate vectors, instead of mean rates, is examined.

This ratio is a natural measure in the context of the max-min fairness criterion,

March 29, 2009

6.4. Independent Flows 90

as it expresses the improvement in the lowest rate, the second lowest rate, etc.,

for di�erent control schemes (relative to NC). Because the number of �ows slightly

di�ered in di�erent runs, in each run, ratio vector indices were (linearly) mapped to

the [0,1] interval (the lowest rate at 0, the highest at 1). Then, ratio vector values

at indices corresponding to a prede�ned set of points in [0,1], were collected. The

results for max_�ows=5 are presented in Figure 6.8-b and constitute an average

over 50 runs.

If we compare SAA+AR, SAA-M+AR and FFA+AR, we observe that all al-

gorithms provide a dramatic improvement for low-rate �ows. Apparently, ensuring

normalized rate of 1
Wf

is su�cient to boost low rates. For higher rates, SAA+AR

is worse than SAA-M+AR and FFA+AR. This is an expected result because SAA

is known to leave underutilized capacity, even if some �ows can exploit it. Unlike

SAA+AR, the rates of SAA-M+AR are very close to those of FFA+AR. The only

slight di�erence is that SAA-M+AR boosts high rates at the expense of medium

ones. This behavior is a result of greedy capacity claiming applied by SAA-M.

Estimating Calculation Time of DFFA

Unlike distributed implementations of SAA and SAA-M, DFFA relies on a relatively

large amount of computations and communication. (For SAA-M, the number of

control packets that �ows send after all �ows enter the network and before acquiring

a �nal rate in the above experiments, was no more than �ve on average. The

maximum number of the sent packets was 18.) Recall that DFFA uses two special

types of packets: control packets and round-broadcast packets. We estimate the

calculation time of DFFA through simulation using the following timing model.

We assume that the special packets have an absolute priority in transmission

over data packets, including preemption. Table 6.2 presents the set of parameters

used in simulations. The set assumes that dedicated hardware is used to process the

special packets in switches (and that the processing time in HCAs is negligible). The

processing of control packets is performed sequentially at every output port, but in

parallel among the ports. The round-broadcast packets are processed similarly at

inputs. Re�nements of the estimation model can be considered in future work.

March 29, 2009

6.4. Independent Flows 91

Parameter Value

Routing delay 100ns
Propagation delay 15ns
Link bandwidth 10Gb/s

(a) Network

Parameter Control Broadcast

Size 40 byte 8 byte
Processing Time 60 ns 30 ns

(b) Special packets

Table 6.2: DFFA overhead estimation parameters

We performed two experiments to evaluate the calculation time. In both ex-

periments, sources sent a constant number (which is a parameter) of �xed weight,

in�nite size �ows to random destinations. In the �rst experiment, all �ows started

approximately at time t = 0. For each �ow, we measured the time at which its

DFFA* loop is terminated for the last time (i.e., after the acquisition of the �nal

result by that �ow). In the second experiment, all �ows except one started at t = 0.

The remaining �ow started after the initial rate calculation is over for all other �ows.

Its start triggers a re-calculation, the length of which we measured for each �ow. In

both cases, we collected the mean and maximum calculation time among �ows (and

averaged them over 50 runs).

The results are depicted in Figure 6.9-a and Figure 6.9-b, for the �rst and the

second experiment, respectively. As a matter of fact, the two �gures are almost

identical. We observe that the mean calculation time in our experiments is bounded

from above by 30µs. The maximum time is bounded by 100µs. For comparison,

note that the transmission time of a 2KB packet is approximately 1.5µs.

Although the measured times are not high, we must recall that in the worst case

the overhead is incurred per every change in the set of �ows F (t). As a result, if the

overhead becomes unbearable, we can invoke the DFFA periodically and use SAA-

M, which is characterized by local e�ects of changes in F (t) and fast convergence,

between the invocations as proposed in Section 4.2.3.

Alternatively, we can rely solely on SAA-M. The latter approach is supported by

the performance results presented earlier. The applicability of SAA-M as a general

rate control algorithm is an interesting topic for further research.

March 29, 2009

6.5. Multiple Phase-Based Applications 92

1 2 3 4 5
0

20

40

60

80

100

Flows per source

T
im

e
(µ

s)

MAX
MEAN

(a) Common start

1 2 3 4 5
0

20

40

60

80

100

Flows per source

T
im

e
(µ

s)

MAX
MEAN

(b) Triggered recalculation

Figure 6.9: DFFA overhead estimation

6.5 Multiple Phase-Based Applications

Performance Analysis

In order to test the behavior of our rate control algorithms in the multiple appli-

cations scenario, we decided to simulate the setup of a fragmented utility cluster.

In such a cluster, applications with di�erent numbers of required computing nodes

come and leave. As a result, at any given time the unoccupied computing nodes are

spread over the cluster in fragments. Therefore, a new application is not necessarily

mapped onto physically neighboring nodes2.

We let 32 applications use a modi�ed 16-ary 3-tree. The mapping of nodes to

applications was performed as follows. The 4096 nodes were divided into groups

of neighbors of size 128/frag_coe�, where frag_coe� is a parameter. Each group

was randomly mapped to one of the 32 applications, such that each application

was ultimately assigned 128 dedicated nodes. The tra�c pattern within the same

application was a superposition of random permutations, whose number is chosen

uniformly from the interval [1,5]. All participant �ows had equal weights.

Five control schemes were tested: 1) no control (NC), 2) AFA, 3) SAA with

adaptive routing (SAA+AR), 4) FFA with adaptive routing (FFA+AR), and 5)

AFA with adaptive routing (AFA+AR). For every control scheme, in each run, the

2A similar fragmentation phenomenon is found in disks and memory.

March 29, 2009

6.5. Multiple Phase-Based Applications 93

1 4 16 64
1

1.5

2

2.5

3

Fragmentation coefficient

M
ea

n
ra

te
 r

at
io

AFA
AFA+AR
FFA+AR
SAA+AR

(a) Mean speedup

5 10 15 20 25 30
0

1

2

3

4

Application index

R
at

e
ra

tio

AFA
AFA+AR
FFA+AR
SAA+AR

(b) Rate vectors ratio (frag_coe�=4)

Figure 6.10: Rate control for multiple applications

rates of all applications were measured. Note that in general, higher rate means

lower completion time. In the observed special case, when all applications enter

their communication phase at t = 0 and �ows are of equal size, the rate in inversely

proportional to the completion time.

Here, similarly to the experiments for independent �ows, we derived the mean

rate among applications, and collected the ratio of mean rates between control

schemes (2-5) and the baseline NC. In addition, the element-wise ratio of sorted

rate vectors was gathered as well. Figure 6.10-a presents the speedup of mean rate.

Figure 6.10-b depicts the ratio of sorted rate vectors for frag_coe�=4. All results

were averaged over 50 runs.

Comparing the results achieved by AFA and AFA+AR, we conclude that the

adaptive routing plays a key role in the current experiment. Generally, all rate

control algorithms, combined with adaptive routing, greatly increase the mean rate.

The best result is achieved by AFA+AR, which leads to up to 110% improvement

(53% improvement of the average completion time).

When the sorted rate vectors are considered for SAA+AR, FFA+AR, and AFA+AR,

we witness that all algorithms provide a dramatic improvement for weak applica-

tions. AFA+AR succeeds to help strong applications as well. This success is at-

tributed to the ability of AFA to leave more free capacity to the strong applications

without hurting the weak ones.

March 29, 2009

6.5. Multiple Phase-Based Applications 94

Interestingly, the results for SAA+AR and FFA+AR completely coincide. This

evidence suggests that FFA+AR and SAA+AR assign identical rates to the �ows

that determine the rates of their respective applications. This conclusion is not

surprising considering that SAA and FFA provide similar rates to slow �ows in

general, as shown by previous experiments.

Estimating Calculation Time of DAFA

As described in Section 4.3, the DAFA executes the AFA loop in a distributed

manner after the leader receives a trigger. Each iteration of AFA loop includes per-

forming two �map-reduce� operations originated at the leader. We want to estimate

latency from the receipt of the trigger until the leader possesses the �nal application

rates (i.e., the delay of DAFA* execution). For this purpose, we make the following

de�nitions:

• I � number of required AFA iterations (bounded by |A|)

• hmax � maximum number of hops between the leader and any other network

element

• Td � single-hop information distribution delay (on a spanning tree) during

the RDP (the �mapping� phase). Includes receiving, processing and further

sending of data.

• Tc � single-hop information aggregation delay (on a spanning tree) during

the RCP (the �reduction� phase). Includes receiving, processing and further

sending of data.

Note that if we use PIF for the dynamic spanning tree construction, the expected

height of the tree (number of hops between the root and the leaves) is exactly hmax.

Given that, hmax · Td is the upper bound on the time of information distribution

from the leader to network elements. For the same reason, hmax · Tc is an upper

bound on the aggregation time. Since each AFA iteration requires two map-reduce

operations, the upper bound on the whole calculation time is:

March 29, 2009

6.5. Multiple Phase-Based Applications 95

1 4 16 64
0

10

20

30

40

50

Fragmentation coefficient

T
im

e
(µ

S
)

Mean
Max

Figure 6.11: DAFA overhead estimation

T = 2I · hmax · (Td + Tc)

In a 16-ary 3-tree, with leader placed at one of the root switches, it can be

shown that hmax = 4. We assume Tc to be substantially higher than Td, as it in-

cludes additional computation of δl/Bl and their aggregation (though, computation

at di�erent levels in the spanning tree occurs in parallel). The control packets used

for calculation are assumed to have an absolute priority and be processed by dedi-

cated hardware. Consequently, we set Td = 200ns, which includes link propagation

delay and link propagation delay. This estimation is based on speci�cations of real-

life products and systems. We conservatively �x Tc = 400ns (additional 200ns of

processing time during aggregation).

The only unknown variable is I, which is theoretically bounded from above by

|A|. We measure its actual value in the performance experiments that are described

above. Figure 6.11 presents the average and maximum, over 50 runs, estimated

calculation time.

The results show that even in the worst examined runs the calculation time does

not exceed 40µs. Note that this is a sheer calculation time, which does not include

the overhead of synchronization at the beginning and the end of communication

phase. The synchronization at one of these points can be coalesced with the global

barrier performed by the application for every pair of computation and communi-

cation phases. The other, if executed on an overlay tree with reasonable radix (tree

March 29, 2009

6.6. Realization of Calculated Rates 96

height of 3-4), should be possible to perform within several end-to-end delays. We

estimate the bound of the synchronization time to be 10 − 20µs. The calculation

overhead can be reduced if processing nodes initiate the calculation process ahead of

time, before the actual beginning of the communication phase. Finally, it is impor-

tant to note that in DAFA, as opposed to DFFA, the recalculations are expected to

have a relatively low frequency, because they occur only when an application joins

or leaves the communication phase.

6.6 Realization of Calculated Rates

We tested our injection scheme from Chapter 5 with both a single application and

independent �ows as described in the experimental parts of Section 6.3 and Sec-

tion 6.4, respectively. In both cases, all �ows consist of 2KB packets. Output ports

of switches are assumed to employ FCFS policy on the packets arriving from di�er-

ent input ports. In addition, we assume that any number of packets can move from

input bu�er to di�erent output ports (�in�nite speedup�), yet an output port can

only transmit a single packet at any given time. The number of �ows per source n,

and the size of the input bu�ers in switches (in units of 2KB) b, are used as test

parameters. In every test, rates are calculated using one of our algorithms, the in-

jection scheme is applied to implement the calculated rates, and the actual outcome

is measured. All results are averaged over 50 runs. Most of the metrics exhibit very

low variance.

For the single application scenario we use rates calculated for the SAA+AR

control combination. As mentioned above, the completion time is dictated by the

lowest rate �ow. Therefore, in every run, we collect the ratio between the minimum

measured and calculated rates (ratio of the minima). (Note that in any given run

the two minimum results may correspond to di�erent �ows.) The collected results

(averaged over 50 runs) are presented in Table 6.3. We see that with eight or

more bu�ers per input port, the ratio is constantly 1, implying that the achieved

completion time equals the optimal one.

For independent �ows, we use the rates calculated with FFA+AR. Here, we are

March 29, 2009

6.6. Realization of Calculated Rates 97

n \ b 2 4 8 16
1 0.38 1.00 1.00 1.00
2 0.19 0.64 1.00 1.00
3 0.18 0.31 1.00 1.00
4 0.18 0.25 1.00 1.00
5 0.2 0.39 1.00 1.00

Table 6.3: Ratio of minimum measured and calculated rates

MIN AVG
n \ b 2 4 8 16 2 4 8 16
1 0.19 1.00 1.00 1.00 0.91 1.00 1.00 1.00
2 0.20 0.58 1.00 1.00 0.85 1.00 1.00 1.00
3 0.24 0.48 1.00 1.00 0.83 0.99 1.00 1.00
4 0.31 0.47 1.00 1.00 0.80 0.99 1.00 1.00
5 0.40 0.53 1.00 1.00 0.78 0.98 1.00 1.00

Table 6.4: Average and minimum ratio of measured and calculated rates

interested in individual �ows. Therefore, in every run we examine the ratio of the

minima and that of the mean (over �ows) measured and calculated rates (Table 6.4).

Yet again, eight bu�ers per input port are su�cient to bring the minimum ratio to

one, implying that the measured rate equals the calculated one for all �ows. Even

with only four bu�ers, we see that on average the vast majority of the �ows achieve

the desired rates.

March 29, 2009

Chapter 7

Conclusions

Congestion in high-speed computer-cluster interconnects cannot be overcome e�ec-

tively with current schemes. In this work, we examined the application of novel

adaptive routing and rate control schemes. In�niBand was used as the platform

for the work. The proposed adaptive routing relies on local heuristic adaptation

and guarantees in-order delivery of packets and supports full scalability. We de�ned

three major performance goals for clustered computing, and developed several ex-

plicit rate calculation algorithms (SAA, SAA-M, FFA, AFA) of varying complexity.

Each algorithm is designed to achieve some of the goals.

Adaptive routing alone was shown to be e�ective in mitigating the �topological�

congestion. However, due to the possibility of oversubscription to communication

resources and the resulting congestion spreading, it was shown to be ine�ective in

regards to the de�ned performance metrics. Explicit rate calculation was shows

to have some bene�t in application-oriented scenarios and of greater bene�t for

independent �ows. The combination of two was found to be very e�ective in both

cases, boosting performance by tens of percents.

The proposed schemes are also practical. We showed that the calculated injection

rates can be closely approximated even with a very limited number of bu�ers in

switch ports. Also, the 16-ary 3-tree topology used with 4096 nodes used in the

simulations is highly representative of current computer clusters, and the slight

topological extension proposed for e�ective adaptive routing only entails a 10%

increase in the number of switch ports. Finally, In�niBand, whose architecture was

98

Chapter 7. Conclusions 99

used as the base model, is the leading technology in current clusters.

The applicability of explicit rate calculation depends on the convergence time

of the algorithms relative to �ow durations. Our estimates and simulations suggest

that these algorithms actually converge faster than reactive schemes, which more-

over don't achieve optimal results. We moreover point out that whenever control

messages are slowed down by contention among themselves for a shared link, the

same will be true for the �ows. Thus, the range of �ow size for which the overhead

is su�ciently low is insensitive to congestion and perhaps even bene�ts from it.

The schemes proposed in this work appear promising and practical. Topics for

further research include: 1) a deeper examination of the implementation details,

2) tests with real-life benchmarks, 3) application of the adaptive routing in other

topologies, 4) considering the role of SAA-M as a lightweight general purpose rate

control algorithm, 5) testing the realizability of calculated rates under �nite speedup

and arbitration restrictions and 6) investigating schemes that permit �pipelining�

of the algorithms: �ow continue at their current rates while new rates are being

calculated, possibly even in advance of the need for them, similar to prefetching.

March 29, 2009

Bibliography

[1] http://www.omnetpp.org.

[2] http://www.top500.org.

[3] Y. Afek, Y. Mansour, and Z. Ostfeld. Phantom: a simple and e�ective �ow

control scheme. In Proc. of the ACM SIGCOMM, pages 169�182, 1996.

[4] D. Bertsekas and R. Gallager. Data Networks, pages 448�453. Prentice Hall,

1987.

[5] L. S. Brakmo and L. L. Peterson. TCP vegas: End to end congestion avoidance

on a global internet. IEEE Journal on Selected Areas in Communications,

13(8):1465�1480, 1995.

[6] H. J. Chao and J. S. Hong. Design of an atm shaping multiplexer with guar-

anteed output burstiness. Computer Systems Science and Engineering, 12:131�

141, 1997.

[7] A. Charny, D. Clark, and R. Jain. Congestion control with explicit rate in-

dication. In Proc. IEEE International Conference on Communications (ICC),

pages 1954�1963, 1995.

[8] A. Charny, K. K. Ramakrishnan, and A. Lauck. Time scale analysis scalability

issues for explicit rate allocation in atm networks. IEEE/ACM Trans. Netw.,

4(4):569�581, 1996.

[9] D. Chiu and R. Jain. Analysis of the increase and decrease algorithms for con-

gestion avoidance in computer networks. Comput. Netw. ISDN Syst., 17(1):1�

14, 1989.

100

Bibliography 101

[10] W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor

interconnection networks. IEEE Trans. Comput., 36(5):547�553, 1987.

[11] B. V. Dao, S. Yalamanchili, and J. Duato. Architectural support for reduc-

ing communication overhead in multiprocessor interconnection networks. In

Proc. of the 3rd IEEE Symposium on High-Performance Computer Architec-

ture (HPCA), page 343, 1997.

[12] N. Dukkipati and N. McKeown. Why �ow-completion time is the right metric

for congestion control. SIGCOMM Comput. Commun. Rev., 36(1):59�62, 2006.

[13] S. Even, A. Itai, and A. Shamir. On the complexity of time table and multi-

commodity �ow problems. In Proc. of the 16th Annual Symposium on Founda-

tions of Computer Science (SFCS), pages 184�193, 1975.

[14] S. Floyd. The NewReno Modi�cation to TCP's Fast Recovery Algorithm. RFC

2582, 1999.

[15] C. Gomez, F. Gilabert, M. E. Gomez, P. Lopez, and J. Duato. Deterministic

versus adaptive routing in fat-trees. In Proc. IEEE International Parallel and

Distributed Processing Symposium (IPDPS), pages 1�8, 26�30 March 2007.

[16] IEEE Computer Society. IEEE Std 802.3TM -2005, December 2005.

[17] In�niBandTM Trade Association. In�nibandTM architecture speci�cation, re-

lease 1.2, October 2004.

[18] R. Jain. Congestion control and tra�c management in ATM networks: Recent

advances and A survey. Computer Networks and ISDN Systems, 28(13):1723�

1738, 1996.

[19] R. Jain, S. Kalyanaraman, and R. Viswanathan. The OSU scheme for con-

gestion avoidance in ATM networks using explicit rate indication. In Proc.

WATM'95 First Workshop on ATM Tra�c Management, 1995.

March 29, 2009

Bibliography 102

[20] L. Kalampoukas, A. Varma, and K. K. Ramakrishnan. An e�cient rate alloca-

tion algorithm for ATM networks providing max-min fairness. In HPN, pages

143�154, 1995.

[21] S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, and B. Vandalore. The erica

switch algorithm for abr tra�c management in atm networks. IEEE/ACM

Trans. Netw., 8(1):87�98, 2000.

[22] D. Katabi, M. Handley, and C. Rohrs. Congestion control for high bandwidth-

delay product networks. In Proc. of the ACM SIGCOMM, pages 89�102, 2002.

[23] J. Kim, W. J. Dally, and D. Abts. Adaptive routing in high-radix clos network.

In Proc. of the 2006 ACM/IEEE conference on Supercomputing (SC), page 92,

2006.

[24] C. E. Leiserson. Fat-trees: Universl networks for hardware-e�cient supercom-

puting. IEEE Transactions on Computers, c-34(10), Oct. 1985.

[25] X.-Y. Lin, Y.-C. Chung, and T.-Y. Huang. A multiple lid routing scheme for

fat-tree-based in�niband networks. In Proc. 18th International Parallel and

Distributed Processing Symposium (IPDPS), 2004.

[26] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in

a hard-real-time environment. J. ACM, 20(1):46�61, 1973.

[27] J. Liu, A. Vishnu, and D. K. Panda. Building multirail in�niband clusters:

Mpi-level design and performance evaluation. In Proc. of the 2004 ACM/IEEE

conference on Supercomputing (SC), pages 33�33, 2004.

[28] L. Mamatas, T. Harks, and V. Tsaoussidis. Approaches to congestion control

in packet networks. Journal of Internet Engineering, 1(1):22�33, 2007.

[29] J. C. Martínez, J. Flich, A. Robles, P. López, and J. Duato. Supporting fully

adaptive routing in in�niband networks. In Proc. of the 17th International

Symposium on Parallel and Distributed Processing (IPDPS), page 44.1, 2003.

March 29, 2009

Bibliography 103

[30] A. Mejia, J. Flich, J. Duato, S. A. Reinemo, and T. Skeie. Segment-based

routing: an e�cient fault-tolerant routing algorithm for meshes and tori. In

Proc. 20th International Parallel and Distributed Processing Symposium IPDPS

2006, page 10pp., 25�29 April 2006.

[31] F. Petrini and M. Vanneschi. k-ary, n-trees: High performance networks for

massively parallel architectures. In Proc. of the 11th International Parallel

Processing Symposium (IPPS), pages 87�, 1997.

[32] G. P�ster, M. Gusat, and D. Craddock. Solving hot spot contention using in�ni-

band architecture congestion control. In Proc. High Performance Interconnects

for Distributed Computing Workshop, 2005.

[33] G. P�ster and V. Norton. Hot spot contention and combining in multistage

interconnection networks. IEEE Transactions on Computers, 34(10):943�948,

1985.

[34] J. Rexford, F. Bonomi, A. Greenberg, and A. Wong. A scalable architecture

for fair leaky-bucket shaping. In Proc. of IEEE INFOCOM, pages 1056�1064,

1997.

[35] J. R. Santos, Y. Turner, and G. J. Janakiraman. End-to-end congestion control

for in�niband. In Proc. of IEEE INFOCOM, volume 2, pages 1123�1133, 2003.

[36] A. Segall. Distributed network protocols. IEEE Transactions on Information

Theory, 29:23�35, 1983.

[37] T. Skeie, O. Lysne, and I. Theiss. Layered shortest path (lash) routing in

irregular system area networks. In Proceedings of the 16th International Parallel

and Distributed Processing Symposium (IPDPS), pages 162�169, 2002.

[38] D. Stiliadis and A. Varma. A general methodology for designing e�cient tra�c

scheduling and shaping algorithms. In Proc. IEEE INFOCOM, pages 326�335,

1997.

[39] J. Turner. New directions in communications (or which way to the information

age?). 24(10):8�15, Oct 1986.

March 29, 2009

Bibliography 104

[40] Y. Turner and Y. Tamir. Connection-based adaptive routing using dynamic

virtual circuits. In Proc. International Conference on Parallel and Distributed

Computing and Systems, pages 379�384, 1998.

[41] H. Tzeng and K. Siu. Adaptive proportional rate control for abr service in

atm networks. In Proc. IEEE Computers and Communications, pages 529�535,

1995.

[42] A. Vishnu, M. Koop, A. Moody, A. R. Mamidala, S. Narravula, and D. K.

Panda. Hot-spot avoidance with multi-pathing over in�niband: An mpi per-

spective. In Proc. Seventh IEEE International Symposium on Cluster Comput-

ing and the Grid (CCGRID), pages 479�486, 2007.

[43] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman. One more bit is

enough. SIGCOMM Comput. Commun. Rev., 35(4):37�48, 2005.

[44] L. Xu, K. Harfoush, and I. Rhee. Binary increase congestion control for fast

long-distance networks. In Proc. IEEE INFOCOM, volume 4, pages 2514�2524,

2004.

[45] S. Yan, G. Min, and I. Awan. An enhanced congestion control mechanism in

in�niband networks for high performance computing systems. In Proc. 20th

Advanced Information Networking and Applications (AINA), volume 1, pages

845�850, 2006.

March 29, 2009

