

 IRWIN AND JOAN JACOBS
CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

The Design of a Latency
Constrained, Power Optimized
NoC for a 4G SoC

Isask’har Walter, Israel Cidon,
Avinoam Kolodny, Rudy Beraha

CCIT Report #724
March 2009

Electronics
Computers
Communications

DEPARTMENT OF ELECTRICAL ENGINEERING
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL

The Design of a Latency Constrained, Power Optimized NoC for a 4G SoC

Isask'har Walter1, Israel Cidon2, Avinoam Kolodny2
Electrical Engineering Department, Technion – Israel Institute of Technology, Haifa 32000, Israel

Rudy Beraha3
Qualcomm Corp. Research and Development, San Diego, California 92121, USA

 1zigi@tx.technion.ac.il , 2{cidon, kolodny}@ee.technion.ac.il 3rberaha@qualcomm.com

Abstract

In this paper, we examine the process of porting a
high-end commercial SoC application from a
segmented bus implementation to a NoC-based one.
We present several design choices and focus on the
power optimization of the NoC while achieving the
required performance. Our design steps include
module placement optimization using simulated
annealing and allocation of minimal and different
capacities to links. Unlike previous studies, in which
point-to-point, per-flow timing constraints were used,
we introduce and demonstrate the importance of using
the application's end-to-end traversal latency
requirements during the optimization process. In order
to quantify and evaluate the different alternatives, we
report the actual throughput and timing requirements
of the commercial SoC as well as the synthesis results.
According to our findings, the proposed technique
offers up to 40% savings in the total router area and a
reduction of up to 49% in the inter-router wiring area.

1. Introduction

Application-specific systems on-chip (SoC) make
extensive use of busses as the interconnect
infrastructure. These busses are typically enhanced
along product generations to match the increasing
needs of the application. Such enhancements include
increasing the bus frequency and width as well as
enriching the bus semantics and transfer modes. By
avoiding fundamental changes, the SoC architects can
leverage their past experience in designing shared
busses and successfully overcome the growing
complexity of the design. However, in recent years
research has shown that Network on-Chip (NoC) is
likely to replace busses in future SoCs, due to superior
performance, power and area tradeoffs it offers as the
number of modules increases [1] [2] [3] [4]. This is
mainly attributed to the spatial parallelism and
statistical multiplexing of networks, to their short,

unidirectional point-to-point wires and to their scalable
architecture [5].

NoCs are being adopted by companies as a means to
improve design productivity. As the number of
modules connected to a bus increase, the physical
implementation of the bus becomes very complex, and
achieving the desired throughput and latency requires
time consuming custom modifications. Conversely,
NoCs are designed separately from the functional units
of the system to handle all foreseen inter-module
communication needs. Their inherent scalable
architecture facilitates the integration of the system and
shortens the time-to-market of complex products.

In this work, we discuss and evaluate the design
process of a NoC for a state-of-the-art SoC. More
specifically, we describe our experience in porting a
high-performance, power constrained 4G wireless
modem application from a segmented bus based
architecture to a cost optimized NoC architecture. As
the design process includes many "degrees of freedom"
creating a very large design space, finding the absolute
optimal solution is an extremely difficult problem.
Instead, we focus on some of the important choices that
should be made by the system architect while selecting
some well-accepted, practical solutions to other
questions.

Previous work that has dealt with the design process
of the NoC frequently attempted to minimize power
consumption and/or maximize network performance as
measured by the network's throughput and latency.
When real applications are considered, simply
minimizing the power consumption alone (e.g., by
module placement) is impossible, as performance
constraints for each given application are to be met.
Similarly, maximizing performance alone is inefficient,
since excessive power might be used for improving
performance beyond the needs of the application.
Therefore, in this paper we look for a tradeoff between
the power and performance of the NoC that is
characterized by a minimal power consumption that
still meets the demands of all targeted applications.

lesley
Text Box
CCIT REPORT #724 March 2009

Moreover, in many of the studies where network
latency was used as a performance goal (either as the
optimized cost function or as a constraint), the average
delay of all packets over all communicating pairs was
considered. However, in a practical SoC, different
streams of communication may require different delays
and therefore the overall average latency is an
inappropriate measure. Consequently, the individual
per-flow, point-to-point (source-destination) latencies
should be accounted for to get better results. In this
paper, we go further to suggest a third, improved
approach: knowing the application that is to be used in
the SoC, we utilize its functional timing requirements,
which are defined by the application end-to-end latency
constraints. Each of those end-to-end traversal delay
requirements is composed of the cumulative
requirement of a sequence (or a "chain") of flows. For
example, the application may require that a block of
data which is generated by module A is sent to module
B in order to be processed. Then, the processed data is
to be sent by module B to module C for some
additional processing. By observing that the
performance of the application is subject to the total
time it would take the data to get from module A to
module C, we can use this delay as the targeted
performance measure, rather than specifying the two
separate latency constraints (for the flow from module
A to module B and from module B to module C). Since
pair-wise delays may be traded, the timing constraints
are relaxed and the optimization program can use more
freedom in its operation. To the best of our knowledge,
this paper is the first to discuss and quantify the
benefits of specifying the end-to-end traversal
requirements during the design process.

The design process itself has several steps. First,
using simulated annealing optimization, we search for a
module’s placement consuming minimal power, taking
into account application latency and throughput
constraints. Then uniform link capacities among routers
are defined to meet these performance constraints.
Finally, the resulting uniform NoC is tuned by reducing
the capacity of selected links. The design process case
study becomes more complex as our SoC has several
modes of operation, each with a different set of traffic
and latency requirements. The designed NoC needs to
meet the requirements of all these modes while
reducing power as much as possible.

As an important part of this work, we present the
bandwidth and timing requirement of the high-
performance, state-of-the-art 4G application we
examine. This information can be used by the NoC
community as a benchmark for future research.

The rest of this paper is organized as follows: in
Section 2 related work is discussed. In Section 3, we
describe the characteristics of the application of the
designed SoC. In Section 4, we discuss the design and
optimization process of the NoC, and analyze its cost
and performance. In Section 5 we summarize the paper.
Appendix A describes the architecture of the NoC
components.

2. Related Work

NoC design was the subject of many papers in
recent years. In particular, the problem of mapping the
communicating cores onto the die has received
considerable attention, due to the power and
performance implications it has. In [6], the authors
propose a branch-and-bound mapping algorithm to
minimize the communication energy in the system, but
the resulting communication delay is not considered. In
 [7], a heuristic algorithm is used to minimize the
average delay experienced by packets traversing the
network. By allowing the splitting of traffic, an
efficient implementation is found. In [8] [9], the authors
use the message dependencies of the application in
addition to its bandwidth requirements to find a
mapping that reduces the power consumption and the
application execution time. The authors of [10] use a
multi-objective genetic algorithm to explore the
mapping space so that a good tradeoff between power
consumption and application execution time is found.
While these papers use unique mapping schemes, they
all use packet delay or application execution time as a
quality measure rather than as an input to the mapping
phase. Moreover, the metrics used does not consider
the individual requirements of each pair of
communicating cores, only reflecting the overall
average delay or performance.

The earliest published work to consider energy
efficient mapping of a bandwidth and latency
constrained NoC is [11], in which the authors specify a
an automated design process providing quality-of-
service guarantees. Another mapping scheme that uses
delay constraints as an input is described in [12].
There, a low complexity heuristic algorithm is used to
map the cores onto the chip and then routing is
determined so that all constraints are met. Similarly,
the mapping schemes used in [13] [14] [15] all use the
per-flow, source-destination latency requirements of
the application as input to the design process.

In this work, we motivate a third approach: rather
than optimizing the NoC for power only and evaluating
the resulting delays; or using the per-flow delay
requirements as constraints during the design process,

we suggest using the end-to-end traversal delay
latencies dictated by the needs of the application.
Wherever applicable, we replace "a chain" of point-to-
point delay constraints with a single, unified constraint,
describing the end-to-end latency requirement of the
application, measured from the time the first module in
the chain generates the data until the last module
receives the data, as explained above.

3. The Application

The design chosen for evaluating the conversion
into the NoC architecture is an ASIC that supports all
major 2G, 3G and 4G wireless standards for use in base
stations and femto-cells (Cell Site Modem – CSM),
depicted in Figure 1. The CSM is designed to support
any of the CDMA or UMTS standards, because
different markets around the world are at different
points in their adoption of wireless standards.

This CSM is comprised of several subsystems.
These fall into three basic categories: (1) Generic
Element. These are the processor and DSP modules on
chip. They are programmable and can be used for a
variety of different functions; (2) Dedicated hardware.
These blocks are designed to optimize the
operations/milliwatt metric. They perform a single (or a
small set) of operations extremely efficiently and off-
load the work from the generic elements (which
typically could perform the same operation but with a
significant power penalty); and (3) Memory/IO. As
with most SoCs, there are memory elements and I/O
modules used for information storage and
communication with the outside. For the purposes of
this paper, these elements are grouped together.

The SoC consists of several subsystems tied
together with a 64-bit wide, 166MHz AXI bus at the

top-level. There are a total of 34 nodes on the bus. Due
to design considerations such as P&R and timing
closure, the interconnect fabric is segmented into two
separate busses with approximately half the nodes on
each bus and a bridge between the busses.

The CSM chosen for this study supports multiple
modes of operation, each identified by its own BW and
latency requirements. In particular, it can operate in a
2G mode, in a 3G mode, or in a 4G mode. There is also
a combination of modes for simultaneous voice and
data transmissions. To find the low-cost 2D mesh
topology for the NoC, an artificial set of bandwidth
requirements is generated: for each pair of nodes, the
maximum BW requirement it has in any of the modes
of operations is selected. Similarly, we combined all
the latency requirements in one table. This scenario,
which we call "MAX", represents the worst-case
requirements in any of the modes ("synthetic worst-
case" in [16], "design envelope" in [17]). Designing the
NoC according to the “MAX” scenario is likely to
make it easier to meet requirements of all modes of
operation in the following phases of the design.

If we expect to design a NoC to replace the top-
level AXI busses, it must be flexible enough to meet
the BW and latency requirements for each mode.
However, we also do not want to overdesign the
network because this will waste area and power. A
summary of the bandwidth and latency requirements is
given in the tables 1-3: Table 1 describes the
bandwidth requirement between master and slave
modules in the system. Table 2 describes the timing
requirements of point-to-point communication in the
system while Table 3 specifies the application's end-to-
end traversal delay requirements, derived from the
application characteristics. Additional characteristics,
that are omitted here due to space limitations, are

AXI FABRIC 166MHz 64-Bit (11 Masters x 9 Slaves)

TIC

AXI Fabric 166 MHz 64-bit (7 Masters x 11 Slaves)

DDR

Interface

On-chip

memory

Processor

Subsystem

with L2 cache

SRIO 2

SRIO

AXI I/F

HW

accel

AXI I/F

3G modem

accelerator

AXI I/F

2G

Modem

accelerator

DDR

Interface

32-bit

166 MHz
DDR

M6

M4 M5M1

S0

S1

S1 S3

S8S7S5 S6

M0

S10

S8 M9

SRIO 1

SRIO

AXI I/F

SRIO

PHY

M0 S0

4G modem

accelerator

AXI I/F

M10

S2

SRIO

PHY

AHB
2AXI

M8

M3M2

M7

S3

32-bit

166 MHz
DDR

S4

M5S2

B
ri
d
g
e

DSP

Subsystem

M1 S4

DSP

Subsystem

M2 S5

DSP

Subsystem

M3 S6

DSP

Subsystem

M4 S7 M6

HW acce

CI1

HW accel

AXI IF

Periphery

subsystem 1

AXI IF

Periphery

subsystem 2

S9

Figure 1: Bus-based system architecture

available at [18]. As is seen in the tables, there is a
wide variability in the requirements, at both the
bandwidths and the delays. For example, M0 sends S2
492Mb per second, with a latency constraint of
5000nsec, while M4 sends S16 only 10 Mb per second,
but with a much tighter delay requirement of 200nsec.

4. NoC Design and Cost Optimization

The design process of the NoC is composed of five
phases: placing of the communicating modules (e.g.
 [6]- [16]); trimming and adjusting the network
resources to meet the application requirements [19];
synthesizing the network; placing and routing of the
NoC and extracting area and power numbers. The
initial topology chosen for the NoC is a 2-dimension
mesh grid that mitigates the concern of deadlocks and
also simplifies the routing algorithm. In order to
minimize the buffering cost and allow fast delivery of
data, we use wormhole switching.

4.1 Cost Optimized Placement

In order to come up with the best 2D mesh
topology, we explore three possible optimization goals:
(1) Power-only: In this placement, only the bandwidth
requirements of the application are considered, while
meeting the timing requirements is left for the
following stages of the design process; (2)
(Power+P2P)-based placement: Here, point-to-point
(P2P) latency requirements are introduced as

constraints in the placement phase; (3) (Power+E2E)-
based placement: instead of specifying latency
requirements for each source-destination pair, the end-
to-end (E2E) traversal latency requirement of the
stream of information in the application is used. The
difference is that with E2E latency, the particular
operation may be composed of several flows of data,
each traversing several nodes. For example, if data is
sent from node-X to node-Y and from node-Y to node-
Z, the E2E latency is measured between node-X and
node-Z. A point-to-point requirement that is not a part
of a larger chain is considered as an ETE traversal
latency constraint. The E2E constraints are extracted
from the application's characteristics and may replace
some of the P2P requirements, creating a more relaxed
set of constraints.

4.2 Placement Tool

In order to search for an optimal placement for a set
of modules, a topology optimization tool that uses a
simulated annealing (SA) algorithm was developed.
The tool, which is capable of evaluating different MxN
configurations for the 2D mesh, takes as input a
spreadsheet listing connectivity and bandwidth
requirements between nodes. In addition, it can read a
spreadsheet with latency requirements. There are two
options for listing latency: one table will list the
maximum latency allowed between any two nodes on
the network. The second option is to list the allowed
end-to-end traversal latency requirements in the

Table 2

Point-to-point timing requirements [nSec].

'R' is for read operations, 'W' is for write operations.

Table 1

Bandwidth demands [Mb/s].

'R' is for read operations, 'W' is for write operations.

network: rather than specify point-to-point latency
between two nodes, the user can list all the nodes a
particular operation must traverse and specify the total
maximum latency allowed for that operation.

In order to find an optimal placement for the SoC,
we also define a cost function and calculate the cost
every time the SA algorithm swaps nodes. The cost
function is defined as:

router l

l links

Cost AREA BWα β
∈

= + ∑ (1)

where AREArouter, is an estimate for the total resources
required to implement the router logic (accounting for
the number of ports and their link speeds), and BWl is
the bandwidth delivered over a link l. While AREArouter
models the area and static power used by the NoC
resources, the second term is used to capture the
dynamic power consumed by the communication.

The SA algorithm starts with a random placement of
all the nodes on a 2D mesh and calculates the cost for
this initial condition. It then proceeds to try and swap
nodes in order to find a lower cost solution. The BW
spreadsheet will drive the selection of a topology as
this is directly included in the cost function above.
However, for each solution that the SA algorithm
generates, the tool will use the latency spreadsheet to
check if the latency requirements are met. The latency
check at this stage of the design reflects the length of
the path traversed by the packet and the pipeline delay
of the routers along that path. When the requirements
are not met, the solution is rejected regardless of its
cost. Figure 2 depicts a typical example of the cost
reduction behavior along the run time of the SA
optimization.

As different placements lead to NoCs with different
costs, we use the SA tool to generate placements using
the Power-only, Power+P2P, and Power+E2E schemes
(Section 4.1), resulting in three topologies to compare
and analyze. For the purpose of this paper, we used
α=10, β=1 and relative empirical weights for routers

with different numbers of ports, as generated by
synthesis tools. Figure 3 illustrates the generated
placements using the three schemes.

4.3 Setting the network speed

As a significant portion of the NoC area and power
consumption is due to the network links, minimizing
the resources used by the links may have a considerable
impact on the total cost of the NoC. Consequently, in
the second phase of NoC design process, the required
capacity of the network links is determined. More
specifically, we attempt to find the minimal capacity of
the links that would still meet all the latency
constraints, as the placement tool didn't consider the
dynamic contention within the network. In this paper,
we consider two possible schemes: a uniform
allocation, in which all links have the same capacity,
and a heterogeneous allocation where different links
may have different capacities.

Uniform link capacity is commonly used in
wormhole networks. In such cases, the process of
finding the minimal capacity that meets the latency
requirements using simulations is rather simple, as a
single parameter (the identical speed of all network
links) is optimized. However, due to the variety of
timing requirements presented by the application, this
allocation causes some links to be over-provisioned. In
order to reduce the cost of the links, we differentiate
between two types of links: the first type of links is
links that are used to route at least one flow which has
timing requirement. The second type of links is those
that deliver flow with no such requirements. Intuitively,
it is possible to scale down links of the latter type more
aggressively than those of the former type. However, it
is important to note that scaling down the capacity of
links that have no flows with timing requirement may
hinder the delivery of flows that have latency
constraints but do not traverse these links. This is due

Table 3

End-to-end traversal timing requirements [nSec].

Figure 2: Cost behavior along time

An example of the reduction of the network cost using
simulated annealing. The X-axis represents the iteration
number; the Y-axis represents the cost of the network.

to the backpressure mechanism of wormhole switching:
when a flow is slowed down in a certain router on its
path, it occupies resources in other routers on its path
for a longer time. Consequently, the delay of flows that
share these other routers and which may have latency
constraints increases. In this work we generate the
custom, tuned allocation by scaling down the capacity
found in the uniform assignment scheme: the capacity
of links that are used only by flows with no timing
requirements is re-assigned according to a selected
utilization factor. The capacity of links which have at
least one flow with latency constraint is reduced
proportionally to the slack time of the flow with the
lowest slack. Simulation is then used to verify that all
latency constraints are met. In both the uniform and
custom tuning schemes, links that are not used by any
flow in any of the modes are completely removed.
Using an OPNET-based simulator [20] that models a
detailed wormhole network (accounting for the finite
router queues, backpressure mechanism, virtual
channel assignment, link capacities, network
contention, etc.), the basic three topologies (generated
by the Power-only, Power+P2P and Power+E2E
optimizations) were simulated, using one and two
virtual channels (VCs). For each case, we went through
the process of finding the optimal network speed for
both the uniform and the tuned links capacity cases.
Figure 4 illustrates the per-link capacity allocated for
the placement created by the Power-only optimization.
This phase results in 12 generated networks (3 basic
placements * 2 VC configurations * 2 capacity
schemes). At the end of this phase, all timing
requirements are met (P2P constraints in the Power-
only and Power+P2P placements, and E2E-traversal
constraints in the Power+ETE generated placements).
Figure 5 summarizes the results, presenting the total
capacity required in each of the 12 configurations.

4.4 Synthesis

The optimization of the 1 VC network versus the 2
VC network results in different speed requirements for
both the uniform and tuned cases. For some links, the
two VC approach resulted in a lower link speed
because of the improved link utilization offered by the
additional VCs. However, the area impact of a two VC
router must also be taken into account when choosing
the best topology. Another factor to consider in the
design of the network is the flit width we support. The
current NoC architecture supports flit widths of 32, 64,
and 128 bits. While the network bandwidth allocation
algorithm allowed for any speed, the implementation of
the NoC on the ASIC is limited to the clock
frequencies and flit widths available in the design. For
this reason, we bin the resulting router configurations
into discrete categories supported on chip. We applied
this binning strategy to all topologies and synthesized
the network for each (the implementation is discussed
in Appendix A). Figure 6 and Figure 7 show the results
reported by the synthesis tool, separately listing the cell
area and routing area. The cell area includes the area
taken up by the rate matching blocks when we
transition from one flit width to another in the network
(Appendix A). It also accounts for the trimming of the
routers, achieved by the removal of unused ports.

As expected, by applying a network capacity
allocation scheme we are able to reduce the speed of
the over-provisioned links thus saving area and power.
The results also indicate that the Power+E2E latency
approach provides a considerable better solution. To
understand this, we must go back to our SA algorithm
in the topology planning phase. For each case, the
topology tool will use the connectivity and BW
requirements to calculate the cost of the network (Eq.
1). However, in the Power-only case, the latency
requirements are completely ignored. The Power-only

Figure 3: Placement results

(a) Power optimized; (b) power optimized+P2P timing constraints; (c) power optimized+E2E traversal timing constraints.
Line widths represent the relative volume of traffic.

approach gives the SA algorithm the most flexibility in
placing the nodes on the network. When latency is
included in the topology planning, the tool will reject
any solution that does not meet the latency
requirements. This effectively reduces the solution
space for the SA algorithm. Because of this, the
Power+P2P latency is the most restrictive. In the case
of the Power+E2E latency, we allow the tool some
more flexibility in moving the nodes around as long as
the latency is met for the full E2E traversal path.
The above explanation taken alone would imply that
the Power-only case should produce the best results
because the topology tool has the highest flexibility to
reduce the cost. However, Figure 6 and Figure 7 show
that the Power-only implementation has the largest
area, in each VC/allocation scheme. To understand
this, one must examine the bandwidth and latency
requirements: there are some communication streams
that have relatively low bandwidth but still have strict
latency requirements. The nature of the topology cost
function will place high bandwidth nodes close
together in order to minimize the cost. When high
bandwidth nodes are put close together, the other nodes
get pushed further apart. As a result, some low latency
nodes will be separated by many hops. This is exactly
what the Power-only approach is doing. During the link
capacity tuning phase, this causes a need to increase the
link data rate for the latency path just to meet the
requirements. The further apart these latency-critical
nodes are from each other, the higher the link speed
along the path will need to be. In addition, due to the
nature of wormhole routing, the increased link speed
will affect many other links in the network. This is
why the Power-only case has a very high network
capacity. In order to meet these high bandwidth
requirements, we are forced to either increase the clock

frequency significantly or we need to choose a larger
flit width to support the high throughput. This leads to
an overall larger area.

The Power-E2E latency had the most flexibility to
place nodes on the topology while at the same time
making sure that the latency critical signals were
relatively close together. Hence, during the network
capacity allocation phase, we could use a lower link
speed as compared to the Power-only case. The
proximity of the nodes also limited the impact of the
link speed on the rest of the network. This all translates
into the use of smaller flit widths and/or slower clock
frequencies for the network. Consequently, the ETE-
traversal approach reduces the cell area by 25%-40%
and wiring resources by 13%-49% compared to the
traditional power+P2P placement scheme.

When we consider the number of VCs, we see that
one VC is preferable from an area perspective. In the
case of 2 VCs, we can reduce some of the link
capacities more than in the 1 VC case. However, the
savings provided by this reduced capacity are more
than offset by the increased router sizes. Therefore, the
2 VC approach does not benefit the application.

Finally, we see that the Uniform and Tuned
Power+E2E topologies have the same area. The reason
for this is our binning strategy. Because we are limited
to certain flit widths, our link and router selection is
limited to certain, discrete choices. While it is true that
the tuned Power+E2E topology can theoretically run
some links at a slower speed, the difference from the
uniform topology is not significant enough in this case.
For example, the tuned topology can reduce the speed
of some links down from 15Gbps to 14Gbps. However,
given the supported flit widths, this does not change the
size of the link or router we can choose. Hence the two
topologies come out equal.

0

500

1000

1500

2000

2500

3000

Power-only Power+P2P latency Power+ETE latency

G
b

p
s

Uniform (1VC)

Uniform (2VC)

Tuned (1VC)

Tuned (2VC)

Figure 5: Capacity requirements
The total capacity needed to match the requirements of the

examined configuration, using one and two virtual channels.

Figure 4: An example of the tuning of link

capacities
.

5. Summary and Conclusions

The increasing communication requirements in

system on-chip (SoC) implementations created a need
for a new interconnection paradigm. For a few years
now, academic research is suggesting network on-chip
(NoC) as a means for providing efficient inter-modules
communication within chips. Recently, a few
companies have reported the usage of NoC in some
prototypes and in commercial products.

In this paper, we describe our efforts to design a
complex SoC around a NoC-based interconnect. In the
first phase of the design, we explore three schemes to
perform the placing of cores onto the chip: the first
scheme only considers the power consumed by the
transmission of packets while the second scheme uses
the application's source-destination latency constraints
during the optimization of the power consumption. A
third placement technique replaces the pair-wise
requirements with application-level end-to-end
constraints, allowing more freedom in the process of
seeking a solution that minimizes power consumption.

Next, we trim redundant network resources (links,
ports) and tune the bandwidth of network links so that
the requirements of the application are met. Finally, we
synthesize the resulting networks to estimate their cost.

The main contribution of this work is the
introduction of the end-to-end traversal delay
constraints during the NoC design process. By
replacing the source-destination requirements with end-
to-end requirements wherever possible, we reduce the
total area needed for the implementation of routers by
25% to 40% and the link wiring resources by 13%-
49%. In addition, we demonstrated the potential benefit
that lies in the implementation of links with
individually assigned capacities. Future work includes
placing and routing the NoC and evaluating it against a
bus-based system that delivers the same performance.

6. References

[1] P. Guerrier and A. Greiner, "A Generic

Architecture for On-Chip Packet-Switched
Interconnections", Proc. Design, Automation and
Test in Europe (DATE) 2000, 250-256

[2] K. Goossens, J. Dielissen, and A. Radulescu,
"AEthereal Network on Chip: Concepts,
Architectures, and Implementations", IEEE
Design and Test of Computers, 2005, 414-421

[3] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny,
"QNoC: QoS Architecture and Design Process for
Network on Chip", Journal of Systems
Architecture, Vol. 50, February 2004, 105-128

[4] D. Bertozzi and L. Benini, "Xpipes: A Network-
on-Chip Architecture for Gigascale Systems-on-
Chip", Circuits and Systems Magazine, IEEE
Volume 4, Issue 2, 2004, 18-31

[5] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny,
"Cost Considerations in Network on Chip",
Integration - the VLSI Journal, Volume 38, pp.
19-42, 2004

[6] J. Hu and R. Marculescu, "Energy-Aware
Mapping for Tile-Based NoC Architectures
Under Performance Constraints", Proc. Asia
South Pacific design automation (ASP-DAC)
2003, pp. 233–239

[7] S. Murali and G. De Micheli, "Bandwidth-
Constrained Mapping of Cores onto NoC
Architectures", Proc. Design, Automation and
Test in Europe Conference (DATE), 2004, pp.
896–901

[8] C. Marcon, A. Borin, A. Susin, L. Carro, and F.
Wagner, "Time and Energy Efficient Mapping of
Embedded Applications onto NoCs", Proc. Asia
South Pacific design automation, 2005, pp. 33–38

[9] C. Marcon, N. Calazans, F. Moraes, A. Susin, I.
Reis, and F. Hessel, "Exploring NoC Mapping
Strategies: an Energy and Timing Aware

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

Power-only Power+P2P latency Power+ETE latency

Uniform (1VC)

Uniform (2VC)

Tuned (1VC)

Tuned (2VC)

Figure 7: Total wiring area
The total area consumed by inter-router wires

0

1000000

2000000

3000000

4000000

5000000

6000000

Power-only Power+P2P latency Power+ETE latency

Uniform (1VC)

Uniform (2VC)

Tuned (1VC)

Tuned (2VC)

Figure 6: Total router logic area

The total area consumed by routers in each placement scheme.

Technique", Proc. Design, Automation and Test
in Europe Conference (DATE), 2005, pp. 502–
507

[10] G. Ascia, V. Catania, and M. Palesi, "Multi-
Objective Mapping for Mesh-Based NoC
Architectures", Proc. International conference on
hardware/software co-design and system synthesis
(CODES ISSS), 2004, pp. 182–187

[11] S. Murali, L. Benini, and G. De Micheli,
"Mapping and Physical Planning of Networks-on-
Chip Architectures with Quality-of-Service
Guarantees", Proc. Asia South Pacific design
automation (ASP-DAC), 2005, pp. 27–32

[12] K. Srinivasan, and K.S. Chatha, "A Technique for
Low Energy Mapping and Routing in Network-
on-Chip Architectures", Proc. Low Power
Electronics and Design 2005, pp. 387–392

[13] K. Goossens, A. Radulescu, and A. Hansson, "A
Unified Approach to Constrained Mapping and
Routing on Network-on-Chip Architectures",
Proc. International conference on
Hardware/software co-design and system
synthesis (CODES ISSS), 2005, pp. 75–80

[14] K. Goossens, J. Dielissen, O. P. Gangwal, S. G.
Pestana, A. Radulescu, and E. Rijpkema, "A
Design Flow for Application-Specific Networks
on Chip with Guaranteed Performance to
Accelerate SOC Design and Verification", Proc.
Design, Automation and Test in Europe
Conference (DATE), 2005, 1182- 1187

[15] S. Murali, M. Coenen, A. Radulescu, K.
Goossens, and G. De Micheli, "Mapping and
Configuration Methods for Multi-Use-Case
Networks on Chips", Proc. Asia South Pacific
design automation, 2006, pp. 146–151

[16] S. Murali, M. Coenen, A. Radulescu, K.
Goossens, and G. De Micheli, "A Methodology
for Mapping Multiple use-cases onto Networks on
Chips", Proc. Design, Automation and Test in
Europe Conference (DATE) 2006, pp. 118-123

[17] R. Gindin, I. Cidon and I. Keidar, "NoC-Based
FPGA: Architecture and Routing," First
International Symposium on Networks-on-Chip
(NOCS), 2007, pp. 253-264

[18] Will be provided upon demand
[19] Z. Guz, I. Walter, E. Bolotin, I. Cidon, R.

Ginosar, and A. Kolodny, “Network Delays and
Link Capacities in Application-Specific
Wormhole NoCs,” VLSI Design, vol. 2007,
Article ID 90941, 15 pages, 2007

[20] OPNET modeler (www.opnet.com)

Figure 8: Router architecture

Appendix A: Router and Rate Matcher
Architectures

The basic router used for our analysis consists of an
M x N switch, with M inputs and N outputs. A variable
number of VCs can be implemented on each input and
output. Figure 8 shows an implementation with two
VCs per port.

Each input or output port arrow actually represents
multiple signals. Packet flits are routed with two
control bits, allowing flow control at each stage in the
router. The VALID flag indicates that the word is valid
and the WAIT flag indicates whether the receiver will
accept the flit. When multiple VCs are present, there is
one VALID/WAIT pair per VC.

The full data path for an Input VC consists of a
demultiplexor (“1” in Figure 8), a VC allocator
(“Alloc”), some number of buffer/FIFO stages
(rectangles between “1” and “2”), a multiplexor (“2”),
and a VC arbiter (“Arb”). The Input VC blocks are
shown in Figure 9.

 The demultiplexor (“1”) diverts incoming packets
to a particular input VC queue based upon an
assignment made by the allocator block. The buffer
stages allow separate packets to queue in parallel, thus
allowing one packet to bypass another blocked packet.

The allocation block maintains a record of each
incoming packet to determine if it was previously
assigned a VC queue or it is a new packet that needs
assignment. Each flit that comes into an input port
comes from a VC in the sender. There is a VALID for
each of the sender output VC. Let us call this VC-
sender. When a header flit is received at an input port,
the VC allocator must map the VC-sender to a VC
queue that is free. To do this, the allocator maintains a
list of which queues are free. It will read an entry from
the “free list” and store the mapping from VC-sender to

internal VC queue. From that point on, any flits that
come in on VC-sender are mapped to VC queue. When
the last flit of the packet is sent out of the VC queue,
the allocator will clear the mapping and make it
available in the “free list”. Finally, the arbiter decides
which flit accesses the crossbar switch based upon the
queue status at the output of the router, and controls
mux “2” appropriately.

Packet flits sitting in the VC queue must be routed
to the appropriate output port. This is accomplished
with two levels of arbitration to decide which flits pass
from input queues to output queues. The first
arbitration occurs on each input port individually, to
determine which input VC queue passes a flit. The
arbiter must tell the multiplexor (“2”) which input VC
queue will access the switch each clock cycle. The
decision is a function of which of the input queues are
not empty and whether the destination switch port
(assigned output VC queue) can accept another flit
(one of the WAIT_OPORTi_VCi bits). Without this
first level of arbitration, the switch would grow to be
2M x 2N, assuming two VCs on each input and output.

The second level of arbitration is done in the
crossbar switch. It arbitrates between multiple inputs
accessing the same output port (despite possibly
different output VCs). The mux should ensure that if a
destination output queue is not ready for the next flit it
will not block flits from other input VCs going to other
output queues.

The data path structure of the Output VCs is very
similar to the Input VCs. It consists of a demultiplexor
(“3”), buffers (rectangles), multiplexor (“4”), and
arbiter (“Arb”). Each component operates similar to the
corresponding component for input VCs.

In the case of our tuned networks, a set of rate
matching blocks that will allow the transition from one
packet width to another are needed. Two designs for
the rate matching blocks are shown below.
The design in Figure 10(a) converts a 128-bit packet
width to a 32-bit packet width. The incoming packet is
first stored in a queue. The control logic will then read
the queue in groups of 32-bits and multiplex them onto
the output. Because the output rate is much slower then
the input rate, the control logic must also manage the
WAIT signals back to the sender. This will throttle the
rate of the incoming packets. We provide a mechanism
to bypass the queue and send 32-bits straight to the
output. This is done to minimize the latency of the rate
matching block. In this case, the control logic will
select the upper 32-bits of the incoming packets and
mux them directly on the output.

Figure 9: Router Input VCs

Figure 10: Rate matching blocks
(a) 128-bit to 32-bit; and (b) 32-bit to 64-bit

Conversely when going from a low rate to high rate

we use a design as shown in Figure 10b. In this case we
store the first valid word of the packet in the upper set
of holding registers and wait for the second valid word
to come in. When the second word appears it is
directed to the lower holding registers. When both
upper and lower queues have data, the control logic
will combine these onto one output bus and set the
appropriate enable high. Here too we provide a
mechanism to reduce the latency through the rate
matching block. This is done by providing the input
directly to the lower mux. Similar to the 128-to-32 rate
matching blocks, the control logic must take into
account the WAIT signals coming from the
downstream receiver and must appropriately throttle
the incoming packets.

It is worth noting that the number of queues must
match the number of VCs. In our examples above,
there are 2 sets of queues, one for each VC. The reason
for this is that the rate matching block should not block
any packet from moving forward if the VC it is on is
open downstream.

DFF

Enable

128-bit

Control

Logic
WAIT for VC1

WAIT for VC2

WAIT for VC1

WAIT for VC1

32-bit

Enable

Queue

Enable

Input VALID for VC1

Input VALID for VC2

Output VALID for VC1

Output VALID for VC2

Clock

2-bit

32-bit

(a) (b)

