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Abstract 
 

In this paper, we examine the process of porting a 
high-end commercial SoC application from a 
segmented bus implementation to a NoC-based one. 
We present several design choices and focus on the 
power optimization of the NoC while achieving the 
required performance. Our design steps include 
module placement optimization using simulated 
annealing and allocation of minimal and different 
capacities to links. Unlike previous studies, in which 
point-to-point, per-flow timing constraints were used, 
we introduce and demonstrate the importance of using 
the application's end-to-end traversal latency 
requirements during the optimization process. In order 
to quantify and evaluate the different alternatives, we 
report the actual throughput and timing requirements 
of the commercial SoC as well as the synthesis results. 
According to our findings, the proposed technique 
offers up to 40% savings in the total router area and a 
reduction of up to 49% in the inter-router wiring area. 
 

1. Introduction 
 

Application-specific systems on-chip (SoC) make 
extensive use of busses as the interconnect 
infrastructure. These busses are typically enhanced 
along product generations to match the increasing 
needs of the application. Such enhancements include 
increasing the bus frequency and width as well as 
enriching the bus semantics and transfer modes. By 
avoiding fundamental changes, the SoC architects can 
leverage their past experience in designing shared 
busses and successfully overcome the growing 
complexity of the design. However, in recent years 
research has shown that Network on-Chip (NoC) is 
likely to replace busses in future SoCs, due to superior 
performance, power and area tradeoffs it offers  as the 
number of modules increases  [1] [2] [3] [4]. This is 
mainly attributed to the spatial parallelism and 
statistical multiplexing of networks, to their short, 

unidirectional point-to-point wires and to their scalable 
architecture  [5]. 

NoCs are being adopted by companies as a means to 
improve design productivity. As the number of 
modules connected to a bus increase, the physical 
implementation of the bus becomes very complex, and 
achieving the desired throughput and latency requires 
time consuming custom modifications. Conversely, 
NoCs are designed separately from the functional units 
of the system to handle all foreseen inter-module 
communication needs. Their inherent scalable 
architecture facilitates the integration of the system and 
shortens the time-to-market of complex products.  

In this work, we discuss and evaluate the design 
process of a NoC for a state-of-the-art SoC. More 
specifically, we describe our experience in porting a 
high-performance, power constrained 4G wireless 
modem application from a segmented bus based 
architecture to a cost optimized NoC architecture. As 
the design process includes many "degrees of freedom" 
creating a very large design space, finding the absolute 
optimal solution is an extremely difficult problem. 
Instead, we focus on some of the important choices that 
should be made by the system architect while selecting 
some well-accepted, practical solutions to other 
questions.  

Previous work that has dealt with the design process 
of the NoC frequently attempted to minimize power 
consumption and/or maximize network performance as 
measured by the network's throughput and latency. 
When real applications are considered, simply 
minimizing the power consumption alone (e.g., by 
module placement) is impossible, as performance 
constraints for each given application are to be met. 
Similarly, maximizing performance alone is inefficient, 
since excessive power might be used for improving 
performance beyond the needs of the application. 
Therefore, in this paper we look for a tradeoff between 
the power and performance of the NoC that is 
characterized by a minimal power consumption that 
still meets the demands of all targeted applications. 
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Moreover, in many of the studies where network 
latency was used as a performance goal (either as the 
optimized cost function or as a constraint), the average 
delay of all packets over all communicating pairs was 
considered. However, in a practical SoC, different 
streams of communication may require different delays 
and therefore the overall average latency is an 
inappropriate measure. Consequently, the individual 
per-flow, point-to-point (source-destination) latencies 
should be accounted for to get better results. In this 
paper, we go further to suggest a third, improved 
approach: knowing the application that is to be used in 
the SoC, we utilize its functional timing requirements, 
which are defined by the application end-to-end latency 
constraints. Each of those end-to-end traversal delay 
requirements is composed of the cumulative 
requirement of a sequence (or a "chain") of flows. For 
example, the application may require that a block of 
data which is generated by module A is sent to module 
B in order to be processed. Then, the processed data is 
to be sent by module B to module C for some 
additional processing. By observing that the 
performance of the application is subject to the total 
time it would take the data to get from module A to 
module C, we can use this delay as the targeted 
performance measure, rather than specifying the two 
separate latency constraints (for the flow from module 
A to module B and from module B to module C). Since 
pair-wise delays may be traded, the timing constraints 
are relaxed and the optimization program can use more 
freedom in its operation. To the best of our knowledge, 
this paper is the first to discuss and quantify the 
benefits of specifying the end-to-end traversal 
requirements during the design process. 

The design process itself has several steps. First, 
using simulated annealing optimization, we search for a 
module’s placement consuming minimal power, taking 
into account application latency and throughput 
constraints. Then uniform link capacities among routers 
are defined to meet these performance constraints. 
Finally, the resulting uniform NoC is tuned by reducing 
the capacity of selected links. The design process case 
study becomes more complex as our SoC has several 
modes of operation, each with a different set of traffic 
and latency requirements. The designed NoC needs to 
meet the requirements of all these modes while 
reducing power as much as possible. 

As an important part of this work, we present the 
bandwidth and timing requirement of the high-
performance, state-of-the-art 4G application we 
examine. This information can be used by the NoC 
community as a benchmark for future research.   

The rest of this paper is organized as follows: in 
Section  2 related work is discussed. In Section  3, we 
describe the characteristics of the application of the 
designed SoC. In Section  4, we discuss the design and 
optimization process of the NoC, and analyze its cost 
and performance. In Section  5 we summarize the paper. 
Appendix A describes the architecture of the NoC 
components. 

 

2. Related Work 
 

NoC design was the subject of many papers in 
recent years. In particular, the problem of mapping the 
communicating cores onto the die has received 
considerable attention, due to the power and 
performance implications it has. In  [6], the authors 
propose a branch-and-bound mapping algorithm to 
minimize the communication energy in the system, but 
the resulting communication delay is not considered. In 
 [7], a heuristic algorithm is used to minimize the 
average delay experienced by packets traversing the 
network. By allowing the splitting of traffic, an 
efficient implementation is found. In  [8] [9], the authors 
use the message dependencies of the application in 
addition to its bandwidth requirements to find a 
mapping that reduces the power consumption and the 
application execution time. The authors of  [10] use a 
multi-objective genetic algorithm to explore the 
mapping space so that a good tradeoff between power 
consumption and application execution time is found. 
While these papers use unique mapping schemes, they 
all use packet delay or application execution time as a 
quality measure rather than as an input to the mapping 
phase. Moreover, the metrics used does not consider 
the individual requirements of each pair of 
communicating cores, only reflecting the overall 
average delay or performance. 

The earliest published work to consider energy 
efficient mapping of a bandwidth and latency 
constrained NoC is  [11], in which the authors specify a 
an automated design process providing quality-of-
service guarantees. Another mapping scheme that uses 
delay constraints as an input is described in  [12]. 
There, a low complexity heuristic algorithm is used to 
map the cores onto the chip and then routing is 
determined so that all constraints are met. Similarly, 
the mapping schemes used in  [13] [14] [15] all use the 
per-flow, source-destination latency requirements of 
the application as input to the design process.  

In this work, we motivate a third approach: rather 
than optimizing the NoC for power only and evaluating 
the resulting delays; or using the per-flow delay 
requirements as constraints during the design process, 



we suggest using the end-to-end traversal delay 
latencies dictated by the needs of the application. 
Wherever applicable, we replace "a chain" of point-to-
point delay constraints with a single, unified constraint, 
describing the end-to-end latency requirement of the 
application, measured from the time the first module in 
the chain generates the data until the last module 
receives the data, as explained above. 

 

3. The Application 
 

The design chosen for evaluating the conversion 
into the NoC architecture is an ASIC that supports all 
major 2G, 3G and 4G wireless standards for use in base 
stations and femto-cells (Cell Site Modem – CSM), 
depicted in Figure 1. The CSM is designed to support 
any of the CDMA or UMTS standards, because 
different markets around the world are at different 
points in their adoption of wireless standards.  

This CSM is comprised of several subsystems. 
These fall into three basic categories: (1) Generic 
Element. These are the processor and DSP modules on 
chip. They are programmable and can be used for a 
variety of different functions; (2) Dedicated hardware. 
These blocks are designed to optimize the 
operations/milliwatt metric. They perform a single (or a 
small set) of operations extremely efficiently and off-
load the work from the generic elements (which 
typically could perform the same operation but with a 
significant power penalty); and (3) Memory/IO. As 
with most SoCs, there are memory elements and I/O 
modules used for information storage and 
communication with the outside. For the purposes of 
this paper, these elements are grouped together. 

The SoC consists of several subsystems tied 
together with a 64-bit wide, 166MHz AXI bus at the 

top-level. There are a total of 34 nodes on the bus. Due 
to design considerations such as P&R and timing 
closure, the interconnect fabric is segmented into two 
separate busses with approximately half the nodes on 
each bus and a bridge between the busses. 

The CSM chosen for this study supports multiple 
modes of operation, each identified by its own BW and 
latency requirements. In particular, it can operate in a 
2G mode, in a 3G mode, or in a 4G mode. There is also 
a combination of modes for simultaneous voice and 
data transmissions.  To find the low-cost 2D mesh 
topology for the NoC, an artificial set of bandwidth 
requirements is generated: for each pair of nodes, the 
maximum BW requirement it has in any of the modes 
of operations is selected. Similarly, we combined all 
the latency requirements in one table. This scenario, 
which we call "MAX", represents the worst-case 
requirements in any of the modes ("synthetic worst-
case" in  [16], "design envelope" in  [17]). Designing the 
NoC according to the “MAX” scenario is likely to 
make it easier to meet requirements of all modes of 
operation in the following phases of the design. 

If we expect to design a NoC to replace the top-
level AXI busses, it must be flexible enough to meet 
the BW and latency requirements for each mode. 
However, we also do not want to overdesign the 
network because this will waste area and power. A 
summary of the bandwidth and latency requirements is 
given in the tables 1-3: Table 1 describes the 
bandwidth requirement between master and slave 
modules in the system. Table 2 describes the timing 
requirements of point-to-point communication in the 
system while Table 3 specifies the application's end-to-
end traversal delay requirements, derived from the 
application characteristics. Additional characteristics, 
that are omitted here due to space limitations, are 
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Figure 1: Bus-based system architecture 



available at  [18]. As is seen in the tables, there is a 
wide variability in the requirements, at both the 
bandwidths and the delays. For example, M0 sends S2 
492Mb per second, with a latency constraint of 
5000nsec, while M4 sends S16 only 10 Mb per second, 
but with a much tighter delay requirement of 200nsec. 

 

4. NoC Design and Cost Optimization 
 

The design process of the NoC is composed of five 
phases: placing of the communicating modules (e.g. 
 [6]- [16]); trimming and adjusting the network 
resources to meet the application requirements  [19]; 
synthesizing the network; placing and routing of the 
NoC and extracting area and power numbers. The 
initial topology chosen for the NoC is a 2-dimension 
mesh grid that mitigates the concern of deadlocks and 
also simplifies the routing algorithm. In order to 
minimize the buffering cost and allow fast delivery of 
data, we use wormhole switching. 

 
4.1 Cost Optimized Placement 
 

In order to come up with the best 2D mesh 
topology, we explore three possible optimization goals: 
(1) Power-only: In this placement, only the bandwidth 
requirements of the application are considered, while 
meeting the timing requirements is  left for the 
following stages of the design process; (2) 
(Power+P2P)-based placement: Here, point-to-point  
(P2P) latency requirements are introduced as 

constraints in the placement phase; (3) (Power+E2E)-
based placement: instead of specifying latency 
requirements for each source-destination pair, the end-
to-end (E2E) traversal latency requirement of the 
stream of information in the application is used. The 
difference is that with E2E latency, the particular 
operation may be composed of several flows of data, 
each traversing several nodes. For example, if data is 
sent from node-X to node-Y and from node-Y to node-
Z, the E2E latency is measured between node-X and 
node-Z. A point-to-point requirement that is not a part 
of a larger chain is considered as an ETE traversal 
latency constraint. The E2E constraints are extracted 
from the application's characteristics and may replace 
some of the P2P requirements, creating a more relaxed 
set of constraints.  

 
4.2 Placement Tool 
 

In order to search for an optimal placement for a set 
of modules, a topology optimization tool that uses a 
simulated annealing (SA) algorithm was developed. 
The tool, which is capable of evaluating different MxN 
configurations for the 2D mesh, takes as input a 
spreadsheet listing connectivity and bandwidth 
requirements between nodes. In addition, it can read a 
spreadsheet with latency requirements. There are two 
options for listing latency: one table will list the 
maximum latency allowed between any two nodes on 
the network. The second option is to list the allowed 
end-to-end traversal latency requirements in the 

Table 2 

 
Point-to-point timing requirements [nSec]. 

'R' is for read operations, 'W' is for write operations. 
 

Table 1 

 
Bandwidth demands [Mb/s]. 

'R' is for read operations, 'W' is for write operations. 
 



network: rather than specify point-to-point latency 
between two nodes, the user can list all the nodes a 
particular operation must traverse and specify the total 
maximum latency allowed for that operation.  

In order to find an optimal placement for the SoC, 
we also define a cost function and calculate the cost 
every time the SA algorithm swaps nodes. The cost 
function is defined as:  

 
router l

l links

Cost AREA BWα β
∈

= + ∑  (1) 

where AREArouter, is an estimate for the total resources 
required to implement the router logic (accounting for 
the number of ports and their link speeds), and BWl is 
the bandwidth delivered over a link l. While AREArouter 
models the area and static power used by the NoC 
resources, the second term is used to capture the 
dynamic power consumed by the communication. 

The SA algorithm starts with a random placement of 
all the nodes on a 2D mesh and calculates the cost for 
this initial condition. It then proceeds to try and swap 
nodes in order to find a lower cost solution. The BW 
spreadsheet will drive the selection of a topology as 
this is directly included in the cost function above. 
However, for each solution that the SA algorithm 
generates, the tool will use the latency spreadsheet to 
check if the latency requirements are met. The latency 
check at this stage of the design reflects the length of 
the path traversed by the packet and the pipeline delay 
of the routers along that path. When the requirements 
are not met, the solution is rejected regardless of its 
cost. Figure 2 depicts a typical example of the cost 
reduction behavior along the run time of the SA 
optimization. 

As different placements lead to NoCs with different 
costs, we use the SA tool to generate placements using 
the Power-only, Power+P2P, and Power+E2E schemes 
(Section 4.1), resulting in three topologies to compare 
and analyze. For the purpose of this paper, we used 
α=10, β=1 and relative empirical weights for routers 

with different numbers of ports, as generated by 
synthesis tools. Figure 3 illustrates the generated 
placements using the three schemes. 
 
4.3 Setting the network speed 

 

As a significant portion of the NoC area and power 
consumption is due to the network links, minimizing 
the resources used by the links may have a considerable 
impact on the total cost of the NoC. Consequently, in 
the second phase of NoC design process, the required 
capacity of the network links is determined. More 
specifically, we attempt to find the minimal capacity of 
the links that would still meet all the latency 
constraints, as the placement tool didn't consider the 
dynamic contention within the network. In this paper, 
we consider two possible schemes: a uniform 
allocation, in which all links have the same capacity, 
and a heterogeneous allocation where different links 
may have different capacities. 

Uniform link capacity is commonly used in 
wormhole networks. In such cases, the process of 
finding the minimal capacity that meets the latency 
requirements using simulations is rather simple, as a 
single parameter (the identical speed of all network 
links) is optimized. However, due to the variety of 
timing requirements presented by the application, this 
allocation causes some links to be over-provisioned. In 
order to reduce the cost of the links, we differentiate 
between two types of links: the first type of links is 
links that are used to route at least one flow which has 
timing requirement. The second type of links is those 
that deliver flow with no such requirements. Intuitively, 
it is possible to scale down links of the latter type more 
aggressively than those of the former type. However, it 
is important to note that scaling down the capacity of 
links that have no flows with timing requirement may 
hinder the delivery of flows that have latency 
constraints but do not traverse these links. This is due 

Table 3 

 
End-to-end traversal timing requirements [nSec]. 

 

 
Figure 2: Cost behavior along time 

An example of the reduction of the network cost using 
simulated annealing. The X-axis represents the iteration 
number; the Y-axis represents the cost of the network. 
 



to the backpressure mechanism of wormhole switching: 
when a flow is slowed down in a certain router on its 
path, it occupies resources in other routers on its path 
for a longer time. Consequently, the delay of flows that 
share these other routers and which may have latency 
constraints increases. In this work we generate the 
custom, tuned allocation by scaling down the capacity 
found in the uniform assignment scheme: the capacity 
of links that are used only by flows with no timing 
requirements is re-assigned according to a selected 
utilization factor. The capacity of links which have at 
least one flow with latency constraint is reduced 
proportionally to the slack time of the flow with the 
lowest slack. Simulation is then used to verify that all 
latency constraints are met. In both the uniform and 
custom tuning schemes, links that are not used by any 
flow in any of the modes are completely removed. 
Using an OPNET-based simulator  [20] that models a 
detailed wormhole network (accounting for the finite 
router queues, backpressure mechanism, virtual 
channel assignment, link capacities, network 
contention, etc.), the basic three topologies (generated 
by the Power-only, Power+P2P and Power+E2E 
optimizations) were simulated, using one and two 
virtual channels (VCs). For each case, we went through 
the process of finding the optimal network speed for 
both the uniform and the tuned links capacity cases. 
Figure 4 illustrates the per-link capacity allocated for 
the placement created by the Power-only optimization. 
This phase results in 12 generated networks (3 basic 
placements * 2 VC configurations * 2 capacity 
schemes). At the end of this phase, all timing 
requirements are met (P2P constraints in the Power-
only and Power+P2P placements, and E2E-traversal 
constraints in the Power+ETE generated placements). 
Figure 5 summarizes the results, presenting the total 
capacity required in each of the 12 configurations. 

4.4 Synthesis 
 

The optimization of the 1 VC network versus the 2 
VC network results in different speed requirements for 
both the uniform and tuned cases. For some links, the 
two VC approach resulted in a lower link speed 
because of the improved link utilization offered by the 
additional VCs. However, the area impact of a two VC 
router must also be taken into account when choosing 
the best topology. Another factor to consider in the 
design of the network is the flit width we support. The 
current NoC architecture supports flit widths of 32, 64, 
and 128 bits. While the network bandwidth allocation 
algorithm allowed for any speed, the implementation of 
the NoC on the ASIC is limited to the clock 
frequencies and flit widths available in the design. For 
this reason, we bin the resulting router configurations 
into discrete categories supported on chip. We applied 
this binning strategy to all topologies and synthesized 
the network for each (the implementation is discussed 
in Appendix A). Figure 6 and Figure 7 show the results 
reported by the synthesis tool, separately listing the cell 
area and routing area. The cell area includes the area 
taken up by the rate matching blocks when we 
transition from one flit width to another in the network 
(Appendix A). It also accounts for the trimming of the 
routers, achieved by the removal of unused ports. 

As expected, by applying a network capacity 
allocation scheme we are able to reduce the speed of 
the over-provisioned links thus saving area and power. 
The results also indicate that the Power+E2E latency 
approach provides a considerable better solution. To 
understand this, we must go back to our SA algorithm 
in the topology planning phase. For each case, the 
topology tool will use the connectivity and BW 
requirements to calculate the cost of the network (Eq. 
1). However, in the Power-only case, the latency 
requirements are completely ignored. The Power-only 

 
Figure 3: Placement results 

(a) Power optimized; (b) power optimized+P2P timing constraints; (c) power optimized+E2E traversal timing constraints. 
Line widths represent the relative volume of traffic. 



approach gives the SA algorithm the most flexibility in 
placing the nodes on the network. When latency is 
included in the topology planning, the tool will reject 
any solution that does not meet the latency 
requirements. This effectively reduces the solution 
space for the SA algorithm. Because of this, the 
Power+P2P latency is the most restrictive. In the case 
of the Power+E2E latency, we allow the tool some 
more flexibility in moving the nodes around as long as 
the latency is met for the full E2E traversal path. 
The above explanation taken alone would imply that 
the Power-only case should produce the best results 
because the topology tool has the highest flexibility to 
reduce the cost. However, Figure 6 and Figure 7 show 
that the Power-only implementation has the largest 
area, in each VC/allocation scheme. To understand 
this, one must examine the bandwidth and latency 
requirements: there are some communication streams 
that have relatively low bandwidth but still have strict 
latency requirements. The nature of the topology cost 
function will place high bandwidth nodes close 
together in order to minimize the cost. When high 
bandwidth nodes are put close together, the other nodes 
get pushed further apart. As a result, some low latency 
nodes will be separated by many hops. This is exactly 
what the Power-only approach is doing. During the link 
capacity tuning phase, this causes a need to increase the 
link data rate for the latency path just to meet the 
requirements. The further apart these latency-critical 
nodes are from each other, the higher the link speed 
along the path will need to be. In addition, due to the 
nature of wormhole routing, the increased link speed 
will affect many other links in the network.  This is 
why the Power-only case has a very high network 
capacity. In order to meet these high bandwidth 
requirements, we are forced to either increase the clock 

frequency significantly or we need to choose a larger 
flit width to support the high throughput. This leads to 
an overall larger area. 

The Power-E2E latency had the most flexibility to 
place nodes on the topology while at the same time 
making sure that the latency critical signals were 
relatively close together. Hence, during the network 
capacity allocation phase, we could use a lower link 
speed as compared to the Power-only case. The 
proximity of the nodes also limited the impact of the 
link speed on the rest of the network. This all translates 
into the use of smaller flit widths and/or slower clock 
frequencies for the network. Consequently, the ETE-
traversal approach reduces the cell area by 25%-40% 
and wiring resources by 13%-49% compared to the 
traditional power+P2P placement scheme. 

When we consider the number of VCs, we see that 
one VC is preferable from an area perspective. In the 
case of 2 VCs, we can reduce some of the link 
capacities more than in the 1 VC case. However, the 
savings provided by this reduced capacity are more 
than offset by the increased router sizes. Therefore, the 
2 VC approach does not benefit the application. 

Finally, we see that the Uniform and Tuned 
Power+E2E topologies have the same area. The reason 
for this is our binning strategy. Because we are limited 
to certain flit widths, our link and router selection is 
limited to certain, discrete choices. While it is true that 
the tuned Power+E2E topology can theoretically run 
some links at a slower speed, the difference from the 
uniform topology is not significant enough in this case. 
For example, the tuned topology can reduce the speed 
of some links down from 15Gbps to 14Gbps. However, 
given the supported flit widths, this does not change the 
size of the link or router we can choose. Hence the two 
topologies come out equal. 
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5. Summary and Conclusions 

 
The increasing communication requirements in 

system on-chip (SoC) implementations created a need 
for a new interconnection paradigm. For a few years 
now, academic research is suggesting network on-chip 
(NoC) as a means for providing efficient inter-modules 
communication within chips. Recently, a few 
companies have reported the usage of NoC in some 
prototypes and in commercial products. 

In this paper, we describe our efforts to design a 
complex SoC around a NoC-based interconnect. In the 
first phase of the design, we explore three schemes to 
perform the placing of cores onto the chip: the first 
scheme only considers the power consumed by the 
transmission of packets while the second scheme uses 
the application's source-destination latency constraints 
during the optimization of the power consumption. A 
third placement technique replaces the pair-wise 
requirements with application-level end-to-end 
constraints, allowing more freedom in the process of 
seeking a solution that minimizes power consumption. 

Next, we trim redundant network resources (links, 
ports) and tune the bandwidth of network links so that 
the requirements of the application are met. Finally, we 
synthesize the resulting networks to estimate their cost. 

The main contribution of this work is the 
introduction of the end-to-end traversal delay 
constraints during the NoC design process. By 
replacing the source-destination requirements with end-
to-end requirements wherever possible, we reduce the 
total area needed for the implementation of routers by 
25% to 40% and the link wiring resources by 13%-
49%. In addition, we demonstrated the potential benefit 
that lies in the implementation of links with 
individually assigned capacities. Future work includes 
placing and routing the NoC and evaluating it against a 
bus-based system that delivers the same performance. 

 
6. References 
 
[1] P. Guerrier and A. Greiner, "A Generic 

Architecture for On-Chip Packet-Switched 
Interconnections",  Proc. Design, Automation and 
Test in Europe (DATE) 2000, 250-256 

[2] K. Goossens, J. Dielissen, and A. Radulescu, 
"AEthereal Network on Chip: Concepts, 
Architectures, and Implementations", IEEE 
Design and Test of Computers, 2005, 414-421 

[3] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, 
"QNoC: QoS Architecture and Design Process for 
Network on Chip", Journal of Systems 
Architecture, Vol. 50, February 2004, 105-128 

[4] D. Bertozzi and L. Benini, "Xpipes: A Network-
on-Chip Architecture for Gigascale Systems-on-
Chip", Circuits and Systems Magazine, IEEE 
Volume 4, Issue 2, 2004, 18-31 

[5] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, 
"Cost Considerations in Network on Chip", 
Integration - the VLSI Journal, Volume 38, pp. 
19-42, 2004 

[6] J. Hu and R. Marculescu, "Energy-Aware 
Mapping for Tile-Based NoC Architectures 
Under Performance Constraints", Proc. Asia 
South Pacific design automation (ASP-DAC) 
2003, pp. 233–239 

[7] S. Murali and G. De Micheli, "Bandwidth-
Constrained Mapping of Cores onto NoC 
Architectures", Proc. Design, Automation and 
Test in Europe Conference (DATE), 2004, pp. 
896–901 

[8] C. Marcon, A. Borin, A. Susin, L. Carro, and F. 
Wagner, "Time and Energy Efficient Mapping of 
Embedded Applications onto NoCs", Proc. Asia 
South Pacific design automation, 2005, pp. 33–38 

[9] C. Marcon, N. Calazans, F. Moraes, A. Susin, I. 
Reis, and F. Hessel, "Exploring NoC Mapping 
Strategies: an Energy and Timing Aware 

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

Power-only Power+P2P latency Power+ETE latency

Uniform (1VC)

Uniform (2VC)

Tuned (1VC)

Tuned (2VC)

Figure 7: Total wiring area 
The total area consumed by inter-router wires 

 

0

1000000

2000000

3000000

4000000

5000000

6000000

Power-only Power+P2P latency Power+ETE latency

Uniform (1VC)

Uniform (2VC)

Tuned (1VC)

Tuned (2VC)

 
Figure 6: Total router logic area 

The total area consumed by routers in each placement scheme. 
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Figure 8: Router architecture 

 

Appendix A: Router and Rate Matcher 
Architectures 
 

The basic router used for our analysis consists of an 
M x N switch, with M inputs and N outputs. A variable 
number of VCs can be implemented on each input and 
output. Figure 8 shows an implementation with two 
VCs per port. 

Each input or output port arrow actually represents 
multiple signals. Packet flits are routed with two 
control bits, allowing flow control at each stage in the 
router. The VALID flag indicates that the word is valid 
and the WAIT flag indicates whether the receiver will 
accept the flit.  When multiple VCs are present, there is 
one VALID/WAIT pair per VC.  

The full data path for an Input VC consists of a 
demultiplexor (“1” in Figure 8), a VC allocator 
(“Alloc”), some number of buffer/FIFO stages 
(rectangles between “1” and “2”), a multiplexor (“2”), 
and a VC arbiter (“Arb”). The Input VC blocks are 
shown in Figure 9.  

 The demultiplexor (“1”) diverts incoming packets 
to a particular input VC queue based upon an 
assignment made by the allocator block. The buffer 
stages allow separate packets to queue in parallel, thus 
allowing one packet to bypass another blocked packet.  

The allocation block maintains a record of each 
incoming packet to determine if it was previously 
assigned a VC queue or it is a new packet that needs 
assignment. Each flit that comes into an input port 
comes from a VC in the sender. There is a VALID for 
each of the sender output VC. Let us call this VC-
sender. When a header flit is received at an input port, 
the VC allocator must map the VC-sender to a VC 
queue that is free. To do this, the allocator maintains a 
list of which queues are free. It will read an entry from 
the “free list” and store the mapping from VC-sender to 



internal VC queue. From that point on, any flits that 
come in on VC-sender are mapped to VC queue. When 
the last flit of the packet is sent out of the VC queue, 
the allocator will clear the mapping and make it 
available in the “free list”. Finally, the arbiter decides 
which flit accesses the crossbar switch based upon the 
queue status at the output of the router, and controls 
mux “2” appropriately. 

Packet flits sitting in the VC queue must be routed 
to the appropriate output port. This is accomplished 
with two levels of arbitration to decide which flits pass 
from input queues to output queues. The first 
arbitration occurs on each input port individually, to 
determine which input VC queue passes a flit.  The 
arbiter must tell the multiplexor (“2”) which input VC 
queue will access the switch each clock cycle.  The 
decision is a function of which of the input queues are 
not empty and whether the destination switch port 
(assigned output VC queue) can accept another flit 
(one of the WAIT_OPORTi_VCi bits). Without this 
first level of arbitration, the switch would grow to be 
2M x 2N, assuming two VCs on each input and output. 

The second level of arbitration is done in the 
crossbar switch. It arbitrates between multiple inputs 
accessing the same output port (despite possibly 
different output VCs). The mux should ensure that if a 
destination output queue is not ready for the next flit it 
will not block flits from other input VCs going to other 
output queues. 

The data path structure of the Output VCs is very 
similar to the Input VCs.  It consists of a demultiplexor 
(“3”), buffers (rectangles), multiplexor (“4”), and 
arbiter (“Arb”). Each component operates similar to the 
corresponding component for input VCs.   

In the case of our tuned networks, a set of rate 
matching blocks that will allow the transition from one 
packet width to another are needed. Two designs for 
the rate matching blocks are shown below. 
The design in Figure 10(a) converts a 128-bit packet 
width to a 32-bit packet width. The incoming packet is 
first stored in a queue. The control logic will then read 
the queue in groups of 32-bits and multiplex them onto 
the output. Because the output rate is much slower then 
the input rate, the control logic must also manage the 
WAIT signals back to the sender. This will throttle the 
rate of the incoming packets. We provide a mechanism 
to bypass the queue and send 32-bits straight to the 
output. This is done to minimize the latency of the rate 
matching block. In this case, the control logic will 
select the upper 32-bits of the incoming packets and 
mux them directly on the output. 

 
Figure 9: Router Input VCs 

 

 
 

Figure 10: Rate matching blocks 
(a) 128-bit to 32-bit; and (b) 32-bit to 64-bit 

 
Conversely when going from a low rate to high rate 

we use a design as shown in Figure 10b. In this case we 
store the first valid word of the packet in the upper set 
of holding registers and wait for the second valid word 
to come in. When the second word appears it is 
directed to the lower holding registers. When both 
upper and lower queues have data, the control logic 
will combine these onto one output bus and set the 
appropriate enable high. Here too we provide a 
mechanism to reduce the latency through the rate 
matching block. This is done by providing the input 
directly to the lower mux. Similar to the 128-to-32 rate 
matching blocks, the control logic must take into 
account the WAIT signals coming from the 
downstream receiver and must appropriately throttle 
the incoming packets.  

It is worth noting that the number of queues must 
match the number of VCs. In our examples above, 
there are 2 sets of queues, one for each VC. The reason 
for this is that the rate matching block should not block 
any packet from moving forward if the VC it is on is 
open downstream. 
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