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Abstract

A message independence property and some new performance upper bounds are derived in this work for erasure,
list and decision-feedback schemes with linear block codestransmitted over memoryless symmetric channels.
Similarly to the classical work of Forney, this work is focused on the derivation of some Gallager-type bounds
on the achievable tradeoffs for these coding schemes, wherethe main novelty is the suitability of the bounds for
both random and structured linear block codes (or code ensembles). The bounds are applicable to finite-length codes
and to the asymptotic case of infinite block length, and they are applied to low-density parity-check (LDPC) code
ensembles.

Index Terms

Automatic repeat request (ARQ), erasures, error exponents, feedback, linear codes, list decoding, low-density
parity-check (LDPC) codes.

I. INTRODUCTION

Exponential error bounds were derived and studied by Forney[13], referring to the following two situations:

1) A decoder is allowed not to make a decision on a received signal, or rejecting all estimates; this output is
called anerasure. The event where the decoder makes in this case a decision on the transmitted message,
and it is wrong, is called anundetected error.

2) A decoder is allowed to make more than one estimate of the received signal. The output of this decoder
forms a list of codewords, and the event where the transmitted message is not on the list is called alist error
event.

Throughout this paper, decoding rules for these two situations are calledgeneralized decoding rules since they
apply to the general setting where the decoder does not necessarily need to make a single decision about the
codeword which was sent. As explained in [13], erasure and list options may be useful when the transmitted
data contains some redundancy, when a feedback channel is available, or when several stages of coding (e.g.,
concatenation) are used.

The size of the decoded list in [13] is allowed to vary according to the received signal. This decoding rule has
to be distinguished from [12], and [34] where the size of the list is predetermined and fixed.

By allowing a decoder to increase the probability of erasures in the first case, the undetected error probability
can be reduced. In the second case, by allowing the decoder toincrease the size of the list, the list error probability
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can be reduced. The optimum decoding rules with respect to these tradeoffs were provided in [13] and they were
analyzed via the derivation of exponential bounds for random codes.

This paper is focused on the derivation of some Gallager-type bounds on the achievable tradeoff between these
quantities, where the new bounds are useful for both random and structured linear block codes (or ensembles). These
new bounds are applied to expurgated ensembles of regular low-density parity-check (LDPC) code ensembles.

Performance analysis of specific codes is often prohibitively complex. As a result, various upper and lower
bounds on the decoding error probability are provided in theliterature. A significant part of this analysis is devoted
to the error performance under maximum-likelihood (ML) decoding (see, e.g., [24] and references therein). Lower
bounds on the error exponents for fully-random block codes under generalized decoding rules, are derived in [2],
[13], [21], and [31]. Achievable error exponents are provided in [28] and [29] for random codes with constant
composition under some suboptimal decoding rules (note that the upper bound in [29] concerns the moments of
the decoded list size). An upper bound on the error exponent under fixed-size list-decoding is provided in [26]. In
contrast to the vast literature available on the error performance under ML decoding, few results are available for
error performance of structured codes under generalized decoding rules. The error performance under fixed-size
list-decoding is studied for specific codes in [1], [4] and [20] where the communication is assumed to take place
over an AWGN channel.

The analysis of error probabilities under generalized decoding rules with erasures, enables the study of coded
communications with a noiseless decision feedback. Specifically, it is assumed that decoding erasures are followed
by a repeat request over a noiseless and immediate feedback channel. Such schemes are often referred to as hybrid
automatic repeat request (ARQ) systems. Unlike channel capacity for discrete memoryless channels, which is not
affected by feedback (see for example [7, p. 216]), a significant improvement is demonstrated in [13] for the
achievable error exponents. In this respect, the reader is also referred to [16] where the error exponents of hybrid
ARQ schemes with limited retransmissions are studied. The effect of feedback was also considered in [6], and it
was shown to significantly reduce the block error probability for discrete memoryless channels.

In this paper, upper bounds on the error probabilities undergeneralized decoding rules are provided for linear
block codes over memoryless symmetric channels. Both optimal and suboptimal decoding rules are considered.
When variable-size list-decoding is considered, upper bounds on the expected size of the decoded list is provided.
In addition, upper bounds on the list error probability are introduced for linear block codes when the size of the
list is fixed. The bounds derived in this work are applicable to the performance analysis of specific codes, and code
ensembles, via their (average) distance spectra. Moreover, these bounds are applicable to finite block lengths and to
the asymptotic case of an infinite block length. The providedresults are exemplified for two coding schemes: Fully-
random linear block codes, and regular, binary and non-binary, LDPC code ensembles with finite block lengths.
Applications to coded hybrid-ARQ schemes, are also studied.

This paper is structured as follows: The definitions of channel symmetry, generalized decoding rules, and some
of their basic properties, are provided in Section II. New upper bounds under the generalized decoding rules in [13]
are derived in Section III. Applications of these bounds to the performance analysis of coded hybrid-ARQ schemes
are provided in Section IV. Error performance of suboptimaldecoding and fixed-size list-decoding, are provided
in Sections V and VI, respectively. Some technical details are relegated to the appendices.

II. CHANNEL SYMMETRY, GENERALIZED DECODING, AND MESSAGEINDEPENDENCE

In this section we introduce some definitions, examples, andstatements related to channel symmetry, Forney’s
generalized decoding rule [13], and sub-optimal versions ([2] and [13]), as well as list decoding rules ([12] and
[34]). A message independence property is stated for these decoding rules, which is used for the simplification of
the analysis.

Let X = {x0, x1, . . . , xq−1} be a given alphabet with a cardinalityq. We assume an addition operation (+) over
the alphabetX for which {X ,+} forms an Abelian group. Letx0 = 0 be the additive identity of this group. In
addition, letY be a given discrete (or continuous) alphabet. We assume a memoryless channel, and denote the
channel transition probability (or probability density, respectively) function byp(y|x), wherex ∈ X andy ∈ Y.

Definition 1 (Channel symmetry). A memoryless channel which is characterized by a transitionprobability p, an
input-alphabetX and a discrete output alphabetY is symmetric if there exists a functionT : Y × X → Y which
satisfies the following properties:



E. HOF ET AL.: PERFORMANCE BOUNDS FOR ERASURE, LIST AND FEEDBACK SCHEMESWITH LINEAR BLOCK CODES 3

1) For everyx ∈ X , the functionT (·, x) : Y → Y is bijective.
2) For everyx1, x2 ∈ X andy ∈ Y, the following equality holds:

p(y|x1) = p(T (y, x2 − x1)|x2). (1)

Remark 1. For channels whose output alphabet is continuous, an additional requirement on the mappingT is that
its Jacobian is equal to 1.1 In this case, the condition in (1) implies that

∫

p(y|x1) dy =

∫

p(T (y, x2 − x1)|x2) dy.

Example 1 (Memoryless binary-input output symmetric channels).Consider a memoryless binary-input output-
symmetric (MBIOS) channel. Setting

T (y, x) =

{

y x = 0
−y x = 1

then Definition 1 coincides with the standard definition of MBIOS channels.

Let C = {xm}qk

m=1 be a linear block code whose generator matrix is ak × n full-rank matrix with entries over
X . The decoding rules studied in this paper are specified in terms of decision regionsΛm, 1 ≤ m ≤ qk, which are
all subsets ofYn. The conditional error probability of them-th message is given by

Pe|m =
∑

y∈Λc
m

p(y|xm) (2)

whereΛm forms the decision region for them-th codeword, and the superscript ‘c’ stands for the complementary
set. The decision region of them-th codeword under ML decoding gets the form

Λm =
{

y : p(y|xm) > p(y|xm′), ∀ m′ 6= m
}

(3)

where ties are resolved randomly with equal probability. Assuming equal a-priori probabilities for the transmitted
messages, the ML decoding rule minimizes the error probability given in (2). A well-known result for binary linear
block codes operating over MBIOS channels is that their error probability under ML decoding is independent of
the transmitted codeword. This enables a great simplification in the analysis by assuming that the all-zero codeword
is transmitted. This result is generalized in [18] for non-binary linear block codes whose transmission takes place
over memoryless symmetric channels with discrete input alphabet.

When generalized decoding rules are considered, the decision regionsΛm are not necessarily disjoint nor they
include all the possible received vectors. The former case corresponds to decoding rules with a possiblyvariable
list-size, and the latter case corresponds to decoding witherasures. A list is produced by the decoder where the
received vector may possibly belong to more than one decision region. An erasure event is declared by the decoder
when the received vector does not belong to any decision region. These concepts were first introduced in [13].
When generalized decoding rules are allowed, the conditional block error probabilityPe|m in (2) stands for the
probability of either an undetected error or an erasure. When the decision regions are disjoint, the conditional
undetected error probability is given by

Pue|m =
∑

m′ 6=m

∑

y∈Λm′

p(y|xm). (4)

In addition, letPx|m denote the conditional probability of an erasure event given thatxm is transmitted. Then

Px|m = Pe|m − Pue|m.

In the case where list decoding is considered, the decision regions are not disjoint, andPue|m as given in (4) is
no longer a probability. However the RHS of (4) equals the conditional expectation of the number of incorrect
codewords in the list (the same notation,Pue|m, is used in both cases to simplify the statement of the following

1It is possible to use a generalized definition for both discrete and continuous output alphabets using the notion of unitary functions, as
done for example in [33, Section III-A].
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results). The optimum decoding rule with respect to the tradeoff between the error and the undetected error event
is derived in [13].

Definition 2 (Forney’s generalized decoding).Consider a block code over an alphabetX , and let{xm} denote
its codebook. The generalized decoding rule is defined by thefollowing decision regions:

Λm =

{

y ∈ Yn :
Pr(y,xm)

∑

m′ 6=m Pr(y,xm′)
≥ enT

}

(5)

wherem is the index of the codeword,T ∈ R is a parameter,Pr(y,xm) denotes the joint probability thatxm is
the transmitted codeword andy is the received vector, and the summation is over all codewords except ofxm.

Remark 2. The decision region in (5) can be expressed equivalently in the form

Λm =

{

y ∈ Yn : Pr(xm|y) ≥ enT

1 + enT

}

. (6)

Note that forT = 0, this decision region includes all the vectorsy ∈ Yn for which Pr(xm|y) ≥ 1
2 . The a-posteriori

probability ofxm, given thaty ∈ Λm is received, is therefore larger than the a-posteriori probability for any other
codeword. Hence, if a codeword is selected according to the decoder with the decision regions in (6) withT = 0,
then the same decision is made by a MAP decoder (as no other codeword can get an a-posteriori probability larger
than 1

2 ). This implies that the undetected error exponent for the decoder in (6) withT = 0 cannot be smaller than
the error exponent of an ML decoder with equally-likely codewords. Interestingly, as will be shown later, we get
the same lower bound on the error exponents for both decoders.

Remark 3. The threshold parameterT in (5) controls the tradeoff between erasures and undetected errors (or
average list size and decoding error). SettingT > 0 guarantees that the decision regionsΛm are disjoint.

Proposition 1 (Forney’s generalized decoding [13]).Assume that the decoding of a block code is carried according
to the generalized decoding rule in Definition 2. Then, thereis no other decoding rule that simultaneously gives
a lower error probability and an undetected error probability (or an average number of incorrect codewords when
list decoding is considered).

Remark 4 (On optimal generalized decoding of convolutional codes). Optimal generalized decoding of convo-
lutional codes, whose transmission takes place over memoryless channels, is provided in [19]. This algorithm is
based on the decision regions in (5). Specifically, the algorithm is based on a modification of the standard Viterbi
algorithm, where the denominator in (5) is evaluated recursively. The optimality of the algorithm in [19] is based
on the optimality in Proposition 1.

The following proposition generalizes the message independence property for the case of generalized decoding:

Proposition 2 (Message independence property for optimal generalized decoding). Let C be a linear block
code whose transmission takes place over a memoryless and symmetric channel. Then, the block error probability
and the undetected error probability, under the generalized decoding rule in Definition 2, are independent of the
transmitted codeword.

Proof: See Appendix A.

Remark 5. In the case where list decoding is considered (i.e., the decision regions are not disjoint), then Proposi-
tion 2 holds when we refer to the conditional expectation of the number of incorrect messages in the list produced
by the generalized decoding rule, instead of the undetectederror probability.

The following suboptimal decoding rule is suggested in [13]for the case of decoding with erasures:

Definition 3 (Likelihood Ratio (LR) Decoding). Consider a block code over the alphabetX , and let{xm} denote
its codebook. The LR decoding rule is defined by the followingdecision regions:

ΛLR
m =

{

y ∈ Yn :
Pr(y,xm)

Pr(y,xm2
)
≥ enT

}

(7)
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wherem is a codeword index,T > 0 is a parameter,Pr(y,xm) denotes the joint probability thatxm is the
transmitted codeword andy is the received vector, andm2 = m2(y) denotes the second most probable codeword
for each received vectory.

Remark 6. It is observed in [13] that the LR decoding rule may be a good approximation to the optimal regions in
(5), since the second most likely codeword is usually much more probable than the rest of the codewords (excluding
the most probable codeword). It is also noted in [13] that this suboptimal decoding rule is of practical utility.

Example 2 (Suboptimal generalized decoding).Consider the transmission of a binary linear block code overa
BSC. Given a received vectory ∈ {0, 1}n, the decoded codeword isx if and only if

dH(x′,y) − dH(x,y) > 2τn (8)

for all codewordsx′ 6= x, wheredH(x,y) denoted the Hamming distance betweenx, and y, and τ ≥ 0 is an
arbitrary parameter. Otherwise, an erasure is declared. Itis easily verified that this rule is a particular case of (7).
The error exponents for this setting are studied in [2].

The following proposition obtains a message independence property for the suboptimal decoding rule in Defini-
tion 3:

Proposition 3 (Message independence property for (suboptimal) LR decoding). Let C be a linear block code
whose transmission takes place over a memoryless and symmetric channel. Then, the block error probability and
the undetected error probability, under the suboptimal decoding rule in (7), are independent of the transmitted
codeword.

Proof: See Appendix B.

The following definition considers list decoding with a fixedsize. Such a decoding rule is based on a fixed size
of the list (instead of a variable list size which characterizes the decoding rule in Definition 2 withT < 0).

Definition 4 (Fixed-size list-decoding).Consider a block code over an alphabetX , and let {xm} denote its
codebook. Given a fixed list sizeL, the list-decoder is a mapping from the set of all possible received vectorsYn

to the set of all possible lists ofL codewords. This mapping produces the list whose likelihoods are the highest
among all other codewords. That is, given a received vectory, a codewordxm is in the list if p(y|xm) > p(y|xm′ )
for all m′ 6= m except for at mostL− 1 other possible codewords.

Assuming that the codewordxm is transmitted, a block error event is occurred by the fixed-size list-decoding rule
in Definition 4, if the list produced by the decoder does not include the transmitted codewordxm. The following
proposition is analogous to the message independence property in Propositions 2 and 3:

Proposition 4 (Message independence property for fixed-size list-decoding). Let C be a linear block code whose
transmission takes place over a memoryless and symmetric channel. Then, the block error probability, under the
fixed-size list-decoding is independent of the transmittedcodeword.

Proof: See Appendix C.

III. U PPERBOUNDS UNDER OPTIMAL GENERALIZED DECODING

The transmission of block codes (not necessarily linear) isfirst considered. In addition, throughout the paper, all
codewords are assumed to have a uniform a-priori probability.

Proposition 5. Consider the transmission of a codeC with a block lengthn andM codewords, and letp(y|x)
designate the transition probability of the channel wherex ∈ C is the transmitted codeword andy ∈ Yn is the
received vector. Then, the conditional block error probability (Pe|m) and the average undetected error probability
(Pue) under the generalized decoding rule in (5) satisfy

Pe|m ≤ ensTDB(m,Gm
n , s, ρ) (9)

Pue ≤ en(s−1)T 1

M

M
∑

m=1

DB(m,Gm
n , s, ρ) (10)
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where0 ≤ s ≤ ρ ≤ 1 are real-valued parameters,Gm
n is an arbitrary non-negative function overYn which possibly

depends on the codewordxm, 1 ≤ m ≤M , and

DB(m,Gm
n , s, ρ) ,

(

∑

y

Gm
n (y)p(y|xm)

)1−ρ





∑

m′ 6=m

∑

y

p(y|xm)Gm
n (y)1−

1

ρ

(

p(y|xm′)

p(y|xm)

) s

ρ





ρ

. (11)

Proof: See Appendix D.

Remark 7. Bounds (9) and (10) in Proposition 5 may be considered as a generalization of the DS2 bound ([8],
[25], [24]). In fact, settingT = 0 in (9) reproduces the DS2 bound under ML decoding. Note however that for
T = 0, the decision regions in (5) do not coincide with those underML decoding (e.g., in the former case there
are erasures).

The following corollary is a particularization of Proposition 5 for fully random block codes whose transmission
takes place over memoryless channels. The corollary reproduces the exponential upper bounds as in [13, Th. 2].

Corollary 1 (Random coding error exponents under optimum generalized decoding). Consider the transmission
of block codes over a memoryless communication channel witha transition probability lawp. Then, under the
notation in Proposition 5, there exists a block code which simultaneously satisfies

Pe ≤ e−nE1(R,T ) (12)

Pue ≤ e−nE2(R,T ) (13)

whereR = lnM/n is the code rate (in nats per channel use),

E1(R,T ) , max
0≤s≤ρ≤1, qX

(

E0(s, ρ, qX) − ρR− sT
)

(14)

E2(R,T ) , E1(R,T ) + T

E0(s, ρ, qX) , − ln
∑

y∈Y

{(

∑

x∈X

qX(x)p(y|x)1−s

)(

∑

x∈X

qX(x)p(y|x)
s

ρ

)ρ}

(15)

andqX is a probability distribution overX .

Proof: See Appendix E.

The bounds in Corollary 1 are derived in [13] without relyingon tilting measures. The current derivation relies
on the DS2 bound which makes use of tilting measures and Jensen’s inequality. It is noted in [13] that setting
T = 0 in Corollary 1, provides the random coding error exponent ofGallager [15]. Hence, as is mentioned in
[13], the random coding error exponent is attainable not only under ML decoding, but also under the generalized
decoding rule in (5) withT = 0. The following proposition is a particularization of Proposition 5 for linear block
codes.

Proposition 6. Consider an(n, k) linear block codeC whose transmission takes place over a memoryless symmetric
channel. Assume that the channel input and output alphabetsareX andY, respectively, and letp be the transition
probability of the channel. Then, the block error probability Pe and the undetected error probabilityPue under the
generalized decoding rule in (5), satisfy

Pe ≤ ensTD(g, s, ρ) (16)

Pue ≤ e−n(1−s)TD(g, s, ρ) (17)

whereg : Y → R is an arbitrary non-negative real-valued function,0 ≤ s ≤ ρ ≤ 1 are arbitrary parameters, and

D(g, s, ρ) ,





∑

y∈Y

g(y)p(y|0)





n(1−ρ)



∑

m′ 6=0

n
∏

i=1

∑

y∈Y

g(y)1−
1

ρ p(y|0)
(

p(y|xm′,i)

p(y|0)

) s

ρ





ρ

. (18)
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Proof: See Appendix F.

Remark 8. When the decision regions are not disjoint (i.e., a list decoder is considered),Pue in (17) does not
denote a probability but the expected number of incorrect codewords in the decoded list. The block error probability
Pe in (16) refers, in this case, to the list decoding error probability.

Remark 9. The parameterss andρ in Proposition 6 may be chosen separately for the bounds in (16) and (17).
However, the optimized choice of the two parameters is identical in both bounds (since they only differ in the
multiplicative terme−nT ).

The mathematical structure of the bound provided in the following corollary is similar to the Shulman-Feder
bound (SFB) in [27]. Because of this reason, this bound may beconsidered as a generalization of the SFB for the
generalized decoding rule in (5). To simplify the notation,the corollary is provided for the case of a binary linear
block code whose transmission takes place over an MBIOS channel (the generalization of the bounds to non-binary
linear block codes is performed similarly to the approach inthe proof of [18, Theorem 2]).

Corollary 2. Consider an(n, k) binary linear block codeC whose transmission takes place over an MBIOS channel
with a transition probability lawp. Then, the block error probabilityPe and the undetected error probabilityPue

under the generalized decoding rule in (5) satisfy

Pe ≤ e
−n
(

E(ρ,R,C)− ρT

1+ρ

)

(19)

Pue ≤ e
−n
(

E(ρ,R,C)+ T

1+ρ

)

(20)

where0 ≤ ρ ≤ 1 is an arbitrary real-valued parameter,R ,
(

k
n

)

· ln 2 is the code rate (in nats per channel use),

E (ρ,R, C) , E0(ρ) − ρ

(

R+
ln(α(C))

n

)

(21)

E0 (ρ) , − ln

(

∑

y

(

1

2
p(y|0)

1

1+ρ +
1

2
p(y|1)

1

1+ρ

)1+ρ
)

(22)

α(C) , max
1≤i≤n

|Ci|
2−(n−k)

(n
i

) (23)

and |Ci| denotes the number of codewords whose Hamming weight isi.

Proof: Settings = ρ
1+ρ , and

g(y) =

(

1

2
p(y|0)

1

1+ρ +
1

2
p(y|1)

1

1+ρ

)ρ

p(y|0)−
ρ

1+ρ (24)

in the bounds of Proposition 6, the proof follows in the same way as in [24, Ch. 4.4.1].

Remark 10. In the case where the performance of an ensemble of linear block codes is of interest, repeating the
derivation of Corollary 2 leads to the same upper bounds as in(19) and (20), where the cardinality|Ci| in (23)
is replaced with its statistical expectation over the considered ensemble, and the codebooks of this ensemble are
chosen uniformly at random.

Example 3 (Error exponents of fully random binary linear block codes). Consider the transmission of fully
random binary linear(n, k) block codes over a memoryless symmetric channel. For this particular case, the term
α(C) in (23) equals 1. As a result, it follows from Corollary 2 thatthe exponent of the block error probability
(including erasures and undetected errors), denoted byEe, satisfies

Ee ≥ max
0≤ρ≤1

(

E0(ρ) − ρR− ρT

1 + ρ

)

(25)

whereE0(ρ) is defined in (22),R is the code rate (in nats per channel use), andT is the parameter of the generalized
decoding rule in Definition 2. SettingT = 0 in (25) reproduces the (non-expurgated) random coding error exponent
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of Gallager [15]. This observation was first made by Forney for the ensemble of fully random block codes [13].
The undetected error exponent, denoted byEue, satisfies

Eue ≥ T + max
0≤ρ≤1

(

E0(ρ) − ρR− ρT

1 + ρ

)

.

The lower bounds on the two error exponents are shown in Figs.1 and 2 for the case of transmission over a
BSC with a crossover probability ofp = 0.11, and for a binary-input AWGN channel withEs/N0 = −2.8 dB,
respectively (both values refer to the capacity limit for a rate of one-half bits per channel use). The bounds are
sketched as a function of the code rate (in nats per channel use). The lower bounds on the error exponents for the
case of decoding with erasures (T ≥ 0) are provided in Figs. 1(a) and 2(a) forT = 0, 0.025, 0.05, 0.1 and 0.15.
For the case of decoding with a variable list-size (T < 0), the lower bounds on the error exponents are provided
in Fig. 1(b) and 2(b) forT = 0,−0.05, and−0.1. In addition, lower bounds on the exponentEN , −(lnN)/n,
whereN is the number of incorrect codewords in the decoded list, arealso provided for this case. Note that the
exponentEN is negative above some rate. The figures show the region for which the exponentEN is non-negative;
the negative part ofEN , for which an upper bound on the size of the decoded list growsexponentially with the
block length, is removed from these figures.

Definition 5 (Composition of a vector).Let c be a vector whose components are symbols in an alphabetX of size
q. Let us assume without loss of generality thatX = {0, . . . , q − 1}. The composition ofc, denoted byt = t(c),
is a vectort = (t0, t1, . . . , tq−1) wheretx (for x ∈ X ) denotes the number of symbols inc that are equal tox.

Definition 6 (Complete composition spectrum).Let C be a linear block code of lengthn over an alphabetX . The
complete composition spectrum is the sequence{|Ct|} where|Ct| is the number of codewords whose composition
is t, andt ranges over the setH of all possible compositions overX n.

Corollary 3. Consider an ensembleE of (n, k) linear block codes having the property that the average composition
spectrum over all the codesC which are uniformly selected at random from this ensemble satisfies

E

[

|Ct|
]

= P (n− t0)

(

n

t

)

(26)

whereP (l) denotes the probability that a vector whose Hamming weight is l, forms a codeword in a randomly
selected codebookC. Assuming that the transmission takes place over a memoryless symmetric channel, then under
the notation in Proposition 6, the block error probabilityPe and the undetected error probabilityPue, satisfy

Pe ≤ e
nρT

1+ρ ·Ds(ρ, C) (27)

Pue ≤ e−
nT

1+ρ ·Ds(ρ, C) (28)

where0 ≤ ρ ≤ 1, and

Ds(ρ, C) , A(ρ)n(1−ρ)





∑

1≤l≤n

P (l)

(

n

l

)

B(ρ)n−lC(ρ)l





ρ

(29)

A(ρ) ,
∑

y∈Y

(

1

q

∑

x∈X

p(y|x)
1

1+ρ

)1+ρ

(30)

B(ρ) ,
∑

y∈Y

(

1

q

∑

x∈X

p(y|x)
1

1+ρ

)ρ−1(

1

q

∑

x∈X

p(y|x)
2

1+ρ

)

(31)

C(ρ) , qA(ρ) −B(ρ). (32)

Proof: Settings = ρ
1+ρ and choosing the tilting measureg in (24), the proof follows from Proposition 6 in

the same way as in [18, Theorem 3].
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Fig. 1: Lower bounds on the error exponents and list-size exponentsfor the ensemble of fully-random binary linear block codes whose
transmission takes place over a BSC with a crossover probability of p = 0.11. The lower bounds in Corollary 2 are sketched in plots (a)
and (b), for the generalized decoding rule in (5) with erasures (i.e.,T ≥ 0) and with a variable list-size (i.e.,T < 0), respectively.

Remark 11. For an ensemble ofbinary linear block codes, the condition in (26) is not mandatory. Repeating the
derivation results in the same bounds as in Corollary 3 wherethe termP (l)

(n
l

)

in (29) is replaced with the expected
complete composition spectrum of the ensemble.

Remark 12. The bounds in Corollary 3 are tighter than those in Corollary2. Hence, for a finite block length, the
bounds in Corollary 3 are more attractive even though they lack the appealing exponential structure of the bounds
in Corollary 2.

Remark 13. As a particular case of Remark 7, settingT = 0 in (27) reproduces the upper bound on the decoding
error probability of non-binary linear block codes under MLdecoding in [18, Theorem 3].

The following comments concerns the numerical results shown in the examples throughout paper:
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(b) Generalized decoding with a variable-size list

Fig. 2: Lower bounds on the error exponents and list-size exponentsfor the ensemble of fully-random binary linear block codes whose
transmission takes place over a binary-input AWGN channel with Es/N0 = −2.8 dB. The lower bounds in Corollary 2 are sketched in
plots (a) and (b), for the generalized decoding rule in (5) with erasures (i.e.,T ≥ 0) and with a variable list-size (i.e.,T < 0), respectively.

1) Expurgation of codebooks: The examples presented in this paper consider the performance of some expurgated
ensembles of regular LDPC codes under generalized decodingrules. Specifically, an expurgation of the
codebooks whose minimum Hamming distance is not larger thana specific valueDn is assumed. As a result,
the expected complete composition spectrumE [|Ct| |dmin > Dn] of a codebook which is chosen uniformly
at random from the expurgated ensemble, satisfies the following upper bound:

E
[

|Ct| |dmin > Dn

]

≤ E
[

|Ct|
]

1 − εn
(33)

whereE
[

|Ct|
]

is the expected composition spectrum of the original (non-expurgated) ensemble, and
∑

t: n−t0≤Dn

E
[

|Ct|
]

≤ εn. (34)
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The fraction of the removed codebooks is upper bounded byεn. In the following examples, the value of
εn is negligible. For the (6,12) regular binary ensemble with block lengths ofn = 504 and 2004 bits,
εn = 3.6002 · 10−5, and5.5058 · 10−8, for Dn = 40 and 160 bits, respectively. For the (8,16) regular octal
alphabet ensemble with a block length ofn = 1008 symbols andDn = 80 symbols,εn is around10−14.

2) Performance over the AWGN channel: For the AWGN channel, the results in this paper are providedas
function of the signal-to-noise ratioEs

N0
whereEs is the energy per transmitted coded symbols, andN0

2 is
the two-sided power spectral density of the additive white noise. This comment concerns both binary and
non-binary codes.

Example 4 (Error performance of binary regular LDPC code ensembles under generalized decoding with
erasures). Consider an expurgation of the binary and regular (6,12) LDPC code ensemble of Gallager [14] with
a block length ofn = 2004 bits. In this expurgated ensemble, all the codebooks whose minimum distance is
not larger thanDn = 160 are removed. Upper bounds on the block error probability andthe undetected error
probability, under Forney’s generalized decoding with erasures, are studied based on Corollary 3. The composition
spectrum is upper bounded via (33) and (34), where the composition spectrum of the original (non-expurgated)
regular LDPC code ensemble is evaluated using the method provided in [5], [30]). The bounds are provided for
several non-negative values ofT in Figs. 3(a) and 3(b), assuming that the transmission takesplace over a BSC and
a binary-input AWGN channel, respectively. Note that ifT = 0, the resulting bounds on the block error probability
and the undetected error probability coincide, and they also provide an upper bound on the ML decoding error
probability. The results indicate that by allowing an errorprobability that may be slightly higher than the upper
bound on the error probability under ML decoding, significant improvement is guaranteed for the undetected error
probability. Consider for example the error performance where the transmission takes place over a BSC with a
crossover probability of 0.088. The upper bound on the errorprobability under ML decoding is around7.5 · 10−3

(see Figs. 3(a)). By allowing the total error probability tobe less than2 ·10−2, the undetected errors are guaranteed
to be less than2 · 10−4 and5 · 10−6 for T = 0.002 and 0.004, respectively.

Example 5 (Error performance of binary regular LDPC code ensembles under generalized decoding with
a variable-size list). The performance of the same expurgated ensemble as in Example 4 is studied here under
Forney’s generalized decoding with a variable list-size. Upper bounds on the block error probability and the expected
number of incorrect codewords in the list, are evaluated based on the bounds in Corollary 3 for several non-positive
values ofT . These bounds are provided in Figs. 4(a), and 4(b), assuminga transmission over a BSC or a binary-input
AWGN channels, respectively. It is evident that only a slight improvement in the error performance is possible
by using the generalized decoding rule. Take for example thecase of transmission over a BSC: for crossover
probabilities where the block error probability under ML decoding is below 0.09, the expected number of incorrect
codewords is low. In fact, the upper bound on the expected number of incorrect codewords for such crossover
probabilities, is less than one which implies that the list is likely to include only the correct codeword. However,
for crossover probabilities for which the probability of the list error event is larger, the upper bound on the size of
the decoded list grows considerably above 1 (see Fig. 4(a)).

Example 6 (Generalized decoding of non-binary regular LDPC code ensembles). Consider an expurgation of
Gallager’s ensemble of (8,16) regular LDPC codes [14] with an octal alphabet, and a block length of 1008 symbols.
Consider the case where the expurgated ensemble excludes all the codebooks whose minimum distance is not larger
thanDn = 80. The upper bounds on the error probabilities, under the generalized decoding rule in (5), are studied
based on the upper bounds provided in Corollary 3. The (average) composition spectrum is upper bounded via (33)
and (34), and the composition spectrum of the original ensemble is evaluated using the method provided in [18].
For the case of decoding with erasures, upper bounds on the block error and undetected error probabilities are
provided, whereas for decoding with a variable list size, anupper bound on the expected number of incorrect
codewords in the list and an upper bound on the block error probability are provided. These bounds are shown
in Fig. 5(a) and 5(b), assuming that the transmission takes place over an 8-ary discrete memoryless symmetric
channel, and an AWGN channel with 8-PSK modulation, respectively. It is evident that the upper bound on the
block error probability for the case of decoding with erasures, referring toT = 0.01 in Fig. 5(a) and 5(b), slightly
deteriorates as compared to the block error probability under ML decoding (where the bound presented forT = 0
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Fig. 3: Upper bounds on the block error and undetected block error probabilities under the generalized decoding rule in (5) witherasures
(T ≥ 0). An expurgation of the binary and regular (6,12) LDPC code ensemble of Gallager is considered, where the block length is2004
bits, and the parameterDn which refers to the expurgation is set to 160 (see Example 4).The transmission in plots (a) and (b) is assumed
to take place over a BSC, and a binary-input AWGN channels, respectively.

coincides with the bound under ML decoding). However, a remarkable improvement is shown in these figures with
resect to the undetected error probability (referring toPue for T = 0.01 in both figures). For the variable-size list
decoding which refers toT = 0.01 in (5), only a slight improvement is provided in the probability of error.
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Fig. 4: Upper bounds on the block error probability and expected size of incorrect codewords in the decoded list, under the generalized
decoding rule in (5) with variable-size list (T ≤ 0). An expurgation of the binary and regular (6,12) LDPC code ensemble of Gallager is
considered, where the block length is 2004 bits, and the parameterDn which refers to the expurgation is set to 160 (see Example 4).The
transmission in plots (a) and (b) is assumed to take place over a BSC, and a binary-input AWGN channels, respectively.

IV. A PPLICATIONS TO PERFORMANCE ANALYSIS OF HYBRID-ARQ SYSTEMS

A. Preliminaries

Coded communication systems with one-bit noiseless feedback are considered where a generalized decoding rule
with erasures is applied at the receiver. Each decoding erasure is communicated via the feedback to the transmitter,
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(b) Transmission over an AWGN with 8-PSK modulation

Fig. 5: Upper bounds on the decoding error probabilities and numberof incorrect codewords in the decoded list for an expurgatedensemble
of LDPC codes. The considered ensemble refers to the octal-alphabet regular (8,16) LDPC code ensemble of Gallager with ablock length of
1008 symbols, and where the parameterDn which refers to the expurgation is set to 80 (see Example 6). The upper bounds in Corollary 3
are provided in plots (a) and (b), assuming that the transmission takes place over an 8-ary discrete memoryless symmetric channel, and an
AWGN channel with 8-ary PSK modulation, respectively.

which then retransmits its message. It is first assumed that each transmitted block is decoded separately. Such a
hybrid-ARQ system is described and studied in [13], where the error exponents for random coding are provided. For
the case where deadlines are assumed, the error exponents for random coding are provided in [16]. The following
discussion is provided in [13] and [16], and it is surveyed here for the sake of completeness.

Since Forney’s generalized decoding rule (5) with a positive value ofT is used in the context of erasures, the
resulting decision regions at the receiver are disjoint, and the erasure probabilityPx for a single block transmission
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is given by
Px = Pe − Pue

wherePe andPue are, respectively, the (total) block error probability andundetected error probability for a single
block transmission. The erasure probability is studied viaan upper bound on the error probabilityPe. Assuming
a noiseless and immediate feedback, for the case where no deadlines are considered, the expected rate of the
considered system equals

(1 − Px)R (35)

whereR is the rate of the codebook used (in units of bits per channel use) for a single block transmission. The
error probability of this scheme is given by

Pue

1 − Px
. (36)

Note that the replacement ofPx in (35) and (36) with an upper bound onPe, provides a lower bound on the
expected rate and an upper bound on the error probability.

For the case where deadlines are considered, letQ (Q ≥ 1) be the maximal number of block retransmissions
(including the first transmitted block). Each transmitted block is decoded separately using Forney’s generalized
decoding rule with erasures. Such a scheme is termed memoryless in [16] (note that the ARQ scheme without
deadlines, studied in [13], is also memoryless in this sense). In cases whereQ consequent block transmissions
occur, then the generalized decoding rule is replaced for the last (Q-th) retransmitted block with an ML decoder.
As a result, the expected rate and error probability, denoted by R(Q) andPe(Q), respectively, satisfy

R(Q) =
R

∑Q−1
k=0 (Px)

k

=
R (1 − Px)

1 − (Px)
Q

(37)

and

Pe(Q) =

Q−1
∑

k=1

(Px)
k−1 Pue + (Px)

Q−1 PML
e

=

(

1 − (Px)
Q−1

)

Pue

1 − Px
+ (Px)

Q−1 PML
e (38)

wherePML
e is the block error probability under ML decoding for the considered code (while referring to the

decoding of the last retransmitted block separately). Notethat in the limit whereQ→ ∞ (no deadlines), then (37)
and (38) tend asymptotically to (35) and (36), respectively. ReplacingPx in (37) and (38) with an upper bound
on the (total) error probabilityPe, results in a lower bound on the expected rate, and an upper bound on the error
probability, respectively.

In hybrid incremental-redundancy ARQ schemes, a repeat request triggers the transmission of a new block of
n coded symbols which is not necessarily equal to the former block (even though the transmission of the same
message is concerned). The decoder, instead of processing only the last block, decodes the message by observing
the entire blocks received so far for the concerned message.For such cases, the expected rate, denoted byRIR(Q),
satisfies the following lower bound [16, Eq. (24)]:

RIR(Q) ≥ R

1 + (Q− 1)Px
. (39)

This bound coincides with (37) ifQ = 2. However, forQ > 2, the bound in (39) is loosened because of the
specific derivation used in [16]. Assuming that an ML decoderis used after the last retransmitted block, the error
probability for the IR-ARQ scheme, denoted byP IR

e (Q), is upper bounded by [16, Eq. (25)]:

P IR
e (Q) ≤

Q−1
∑

k=1

Pue(k) + PML
e (Q) (40)
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wherePue(k) denotes the undetected error probability of the generalized decoding rule, which operates on the
received observations ofk consequent transmitted blocks (1 ≤ k ≤ Q − 1), and PML

e (Q) denotes the error
probability under ML decoding, based on the entire transmission ofQ blocks (the ML decoder is used only ifQ
blocks are needed to be transmitted for the same message). Note that the dominant summand in (40) isPue(1), i.e.,
the undetected error probability of the first transmitted block.

B. Examples

In the following examples, upper bounds on the error performance and lower bounds on the expected rates of
some hybrid-ARQ systems are studied. These bounds are basedon the bounds in Corollary 3 and the results in
Section IV-A. As mentioned, each block of coded symbols in the IR-ARQ scheme may include new coded symbols.
Nevertheless, for all examples in this section where IR-ARQschemes are considered, a retransmission of equal
coded blocks is assumed.

Example 7 (Hybrid-ARQ schemes over BSC).Consider the expurgated ensemble of binary regular LDPC codes
in Example 4, whose transmission takes place over a BSC. Lower bounds on the expected rates are presented for
several values of the decoding parameterT in Fig. 6(a). For memoryless systems without deadlines, theprovided
lower bound on the expected rate in (35) drops to zero as the crossover probability of the BSC approaches the
capacity limit (which is 0.11 for a design rate ofR = 1

2 bits per channel use). For schemes with deadlines of
Q = 2 and 4 transmissions, the lower bounds on the expected rate in(37) drop to R

Q = 1
4 and 1

8 , respectively, as
the crossover probability of the BSC approaches the capacity limit (which is the limit of (37) when we letPx tend
to 1). Schemes with incremental redundancy are also considered. Note that the lower bound on the expected rates
for memoryless schemes with deadline ofQ = 2, also applies to schemes with incremental redundancy, the lower
bound in (39) coincides with the equality in (37) forQ = 2. For the case ofQ = 4, the loosened lower bound on
the expected rate for incremental redundancy schemes in (39) is also provided. Upper bounds on the decoding error
probabilities for the considered schemes are provided in Fig. 6(b). The upper bound for a block error probability
with T = 0 and where no feedback is available (a single transmission,Q = 1) is also provided. Note that this
bound is valid for the block error probability under ML decoding. Comparing this upper bound (forT = 0 and
Q = 1), with the upper bounds forT = 0.002 and 0.004, shows that the introduction of one-bit immediateand
noiseless feedback allows for a considerable improvementsin the error performance. This improvement is achieved
while maintaining reasonable rate drops (at least for crossover probabilities below the threshold for which the rate
starts dropping considerably). Moreover, the improvementis of interest even for the simplified memoryless-ARQ
schemes with moderate deadlines (ofQ = 2 and 4 block transmissions).

Example 8 (Hybrid-ARQ schemes over binary-input AWGN channels). Consider the expurgated, binary, and
regular LDPC code ensemble in Example 4, and the hybrid-ARQ scheme used in Example 7. Lower bounds on the
expected rates, and upper bounds on the error probabilitiesfor such schemes are provided in Figs. 7(a), and 7(b),
respectively, assuming that transmission takes place overa binary-input AWGN channel. The results show that if the
SNR is above a threshold for which the expected rate does not deteriorate considerably, a substantial improvement
in the decoding error probability is possible. This improvement is achieved while maintaining a negligible rate
loss, even for the simplified memoryless schemes with moderate deadlines (e.g.,Q = 2 and 4). Take for example
the case whereEs/N0 = −2.1 dB. For this setting, the upper bound on the error probability under ML decoding
without retransmissions (T = 0, Q = 1) is slightly above10−2. By introducing a one bit noiseless feedback, the
upper bounds on the error probability for all considered schemes withT = 0.004 are in the range of10−4−−10−5

while maintaining a small rate loss (the rate loss for the memoryless scheme with deadlines ofQ = 2 transmissions
is below 3.2%).

Example 9 (Hybrid-ARQ schemes over AWGN channels with non-binary LDPCcodes).Hybrid ARQ schemes
over the AWGN channel with 8-PSK modulation is considered where the expurgated and octal-alphabet LDPC
code ensemble in Example 6 is used. Lower bounds on the expected rate and upper bounds on the decoding error
probability are shown in Figs. 8(a) and 8(b), respectively.Schemes with and without deadlines are considered.
The results show that the lower bounds on the expected rates drop considerably, belowEs/N0 = 3.6 dB. However,
above this SNR, the introduction of a single-bit, noiselessand immediate feedback allows to achieve remarkable
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Fig. 6: Performance bounds of hybrid-ARQ schemes for the expurgated, binary and regular (6,12) LDPC code ensemble of Gallager with a
block length ofn = 2004 bits (see Example 4). The transmissions are assumed to take place over the BSC. In plot (a), lower bounds on the
expected rates for memoryless hybrid-ARQ schemes with and without deadlines (see (37), and (35), respectively) are shown for T = 0.002
and 0.004 (and deadlines ofQ = 2 and 4 transmissions). In plot (b), upper bounds on the error probability are provided for the considered
schemes. For the case ofQ = 2, lower bounds on the expected rate and upper bounds on the decoding error probability are also provided
in plots (a) and (b), respectively, assuming incremental-redundancy ARQ at the decoder (see (39)).

improvements in the error performance. Take for example thecase whereEs/N0 = 3.62 dB where the upper bound
on the error probability under ML decoding without feedback(see the curve forT = 0 andQ = 1) is around
10−2. For the same channel, if no deadlines are assumed, the upperbounds on the error probability are around
2 · 10−6. When deadlines ofQ = 2 and 4 total retransmissions (including the first transmission) are assumed, the
upper bounds on the error probability for the same channel are 6 ·10−4 and3 ·10−6, respectively. For all considered
schemes, the expected rate deteriorates at this point by no more than 4%.

Immediate and noiseless one-bit feedback is assumed in Examples 7-9. The restriction to immediate feedback is
loosened in most network applications where some sort of a multiple-access protocol is introduced. As a result of
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Fig. 7: Performance bounds of hybrid-ARQ schemes for the expurgated, binary and regular (6,12) LDPC code ensemble of Gallager with a
block length ofn = 2004 bits (see Example 4). The transmissions are assumed to take place over binary-input AWGN channels. In plot (a),
lower bounds on the expected rates for memoryless hybrid-ARQ schemes with and without deadlines (see (37), and (35), respectively) are
shown for T = 0.002 and 0.004 (and deadlines ofQ = 2 and 4 transmissions). In plot (b), upper bounds on the error probability are
provided for the considered schemes. For the case ofQ = 2, the lower bounds on the expected rate and upper bounds on thedecoding error
probability are also provided in plots (a) and (b), respectively, assuming incremental-redundancy ARQ at the decoder (see (39)).

the applied protocol, the transmitter is informed regarding the one-bit feedback with some delay that is guaranteed
(by the protocol) to be before the next time slot of the retransmission. As for the condition of noiseless feedback,
loosening this condition results in an inevitable synchronization errors (see, e.g., a similar observation in [9]). Since
the hybrid-ARQ schemes presented in this section require only one-bit feedback, even if these synchronization errors
should be kept low in comparison with the block error performance, they are typically achievable with relatively
low resources.

All feedback schemes in this section assumed a one-bit (ACK/NACK) feedback. It is interesting to compare these
results to the potential gain achieved for systems where theavailable feedback supports more than binary signaling.
The following example compares the performance of Forney’sscheme (without deadlines) over the binary-input
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(b) Upper bounds on the error probability

Fig. 8: Performance bounds of hybrid-ARQ schemes based on an expurgated, octal-alphabet and regular (8,16) LDPC code ensemblewith
a block length ofn = 1008 symbols (see Example 6). The transmission is assumed to takeplace over an AWGN channel with 8-PSK
modulation. In plot (a), lower bounds on the expected rates for memoryless hybrid-ARQ schemes with and without deadlines (see (37),
and (35), respectively) are shown forT = 0.01 (and possible deadlines ofQ = 2 and 4 transmissions). In plot (b) upper bounds on the
error probability are provided for the considered schemes.

AWGN channel in Example 8 to the performance of a scheme due toYamamoto and Itoh [35]:

Example 10 (A comparison to the Yamamoto-Itoh scheme).Consider the expurgated binary and regular LDPC
code ensembles of Gallager, and the memoryless hybrid-ARQ scheme without feedback in Example 8. The lower
bounds on the expected rates and upper bounds on the error probabilities of memoryless ARQ schemes without
deadlines (Forney’s scheme) are compared in Figs. 9(a) and.9(b), respectively, to those of a Yamamoto-Itoh scheme
[35] (based on the same code ensemble). The Yamamoto-Itoh scheme is based on the existence of an immediate
and noiseless feedback that allows the receiver to send backto the transmitter its decoded message (we assume that
ML decoding is performed at the receiver). Each cycle of transmission is divided into two stages: in the first (the
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message mode), the transmitter sends the coded informationto the receiver. Then, based on the feedback, that is
the decoded message, the transmitter sends a control signalinforming the receiver if the decoding is correct or not
(the control mode). In the latter case, if the decoding was unsuccessful, a retransmission of the message is applied
in the next cycle. In this example, we denote byλ the fraction of the cycle that is provided for the message mode
(i.e., a fraction1 − λ is provided for the control mode). For example, ifλ = 0.96 and the ensemble block length
is n = 504 bits, than additional

(

1−λ
λ

)

n = 21 control mode bits are appended to the coded information in each
cycle of transmission. We assume a BPSK signaling in the control mode. We adapt our notation to the setting of
the Yamamoto-Itoh scheme, and get that the probability for an erroneous decoding in the control mode(Pe,cm) is
given by

Pe,cm = Q





√

2(1 − λ)nEs

λN0





where

Q(x) ,
1√
2π

∫ ∞

x
e−

t2

2 dt

denotes the complementary Gaussian cumulative distribution function. LetPML
e denote the decoding error probability

of a single block under ML decoding (referring to the messagemode). The probability of undetected decoding
results in where there is an error in the ML decoding of the message, and the the decoding in the control mode
has failed, so

Pue = PML
e · Pe,cm.

A retransmission of a message occurs when either the ML decoding of the message is correct but the decoding in the
control mode is wrong or vice versa. Since these two parts aredecoded separately and the channel is memoryless,
than the probability of retransmission is given by

Px =
(

1 − PML
e

)

Pe,cm + PML
e

(

1 − Pe,cm
)

≤ PML
e + Pe,cm.

ReplacingPx with its above upper bound gives a lower bound on the expectedrate in (35), and an upper bound
on the decoding error probability in (36). We rely on these bounds for studying performance bounds related to the
Yamamoto-Itoh scheme, and these bounds are shown in Fig. 9 when this scheme is incorporated with an expurgated
ensemble of binary and regular LDPC codes. The results show,as expected, that the additional feedback resources
allows for a considerable improvement in error performance.

V. UPPERBOUNDS UNDER SUBOPTIMAL DECODING WITH ERASURES

In this section, upper bounds on decoding error probabilities are derived for the suboptimal decoding rule in (7).

Proposition 7. Consider the transmission of a block codeC of block lengthn andM codewords, and letp(y|x)
designate the transition probability of the channel wherex ∈ C is the transmitted codeword andy ∈ Yn is the
received vector. Then, the conditional block error probability Pe|m, and the conditional undetected error probability
Pue|m, under the suboptimal decoding rule in (7) satisfy

Pe|m ≤ ensTDB(m,Gm
n , s, ρ), 0 ≤ s ≤ ρ ≤ 1 (41)

Pue|m ≤ e−nsTDB(m,Gm
n , s, ρ), 0 ≤ s ≤ ρ ≤ 1 (42)

whereDB(m,Gm
n , s, ρ) is defined in (11), andGm

n is an arbitrary non-negative function overYn which possibly
depends on the codewordxm, 1 ≤ m ≤M .

Proof: See Appendix G.

Remark 14. The upper bound on the block error probability in (41) coincides with the upper bound on the total
error probability provided in (9) under the optimal generalized decoding rule. On the other hand, the upper bounds
on the undetected error probabilities under the optimal andsuboptimal decoding rules in (10) and (42), respectively,
are different.
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(b) Upper bounds on the error probability

Fig. 9: Lower bounds on the expected rate, and upper bounds on the decoding error probability, of some Yamamoto-Itoh schemes. The
schemes make use of the expurgated, binary and regular (6,12) LDPC code ensemble of Gallager in Example 4, and the transmission is
assumed to take place over a binary-input AWGN channel with BPSK signaling. The bounds of Forney’s memoryless schemes inExample 8
are also provided for comparison.

The following corollary is a particularization of Proposition 7 for the ensemble of fully random block codes of
lengthn and rateR whose transmission takes place over memoryless channels:

Corollary 4. Consider the transmission of block codes over a memoryless communication channel. Then, there
exists a block code satisfying

Pe ≤ e−nE1(R,T )

Pue ≤ e−nE∗

2 (R,T )
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whereR , ln M
n is the code rate (in nats per channel use),E1(R,T ) is defined in (14),

E∗
2(R,T ) , max

0≤s≤ρ≤1, qX

(

E0(s, ρ, qX) − ρR+ sT
)

E0 is as defined in (15), andqX is an arbitrary probability distribution overX .

Proof: The proof follows the same arguments as the proof of Corollary 1.

The following bound is provided for the case of binary linearblock codes whose transmission takes place over
an MBIOS channel (the generalization of the bound to non-binary linear block codes, as provided in [18], is direct):

Corollary 5. Consider an(n, k) binary linear block codeC whose transmission takes place over an MBIOS channel
with a transition probability lawp. Then the block error probabilityPe, and the undetected error probabilityPue,
under the generalized decoding rule in (7) satisfy

Pe ≤ e
−n
(

E(ρ,R,C)− ρT

1+ρ

)

, 0 ≤ ρ ≤ 1 (43)

Pue ≤ e
−n
(

E(ρ,R,C)+ ρT

1+ρ

)

, 0 ≤ ρ ≤ 1 (44)

whereR is the code rate (in nats per channel use), andE (ρ,R, C) is defined in (21).

Proof: The proof follows from Proposition 7, and its derivation is similar to the way where Corollary 2 is
derived from Proposition 6.

Remark 15. As in Corollary 2, the bounds of Corollary 5 resemble to the SFB, and they may therefore be considered
as a generalization of the SFB for the case at hand.

Remark 16. For all rates below some (finite) rate thresholds, the boundsin Corollary 5 on the decoding error for
linear block codes under the suboptimal LR rule in Definition3, coincide with those under the optimal decoding
rule in Definition 2. To see this, observe first that the upper bounds in (19) and (43) are identical. It is left to
consider the upper bounds in (20) and (44) on the undetected error probability. Note first thatE0(ρ) − ρR (E0 is
defined in (22)) is a concave function of0 ≤ ρ ≤ 1, and it is optimized for rates belowE′

0(1) at ρ = 1 (see, e.g.,
[32, p. 135]). Moreover, ρ

1+ρ is a monotonic increasing function of0 ≤ ρ ≤ 1. This implies that if T
4 < E′

0(1),

then at all rates belowE′
0(1) −

ln(α(C))
n − T

4 , the error exponents of the upper bounds in (20) and (44) are both
maximized atρ = 1, and they therefore coincide. A similar observation is provided in [17, p. 82] for the ensemble
of fully random block codes. Specifically, it is observed in [17] that up to some rate threshold, the upper bounds
under the suboptimal LR decoding rule for the ensemble of fully-random block codes coincide exponentially with
those provided by Forney in [13].

Example 11 (Error exponents of fully random binary linear block codes). Fully random binary and linear
(n, k) block codes are considered where, as mentioned in Example 3,α(C) = 1 (see (23)). For the particular case
of transmission over a BSC, the error exponents for the considered ensemble are studied in [2] and [3]. The lower
bounds on the block error exponents and the undetected errorexponents from [2] and [3] are compared in Fig. 10(a),
and 10(b), respectively, to the bounds provided in Corollary 5. The bounds are derived for a BSC with a crossover
probability ofp = 0.07 and a decoding parameterτ = 0.03 (see (8) where these are the same parameters studied in
[2, Fig. 1]). The error exponent provided by Gallager for thecase of ML decoding is also provided for comparison,
in addition to the undetected error exponent under the optimal generalized decoding rule. Apart from low rates,
where the bounds in [2] and [3] outperform those provided in Corollary 5, the latter bounds on the error exponents
lie in between the two previously reported bounds from [2] and [3] (see Fig. 10). Moreover, in the rate region
beyond the critical rate, where the bound in [2] outperform the bound in [3], the derived bounds perform in close
proximity to the tightest known bound. The superiority of the undetected error exponent under the optimal decoding
rule is clearly pronounced. This comparison is further studied in Fig. 11 where the lower bounds on the undetected
error exponents under the optimal and suboptimal generalized-decoding rules are provided for the same parameters
as in Example 3 (T = 0, 0.025, 0.05, 0.1 and 0.15), assuming that transmission takes place over a BSC with a
crossover probability ofp = 0.11, and over binary-input AWGN channel withEs/N0 = −2.8 dB. For the case
whereT = 0, both considered exponents, for optimal and suboptimal generalized-decoding rules, coincide with each
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other and with the (non-expurgated) random coding error exponent of Gallager [15]. As observed in Remark 16,
it is evident that for low to moderate code rates, the bounds under optimal and suboptimal generalized decoding
rules coincide. However, as the coding rates approach the channel capacity, the lower bounds on the undetected
block error exponents under the suboptimal generalized-decoding, are considerably loosened in comparison to the
lower bound under the optimal generalized decoding.
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Fig. 10:Lower bounds on the block error exponents of fully-random binary linear block codes whose transmission takes place overa BSC
with a crossover probability ofp = 0.07, under the suboptimal decoding rule in (8) withτ = 0.03. The lower bounds on the undetected
block error exponents in [2, Theorem 2], [3] (see also [2, Theorem 1]), and Corollary 5 (see (44)) are provided in plot (a),together with
Gallager’s random-coding error exponent under ML decoding[15], and the lower bound on the undetected error exponent inCorollary 2
(see (20)) under the optimal generalized decoding rule. Thelower bounds on the error exponents in [2, Theorem 2], [3], and Corollary 5
(see (43)) are provided in plot (b) (the lower bound of Gallager for the random-coding error exponent under ML decoding isalso provided
for comparison).

Corollary 6. Under the assumptions and notation in Corollary 3, the blockerror probabilityPe and the undetected
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Fig. 11: Lower bounds on the undetected error exponents of fully-random binary linear block codes under the suboptimal generalized
decoding rule in (7). The bounds based on Corollary 5, are provided in plots (a) and (b), assuming that the transmission takes place over a
BSC with a crossover probability ofp = 0.11, and a binary-input AWGN channel withEs/N0 = −2.8 dB, respectively. The lower bounds
on the error exponents under the optimum generalized decoding rule in (5), studied in Example 3, are also provided for comparison.

error probabilityPue under the suboptimal decoding rule in (7), satisfy

Pe ≤ e
nρT

1+ρ ·Ds(ρ, C), 0 ≤ ρ ≤ 1 (45)

Pue ≤ e−
nρT

1+ρ ·Ds(ρ, C), 0 ≤ ρ ≤ 1 (46)

whereDs(ρ, C) is defined in (29).

Proof: Setting s = ρ
1+ρ , Gm

n (y) =
∏n

i=1 g(yi) where g is as defined in (24), the proof follows from
Proposition 7 in the same way as the proof in [18, Theorem 3].

Consider the particular case of binary linear block codes whose transmission takes place over the binary-input
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AWGN channel with BPSK modulation. The bound of Divsalar (see [8] and [24, Sec. 3.2.4]) provides a closed-
form expression for an upper bound on the block error probability under ML decoding. The following proposition
provides a similar bound under the LR decoding rule in Definition 3:

Proposition 8. Consider the transmission of a binary linear block code overthe AWGN channel with BPSK
modulation, then the error and undetected error probabilities under the LR decoding in (7) satisfy

Pe ≤
n
∑

d=dmin

min







exp

(

−nEe

(

d

n
,
Es

N0

))

, |Cd|Q





√

2Esd

N0
− nT

2
√

2dEs
N0











(47)

Pue ≤
n
∑

d=dmin

min







exp

(

−nEue

(

d

n
,
Es

N0

))

, |Cd|Q





√

2Esd

N0
+

nT

2
√

2dEs
N0











(48)

wheredmin is the minimum Hamming distance of the code,n is the block length of the code,|Ci| is the number of
codewords whose Hamming weight equalsi, T is the decoding parameter in (7),Es is the energy per transmitted
(coded) symbol,N0

2 is the two-sided power spectral density of the white Gaussian noise, and

Ee

(

δ,
Es

N0

)

, ED

(

δ,
Es

N0

)

− Tξ

2
,

Eue

(

δ,
Es

N0

)

, ED

(

δ,
Es

N0

)

+
Tξ

2

ED

(

δ,
Es

N0

)

, −rn(δ) +
1

2
ln
(

β + (1 − β)e2rn(δ)
)

+
βδ

1 − (1 − β)δ

Es

N0

β ,

√

√

√

√

Es

N0

2(1 − δ)

δ(1 − e−2rn(δ))
+

(

1 − δ

δ

)2
(

(

1 +
Es

N0

)2

− 1

)

− 1 − δ

δ

(

1 +
Es

N0

)

rn(δ) ,
ln |Cd|
n

, δ ,
d

n

ξ ,
β

β + (1 − β)(1 − δ)
.

Proof: See Appendix H.

Example 12(Error performance of expurgated binary and regular LDPC code ensembles under suboptimal
generalized decoding with erasures).Consider an expurgation of the binary and regular LDPC code ensembles in
Example 4 (with block lengths of 504 and 2004 bits). The upperbound in (46), on the undetected error probability
under the generalized decoding rule with erasures in (7), isprovided in Figs. 12(a) and 12(b), assuming that the
transmission takes place over a BSC and a binary-input AWGN channel, respectively. The upper bounds under the
optimal generalized decoding rule are also provided for a comparison, in addition to the upper bound under the
generalized decoding rule withT = 0 (which coincides with the upper bound on the error probability under ML
decoding). It is evident that the resulting bounds under thesuboptimal generalized decoding rule are loosened in
comparison to the bounds under the optimal generalized decoding rule. This result is expected from the previous
example where the undetected error exponents are studied for fully-random linear block codes. In Fig 13, the upper
bounds on the undetected error probability in Corollary 6 are compared with those provided in Proposition 8. The
provided bounds are for the binary regular and expurgated LDPC code ensembles in Example 4 (with block lengths
of 504 and 2004 bits), and for a similar ensemble with a block length of 10008 bits andDn = 800. The parameter
T in (7) is chosen, for this comparison, to be 0.0198, 0.0050, and 9.992 · 10−4, respective to the considered block
lengths. It is evident that the simple bound in (48) is loosened in comparison to the bound in (46), but only by a
relatively small difference.
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(b) Transmission over a binary-input AWGN channel

Fig. 12: Upper bounds on the undetected error probabilities of some expurgated ensembles of binary and regular (6,12) LDPC codes
under the optimal and sub-optimal generalized decoding rules in (5) and (7), respectively. The upper bound in Corollary6 is shown in
plots (a) and (b), assuming that the transmission takes place over a BSC and a binary-input AWGN channel, respectively. The upper bounds
in Corollary 3, studied in Examples 4 and 5, are also providedfor comparison.

VI. U PPER BOUNDS UNDER FIXED-SIZE LIST DECODING

In this section, upper bounds on the block error probabilityare derived for the fixed-size list decoding (see
Definition 4). As mentioned in Section II, the block error event in this case corresponds to the possibility that the
decoded list does not include the transmitted codeword.

Proposition 9. Consider the transmission of a block codeC with M codewords of lengthn, and letp(y|x) designate
the transition probability of the channel wherex ∈ C is the transmitted codeword andy ∈ Yn is the received vector.
Consider the case where a fixed-size list decoder is used where the size of the list is denoted byL. Then, the
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Fig. 13: A comparison between the upper bounds in (46) and (48), on theundetected error probability under the LR generalized decoding
rule in (7). The comparison is provided for binary expurgated and regular (6,12) LDPC code ensembles of Gallager with block lengths of
504, 2004 and 10008 bits whose transmissions take place overbinary-input AWGN channels with BPSK modulation.

conditional block error probabilityPe|m, given that them-th message is transmitted satisfies

Pe|m ≤
(

∑

y

Gm
n (y)p(y|xm)

)1−ρ





1

L

∑

m′ 6=m

∑

y

p(y|xm)Gm
N (y)1−

1

ρ

(

p(y|xm′)

p(y|xm)

)
s

ρ





ρ

. (49)

where0 ≤ s ≤ ρ ≤ 1 are real-valued parameters, andGm
n is an arbitrary non-negative function overYn which

possibly depends on the codewordxm, for 1 ≤ m ≤M .

Proof: See Appendix I.

The following corollary is a particularization of Proposition 9 for the ensemble of fully-random block codes,
with fixed block length and rate, whose transmission takes place over a memoryless channel:

Corollary 7. Consider the transmission of a block codeC over a memoryless communication channel. Then, under
the notation in Proposition 9, there exists a block code whose block error probabilityPe under fixed-size list
decoding satisfies

Pe ≤ e−nEr(R− 1

n
lnL)

whereR , ln M
n is the code rate (in nats per channel use),

Er(R) , max
0≤ρ≤1, qX

(

E0(ρ, qX) − ρR
)

(50)

E0(ρ, qX) , − ln





∑

y∈Y

(

∑

x∈X

qX(x)p(y|x)
1

1+ρ

)1+ρ




andqX is a probability distribution over the input alphabetX .

Proof: Fix a probability distributionqX overX , and consider the ensemble of random block codes where each
codeword is chosen independently according toqX(x) =

∏n
i=1 qX(xi). First, we apply the bound in (49) for a
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specific realization of a codebook, withs = ρ
1+ρ and

Gm
n (y) ,

(

∑

x

qX(x)

(

p(y|x)

p(y|xm)

)
s

ρ

)ρ

.

The proof follows by a random coding argument, and by choosing the optimal probability distributionqX .

Remark 17. The upper bound in Corollary 7 coincides exponentially withthe sphere-packing lower bound in [26].
Because of its mathematical resemblance, it may be considered as a generalization of the well-known random-coding
error-exponent of Gallager [15], for the case at hand.

The following bound is provided for the case of binary linearblock codes whose transmission takes place over
an MBIOS channel:

Corollary 8. Consider an(n, k) binary linear block codeC whose transmission takes place over an MBIOS channel.
Then, the block error probabilityPe under fixed-size list-decoding, satisfies

Pe ≤ e
−nEr

(

R+ 1

n
ln
(

α(C

L

))

(51)

where
Er(R) , max

0≤ρ≤1

(

E0(ρ) − ρR
)

andR is the code rate (in nats per channel use),L is the list size, andE0(ρ) andα(C) are defined in (22) and (23),
respectively.

Proof: According to Proposition 4, it is necessary to analyze only the conditional error event assuming that
the all-zero codeword is transmitted. SettingG0

n(y) =
∏n

i=1 g(yi) in (49), it follows that

Pe ≤





∑

y∈Y

g(y)p(y|0)





n(1−ρ)





1

L

n
∑

i=1

|Ci|
(

∑

y∈Y

g(y)1−
1

ρ p(y|0)
)n−i(

∑

y∈Y

g(y)1−
1

ρ p(y|1)λp(y|0)1−λ

)i




ρ

(52)

where|Ci| denotes the number of codewords whose Hamming distance isi, 1 ≤ i ≤ n. The proof follows from (52)
by settingλ = 1

1+ρ whereg is as defined in (24) (see similar derivation in [24, Section 4.4.1]).

Remark 18. For the particular case of fully-random linear block codes,the bound in (51) coincides with the bound
in Corollary 7 for fully-random block codes.

Remark 19. The bound in Corollary 8 resembles to the SFB [27], and therefore may be considered as a general-
ization of the SFB for the case at hand.

Remark 20. The bound in (52) ban be generalized to non-binary linear block codes using a similar derivation
as in [18]. Note, however, that in [18], non-binary codes arestudied under ML decoding and not list-decoding.
Nevertheless, the similarity of the bound in (49) to the upper bounds derived in [18] allows to use the same
arguments for the case at hand (see Appendix I).

Corollary 9. Under the assumptions and notation in Corollary 3, the blockerror probability probabilityPe under
fixed-size list-decoding whereL denotes the size of the list, satisfies

Pe ≤ A(ρ)n(1−ρ)





1

L

∑

1≤l≤n

P (l)

(

n

l

)

B(ρ)n−lC(ρ)l





ρ

(53)

whereA(ρ), B(ρ), andC(ρ) are defined in (30)–(32).

Proof: Setting s = ρ
1+ρ and Gm

n (y) =
∏n

i=1 g(yi) where g is defined in (24), the proof follows from
Proposition 9 in the same way as the proof in [18, Theorem 3].
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Remark 21. In the derivation of the bound in (51), a sum is upper bounded by a product of the maximal summand
with the number of summands. This operation is avoided in thederivation of the bound in (53). Hence, the bound
in Corollary 9 is tighter than the one in Corollary 8.

Remark 22. For the particular case of binary linear block codes, the symmetry condition in (26) is not mandatory
and the bound in Corollary 9 follows by replacing the termP (l)

(n
l

)

with the distance spectrum of the considered
code (ensemble).
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(a) Transmission over a BSC
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(b) Transmission over a binary-input AWGN channel

Fig. 14:Upper bounds on the error probability for an expurgation of Gallager’s ensemble of binary and regular (6,12) LDPC codes with a
block length of 2004 bits (see Example 4). A list decoder is assumed where the size of the list is set toL. The upper bound in Corollary 9
is provided for some values ofL. The bounds are shown in plots (a) and (b), respectively, forthe case where the transmission takes place
over a BSC and a binary-input AWGN channel.

Example 13 (Error performance of an expurgated ensemble of binary and regular LDPC codes under
fixed-size list decoding).Consider the expurgation of Gallager’s ensemble of binary and regular (6,12) LDPC
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codes with a block length of 2004 bits (see Example 4). Upper bounds on the block error probability under fixed-
size list-decoding are shown in Figs. 14(a) and 14(b), assuming that the transmission takes place over a BSC and
a binary-input AWGN channel, respectively. The upper boundin Corollary 9 is evaluated for list sizes ofL = 1,
16, and 128 codewords. Note that the upper bound forL = 1 corresponds to ML decoding. The bounds on the
error probability show some marginal improvement by increasing the considered list size fromL = 1 to 128.
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(a) Transmission over an 8-ary discrete memoryless symmetric channel

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/N0 [dB]

er
ro

r
p
ro

b
a
b
il
it
y

 

 

L = 1
L = 16
L = 128

(b) Transmission over an AWGN channel with 8-PSK modulation

Fig. 15:Upper bounds on the error probability for an expurgation of Gallager’s ensemble of regular (8,16) LDPC codes with octal alphabet
and a block length of 1008 symbols (see Example 6). A list decoder is considered where the size of the list is set toL. The upper bound
in Corollary 9 is provided in plots (a) and (b) for several values ofL, assuming that the transmission takes place over an 8-ary discrete
memoryless symmetric channel and an AWGN channel with 8-PSKmodulation, respectively.

Example 14 (Error performance of an expurgated ensemble of non-binary and regular LDPC codes under
fixed-size list decoding).Consider the expurgation of Gallager’s ensemble of regular(8,16) LDPC codes with
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octal alphabet and a block length of 1008 symbols (see Example 6). Upper bounds on the block error probability
under fixed-size list decoding are shown in Figs. 15(a) and 15(b), assuming that the transmission takes place over
an 8-ary discrete memoryless symmetric channel and an AWGN channel with 8-PSK modulation, respectively. The
bound in Corollary 9 is evaluated for list sizes ofL = 1, 16, and 128 codewords. similarly to the case of binary
code ensembles, only marginal improvement in the error performance is observed by increasing the value ofL
from 1 to 128.

VII. SUMMARY AND CONCLUSIONS

This paper considers the performance of several generalized decoding rules over memoryless symmetric channels.
Three types of generalized decoding rules are considered:

1) The optimal generalized decoding rule in [13] with erasures and variable list sizes.
2) The suboptimal likelihood-ratio (LR) decoding rule witherasures (see [2] and [13]).
3) A fixed-size list decoding rule (see [12] and [34]) where the decoder outputs a list with includes theL most

probable codewords (where the value ofL is set a-priori).

The independence of the error performance on the transmitted codeword is proved in Propositions 2-4 for the
considered decoding rules. Specifically, it is shown that the undetected error probability, block error probability
(of both undetected errors and erasures), list decoding error probability, and the expected size of the decoded list
are all independent of the transmitted codeword when the transmission takes place over a memoryless symmetric
channel.

Upper bounds on the decoding error probability are provided. Moreover, upper bounds on the expected size of
the decoded list are derived. The derivation of these boundsis based on a generalization of a bounding technique of
Duman and Salehi (see, e.g., [8], [10], [11], [24]). The provided bounds are suitable for the analysis of structured
and random codes (or code ensembles) over memoryless symmetric channels. Both binary and non-binary code
ensembles are studied in this paper under generalized decoding rules. When binary codes are considered, the
bounds are based on the distance spectra of the codes, and when non-binary ensembles are studied, the complete
composition spectra are required under the symmetry assumption in (26). For the case of LR decoding of binary
linear block codes, a derivation of a closed-form expression is provided via a similar derivation to [8] which applies
to ML decoding.

Several applications and particularizations of the provided bounds are studied. First, the random coding error
exponents in [13] are reproduced, in addition to some error exponents under the suboptimal LR decoding rule
with erasures. These error exponents are derived by applying the new bounds to fully random block codes. Next, a
derivation of the error exponents of fully random linear block codes under optimal and suboptimal (LR) generalized
decoding is provided. The resulting error exponents under the suboptimal LR decoding rule are compared with a
recent improvement in [2], where the ensemble of binary fully random linear block codes over binary symmetric
channels (BSC) is studied. This comparison shows good proximity of the provided error exponents with the results
in [2]. In addition, it is shown that the error exponents for the fully random linear block codes under the suboptimal
LR decoding rule, coincide for low rates with the corresponding error exponents under the optimal decoding rule.
This observation is similar to an observation in [17], wherethe ensemble of fully random block codes is considered.
A Lower bound on the error exponent under fixed-size list-decoding is also derived as an application. The resulting
bound coincides exponentially with the corresponding sphere-packing lower bound in [26].

Applications of the bounds for the performance analysis of structured code ensembles are further exemplified
for some expurgated ensembles of (binary and non-binary) regular low-density parity-check (LDPC) codes. The
error performance under some generalized decoding rules for these LDPC code ensembles is studied assuming that
the transmission takes place over memoryless symmetric channels. Specifically, undetected error, and total block
error (including undetected errors and erasures) probabilities are evaluated under optimal and suboptimal (LR)
generalized decoding rules. In addition, the error performance for list decoding applications is studied for these
ensembles. Both fixed-size and variable-size list decodingare considered, and an upper bound on the expected
list-size is evaluated for the latter case.

An analysis of various hybrid automatic-repeat request (ARQ) schemes is also provided in this work. A noiseless
and immediate one-bit feedback channel is assumed, where erasure-outputs at the decoder triggers, via this feedback
channel, the retransmissions of messages. Hybrid-ARQ schemes with and without deadlines are considered, in
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addition to schemes with incremental redundancy. Upper bounds on the error probability and lower bounds on the
expected overall rate are provided and exemplified in this paper.

APPENDIX A
PROOF OFPROPOSITION2

The following proof holds for memoryless symmetric channels with discrete-output alphabets, and the general-
ization to continuous-output alphabets is direct. We statefirst the following technical lemma:

Lemma 1. let x1, x2, x3 be arbitrary symbols inX , and letp be a transition probability law of a memoryless
symmetric channel. Then,

p
(

T
(

T (y, x1), x2

)

|x3

)

= p
(

T (y, x1 + x2)|x3

)

whereT is a mapping which satisfies the properties in Definition 1.

Proof: the reader is referred to [18, Appendix A].
Assuming that all the codewords are sent with equal probability, the decision regions in (5) satisfy

Λm
(a)
=

{

y :
p(y|xm)

∑

m′ 6=m p(y|xm′)
≥ enT

}

(b)
=

{

y :

∏n
i=1 p(yi|xm,i)

∑

m′ 6=m

∏n
i=1 p(yi|xm′,i)

≥ enT

}

(c)
=

{

y :

∏n
i=1 p(T (yi,−xm,i)|0)

∑

m′ 6=m

∏n
i=1 p(T (yi,−xm′,i)|0)

≥ enT

}

(54)

where (a) follows from (5) and the equal a-priori message probability assumption, (b) holds since the channel is
memoryless, and (c) follows from the symmetry of the channel(see (1)). Letz = (z1, . . . , zn) be defined as

zi , T (yi,−xm,i), 1 ≤ i ≤ n (55)

wherem is the index of the transmitted codeword. From Lemma 1, it follows thaty ∈ Λm if and only if z ∈ Λ̃m

where

Λ̃m ,

{

z ∈ Yn :

∏n
i=1 p(zi|0)

∑

m′ 6=m

∏n
i=1 p(T (zi, xm,i − xm′,i)|0)

≥ enT

}

, 1 ≤ m ≤ qk.

Using the linearity of the code, it follows that

Λ̃m =

{

z ∈ Yn :

∏n
i=1 p(zi|0)

∑

l 6=0

∏n
i=1 p(T (zi, xl,i)|0)

≥ enT

}

.

Since the set̃Λm is independent of the indexm, then

Λ̃m = Λ̃1 for all 1 ≤ m ≤ qk. (56)

As a result, the conditional block error probability of them-th message in (2) satisfies

Pe|m =
∑

z∈Λ̃c
m

p(z|0)

(a)
=
∑

z∈Λ̃c
1

p(z|0)

where (a) follows from (56). This concludes the proof of the message independence property for the block error
event.
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We continue in proving the message independence property for the undetected error event (or the expected
number of incorrect codewords when list decoding is considered). Assuming a memoryless symmetric channel, it
follows from (1) and (4) that

Pue|m =
∑

m′ 6=m

∑

y∈Λm′

p(y|xm)

=
∑

m′ 6=m

∑

y∈Λm′

n
∏

i=1

p
(

T (yi,−xm,i)|0
)

(57)

where from (54)

Λm′ =

{

y :

∏n
i=1 p(T (yi,−xm′,i)|0)

∑

m′′ 6=m′

∏n
i=1 p(T (yi,−xm′′,i)|0)

≥ enT

}

.

Let z be a vector defined as in (55), then from Lemma 1

p
(

T (yi,−xm′,i)|0
)

= p
(

T (zi, xm,i − xm′,i|0
)

, i = 1, . . . , n.

Hence, given thatxm is the transmitted codeword, theny ∈ Λm′ for somem′ 6= m if and only if z ∈ Γm,m′ where

Γm,m′ ,

{

z ∈ Yn :

∏n
i=1 p(T (zi, xm,i − xm′,i)|0)

∑

m′′ 6=m′

∏n
i=1 p(T (zi, xm,i − xm′′,i)|0)

≥ enT

}

. (58)

From (55), the conditional undetected error probability in(57) is rewritten in the form

Pue|m =
∑

m′ 6=m

∑

z∈Γm,m′

p(z|0). (59)

Using the linearity of the code, thenxm,i−xm′′,i =
(

xm,i−xm′,i

)

+
(

xm′,i−xm′′,i

)

= xl1,i +xl2,i for some indices
l1 andl2 which correspond to non-zero codewords. Letx , xl1 and x̃ = xl2 , then the conditional undetected error
probability in (59) is expressed equivalently in the form

Pue|m =
∑

x∈C
x 6=0

∑

z∈Γ(x)

p(z|0)

where, based on (58),

Γ(x) ,







z ∈ Yn :

∏n
i=1 p(T (zi, xi)|0)

∑

x̃∈C
x̃ 6=0

∏n
i=1 p(T (zi, xi + x̃i)|0)

≥ enT







.

This proves the independence property for the undetected error event, and it concludes the proof of Proposition 2.

APPENDIX B
PROOF OFPROPOSITION3

Similarly to Appendix A, also the following proof considersmemoryless symmetric channels with discrete-output
alphabets, where the generalization to continuous output alphabets is direct. Letp be the transition probability
function of the considered channel,C be an(n, k) linear block code over an alphabet whose cardinality isq, andT
be a mapping as specified in Definition 1. It is assumed that allthe codewords ofC are sent with equal probability.
For an arbitrary setΛ ⊆ Yn and a codewordxm ∈ C, let

Zm(Λ) , {z ∈ Yn : T (zi, xm,i) ∈ Λ} . (60)

In addition, we use the notationΛLR(xm) for the decision regionΛLR
m in (7) of the codewordxm. Note that for the

concerned decoding rule withT > 0, the decision regions are disjoint. The following technical lemma is introduced:

Lemma 2. Let Zm be the mapping defined in (60), andΛLR
m be the decision region in (7). Then,

Zm

(

ΛLR
m′

)

= ΛLR(xm′ − xm), ∀ m,m′ ∈ {1, . . . , qk}. (61)
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Proof: Let us choosez ∈ Zm

(

ΛLR
m′

)

, and lety = (y1, . . . , yn) be defined via the equality

yi = T (zi, xm,i), i = 1, . . . , n. (62)

From (7) and (60)
p(y|xm′)

p(y|xm′

2
)
≥ enT

wherexm′ andxm′

2
are the most probable codewords, in a descending order, fory as a received vector. Using the

symmetry of the channel, it follows from (1) that

p(y|xm′) = p(z|xm′ − xm).

As a result,xm′−xm is the most probable codeword ifz is the received vector (otherwise, if there exists a codeword
x 6= xm′ − xm which is more probable, then there exists a more probable codeword fory which is different from
xm′). The same argument shows thatxm′

2
− xm is the second most probable codeword forz, and

p(z|xm′ − xm)

p(z|xm′

2
− xm)

≥ enT .

This verifies thatz ∈ ΛLR(xm′ − xm) which shows thatZm

(

ΛLR
m′

)

⊆ ΛLR(xm′ − xm). To show the opposite
inclusion, which then yields that these two sets are equal, let z ∈ ΛLR(xm′ − xm). This implies that the codeword
xm′ − xm is the most probable codeword ifz is the received vector, and

p(z|xm′ − xm)

p(z|xm′′

2
)

≥ enT

wherexm′′

2
is the second most probable codeword forz. Again, using the symmetry of the channel, for a vector

y as in (62), it follows thatxm′ is the most probable codeword fory, xm′′

2
+ xm is the second most probable

codeword fory, and
p(y|xm′ )

p(y|xm′′

2
+ xm)

≥ enT .

As a result,z ∈ Zm

(

ΛLR
m′

)

, which yields thatΛLR(xm′ − xm) ⊆ Zm

(

ΛLR
m′

)

. This concludes the proof of (61).

From (62), the conditional block error probability satisfies

Pe|m =
∑

y 6∈ΛLR
m

p(y|xm)

(a)
=

∑

z6∈Zm(ΛLR
m )

p(z|0)

(b)
=

∑

z6∈ΛLR(0)

p(z|0)

where (a) follows from (1) and (62), and (b) follows from (61). This proves the message independence property for
the conditional block error probability. Using the same arguments, the message independence property is established
for the conditional undetected error probability:

Pue|m =
∑

m′ 6=m

∑

y∈ΛLR
m′

p(y|xm)

=
∑

m′ 6=m

∑

z∈Zm(ΛLR
m′)

p(z|0)

=
∑

m′ 6=m

∑

z∈ΛLR(xm′−xm)

p(z|0)

=
∑

x ∈ C

x 6= 0

∑

z∈ΛLR(x)

p(z|0)
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where the second equality follows from (62) and since the mapping T is bijective, the third equality follows from
(61), and the last equality follows from the linearity of thecode.

APPENDIX C
PROOF OFPROPOSITION4

Considering ties as error events2, the conditional block error probability for a list of sizeL satisfies

Pe|m =
∑

y∈ΛL
m

p(y|xm) (63)

where

ΛL
m ,

{

y ∈ Yn : ∃{mi}L
i=1 s.t.mi 6= m, p(y|xmi

) ≥ p(y|xm) ∀ 1 ≤ i ≤ L
}

(64)

is the complementary of the decision region ofxm ∈ C under list decoding of fixed-sizeL (here{mi}L
i=1 is a

sequence of distinct integers), i.e., ify ∈ ΛL
m then the codewordxm is not included in the list for a received vector

y. Using the change of variables in (62), it follows from (63) that for linear block codes whose transmission takes
place over memoryless symmetric channels

Pe|m =
∑

z∈Zm(ΛL
m)

p(z|0)

whereZm

(

ΛL
m

)

is as defined in (60). The following lemma concludes the proofof Proposition 4:

Lemma 3. Let Zm be a mapping defined in (60), andΛL
m be the decoding region ofxm ∈ C under list decoding

with a fixed sizeL. Then,

Zm

(

ΛL
m

)

= ΛL
1

for all 1 ≤ m ≤ qk, whereΛL
1 is the complementary of the decision region of the all-zero codewordx1 = 0 under

list decoding of sizeL.

Proof: Let us choosez ∈ Z
(

ΛL
m

)

. From (60), there existsy ∈ ΛL
m where

yi = T (zi, xm,i), i = 1, . . . , n (65)

andT is a specified in Definition 1. From (64), there exists a list ofL distinct codewords,{xmi
}L

i=1, for which

p(y|xmi
) > p(y|xm), i = 1, . . . , L. (66)

Using the symmetry of the channel, it follows that

p(z|xmi
− xm) ≥ p(z|0). (67)

This assures thatz ∈ ΛL
1 , which shows thatZm

(

ΛL
m

)

⊆ ΛL
1 .

Next, in order to show the opposite inclusion, letz ∈ ΛL
1 . Then, there exists a list ofL non-zero codewords

{xmi
}L

i=1, mi 6= 1, satisfying

p(z|xmi
) ≥ p(z|0)

and therefore from the symmetry of the mappingT and the equality in (65), we get

p(y|xmi
+ xm) ≥ p(y|xm)

It assures thatz ∈ Zm

(

ΛL
m

)

which implies thatΛL
1 ⊆ Zm

(

ΛL
m

)

. This two inclusions complete the proof of the
lemma.

2Such a pessimistic assumption is reasonable, see also a similar assumption in [32, p. 59].
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APPENDIX D
PROOF OFPROPOSITION5

Let Λm be the generalized decision region as defined in (5). Fory /∈ Λm, it follows that

1 = enT e−nT ≤ enT





∑

m′ 6=m

p(y|xm′ )

p(y|xm)



 . (68)

Let s andρ satisfy0 ≤ s ≤ ρ ≤ 1, and recall the following inequality (see [32, p.197]):

∑

i

ai ≤
(

∑

i

aλ
i

) 1

λ

(69)

which holds ifai ≥ 0 and0 < λ ≤ 1. Setting

ai =
p(y|xi)

p(y|xm)
, λ =

s

ρ

it follows from (2), (68) and (69) that the conditional errorprobability of them-th message satisfies

Pe|m ≤ enTs
∑

y∈Λc
m

p(y|xm)





∑

m′ 6=m

p(y|xm′)

p(y|xm)





s

(70)

≤ enTs
∑

y∈Λc
m

p(y|xm)





∑

m′ 6=m

(

p(y|xm′)

p(y|xm)

) s

ρ





ρ

.

Let ψm
n (y) designate an arbitrary probability tilting measure (whichmay depend on the transmitted codeword),

then it follows that

Pe|m ≤ enTs
∑

y

ψm
n (y)ψm

n (y)−1p(y|xm)





∑

m′ 6=m

(

p(y|xm′)

p(y|xm)

)
s

ρ





ρ

≤ enTs
∑

y

ψm
n (y)



ψm
n (y)−

1

ρ p(y|xm)
1

ρ

∑

m′ 6=m

(

p(y|xm′ )

p(y|xm)

) s

ρ





ρ

.

Next, invoking Jensen’s inequality gives

Pe|m ≤ enTs





∑

y

ψm
n (y)1−

1

ρ p(y|xm)
1

ρ

∑

m′ 6=m

(

p(y|xm′)

p(y|xm)

)
s

ρ





ρ

.

This concludes the proof of (9) by setting

ψm
n (y) =

Gm
n (y)p(y|xm)

∑

yG
m
n (y)p(y|xm)

whereGm
n (y) is an arbitrary non-negative function.

An undetected error event occurs if the received vector is included in the decision region of a codeword which
differs from the transmitted codeword. Consequently, the average undetected error event satisfies

Pue =
1

M

M
∑

m=1

∑

y∈Λm

∑

m′ 6=m

p(y|xm′ ). (71)
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Note that in the case where list decoding is considered (i.e., the decision regions are not disjoint), the LHS of (71)
is no longer a probability. However, for the latter case thisexpression equals the number of incorrect codewords
in the decoded list. It follows from (71) that for0 ≤ s ≤ 1, the undetected error probability satisfies

Pue =
1

M

M
∑

m=1

∑

y∈Λm

p(y|xm)

(

∑

m′ 6=m p(y|xm′ )

p(y|xm)

)s(∑

m′ 6=m p(y|xm′)

p(y|xm)

)1−s

≤ enT (s−1) 1

M

M
∑

m=1

∑

y

p(y|xm)





∑

m′ 6=m

p(y|xm′)

p(y|xm)





s

(72)

where the last inequality holds since fory ∈ Λm and0 ≤ s ≤ 1
(

p(y|xm)
∑

m′ 6=m p(y|xm′)

)1−s

≥ enT (1−s).

The rest of the proof follows in a similar way to the derivation of (9) when comparing the bound in (70) with (72).

APPENDIX E
PROOF OFCOROLLARY 1

Consider the ensemble of fully random block codes of lengthn symbols where theM = enR codewords of a
codebook are chosen independently at random according to the probability distributionqX on X n.

Let D{xi}M
i=1

(m,Gm
n , s, ρ) denote the functionalDB(m,Gm

n , s, ρ) in (11) where the dependence on a specific
codebook{xi}M

i=1 is expressed explicitly. Given a fixed codewordxm for them-th message, the expectation over
the otherM − 1 codewords on the right-hand side of (9) gives that for0 ≤ s ≤ ρ ≤ 1

∑

{xi}M
i=1\{xm}





∏

i6=m

qX(xi)



D{xi}M
i=1

(m,Gm
n , s, ρ)

(a)

≤
(

∑

y

Gm
n (y)p(y|xm)

)1−ρ





∑

m′ 6=m

∑

xm′

qX(xm′)
∑

y

p(y|xm)Gm
N (y)1−

1

ρ

(

p(y|xm′)

p(y|xm)

) s

ρ





ρ

= (M − 1)ρ

(

∑

y

Gm
n (y)p(y|xm)

)1−ρ

(

∑

x′

qX(x′)
∑

y

p(y|xm)Gm
N (y)1−

1

ρ

(

p(y|x′)

p(y|xm)

) s

ρ

)ρ

(73)

where (a) follows from (11) and by invoking Jensen’s inequality. Next, by substituting the non-negative function

Gm
n (y) ,

(

∑

x

qX(x)

(

p(y|x)

p(y|xm)

)
s

ρ

)ρ

in (73), one obtains that for0 ≤ s ≤ ρ ≤ 1 andm = 1, . . . ,M

∑

{xi}M
i=1\{xm}





∏

i6=m

qX(xi)



D{xi}M
i=1

(m,Gm
n , s, ρ)

≤ (M − 1)ρ
∑

y

p(y|xm)

(

∑

x′

qX(x′)

(

p(y|x′)

p(y|xm)

)
s

ρ

)ρ

.
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By averagingD{xi}M
i=1

(m,Gm
n , s, ρ) over theM codewords, we get that for every indexm (1 ≤ m ≤M )

∑

{xi}M
i=1

(

M
∏

i=1

qX(xi)

)

D{xi}M
i=1

(m,Gm
n , s, ρ)

=
∑

xm

qX(xm)
∑

{xi}M
i=1\{xm}





∏

i6=m

qX(xi)



 D{xi}M
i=1

(m,Gm
n , s, ρ)

≤ (M − 1)ρ
∑

y

∑

xm

qX(xm)p(y|xm)

(

∑

x′

qX(x′)

(

p(y|x′)

p(y|xm)

) s

ρ

)ρ

= (M − 1)ρ
∑

y

{(

∑

x

qX(x) p(y|x)1−s

)(

∑

x′

qX(x′)p(y|x′)
s

ρ

)ρ}

. (74)

Since the right-hand side of (74) does not depend on the indexm, then this bound also applies to the expectation
of the quantity 1

M

∑M
m=1D{xi}M

i=1
(m,Gm

n , s, ρ). Therefore, there exists a block code for which the value of this
quantity is not larger than the average over the considered ensemble, i.e.,

1

M

M
∑

m=1

D{xi}M
i=1

(m,Gm
n , s, ρ)

≤ (M − 1)ρ
∑

y

{(

∑

x

qX(x) p(y|x)1−s

)(

∑

x′

qX(x′)p(y|x′)
s

ρ

)ρ}

. (75)

From (9), (10) and (75), it follows that the above block code satisfies simultaneously

Pe =
1

M

M
∑

m=1

Pe|m

≤ ensT · 1

M

M
∑

m=1

D{xi}M
i=1

(m,Gm
n , s, ρ)

≤ ensT (M − 1)ρ
∑

y

{(

∑

x

qX(x) p(y|x)1−s

)(

∑

x′

qX(x′)p(y|x′)
s

ρ

)ρ}

< en(sT+ρR)
∑

y

{(

∑

x

qX(x) p(y|x)1−s

)(

∑

x′

qX(x′)p(y|x′)
s

ρ

)ρ}

= e−n
(

E0(s,ρ,qX)−ρR−sT
)

and

Pue < en
(

(s−1)T+ρR
)

∑

y

{(

∑

x

qX(x) p(y|x)1−s

)(

∑

x′

qX(x′)p(y|x′)
s

ρ

)ρ}

= e−n
(

E0(s,ρ,qX)−ρR−(s−1)T
)

where the last two equalities follow from (15), and since theinput distribution and the channel are assumed to be
memoryless, i.e.,

p(y|x) =

n
∏

i=1

p(yi|xi), qX(x) =

n
∏

i=1

qX(xi).

The proof of Corollary 1 is completed by optimizing the bounds over the parametersρ ands (where0 ≤ s ≤ ρ ≤ 1)
and the input distributionqX . This gives the exponentsE1 andE2 in (14) for the upper bounds onPe andPue,
respectively.
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APPENDIX F
PROOF OFPROPOSITION6

The bounds in Proposition 6 are derived from Proposition 5 asfollows: setting

p(y|x) =
n
∏

i=1

p(yi|xi)

and

Gm
n (y) =

n
∏

i=1

g(yi)

in (11), and relying on the useful rule for interchanging sumand product signs
∑

y

∏n
i=1 f(yi) =

∏n
i=1

∑

yi
f(yi),

one gets from (9) the RHS of (16) as an upper bound onPe|0. Since the considered block code is linear and the
communication channel is memoryless and symmetric, the bound in (16) follows from the message independence
property in Proposition 2. The derivation of the bound in (17) relies on (10) where it is first proved that for a
linear block code whose transmission takes place over a memoryless symmetric channel, the resulting expression
for DB(m,Gm

n , s, ρ) is independent ofm. To this end, letT be a mapping as defined in Definition 1, then for all
1 ≤ i ≤ n

∑

m′ 6=m

∑

y∈Y

g(y)1−
1

ρ p(y|xm,i)

(

p(y|xm′,i)

p(y|xm,i)

)
s

ρ

=
∑

m′ 6=m

∑

y∈Y

g(y)1−
1

ρ p(T (y,−xm,i)|0)
(

p(T (y,−xm,i)|xm′,i − xm,i)

p(T (y,−xm,i)|0)

)
s

ρ

=
∑

l 6=0

∑

z∈Y

g(y)1−
1

ρ p(z|0)
(

p(z|xl,i)

p(z|0)

) s

ρ

.

As a result, it follows that for a memoryless and symmetric channel

1

M

M
∑

m=1

DB(m,Gm
n , s, ρ) = D(g, s, ρ) (76)

whereD(g, s, ρ) is introduced in (18). The proof of the upper bound onPue as given in (17) is completed by
substituting (76) in (17).

APPENDIX G
PROOF OFPROPOSITION7

Let ΛLR
m designate the decision region in (7), then fory 6∈ ΛLR

m

p(y|xm)

p(y|xm2
)
< enT

wherexm2
is the second most probable codeword. Hence, fors ≥ 0, the conditional block error probability satisfies

Pe|m ≤ ensT
∑

y

p(y|xm)
∑

m′ 6=m

(

p(y|xm′)

p(y|xm)

)s

. (77)

The bound in (41) follows from (77), using the arguments following (70).
For y ∈ ΛLR

m′ wherem′ 6= m, it follows from (7) that

p(y|xm′)

p(y|xm′

2
)
≥ enT

wherexm′

2
is the second most probable codeword given the received vector y at the channel output. As a result,

the conditional undetected block error probability satisfies, for alls ≥ 0, the following upper bound:

Pue|m ≤ e−nsT
∑

y

p(y|xm)
∑

m′ 6=m

(

p(y|xm′)

p(y|xm)

)s

.

The rest of the proof of (42) is, again, similar to the derivation following (70).
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APPENDIX H
PROOF OFPROPOSITION8

The derivation of the bounds in Proposition 8 is primarily identical to the analysis in [8] and [24, Section 3.2.4],
for which the reader is referred for a complete treatment of the analysis under ML decoding. We assume a BPSK
modulation over AWGN channel with energyEs per transmitted coded symbol, and a white Gaussian noise with
two-sided power spectral density ofN0

2 . Hence, the received vectory satisfies

y = γx + n (78)

whereγ ,

√

2Es
N0

, x ∈ C ⊆ {−1,+1}n is the transmitted codeword (with BPSK modulation), andn is a normal
random vector with independent coordinates (all with zero mean and unit variance). Setting

Ee(d) ,

{

y ∈ Yn :
maxx∈Cd\{x0} p(y|x)

p(y|x0)
· enT ≥ 1

}

.

whereCd is the set of all codewords whose Hamming weight isd, andx0 is the all-zero codeword, it follows from
(7) and the union bound that the conditional decoding error probability is upper bounded by

Pe|0 ≤
n
∑

d=dmin

Pr (Ee(d)) (79)

wheredmin denotes the minimal Hamming distance ofC. Consider the following inequality on the probability of
an error event:

Pr(E) ≤ Pr(E,y ∈ R) + Pr(y 6∈ R) (80)

whereE denotes an error event,y ∈ Yn is the received vector, andR ⊆ Yn. From (79) and (80), it follows that

Pe|0 ≤
n
∑

d=dmin

(

Pr
(

Ee(d),y ∈ R
)

+ Pr
(

y 6∈ R
)

)

. (81)

Using the union bound, we have

Pr
(

Ee(d),y ∈ R
)

≤
∑

x∈Cd

Pr

(

p(y|x)

p(y|x0)
enT ≥ 1, y ∈ R

)

(a)
=
∑

x∈Cd

Pr

(

〈y,x〉 ≥ 〈y,x0〉 −
nT

γ
, y ∈ R

)

(82)

where equality (a) follows from (78), and〈x,y〉 ,
∑n

i=1 xiyi denotes the scalar multiplication of the vectorsx

andy. Similarly to the derivation of bound in [8] (under ML decoding), we choose

R ,

{

y : ‖y − ηγx0‖2 ≤ nr2
}

(83)

whereη andr are arbitrary parameters which are subject to optimization. In addition, define

Z , 〈y,x〉 − 〈y,x0〉
W , ‖y − ηγx0‖2 − nr2

then it follows from (82) and (83), using the Chernoff bound that

Pr
(

Ee(d), y ∈ R
)

+ Pr
(

y 6∈ R
)

≤ e
tnT

γ |Cd|E
[

etZ+uW
]

+ E

[

esW
]

(84)

for all t ≥ 0, u ≤ 0, ands ≥ 0. Evaluating the expectations in (84) and settingt = γ
2 (1− 2uη), we have similarly

to [8] and [24, Section 3.2.4]:

Pr
(

Ee(d), y ∈ R
)

+ Pr
(

y 6∈ R
)

≤ e
nT (1−ruη)

2 |Cd| e−nur2

(f1 (γ, u, η))n−d (f2 (γ, u, η))d

+ e−nsr2

(f1 (γ, s, η))n (85)
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where

f1 (γ, α, η) ,
e

(1−η)2γ2α

1−2α

√
1 − 2α

f2 (γ, α, η) ,
e−

γ2(1−2αη2)

2√
1 − 2α

, α <
1

2
.

Optimizing the termenr2

on the right-hand side of (85), gives

Pr
(

Ee(d),y ∈ R
)

+ Pr
(

y 6∈ R
)

≤ 2h2( s

s−u
)A− u

s−uB
s

s−u , 0 < s <
1

2
, u ≤ 0 (86)

where

A , (f1 (γ, s, η))n

B , e
nT (1−ruη)

2 |Cd| (f1 (γ, u, η))n−d (f2 (γ, u, η))d

andh2 designates the binary entropy function on base 2. Using the change of variables

ρ ,
s

s− u

β , ρ(1 − 2u)

ξ , ρ(1 − 2uη)

where0 ≤ ρ ≤ 1, 0 ≤ β ≤ 1, andξ ≥ 0, the bound in (86) transforms to

Pr
(

Ee(d), y ∈ R
)

+ Pr
(

y 6∈ R
)

≤ 2h2(ρ)e−nE(Es/N0,d/n,β,ρ,ξ)+ nTξ

2 (87)

where

E(c, δ, β, ρ, ξ) , −ρrn(δ) − ρ

2
ln

(

ρ

β

)

− 1 − ρ

2
ln

(

1 − ρ

1 − β

)

+ c

(

1 − (1 − δ)
ξ2

β
− (1 − ξ)2

1 − β

)

.

The parametersρ, β andξ are optimized in [8], [24] such that the error exponentE(c, δ, β, ρ, ξ) is maximized3 (note
that the bound forT = 0 coincides with the bound which refers to ML decoding), setting the optimal parameters
yields the first argument in (47). The second term inside the minimization on the right-hand side of (47) follows
from a union bound on the error probability

Pe ≤
n
∑

d=dmin

∑

x∈Cd

Pr

(

p(y|x)

p(y|x0)
enT ≥ 1

)

where for every codewordx ∈ Cd

Pr

(

p(y|x)

p(y|x0)
enT ≥ 1

)

= Q

(

γ
√
d− nT

2γ
√
d

)

.

The derivation of the upper bound on the undetected error probability follows some similar arguments, and is
therefore omitted.

3It is possible to obtain the optimizedρ and ξ when maximizing the entire exponentE(c, δ, β, ρ, ξ) + Tξ

2
. To this end,ξ needs to be

shifted by−T
2

and the optimalρ remains without change. The parameterβ is required to be numerically optimized over0 ≤ β ≤ 1.
Nevertheless, the resulting bound gives only a marginal gain over the bound which maximizesE(c, δ, β, ρ, ξ) without the addition ofTξ

2
.
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APPENDIX I
PROOF OFPROPOSITION9

The main ingredient for proving the DS2 bound on the block error probability under ML decoding (and also the
well known random-coding bound) is that for a received vector y which is not included in the decision regionΛm

as given in (3), the following inequality holds:

1 ≤





∑

m′ 6=m

(

p(y|xm′)

p(y|xm)

)λ




ρ

, λ, ρ ≥ 0. (88)

When an error event under fixed-size (L) list decoding is considered, there existsL distinct codewords, all different
from the transmitted codeword, whose a-posterior probability is larger than the one of the transmitted codeword.
Hence, the sum on the right-hand side of (88) is divided byL. Specifically for a received vectory that results in
an error event, the following inequality is satisfied:

1 ≤





1

L

∑

m′ 6=m

(

p(y|xm′)

p(y|xm)

)λ




ρ

, λ, ρ ≥ 0 (89)

Following the derivation of the DS2 bound in [24, p. 96] wherethe right-hand side of (88) is replaced with (89)
leads to the derivation of the bound in Proposition 9.
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