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Abstract

A message independence property and some new performapeehgunds are derived in this work for erasure,
list and decision-feedback schemes with linear block cadassmitted over memoryless symmetric channels.
Similarly to the classical work of Forney, this work is foedson the derivation of some Gallager-type bounds
on the achievable tradeoffs for these coding schemes, wherenain novelty is the suitability of the bounds for
both random and structured linear block codes (or code dnissin The bounds are applicable to finite-length codes
and to the asymptotic case of infinite block length, and theyagpplied to low-density parity-check (LDPC) code
ensembles.

Index Terms

Automatic repeat request (ARQ), erasures, error exponézgdback, linear codes, list decoding, low-density
parity-check (LDPC) codes.

. INTRODUCTION

Exponential error bounds were derived and studied by Fofb®&ly referring to the following two situations:

1) A decoder is allowed not to make a decision on a receivebi@r rejecting all estimates; this output is
called anerasure. The event where the decoder makes in this case a decisioheomansmitted message,
and it is wrong, is called aondetected error.

2) A decoder is allowed to make more than one estimate of tbeiwved signal. The output of this decoder
forms a list of codewords, and the event where the transinittessage is not on the list is calledist error
event.

Throughout this paper, decoding rules for these two sitnatiare calledyeneralized decoding rules since they
apply to the general setting where the decoder does not serdgsneed to make a single decision about the
codeword which was sent. As explained in [13], erasure astddptions may be useful when the transmitted
data contains some redundancy, when a feedback channedhilabd®, or when several stages of coding (e.g.,
concatenation) are used.

The size of the decoded list in [13] is allowed to vary accogdio the received signal. This decoding rule has
to be distinguished from [12], and [34] where the size of iseis predetermined and fixed.

By allowing a decoder to increase the probability of erasunethe first case, the undetected error probability
can be reduced. In the second case, by allowing the decodmraase the size of the list, the list error probability
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can be reduced. The optimum decoding rules with respectesetiradeoffs were provided in [13] and they were
analyzed via the derivation of exponential bounds for ramadmdes.

This paper is focused on the derivation of some Gallagez-typunds on the achievable tradeoff between these
guantities, where the new bounds are useful for both randahs&uctured linear block codes (or ensembles). These
new bounds are applied to expurgated ensembles of regwadldasity parity-check (LDPC) code ensembles.

Performance analysis of specific codes is often prohiltitieemplex. As a result, various upper and lower
bounds on the decoding error probability are provided inliteeature. A significant part of this analysis is devoted
to the error performance under maximume-likelihood (ML) dding (see, e.g., [24] and references therein). Lower
bounds on the error exponents for fully-random block codedeu generalized decoding rules, are derived in [2],
[13], [21], and [31]. Achievable error exponents are preddn [28] and [29] for random codes with constant
composition under some suboptimal decoding rules (notettigaupper bound in [29] concerns the moments of
the decoded list size). An upper bound on the error exponeaerufixed-size list-decoding is provided in [26]. In
contrast to the vast literature available on the error perémce under ML decoding, few results are available for
error performance of structured codes under generalizeddiieg rules. The error performance under fixed-size
list-decoding is studied for specific codes in [1], [4] an®][2&here the communication is assumed to take place
over an AWGN channel.

The analysis of error probabilities under generalized dewprules with erasures, enables the study of coded
communications with a noiseless decision feedback. Spaltyfiit is assumed that decoding erasures are followed
by a repeat request over a noiseless and immediate feedbankel. Such schemes are often referred to as hybrid
automatic repeat request (ARQ) systems. Unlike channealaiypfor discrete memoryless channels, which is not
affected by feedback (see for example [7, p. 216]), a sigmfiamprovement is demonstrated in [13] for the
achievable error exponents. In this respect, the readdsasraferred to [16] where the error exponents of hybrid
ARQ schemes with limited retransmissions are studied. Tfeeteof feedback was also considered in [6], and it
was shown to significantly reduce the block error probapfiitr discrete memoryless channels.

In this paper, upper bounds on the error probabilities umgereralized decoding rules are provided for linear
block codes over memoryless symmetric channels. Both aptand suboptimal decoding rules are considered.
When variable-size list-decoding is considered, uppentdswon the expected size of the decoded list is provided.
In addition, upper bounds on the list error probability arrdaduced for linear block codes when the size of the
list is fixed. The bounds derived in this work are applicabléhe performance analysis of specific codes, and code
ensembles, via their (average) distance spectra. Morgitnvesse bounds are applicable to finite block lengths and to
the asymptotic case of an infinite block length. The providesililts are exemplified for two coding schemes: Fully-
random linear block codes, and regular, binary and nonFpindDPC code ensembles with finite block lengths.
Applications to coded hybrid-ARQ schemes, are also studied

This paper is structured as follows: The definitions of clErmymmetry, generalized decoding rules, and some
of their basic properties, are provided in Section Il. Newpepbounds under the generalized decoding rules in [13]
are derived in Section lll. Applications of these boundshte performance analysis of coded hybrid-ARQ schemes
are provided in Section IV. Error performance of suboptim@toding and fixed-size list-decoding, are provided
in Sections V and VI, respectively. Some technical detaisralegated to the appendices.

Il. CHANNEL SYMMETRY, GENERALIZED DECODING, AND MESSAGEINDEPENDENCE

In this section we introduce some definitions, examples, stattments related to channel symmetry, Forney’s
generalized decoding rule [13], and sub-optimal versi¢g2k dnd [13]), as well as list decoding rules ([12] and
[34]). A message independence property is stated for thesedihg rules, which is used for the simplification of
the analysis.

Let X = {zo,x1,...,24-1} be a given alphabet with a cardinaligy We assume an addition operation)(over
the alphabett for which {X’, +} forms an Abelian group. Let, = 0 be the additive identity of this group. In
addition, let) be a given discrete (or continuous) alphabet. We assume aomnjlmss channel, and denote the
channel transition probability (or probability densitgspectively) function by(y|z), wherez € X andy € ).

Definition 1 (Channel symmetry). A memoryless channel which is characterized by a transjiibability p, an
input-alphabett’ and a discrete output alphaltis symmetric if there exists a functiory : ) x X — ) which
satisfies the following properties:
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1) For everyz € X, the function7 (-, z) : Y — Y is bijective.
2) For everyz;,xzo € X andy € ), the following equality holds:

p(ylz1) = p(T (y, v2 — x1)|32). 1)

Remark 1. For channels whose output alphabet is continuous, an additrequirement on the mappingis that
its Jacobian is equal to 1In this case, the condition in (1) implies that

/ p(yler) dy = / P(T (g, 3 — 21)|2) dy.

Example 1 (Memoryless binary-input output symmetric channels). Consider a memoryless binary-input output-
symmetric (MBIOS) channel. Setting
T(%x) — { Yy =0

-y z=1

then Definition 1 coincides with the standard definition of @& channels.

LetC = {xm}‘};:l be a linear block code whose generator matrix #san full-rank matrix with entries over
X. The decoding rules studied in this paper are specified ingef decision regiond,,,, 1 < m < ¢*, which are
all subsets ofy™. The conditional error probability of the:-th message is given by

Py = > p(ylxm) )

YEAS,

whereA,,, forms the decision region for the-th codeword, and the superscript ‘c’ stands for the compleary
set. The decision region of the-th codeword under ML decoding gets the form

A, = {y cp(y|xm) > p(ylxm ), Vm' # m} 3)

where ties are resolved randomly with equal probabilitysxeing equal a-priori probabilities for the transmitted
messages, the ML decoding rule minimizes the error proiabiven in (2). A well-known result for binary linear
block codes operating over MBIOS channels is that theirrgorobability under ML decoding is independent of
the transmitted codeword. This enables a great simplifiodti the analysis by assuming that the all-zero codeword
is transmitted. This result is generalized in [18] for nanavy linear block codes whose transmission takes place
over memoryless symmetric channels with discrete inputatpt.

When generalized decoding rules are considered, the deaiegionsA,,, are not necessarily disjoint nor they
include all the possible received vectors. The former caseesponds to decoding rules with a possitdyiable
list-size, and the latter case corresponds to decoding evilsures. A list is produced by the decoder where the
received vector may possibly belong to more than one decigigion. An erasure event is declared by the decoder
when the received vector does not belong to any decisioromedihese concepts were first introduced in [13].
When generalized decoding rules are allowed, the conditibfock error probability?,, in (2) stands for the
probability of either an undetected error or an erasure. Wne decision regions are disjoint, the conditional

undetected error probability is given by
ue|m - Z Z Y‘xm (4)

m'#FmyeN,,

In addition, letP,,, denote the conditional probability of an erasure eventrgivetx,, is transmitted. Then

Px|m :Pe|m_Pue|m'

In the case where list decoding is considered, the deciggioms are not disjoint, anft,q,,, as given in (4) is
no longer a probability. However the RHS of (4) equals theditiomal expectation of the number of incorrect
codewords in the list (the same notatidf,y,,, is used in both cases to simplify the statement of the foligw

It is possible to use a generalized definition for both digcend continuous output alphabets using the notion of ynftanctions, as
done for example in [33, Section IlI-A].
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results). The optimum decoding rule with respect to theeoéfdbetween the error and the undetected error event
is derived in [13].

Definition 2 (Forney’s generalized decoding).Consider a block code over an alphabétand let{x,,} denote
its codebook. The generalized decoding rule is defined byditeving decision regions:

B " Pr(y,xm) T
Am = {y ey zm/7gm Pr(y,xm/) >e } (5)

wherem is the index of the codeword; € R is a parametePr(y, x,,) denotes the joint probability that,, is
the transmitted codeword andis the received vector, and the summation is over all codésvexcept ofk,,,.

Remark 2. The decision region in (5) can be expressed equivalentlpénform

nT
A = {y €Y' Pr(xply) > 1_717} . (6)

Note that forT" = 0, this decision region includes all the vectgrs V" for which Pr(x,,|y) > % The a-posteriori
probability ofx,,, given thaty € A,, is received, is therefore larger than the a-posteriori @bdhy for any other
codeword. Hence, if a codeword is selected according to ¢#tedkr with the decision regions in (6) with= 0,
then the same decision is made by a MAP decoder (as no othewood can get an a-posteriori probability larger
than %). This implies that the undetected error exponent for th@der in (6) with7 = 0 cannot be smaller than
the error exponent of an ML decoder with equally-likely codeds. Interestingly, as will be shown later, we get
the same lower bound on the error exponents for both decoders

Remark 3. The threshold parametér in (5) controls the tradeoff between erasures and undetest®rs (or
average list size and decoding error). Setting- 0 guarantees that the decision regiadngs are disjoint.

Proposition 1 (Forney’s generalized decoding [13]) Assume that the decoding of a block code is carried according
to the generalized decoding rule in Definition 2. Then, thsrao other decoding rule that simultaneously gives

a lower error probability and an undetected error probigbftir an average number of incorrect codewords when
list decoding is considered).

Remark 4 (On optimal generalized decoding of convolutional codgs Optimal generalized decoding of convo-

lutional codes, whose transmission takes place over mdessrychannels, is provided in [19]. This algorithm is
based on the decision regions in (5). Specifically, the &lgoris based on a modification of the standard Viterbi
algorithm, where the denominator in (5) is evaluated raeeks The optimality of the algorithm in [19] is based

on the optimality in Proposition 1.

The following proposition generalizes the message indégece property for the case of generalized decoding:

Proposition 2 (Message independence property for optimal generalized deding). Let C be a linear block
code whose transmission takes place over a memoryless amdedyic channel. Then, the block error probability
and the undetected error probability, under the genediligzoding rule in Definition 2, are independent of the
transmitted codeword.

Proof: See Appendix A. |

Remark 5. In the case where list decoding is considered (i.e., thesitetiegions are not disjoint), then Proposi-
tion 2 holds when we refer to the conditional expectationhef htumber of incorrect messages in the list produced
by the generalized decoding rule, instead of the undetesrt@d probability.

The following suboptimal decoding rule is suggested in [fi8]the case of decoding with erasures:

Definition 3 (Likelihood Ratio (LR) Decoding). Consider a block code over the alphaBgtand let{x,,} denote
its codebook. The LR decoding rule is defined by the followitegision regions:

Al;r? — {y c yn . Pr(Y>Xm) > enT} (7)
Pr(y, Xm, )
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where m is a codeword index]” > 0 is a parameterPr(y, x,,) denotes the joint probability that,, is the
transmitted codeword angl is the received vector, ants = mo(y) denotes the second most probable codeword
for each received vectgy.

Remark 6. It is observed in [13] that the LR decoding rule may be a gogut@amation to the optimal regions in
(5), since the second most likely codeword is usually muchenpoobable than the rest of the codewords (excluding
the most probable codeword). It is also noted in [13] thad tuboptimal decoding rule is of practical utility.

Example 2 (Suboptimal generalized decoding) Consider the transmission of a binary linear block code aver
BSC. Given a received vectgr € {0,1}", the decoded codeword isif and only if

dH(X/7 y) - dH (X7 Y) > 2Tn (8)

for all codewordsx’ # x, wheredy(x,y) denoted the Hamming distance betweenandy, andr > 0 is an
arbitrary parameter. Otherwise, an erasure is declarasl.gasily verified that this rule is a particular case of (7).
The error exponents for this setting are studied in [2].

The following proposition obtains a message independermeepty for the suboptimal decoding rule in Defini-
tion 3:

Proposition 3 (Message independence property for (suboptimal) LR decodg). Let C be a linear block code
whose transmission takes place over a memoryless and syimmigannel. Then, the block error probability and
the undetected error probability, under the suboptimabdieg rule in (7), are independent of the transmitted
codeword.

Proof: See Appendix B. |

The following definition considers list decoding with a fixede. Such a decoding rule is based on a fixed size
of the list (instead of a variable list size which charaatesi the decoding rule in Definition 2 with < 0).

Definition 4 (Fixed-size list-decoding).Consider a block code over an alphak®t and let{x,,} denote its
codebook. Given a fixed list sizk, the list-decoder is a mapping from the set of all possibéeixed vectors)™
to the set of all possible lists af codewords. This mapping produces the list whose likelilsoak the highest
among all other codewords. That is, given a received vegtar codewordk,,, is in the list if p(y|x.,) > p(¥|%Xm)
for all m’ # m except for at mosf — 1 other possible codewords.

Assuming that the codeword,, is transmitted, a block error event is occurred by the fixed-kst-decoding rule
in Definition 4, if the list produced by the decoder does nalude the transmitted codewotd,,. The following
proposition is analogous to the message independencerfyrapd’ropositions 2 and 3:

Proposition 4 (Message independence property for fixed-size list-decodiin Let C be a linear block code whose
transmission takes place over a memoryless and symmetitneh Then, the block error probability, under the
fixed-size list-decoding is independent of the transmittedeword.

Proof: See Appendix C. [ |

[1l. UPPERBOUNDS UNDER OPTIMAL GENERALIZED DECODING
The transmission of block codes (not necessarily lineafiyss considered. In addition, throughout the paper, all
codewords are assumed to have a uniform a-priori probabilit

Proposition 5. Consider the transmission of a codewith a block lengthn and M codewords, and lep(y|x)
designate the transition probability of the channel where C is the transmitted codeword ande )" is the
received vector. Then, the conditional block error proligbi Fy,,,) and the average undetected error probability
(P,e) under the generalized decoding rule in (5) satisfy

Pe\m < eHSTDB(maGZL737p) (9)

M
or 1 m
Pue S en(s I)TM Z DB(mv Gn 73710) (10)
m=1
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where(0 < s < p <1 are real-valued parameters;’ is an arbitrary non-negative function oV which possibly
depends on the codewosd,,, 1 <m < M, and

1—p
Dg(m, G, s, (ZG’” !xm)>
A\ P
(Z S plylxn) G y) 1 (M) . (11)

25 Py [Xm)
Proof: See Appendix D. |

Remark 7. Bounds (9) and (10) in Proposition 5 may be considered as argkzation of the DS2 bound ([8],
[25], [24]). In fact, settingl’ = 0 in (9) reproduces the DS2 bound under ML decoding. Note hew#vat for

T = 0, the decision regions in (5) do not coincide with those undérdecoding (e.g., in the former case there
are erasures).

The following corollary is a particularization of Propasit 5 for fully random block codes whose transmission
takes place over memoryless channels. The corollary repesdthe exponential upper bounds as in [13, Th. 2].

Corollary 1 (Random coding error exponents under optimum generalized deoding). Consider the transmission
of block codes over a memoryless communication channel withansition probability lawp. Then, under the
notation in Proposition 5, there exists a block code whichufianeously satisfies

P, < e "Bi(RT) (12)
Pe< e—nEg(R,T) (13)
where R = In M /n is the code rate (in nats per channel use),
A — oR—
Ei (R, T) = Ogsg/l)%})l(, o (Eo(s,p, qax) — pR ST) (14)

Ey(R,T) 2 E1(R,T)+T

Eo(s,p,qx) £ —In Z{(qu p(ylz)! S) <qu ply|z)> )p} (15)

yey TEX TEX
andqx is a probability distribution ove#t’.

Proof: See Appendix E. [ |

The bounds in Corollary 1 are derived in [13] without relyiag tilting measures. The current derivation relies
on the DS2 bound which makes use of tilting measures and Jenisequality. It is noted in [13] that setting
T = 0 in Corollary 1, provides the random coding error exponenGaflager [15]. Hence, as is mentioned in
[13], the random coding error exponent is attainable noy amder ML decoding, but also under the generalized
decoding rule in (5) witHl" = 0. The following proposition is a particularization of Prcgimon 5 for linear block
codes.

Proposition 6. Consider ar(n, k) linear block code& whose transmission takes place over a memoryless symmetric
channel. Assume that the channel input and output alphabets and), respectively, and let be the transition
probability of the channel. Then, the block error probapil. and the undetected error probabiliBje under the
generalized decoding rule in (5), satisfy

P < e”STD(g, 8, p) (16)
Pue é e_n(l_S)TD(g> S, p) (17)

whereg : Y — R is an arbitrary non-negative real-valued functiorg s < p < 1 are arbitrary parameters, and

A < 1—% p(y‘xm’,i) °
D(g,s,p) = (Zg(y)p(y())) (Z 11> 9w *pylo) <7p(y|0) > ) : (18)

yey m'#£0i=1ycY
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Proof: See Appendix F. |

Remark 8. When the decision regions are not disjoint (i.e., a list decds considered)P,e in (17) does not
denote a probability but the expected number of incorredeemrds in the decoded list. The block error probability
P, in (16) refers, in this case, to the list decoding error pholiig

Remark 9. The parameters andp in Proposition 6 may be chosen separately for the bounds@h gad (17).
However, the optimized choice of the two parameters is idahtn both bounds (since they only differ in the
multiplicative terme—"7).

The mathematical structure of the bound provided in theovatg corollary is similar to the Shulman-Feder
bound (SFB) in [27]. Because of this reason, this bound magdnsidered as a generalization of the SFB for the
generalized decoding rule in (5). To simplify the notatitine corollary is provided for the case of a binary linear
block code whose transmission takes place over an MBIOSnedthe generalization of the bounds to non-binary
linear block codes is performed similarly to the approacthim proof of [18, Theorem 2]).

Corollary 2. Consider arin, k) binary linear block cod€ whose transmission takes place over an MBIOS channel
with a transition probability lawp. Then, the block error probability’. and the undetected error probabilifye
under the generalized decoding rule in (5) satisfy

P, < e " (E0RO-£) (19)
Prc < e—n(E(p,R,CH%J) (20)

where0 < p < 1 is an arbitrary real-valued parameté¥,= (%) -In 2 is the code rate (in nats per channel use),

In(a(C

E(p,R,C) £ Eo(p) —p<R+ %) (21)

1 1 1 1 I+p
Bal) & - (50007 + o™ ) 22
a(C) & max _ Gl (23)

1<i<n 2-(n=k) (%)
and|C;| denotes the number of codewords whose Hamming weight is
Proof: Settings = ﬁ, and

1 a1 2\’ _ e
9(y) = { 5pWI0) ™ +5p(y[L) T | p(y|0) T+ (24)
in the bounds of Proposition 6, the proof follows in the sanayas in [24, Ch. 4.4.1]. |

Remark 10. In the case where the performance of an ensemble of lineak ldlodes is of interest, repeating the
derivation of Corollary 2 leads to the same upper bounds g49) and (20), where the cardinalitg;| in (23)

is replaced with its statistical expectation over the codesgd ensemble, and the codebooks of this ensemble are
chosen uniformly at random.

Example 3 (Error exponents of fully random binary linear block codes). Consider the transmission of fully
random binary lineafn, k) block codes over a memoryless symmetric channel. For thiscpkar case, the term
a(C) in (23) equals 1. As a result, it follows from Corollary 2 ththe exponent of the block error probability
(including erasures and undetected errors), denoteBbpatisfies

ol
> _ _ =
Be> uax (Eo<p> oR 1—|—p> (25)

whereEy(p) is defined in (22)R is the code rate (in nats per channel use), Anslthe parameter of the generalized
decoding rule in Definition 2. Setting = 0 in (25) reproduces the (non-expurgated) random coding exponent
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of Gallager [15]. This observation was first made by Fornaytli@ ensemble of fully random block codes [13].
The undetected error exponent, denotedHyy, satisfies

Ewe>T + 01;13% (Eo(/)) — pR — m) .
The lower bounds on the two error exponents are shown in Higend 2 for the case of transmission over a
BSC with a crossover probability gf = 0.11, and for a binary-input AWGN channel withis/Ny = —2.8 dB,
respectively (both values refer to the capacity limit forader of one-half bits per channel use). The bounds are
sketched as a function of the code rate (in nats per chanegl Tise lower bounds on the error exponents for the
case of decoding with erasureg ¢ 0) are provided in Figs. 1(a) and 2(a) fér = 0,0.025,0.05,0.1 and 0.15.
For the case of decoding with a variable list-siZzé < 0), the lower bounds on the error exponents are provided
in Fig. 1(b) and 2(b) forl’ = 0, —0.05, and —0.1. In addition, lower bounds on the expondnt; = —(In N)/n,
where N is the number of incorrect codewords in the decoded list,aése provided for this case. Note that the
exponentEy is negative above some rate. The figures show the region fahvthe exponenEy is non-negative;
the negative part oF, for which an upper bound on the size of the decoded list grexgwonentially with the
block length, is removed from these figures.

Definition 5 (Composition of a vector). Let ¢ be a vector whose components are symbols in an alphaloétsize
g. Let us assume without loss of generality tiéat= {0,...,q — 1}. The composition ok, denoted byt = t(c),
is a vectort = (to,t1,...,t,—1) Wheret, (for z € X) denotes the number of symbols érthat are equal te:.

Definition 6 (Complete composition spectrum).Let C be a linear block code of lengthover an alphabet’. The
complete composition spectrum is the sequefi€g|} where|C| is the number of codewords whose composition
is t, andt ranges over the sét of all possible compositions over™.

Corollary 3. Consider an ensembéof (n, k) linear block codes having the property that the average ogitipn
spectrum over all the codegswhich are uniformly selected at random from this ensembiisfgzs

E[lcd] = Pln — 1) (f) (26)

where P(I) denotes the probability that a vector whose Hamming weiglit forms a codeword in a randomly
selected codeboak Assuming that the transmission takes place over a menssrggmmetric channel, then under
the notation in Proposition 6, the block error probability and the undetected error probabiliy,, satisfy

P. < e Dy(p,C) (27)
Pie< ¢ % - Dy(p,C) (28)
where0 < p <1, and
P
Do €) 2 Aoy | 3 P(7)Blortet) 29)
1<i<n l
1 ) 1+p
Ap) £ (— Zp(ym)m) (30)
yey q T€EX
1 =t
B(p) £ (— Zp(y\x)m> (— Zp(y\x)m> (31)
yey q TEX q zeEX

C(p) = qA(p) — B(p). (32)

Proof: Settings = ﬁ and choosing the tilting measugein (24), the proof follows from Proposition 6 in
the same way as in [18, Theorem 3]. [ |
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(a) Generalized decoding with erasures
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(b) Generalized decoding with a variable-size list

Fig. 1: Lower bounds on the error exponents and list-size exporfentthe ensemble of fully-random binary linear block codesose
transmission takes place over a BSC with a crossover priitlyati p = 0.11. The lower bounds in Corollary 2 are sketched in plots (a)
and (b), for the generalized decoding rule in (5) with erasui.e., T’ > 0) and with a variable list-size (i.eZ < 0), respectively.

Remark 11. For an ensemble dfinary linear block codes, the condition in (26) is not mandatorgp&ating the
derivation results in the same bounds as in Corollary 3 WtimfeermP(l)(T;) in (29) is replaced with the expected
complete composition spectrum of the ensemble.

Remark 12. The bounds in Corollary 3 are tighter than those in CorolaryHence, for a finite block length, the
bounds in Corollary 3 are more attractive even though thel the appealing exponential structure of the bounds
in Corollary 2.

Remark 13. As a particular case of Remark 7, settiiig= 0 in (27) reproduces the upper bound on the decoding
error probability of non-binary linear block codes under Mécoding in [18, Theorem 3].

The following comments concerns the numerical results shiomthe examples throughout paper:
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(b) Generalized decoding with a variable-size list

Fig. 2: Lower bounds on the error exponents and list-size exporfentthe ensemble of fully-random binary linear block codesose
transmission takes place over a binary-input AWGN chanrigi Wis/No = —2.8 dB. The lower bounds in Corollary 2 are sketched in
plots (a) and (b), for the generalized decoding rule in (Bhwrasures (i.eq” > 0) and with a variable list-size (i.€Z < 0), respectively.

1) Expurgation of codebooks: The examples presented in this paper consider the perfaenaf some expurgated
ensembles of regular LDPC codes under generalized decadleg. Specifically, an expurgation of the
codebooks whose minimum Hamming distance is not larger @ahspecific valueD,, is assumed. As a result,
the expected complete composition spectaffCy| |dmin > D,,] 0of a codebook which is chosen uniformly
at random from the expurgated ensemble, satisfies the follpwpper bound:

E[|Ct| |dmin > Dn] < Ii“_iczu (33)

whereE[|Ct|] is the expected composition spectrum of the original (nqmuegated) ensemble, and

S Efel <en (34)

t: TL—tQSDn
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The fraction of the removed codebooks is upper bounded,byn the following examples, the value of
e, IS negligible. For the (6,12) regular binary ensemble witbck lengths ofn = 504 and 2004 bits,
€n = 3.6002 - 107%, and5.5058 - 10~8, for D,, = 40 and 160 bits, respectively. For the (8,16) regular octal
alphabet ensemble with a block length/ef= 1008 symbols andD,, = 80 symbols,e,, is around10~!4,

2) Performance over the ANGN channel: For the AWGN channel, the results in this paper are providsd
function of the signal-to-noise ratl% where E; is the energy per transmitted coded symbols, %adls
the two-sided power spectral den3|ty of the additive whités@. This comment concerns both binary and
non-binary codes.

Example 4 (Error performance of binary regular LDPC code ensembles uner generalized decoding with
erasures). Consider an expurgation of the binary and regular (6,12) C®de ensemble of Gallager [14] with
a block length ofn = 2004 bits. In this expurgated ensemble, all the codebooks whasémum distance is
not larger thanD,, = 160 are removed. Upper bounds on the block error probability gnedundetected error
probability, under Forney’s generalized decoding withsaras, are studied based on Corollary 3. The composition
spectrum is upper bounded via (33) and (34), where the catipospectrum of the original (non-expurgated)
regular LDPC code ensemble is evaluated using the methaddein [5], [30]). The bounds are provided for
several non-negative values Bfin Figs. 3(a) and 3(b), assuming that the transmission tplkee® over a BSC and

a binary-input AWGN channel, respectively. Note that'it= 0, the resulting bounds on the block error probability
and the undetected error probability coincide, and theg pl®vide an upper bound on the ML decoding error
probability. The results indicate that by allowing an erpsobability that may be slightly higher than the upper
bound on the error probability under ML decoding, significemprovement is guaranteed for the undetected error
probability. Consider for example the error performancessghthe transmission takes place over a BSC with a
crossover probability of 0.088. The upper bound on the gsrobability under ML decoding is arourid5 - 103
(see Figs. 3(a)). By allowing the total error probabilitylte less thar2 - 102, the undetected errors are guaranteed
to be less thar - 10~* and5 - 1076 for 7= 0.002 and 0.004, respectively.

Example 5 (Error performance of binary regular LDPC code ensembles uner generalized decoding with

a variable-size list). The performance of the same expurgated ensemble as in Bxainpl studied here under
Forney’s generalized decoding with a variable list-sizepél bounds on the block error probability and the expected
number of incorrect codewords in the list, are evaluate@das the bounds in Corollary 3 for several non-positive
values off". These bounds are provided in Figs. 4(a), and 4(b), assuertiagsmission over a BSC or a binary-input
AWGN channels, respectively. It is evident that only a dighprovement in the error performance is possible
by using the generalized decoding rule. Take for examplectme of transmission over a BSC: for crossover
probabilities where the block error probability under MLcdding is below 0.09, the expected number of incorrect
codewords is low. In fact, the upper bound on the expectedbeurof incorrect codewords for such crossover
probabilities, is less than one which implies that the kstikely to include only the correct codeword. However,
for crossover probabilities for which the probability oktlist error event is larger, the upper bound on the size of
the decoded list grows considerably above 1 (see Fig. 4(a)).

Example 6 (Generalized decoding of non-binary regular LDPC code ensehies). Consider an expurgation of
Gallager's ensemble of (8,16) regular LDPC codes [14] wittpetal alphabet, and a block length of 1008 symbols.
Consider the case where the expurgated ensemble excludes ebdebooks whose minimum distance is not larger
than D,, = 80. The upper bounds on the error probabilities, under the rgémed decoding rule in (5), are studied
based on the upper bounds provided in Corollary 3. The (ge@reomposition spectrum is upper bounded via (33)
and (34), and the composition spectrum of the original elens evaluated using the method provided in [18].
For the case of decoding with erasures, upper bounds on tok kror and undetected error probabilities are
provided, whereas for decoding with a variable list size,upper bound on the expected number of incorrect
codewords in the list and an upper bound on the block errobghitity are provided. These bounds are shown
in Fig. 5(a) and 5(b), assuming that the transmission takesepover an 8-ary discrete memoryless symmetric
channel, and an AWGN channel with 8-PSK modulation, re$gelgt It is evident that the upper bound on the
block error probability for the case of decoding with erasyreferring tal’ = 0.01 in Fig. 5(a) and 5(b), slightly
deteriorates as compared to the block error probabilityeudL decoding (where the bound presented Tos 0



12 SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY, MY 2009.

10
107
2
= -4
= 10
<
e}
o
—
[o
s 10° 1o
g T=0
—o— Pe T =0.002
& P T=0.004
1078 e i
—o— Pue T =0.002
—ms—P T=0.004
ue
lo_lo I I I I
0.075 0.08 0.085 0.09 0.095 0.1
crossover probability
(a) Transmission over a BSC
10°
107
>
=
= 107
Q
o
~
a
~
° —4—T=0 3
€ 10% | o P, T=0.002
—a—P_ T=0.004
—e— Pue T =0.002
10_8 L — Pue T =0.004

-2.6 -2.4 -2.2 -2 -1.8 -1.6
ES/NO [dB]

(b) Transmission over a binary-input AWGN channel

Fig. 3: Upper bounds on the block error and undetected block eratgtilities under the generalized decoding rule in (5) withsures
(T > 0). An expurgation of the binary and regular (6,12) LDPC codseeble of Gallager is considered, where the block leng20¢}
bits, and the parametdp,, which refers to the expurgation is set to 160 (see Exampl@Hg.transmission in plots (a) and (b) is assumed
to take place over a BSC, and a binary-input AWGN channetpestively.

coincides with the bound under ML decoding). However, a maiale improvement is shown in these figures with
resect to the undetected error probability (referringP for 7' = 0.01 in both figures). For the variable-size list
decoding which refers t@ = 0.01 in (5), only a slight improvement is provided in the probapibf error.
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Fig. 4: Upper bounds on the block error probability and expected sizincorrect codewords in the decoded list, under the géimed

decoding rule in (5) with variable-size lisf'(< 0). An expurgation of the binary and regular (6,12) LDPC codsesnble of Gallager is
considered, where the block length is 2004 bits, and thenpatex D,, which refers to the expurgation is set to 160 (see Exampld .

transmission in plots (a) and (b) is assumed to take place@®&SC, and a binary-input AWGN channels, respectively.

IV. APPLICATIONS TO PERFORMANCE ANALYSIS OF HYBRIPARQ SYSTEMS

A. Preliminaries

Coded communication systems with one-bit noiseless feddis@ considered where a generalized decoding rule
with erasures is applied at the receiver. Each decodingieras communicated via the feedback to the transmitter,
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(b) Transmission over an AWGN with 8-PSK modulation

Fig. 5: Upper bounds on the decoding error probabilities and numbigrcorrect codewords in the decoded list for an expurgatesemble
of LDPC codes. The considered ensemble refers to the dptadiaet regular (8,16) LDPC code ensemble of Gallager whiloek length of
1008 symbols, and where the paramefgr which refers to the expurgation is set to 80 (see Example 8. dpper bounds in Corollary 3
are provided in plots (a) and (b), assuming that the trarsaristakes place over an 8-ary discrete memoryless synmara@tannel, and an
AWGN channel with 8-ary PSK modulation, respectively.

which then retransmits its message. It is first assumed thett dansmitted block is decoded separately. Such a
hybrid-ARQ system is described and studied in [13], wheeeditor exponents for random coding are provided. For
the case where deadlines are assumed, the error exponenasidom coding are provided in [16]. The following
discussion is provided in [13] and [16], and it is surveyedehfer the sake of completeness.

Since Forney’s generalized decoding rule (5) with a pasitiglue ofT" is used in the context of erasures, the
resulting decision regions at the receiver are disjoind, tne erasure probability?; for a single block transmission
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is given by
Py = Pe— Pue

where P, and P, are, respectively, the (total) block error probability amttietected error probability for a single
block transmission. The erasure probability is studiedanaupper bound on the error probabili. Assuming
a noiseless and immediate feedback, for the case where rlir=aare considered, the expected rate of the
considered system equals

(1 - B)R (35)

where R is the rate of the codebook used (in units of bits per chanse) tor a single block transmission. The

error probability of this scheme is given by
Pue

1-P
Note that the replacement d¥ in (35) and (36) with an upper bound ar, provides a lower bound on the
expected rate and an upper bound on the error probability.

For the case where deadlines are consideredp!€é€) > 1) be the maximal number of block retransmissions
(including the first transmitted block). Each transmittddch is decoded separately using Forney’s generalized
decoding rule with erasures. Such a scheme is termed messerin [16] (note that the ARQ scheme without
deadlines, studied in [13], is also memoryless in this serigecases wher&) consequent block transmissions
occur, then the generalized decoding rule is replaced ®iakt (0-th) retransmitted block with an ML decoder.
As a result, the expected rate and error probability, dehbjeR(Q) and Pe(Q), respectively, satisfy

(36)

R
RQ)= =7 —
2o (R
1 - (B)“
and
Q-1
= (B) " Ret (B)T P
k=1
1-— - P
M E" (P)°~" P (38)

]._Px

where PM- is the block error probability under ML decoding for the ciolesed code (while referring to the
decoding of the last retransmitted block separately). Nlaat in the limit wherel) — oo (no deadlines), then (37)
and (38) tend asymptotically to (35) and (36), respectivBigplacingP in (37) and (38) with an upper bound
on the (total) error probability?, results in a lower bound on the expected rate, and an upperdbon the error
probability, respectively.

In hybrid incremental-redundancy ARQ schemes, a repeatestdriggers the transmission of a new block of
n coded symbols which is not necessarily equal to the formeckb(even though the transmission of the same
message is concerned). The decoder, instead of procesdinghe last block, decodes the message by observing
the entire blocks received so far for the concerned mes&agesuch cases, the expected rate, denoteR'Bg,Q),
satisfies the following lower bound [16, Eq. (24)]:

R
S

This bound coincides with (37) i) = 2. However, for@Q > 2, the bound in (39) is loosened because of the
specific derivation used in [16]. Assuming that an ML decadeansed after the last retransmitted block, the error
probability for the IR-ARQ scheme, denoted m{ﬁ ), is upper bounded by [16, Eq. (25)]:

(39)

PR Z Puelk) + PP (Q) (40)
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where P,(k) denotes the undetected error probability of the genexhldecoding rule, which operates on the
received observations of consequent transmitted blocks € k& < @Q — 1), and PM-(Q) denotes the error
probability under ML decoding, based on the entire transiois of ) blocks (the ML decoder is used only @
blocks are needed to be transmitted for the same messagde)tid the dominant summand in (40)Rs(1), i.e.,
the undetected error probability of the first transmittedckl

B. Examples

In the following examples, upper bounds on the error perforoe and lower bounds on the expected rates of
some hybrid-ARQ systems are studied. These bounds are bast#e bounds in Corollary 3 and the results in
Section IV-A. As mentioned, each block of coded symbols &lR-ARQ scheme may include new coded symbols.
Nevertheless, for all examples in this section where IR-A8Qemes are considered, a retransmission of equal
coded blocks is assumed.

Example 7 (Hybrid-ARQ schemes over BSC).Consider the expurgated ensemble of binary regular LDP@<od
in Example 4, whose transmission takes place over a BSC. Lbaends on the expected rates are presented for
several values of the decoding paraméfein Fig. 6(a). For memoryless systems without deadlines ptiogided
lower bound on the expected rate in (35) drops to zero as the&saver probability of the BSC approaches the
capacity limit (which is 0.11 for a design rate &f = % bits per channel use). For schemes with deadlines of
Q = 2 and 4 transmissions, the lower bounds on the expected rd&7)ndrop to£ = % and % respectively, as
the crossover probability of the BSC approaches the cgphlwiit (which is the limit of (37) when we le tend

to 1). Schemes with incremental redundancy are also camesidBlote that the lower bound on the expected rates
for memoryless schemes with deadline(@t 2, also applies to schemes with incremental redundancyotler|
bound in (39) coincides with the equality in (37) f@= 2. For the case of) = 4, the loosened lower bound on
the expected rate for incremental redundancy schemes jrig3®0 provided. Upper bounds on the decoding error
probabilities for the considered schemes are provided gn &ib). The upper bound for a block error probability
with 7" = 0 and where no feedback is available (a single transmisgps; 1) is also provided. Note that this
bound is valid for the block error probability under ML deaagl Comparing this upper bound (faf = 0 and

Q@ = 1), with the upper bounds fof" = 0.002 and 0.004, shows that the introduction of one-bit immedaatd
noiseless feedback allows for a considerable improvenierite error performance. This improvement is achieved
while maintaining reasonable rate drops (at least for engesprobabilities below the threshold for which the rate
starts dropping considerably). Moreover, the improvenigemf interest even for the simplified memoryless-ARQ
schemes with moderate deadlines (@f= 2 and 4 block transmissions).

Example 8 (Hybrid-ARQ schemes over binary-input AWGN channels). Consider the expurgated, binary, and
regular LDPC code ensemble in Example 4, and the hybrid-A&@me used in Example 7. Lower bounds on the
expected rates, and upper bounds on the error probabfiitiesuch schemes are provided in Figs. 7(a), and 7(b),
respectively, assuming that transmission takes placeak@rary-input AWGN channel. The results show that if the
SNR is above a threshold for which the expected rate doesetetidrate considerably, a substantial improvement
in the decoding error probability is possible. This impnmant is achieved while maintaining a negligible rate
loss, even for the simplified memoryless schemes with meelel@adlines (e.g) = 2 and 4). Take for example
the case wheré’s/Ny = —2.1 dB. For this setting, the upper bound on the error probaghilitder ML decoding
without retransmissionsI{= 0, Q = 1) is slightly abovel0~2. By introducing a one bit noiseless feedback, the
upper bounds on the error probability for all considerecesuss withT = 0.004 are in the range of0~* — —1075
while maintaining a small rate loss (the rate loss for the wmyhass scheme with deadlines@f= 2 transmissions

is below 3.2%).

Example 9 (Hybrid-ARQ schemes over ANGN channels with non-binary LDPCcodes).Hybrid ARQ schemes
over the AWGN channel with 8-PSK modulation is considerecemghthe expurgated and octal-alphabet LDPC
code ensemble in Example 6 is used. Lower bounds on the edpeste and upper bounds on the decoding error
probability are shown in Figs. 8(a) and 8(b), respectivBighemes with and without deadlines are considered.
The results show that the lower bounds on the expected radpscdnsiderably, belovs/ Ny = 3.6 dB. However,
above this SNR, the introduction of a single-bit, noiselasd immediate feedback allows to achieve remarkable
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Fig. 6: Performance bounds of hybrid-ARQ schemes for the expulghiseary and regular (6,12) LDPC code ensemble of Gallaggr av
block length ofn. = 2004 bits (see Example 4). The transmissions are assumed to k@@ gver the BSC. In plot (a), lower bounds on the
expected rates for memoryless hybrid-ARQ schemes with atitbwt deadlines (see (37), and (35), respectively) arevsHor 7" = 0.002
and 0.004 (and deadlines ¢f = 2 and 4 transmissions). In plot (b), upper bounds on the emalbghility are provided for the considered
schemes. For the case @f = 2, lower bounds on the expected rate and upper bounds on tleelidgcerror probability are also provided
in plots (a) and (b), respectively, assuming incremergdltndancy ARQ at the decoder (see (39)).

improvements in the error performance. Take for example#se wherd’s/ Ny = 3.62 dB where the upper bound
on the error probability under ML decoding without feedbdske the curve fofl’ = 0 and Q@ = 1) is around
10~2. For the same channel, if no deadlines are assumed, the bppads on the error probability are around
2-107%. When deadlines of) = 2 and 4 total retransmissions (including the first transroigsare assumed, the
upper bounds on the error probability for the same chanrg a@l0—* and3-10~9, respectively. For all considered
schemes, the expected rate deteriorates at this point byone than 4%.

Immediate and noiseless one-bit feedback is assumed in [&am-9. The restriction to immediate feedback is
loosened in most network applications where some sort of lipiedaccess protocol is introduced. As a result of



18 SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY, MY 2009.

0.5
o

0.45} Rt R

o /D///ﬂ

@2 041 o= ]

) v

= 0.35F e R

§ ) (5//

G} 0.3F s 8 4

~ /d ’

- R

F 025 — o ]

3 e

) B R -

2 oo o —e—Q - o, T=0.002 |

= /o7 o —=—Q - w, T =0.004

T o015 8- ——Q=2,T=0.002 |

5 g% —-—Q=2,T=0.004

g —e—Q=4,T=0.002

g 01 o R

8 —=s—-Q=4,T=0.004

| ~&-IR,Q=4,T=0002| |
0.05 = IR,Q=4,T=0.004

O > Il Il Il Il Il Il
-2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2

Es/Ny [dB]

(a) Lower bounds on the expected rates

10 T

—+—Q=1,T=0
——Q - o, T=0.002
—#—Q - », T=0.004
——Q=2,T=0.002
—4—Q=2,T=0.004
—6—Q =4,T=0.002
—8—Q=4,T=0.004
-9 -IR,Q=2,T=0.002
-4-1R,Q=2,T=0.004

-1

10

0
N

=
o

w

=
o\

IS

error probability
8\
T
|

=
o
&
T
I

-6|

-2.6 -2.4 -2.2

10 %
-2 -1.8 -1.6

(b) Upper bounds on the error probability

Fig. 7: Performance bounds of hybrid-ARQ schemes for the expulgaisary and regular (6,12) LDPC code ensemble of Gallaggr av
block length ofn = 2004 bits (see Example 4). The transmissions are assumed to lade gver binary-input AWGN channels. In plot (a),
lower bounds on the expected rates for memoryless hybri@ABhemes with and without deadlines (see (37), and (35)ectsely) are
shown forT = 0.002 and 0.004 (and deadlines 6] = 2 and 4 transmissions). In plot (b), upper bounds on the errobgbility are
provided for the considered schemes. For the casg ef 2, the lower bounds on the expected rate and upper bounds atetioeling error
probability are also provided in plots (a) and (b), respetyi assuming incremental-redundancy ARQ at the decasr (39)).

the applied protocol, the transmitter is informed regagdime one-bit feedback with some delay that is guaranteed
(by the protocol) to be before the next time slot of the retraission. As for the condition of noiseless feedback,
loosening this condition results in an inevitable synclwation errors (see, e.g., a similar observation in [9]hcBi
the hybrid-ARQ schemes presented in this section requiseare-bit feedback, even if these synchronization errors
should be kept low in comparison with the block error perfante, they are typically achievable with relatively
low resources.

All feedback schemes in this section assumed a one-bit (NBKK) feedback. It is interesting to compare these
results to the potential gain achieved for systems wheravh#able feedback supports more than binary signaling.
The following example compares the performance of Fornsgteeme (without deadlines) over the binary-input
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Fig. 8: Performance bounds of hybrid-ARQ schemes based on an etpdrgctal-alphabet and regular (8,16) LDPC code ensewittie

a block length ofn = 1008 symbols (see Example 6). The transmission is assumed toplake over an AWGN channel with 8-PSK
modulation. In plot (a), lower bounds on the expected ratesnfemoryless hybrid-ARQ schemes with and without deadlifgee (37),
and (35), respectively) are shown fér = 0.01 (and possible deadlines 6§ = 2 and 4 transmissions). In plot (b) upper bounds on the
error probability are provided for the considered schemes.

AWGN channel in Example 8 to the performance of a scheme dianeamoto and Itoh [35]:

Example 10 (A comparison to the Yamamoto-Itoh scheme)Consider the expurgated binary and regular LDPC
code ensembles of Gallager, and the memoryless hybrid-AdR@nse without feedback in Example 8. The lower
bounds on the expected rates and upper bounds on the ertmabilittes of memoryless ARQ schemes without
deadlines (Forney’s scheme) are compared in Figs. 9(a)%4b)].respectively, to those of a Yamamoto-Itoh scheme
[35] (based on the same code ensemble). The Yamamoto-lt@nmeris based on the existence of an immediate
and noiseless feedback that allows the receiver to sendtbabl transmitter its decoded message (we assume that
ML decoding is performed at the receiver). Each cycle ofdmission is divided into two stages: in the first (the



20 SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY, MY 2009.

message mode), the transmitter sends the coded informiatitre receiver. Then, based on the feedback, that is
the decoded message, the transmitter sends a control gifmahing the receiver if the decoding is correct or not
(the control mode). In the latter case, if the decoding wasiacessful, a retransmission of the message is applied
in the next cycle. In this example, we denote byhe fraction of the cycle that is provided for the messageenod
(i.e., a fractionl — X is provided for the control mode). For example\it= 0.96 and the ensemble block length

is n = 504 bits, than additiona('52) n = 21 control mode bits are appended to the coded information ah ea
cycle of transmission. We assume a BPSK signaling in thergbntode. We adapt our notation to the setting of
the Yamamoto-ltoh scheme, and get that the probability foemoneous decoding in the control mode cm) is
given by

2(1 = MnEs

Pe,cm:Q )\NO

where

s 1 [T 2
Q(m):E/B e zdt

denotes the complementary Gaussian cumulative diswibdinction. LetPM- denote the decoding error probability
of a single block under ML decoding (referring to the messamele). The probability of undetected decoding
results in where there is an error in the ML decoding of thesags, and the the decoding in the control mode
has failed, so

Pue:PeML 'Pe,cm-

A retransmission of a message occurs when either the ML diegodithe message is correct but the decoding in the
control mode is wrong or vice versa. Since these two partsleceded separately and the channel is memoryless,
than the probability of retransmission is given by

P= (1 - PY)Pocm+ P (1 — Pecm)
< PeML + Pe,cm-
ReplacingPx with its above upper bound gives a lower bound on the expeaetiedin (35), and an upper bound
on the decoding error probability in (36). We rely on theserms for studying performance bounds related to the
Yamamoto-Iltoh scheme, and these bounds are shown in Figef this scheme is incorporated with an expurgated

ensemble of binary and regular LDPC codes. The results showxpected, that the additional feedback resources
allows for a considerable improvement in error performance

V. UPPERBOUNDS UNDER SUBOPTIMAL DECODING WITH ERASURES
In this section, upper bounds on decoding error probadslitire derived for the suboptimal decoding rule in (7).
Proposition 7. Consider the transmission of a block ca€lef block lengthn and M codewords, and let(y|x)
designate the transition probability of the channel where C is the transmitted codeword ande Y™ is the
received vector. Then, the conditional block error proliigbi%,,,, and the conditional undetected error probability
Fyugm, under the suboptimal decoding rule in (7) satisfy
Pe\m SenSTDB(maG:Ln7sap)a OSSSPS 1 (41)
Pygm < €' Dg(m, G} s,p), 0<s<p<1 (42)

where Dg(m, G, s, p) is defined in (11), and~]" is an arbitrary non-negative function ov@f which possibly
depends on the codewosd,, 1 < m < M.

Proof: See Appendix G. [ |

Remark 14. The upper bound on the block error probability in (41) cailes with the upper bound on the total
error probability provided in (9) under the optimal genzed decoding rule. On the other hand, the upper bounds
on the undetected error probabilities under the optimalsadmbptimal decoding rules in (10) and (42), respectively,
are different.
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Fig. 9: Lower bounds on the expected rate, and upper bounds on thelidgcerror probability, of some Yamamoto-ltoh schemese Th

schemes make use of the

expurgated, binary and regular) (60JRC code ensemble of Gallager in Example 4, and the trassom is

assumed to take place over a binary-input AWGN channel wRBB signaling. The bounds of Forney’s memoryless schemgesample 8
are also provided for comparison.

The following corollary is a particularization of Propaeit 7 for the ensemble of fully random block codes of
lengthn and rateR whose transmission takes place over memoryless channels:

Corollary 4. Consider

the transmission of block codes over a memorylessmunication channel. Then, there

exists a block code satisfying

Pe < e—’l’LEl (R,T)

Pyo < e ME(RT)
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A InM
— n

whereR is the code rate (in nats per channel uge)(R,T) is defined in (14),

* Ay _
E3(R,T) = ocsnax (Eo(& pyax) — pR+ sT)

Ey is as defined in (15), angly is an arbitrary probability distribution ovet'.

Proof: The proof follows the same arguments as the proof of Coxollar |

The following bound is provided for the case of binary linbéwck codes whose transmission takes place over
an MBIOS channel (the generalization of the bound to nomdyitinear block codes, as provided in [18], is direct):

Corollary 5. Consider arin, k) binary linear block cod€ whose transmission takes place over an MBIOS channel
with a transition probability lawp. Then the block error probability., and the undetected error probabiliie,
under the generalized decoding rule in (7) satisfy

py< e M(EORO—EE) g o o (43)
Pre< e "(FWROTEE) <y < (44)

where R is the code rate (in nats per channel use), &g, R,C) is defined in (21).

Proof: The proof follows from Proposition 7, and its derivation imsar to the way where Corollary 2 is
derived from Proposition 6. |

Remark 15. As in Corollary 2, the bounds of Corollary 5 resemble to th&S&nd they may therefore be considered
as a generalization of the SFB for the case at hand.

Remark 16. For all rates below some (finite) rate thresholds, the boimdorollary 5 on the decoding error for
linear block codes under the suboptimal LR rule in Definit&yncoincide with those under the optimal decoding
rule in Definition 2. To see this, observe first that the uppauruls in (19) and (43) are identical. It is left to
consider the upper bounds in (20) and (44) on the undetected robability. Note first thaty(p) — pR (Eo IS
defined in (22)) is a concave function 0f< p < 1, and it is optimized for rates below(1) atp =1 (see, e.g.,

[32, p. 135]). Moreover,lﬁ is @ monotonic increasing function 6f< p < 1. This implies that if% < E|(1),
then at all rates belowr) (1) — W — % the error exponents of the upper bounds in (20) and (44) atle b
maximized atp = 1, and they therefore coincide. A similar observation is med in [17, p. 82] for the ensemble
of fully random block codes. Specifically, it is observed #¥] that up to some rate threshold, the upper bounds
under the suboptimal LR decoding rule for the ensemble dy-fiaindom block codes coincide exponentially with

those provided by Forney in [13].

Example 11 (Error exponents of fully random binary linear block codes). Fully random binary and linear
(n, k) block codes are considered where, as mentioned in Exampl&C3,= 1 (see (23)). For the particular case
of transmission over a BSC, the error exponents for the densdl ensemble are studied in [2] and [3]. The lower
bounds on the block error exponents and the undetectedesponents from [2] and [3] are compared in Fig. 10(a),
and 10(b), respectively, to the bounds provided in Corpl&arThe bounds are derived for a BSC with a crossover
probability of p = 0.07 and a decoding parameter= 0.03 (see (8) where these are the same parameters studied in
[2, Fig. 1]). The error exponent provided by Gallager for tase of ML decoding is also provided for comparison,
in addition to the undetected error exponent under the @ptageneralized decoding rule. Apart from low rates,
where the bounds in [2] and [3] outperform those provided anallary 5, the latter bounds on the error exponents
lie in between the two previously reported bounds from [24l 48] (see Fig. 10). Moreover, in the rate region
beyond the critical rate, where the bound in [2] outperfon@ bound in [3], the derived bounds perform in close
proximity to the tightest known bound. The superiority of tindetected error exponent under the optimal decoding
rule is clearly pronounced. This comparison is further tddn Fig. 11 where the lower bounds on the undetected
error exponents under the optimal and suboptimal genediliecoding rules are provided for the same parameters
as in Example 31 = 0, 0.025, 0.05, 0.1 and 0.15), assuming that transmissioestplace over a BSC with a
crossover probability op = 0.11, and over binary-input AWGN channel withs/N, = —2.8 dB. For the case
whereT = 0, both considered exponents, for optimal and suboptimadgdized-decoding rules, coincide with each
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other and with the (non-expurgated) random coding errooe&pt of Gallager [15]. As observed in Remark 16,

it is evident that for low to moderate code rates, the bourmifetoptimal and suboptimal generalized decoding
rules coincide. However, as the coding rates approach thangh capacity, the lower bounds on the undetected
block error exponents under the suboptimal generalizedding, are considerably loosened in comparison to the
lower bound under the optimal generalized decoding.
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Fig. 10:Lower bounds on the block error exponents of fully-randomaby linear block codes whose transmission takes placea®&8C
with a crossover probability op = 0.07, under the suboptimal decoding rule in (8) with= 0.03. The lower bounds on the undetected
block error exponents in [2, Theorem 2], [3] (see also [2,0Fben 1]), and Corollary 5 (see (44)) are provided in plot tajjether with
Gallager’s random-coding error exponent under ML decodir], and the lower bound on the undetected error expone@airollary 2
(see (20)) under the optimal generalized decoding rule. [dlver bounds on the error exponents in [2, Theorem 2], [3#l @orollary 5
(see (43)) are provided in plot (b) (the lower bound of Gadfafpr the random-coding error exponent under ML decodinglss provided
for comparison).

Corollary 6. Under the assumptions and notation in Corollary 3, the bkreér probability P, and the undetected
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Fig. 11: Lower bounds on the undetected error exponents of fullgaan binary linear block codes under the suboptimal gerrerali
decoding rule in (7). The bounds based on Corollary 5, areigied in plots (a) and (b), assuming that the transmissikestglace over a
BSC with a crossover probability f = 0.11, and a binary-input AWGN channel withs/No = —2.8 dB, respectively. The lower bounds
on the error exponents under the optimum generalized degadie in (5), studied in Example 3, are also provided for parison.

error probability P, under the suboptimal decoding rule in (7), satisfy

Pe< it Dy(p,C), 0<p<1 (45)
Re<e 3% . Dy(p,C), 0<p<1 (46)
where Dg(p, C) is defined in (29).
Proof: Setting s = Fpp, G(y) = Ili-,9(y;) whereg is as defined in (24), the proof follows from
Proposition 7 in the same way as the proof in [18, Theorem 3]. |

Consider the particular case of binary linear block codessghransmission takes place over the binary-input
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AWGN channel with BPSK modulation. The bound of Divsalare($8] and [24, Sec. 3.2.4]) provides a closed-
form expression for an upper bound on the block error prditabinder ML decoding. The following proposition
provides a similar bound under the LR decoding rule in Dedini3:

Proposition 8. Consider the transmission of a binary linear block code dikier AWGN channel with BPSK
modulation, then the error and undetected error probesiliinder the LR decoding in (7) satisfy

S d Fs 2Bd  nT
P Sd:zd:. min {exp( nEe< >> |Cal @ ( o 5 2dES) } 47

Py < Z min exp( nEue<d ES>> ICa| @ QESd—i— nt (48)
d=dpin " Noo g, /b

whered,,;, is the minimum Hamming distance of the codeis the block length of the codd;;| is the number of
codewords whose Hamming weight equalg” is the decoding parameter in (7 is the energy per transmitted
Mo is the two-sided power spectral density of the white Gaussiise, and

(coded) symbol
FEs T¢
<6 _0> Fo (5 N0> 27

Es\ o Es\  T¢
Fue (0.57) 2 8 5 N0>+ :

Ep <5, %> £ —r,(0) + 5 ln (ﬂ + (1 - 5)627«”(5)) + __ B 5

N(] 11— (1 - ﬁ)é NO
s | Bs  2(1-9) 1-6)\2 Es\? 1-6 Es
ﬁJNoauew» (%) ((”m) ‘1> (%)

In |Cy| ad

T'n((s) n N 0= E
g2 o

B+(1-p)1-0)

Proof: See Appendix H. [ |

Example 12 (Error performance of expurgated binary and regular LDPC code ensembles under suboptimal
generalized decoding with erasures)Consider an expurgation of the binary and regular LDPC codembles in
Example 4 (with block lengths of 504 and 2004 bits). The ugpmmd in (46), on the undetected error probability
under the generalized decoding rule with erasures in (Hrasided in Figs. 12(a) and 12(b), assuming that the
transmission takes place over a BSC and a binary-input AW@G&heel, respectively. The upper bounds under the
optimal generalized decoding rule are also provided for mparison, in addition to the upper bound under the
generalized decoding rule with = 0 (which coincides with the upper bound on the error probigbiinder ML
decoding). It is evident that the resulting bounds understilgoptimal generalized decoding rule are loosened in
comparison to the bounds under the optimal generalizedditegaule. This result is expected from the previous
example where the undetected error exponents are studiddlfjerandom linear block codes. In Fig 13, the upper
bounds on the undetected error probability in Corollary & @ympared with those provided in Proposition 8. The
provided bounds are for the binary regular and expurgateld@DBode ensembles in Example 4 (with block lengths
of 504 and 2004 bits), and for a similar ensemble with a bleeigth of 10008 bits and,, = 800. The parameter

T in (7) is chosen, for this comparison, to be 0.0198, 0.005d,9%992 - 1074, respective to the considered block
lengths. It is evident that the simple bound in (48) is lo@seim comparison to the bound in (46), but only by a
relatively small difference.
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Fig. 12: Upper bounds on the undetected error probabilities of sorpargated ensembles of binary and regular (6,12) LDPC codes
under the optimal and sub-optimal generalized decodingsrin (5) and (7), respectively. The upper bound in Corol@ris shown in
plots (a) and (b), assuming that the transmission take® miaer a BSC and a binary-input AWGN channel, respectivetg tipper bounds

in Corollary 3, studied in Examples 4 and 5, are also provideccomparison.

VI. UPPER BOUNDS UNDER FIXEBSIZE LIST DECODING

In this section, upper bounds on the block error probabditg derived for the fixed-size list decoding (see
Definition 4). As mentioned in Section Il, the block error evén this case corresponds to the possibility that the
decoded list does not include the transmitted codeword.

Proposition 9. Consider the transmission of a block catleith A/ codewords of length, and letp(y|x) designate
the transition probability of the channel whete= C is the transmitted codeword agde )" is the received vector.
Consider the case where a fixed-size list decoder is usedewhersize of the list is denoted hy. Then, the
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Fig. 13: A comparison between the upper bounds in (46) and (48), omridetected error probability under the LR generalized diecp
rule in (7). The comparison is provided for binary expurdasad regular (6,12) LDPC code ensembles of Gallager withkblengths of
504, 2004 and 10008 bits whose transmissions take placebovary-input AWGN channels with BPSK modulation.

conditional block error probability’,,, given that them-th message is transmitted satisfies

1-p
(ZG ylxm)>
A\ P
% Z Zp(yyxm)G%(y)l_% <M>p . (49)

iz 5 Py [xm)

where0 < s < p < 1 are real-valued parameters, aG¢' is an arbitrary non-negative function ov@" which
possibly depends on the codewotgl, for 1 <m < M.

Proof: See Appendix I. |
The following corollary is a particularization of Propasit 9 for the ensemble of fully-random block codes,
with fixed block length and rate, whose transmission takasebver a memoryless channel:

Corollary 7. Consider the transmission of a block cadlever a memoryless communication channel. Then, under
the notation in Proposition 9, there exists a block code wholeck error probabilityP. under fixed-size list
decoding satisfies

P, < o~ "B (R—7InL)

where R £ 121 js the code rate (in nats per channel use),

A _
Er(R) = max (Eo(p, qx) pR) (50)
1+p
Eo(p,qx) £ —In | Y (Z ax (@)p(y|z) 1“)
yeY \zeX

andqx is a probability distribution over the input alphab®t

Proof: Fix a probability distributionyx over X', and consider the ensemble of random block codes where each
codeword is chosen independently accordingidx) = ], ¢x(z;). First, we apply the bound in (49) for a
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specific realization of a codebook, with= —£- and

1+p
plyl) \»\"
St (o) )

X

Gi(y) = (

The proof follows by a random coding argument, and by cha@p#ie optimal probability distributionx. ]

Remark 17. The upper bound in Corollary 7 coincides exponentially vfita sphere-packing lower bound in [26].
Because of its mathematical resemblance, it may be corsidera generalization of the well-known random-coding
error-exponent of Gallager [15], for the case at hand.

The following bound is provided for the case of binary linbéwck codes whose transmission takes place over
an MBIOS channel:

Corollary 8. Consider ar{n, k) binary linear block cod€ whose transmission takes place over an MBIOS channel.
Then, the block error probability’. under fixed-size list-decoding, satisfies

Pe < e—nEr(R—i-%ln(o‘T(c)) (51)

where

Ei(R) = max (Eo(p) — pR)

andR is the code rate (in nats per channel udejs the list size, andZy(p) and«a(C) are defined in (22) and (23),
respectively.

Proof: According to Proposition 4, it is necessary to analyze ohly ¢onditional error event assuming that
the all-zero codeword is transmitted. Setti@{ (y) = [[\-, g(v:) in (49), it follows that

n(1—p)
P < (Z g(y)p(yo))

yey

n—i i\ *
(i >_lci (Z g(y)l—%p@\m) (Z g(y)l—%p@mkp(yroﬂ*) ) (52)
i=1

yey yey

where|C;| denotes the number of codewords whose Hamming distarice is < < n. The proof follows from (52)

by settingA = Flp whereg is as defined in (24) (see similar derivation in [24, SectiohH). [ |

Remark 18. For the particular case of fully-random linear block codls,bound in (51) coincides with the bound
in Corollary 7 for fully-random block codes.

Remark 19. The bound in Corollary 8 resembles to the SFB [27], and tloeeefmay be considered as a general-
ization of the SFB for the case at hand.

Remark 20. The bound in (52) ban be generalized to non-binary lineaclbloodes using a similar derivation
as in [18]. Note, however, that in [18], non-binary codes sttedied under ML decoding and not list-decoding.
Nevertheless, the similarity of the bound in (49) to the uppeunds derived in [18] allows to use the same
arguments for the case at hand (see Appendix I).

Corollary 9. Under the assumptions and notation in Corollary 3, the bkrtér probability probabilityP, under
fixed-size list-decoding wher®e denotes the size of the list, satisfies

p
P < A(p)"0 (}J > p(z)(?)mp)"lc(p)l) 59

where A(p), B(p), andC(p) are defined in (30)—(32).

Proof: Setting s = ﬁ and G)'(y) = [1i.,9(vi) where g is defined in (24), the proof follows from
Proposition 9 in the same way as the proof in [18, Theorem 3]. [ |
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Remark 21. In the derivation of the bound in (51), a sum is upper bounded product of the maximal summand
with the number of summands. This operation is avoided indévévation of the bound in (53). Hence, the bound
in Corollary 9 is tighter than the one in Corollary 8.

Remark 22. For the particular case of binary linear block codes, theraginy condition in (26) is not mandatory
and the bound in Corollary 9 follows by replacing the teR(‘l)(?) with the distance spectrum of the considered
code (ensemble).
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Fig. 14: Upper bounds on the error probability for an expurgation efl@er’'s ensemble of binary and regular (6,12) LDPC coditis av
block length of 2004 bits (see Example 4). A list decoder suased where the size of the list is setiio The upper bound in Corollary 9

is provided for some values df. The bounds are shown in plots (a) and (b), respectivelytHfercase where the transmission takes place
over a BSC and a binary-input AWGN channel.

Example 13 (Error performance of an expurgated ensemble of binary and rgular LDPC codes under
fixed-size list decoding).Consider the expurgation of Gallager's ensemble of binarng eegular (6,12) LDPC
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codes with a block length of 2004 bits (see Example 4). Uppeinds on the block error probability under fixed-
size list-decoding are shown in Figs. 14(a) and 14(b), assythat the transmission takes place over a BSC and
a binary-input AWGN channel, respectively. The upper boim@orollary 9 is evaluated for list sizes df = 1,

16, and 128 codewords. Note that the upper boundZfes 1 corresponds to ML decoding. The bounds on the
error probability show some marginal improvement by insieg the considered list size frof = 1 to 128.

10° ¢

error probability

&
T

10° E
5| —1L=1 1
10°¢ —*—L=16 | ]
i ——L =128
10_6 1 1 1 1 1
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(a) Transmission over an 8-ary discrete memoryless synuoraiannel
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ES /NO [dB]
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(b) Transmission over an AWGN channel with 8-PSK modulation

Fig. 15:Upper bounds on the error probability for an expurgation afl&@er’'s ensemble of regular (8,16) LDPC codes with odgtabet
and a block length of 1008 symbols (see Example 6). A list decds considered where the size of the list is seL.tdhe upper bound
in Corollary 9 is provided in plots (a) and (b) for severalued of L, assuming that the transmission takes place over an 8-acyeti
memoryless symmetric channel and an AWGN channel with 8-R®idulation, respectively.

Example 14 (Error performance of an expurgated ensemble of non-binary ad regular LDPC codes under
fixed-size list decoding).Consider the expurgation of Gallager's ensemble of reg(8a6) LDPC codes with
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octal alphabet and a block length of 1008 symbols (see Exa@plUpper bounds on the block error probability
under fixed-size list decoding are shown in Figs. 15(a) ar@)1assuming that the transmission takes place over
an 8-ary discrete memoryless symmetric channel and an AW@Nrel with 8-PSK modulation, respectively. The
bound in Corollary 9 is evaluated for list sizes bf= 1, 16, and 128 codewords. similarly to the case of binary
code ensembles, only marginal improvement in the erroropmidnce is observed by increasing the valuelof
from 1 to 128.

VIl. SUMMARY AND CONCLUSIONS

This paper considers the performance of several genedalizeoding rules over memoryless symmetric channels.
Three types of generalized decoding rules are considered:

1) The optimal generalized decoding rule in [13] with erasuand variable list sizes.

2) The suboptimal likelihood-ratio (LR) decoding rule wighasures (see [2] and [13]).

3) A fixed-size list decoding rule (see [12] and [34]) where ttecoder outputs a list with includes themost
probable codewords (where the valuelofs set a-priori).

The independence of the error performance on the transinitbeleword is proved in Propositions 2-4 for the
considered decoding rules. Specifically, it is shown that tihdetected error probability, block error probability
(of both undetected errors and erasures), list decodirgy probability, and the expected size of the decoded list
are all independent of the transmitted codeword when thestnéssion takes place over a memoryless symmetric
channel.

Upper bounds on the decoding error probability are providédreover, upper bounds on the expected size of
the decoded list are derived. The derivation of these boisblased on a generalization of a bounding technique of
Duman and Salehi (see, e.g., [8], [10], [11], [24]). The jded bounds are suitable for the analysis of structured
and random codes (or code ensembles) over memoryless syimetennels. Both binary and non-binary code
ensembles are studied in this paper under generalized idgcaades. When binary codes are considered, the
bounds are based on the distance spectra of the codes, andnahéinary ensembles are studied, the complete
composition spectra are required under the symmetry adsamip (26). For the case of LR decoding of binary
linear block codes, a derivation of a closed-form expras&@rovided via a similar derivation to [8] which applies
to ML decoding.

Several applications and particularizations of the predithounds are studied. First, the random coding error
exponents in [13] are reproduced, in addition to some erxpoeents under the suboptimal LR decoding rule
with erasures. These error exponents are derived by agpllggnnew bounds to fully random block codes. Next, a
derivation of the error exponents of fully random lineardd@odes under optimal and suboptimal (LR) generalized
decoding is provided. The resulting error exponents unigersuiboptimal LR decoding rule are compared with a
recent improvement in [2], where the ensemble of binaryfaindom linear block codes over binary symmetric
channels (BSC) is studied. This comparison shows good miitkdf the provided error exponents with the results
in [2]. In addition, it is shown that the error exponents foe fully random linear block codes under the suboptimal
LR decoding rule, coincide for low rates with the corresgogderror exponents under the optimal decoding rule.
This observation is similar to an observation in [17], whigre ensemble of fully random block codes is considered.
A Lower bound on the error exponent under fixed-size listod@tg is also derived as an application. The resulting
bound coincides exponentially with the corresponding spipacking lower bound in [26].

Applications of the bounds for the performance analysistafcsured code ensembles are further exemplified
for some expurgated ensembles of (binary and non-binagglae low-density parity-check (LDPC) codes. The
error performance under some generalized decoding rutebdee LDPC code ensembles is studied assuming that
the transmission takes place over memoryless symmetricnett® Specifically, undetected error, and total block
error (including undetected errors and erasures) prababilare evaluated under optimal and suboptimal (LR)
generalized decoding rules. In addition, the error perforoe for list decoding applications is studied for these
ensembles. Both fixed-size and variable-size list decodimgconsidered, and an upper bound on the expected
list-size is evaluated for the latter case.

An analysis of various hybrid automatic-repeat request@ARchemes is also provided in this work. A noiseless
and immediate one-bit feedback channel is assumed, whasareroutputs at the decoder triggers, via this feedback
channel, the retransmissions of messages. Hybrid-ARQnsehevith and without deadlines are considered, in
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addition to schemes with incremental redundancy. Uppentiswn the error probability and lower bounds on the
expected overall rate are provided and exemplified in thigepa

APPENDIX A
PROOF OFPROPOSITION2

The following proof holds for memoryless symmetric chasnelth discrete-output alphabets, and the general-
ization to continuous-output alphabets is direct. We dfigge the following technical lemma:

Lemma 1. let x1, x9, z3 be arbitrary symbols int’, and letp be a transition probability law of a memoryless
symmetric channel. Then,

p(T(T(y, 1), T2) |333> =p(T (y, x1 + z2)|23)
where7 is a mapping which satisfies the properties in Definition 1.

Proof: the reader is referred to [18, Appendix A]. [ |
Assuming that all the codewords are sent with equal proitghihe decision regions in (5) satisfy

Zm/;ﬁmp(y‘xm/)

(®) [ p(ilm,:) nT
=qy: 7 >e
{ Zm’;ﬁm Hi:l p(yi’wm/,i)

© /. T, (T (yi, —2n4)|0) .
- {y . Zm/;ém H?:1P(T(yi,—wm/,i)|0) = ¢ } (54)

where (a) follows from (5) and the equal a-priori messagédaldity assumption, (b) holds since the channel is
memoryless, and (c) follows from the symmetry of the charfseé (1)). Letz = (z4,..., z,) be defined as

% 2T (yi,—tmi), 1<i<n (55)

wherem is the index of the transmitted codeword. From Lemma 1, lbfes thaty € A,, if and only if z € A,,
where

Z >e , 1<m <4~
Zm’;ém H?:l p(T(zia Tm,i — xm’,z)|0)

Using the linearity of the code, it follows that

X n . H?: p(zlyo) n
Am—{zey : 1 )|0)26T}.

Amé{zey”:

Zz;ﬁo H?:l (7 (zi, 21

Since the sef\m is independent of the index, then
Ay, =AM forall 1 <m <" (56)
As a result, the conditional block error probability of theth message in (2) satisfies

Pe|m = Z p(Z|0)

zeAC

m

)

zeA§

where (a) follows from (56). This concludes the proof of thessage independence property for the block error
event.
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We continue in proving the message independence propertyhéo undetected error event (or the expected
number of incorrect codewords when list decoding is comeidle Assuming a memoryless symmetric channel, it

follows from (1) and (4) that
ue|m - Z Z y’Xm

m'#Fmy€eN,,
= > Y T[T, —zma)l0) (57)
m'#my€eA,, i=1

where from (54)

iy (7 (yis —@m,i)|0) T
Ay =1y: = ’ >t b
{ Zm”;ﬁm’ Hi:l p(T (yi, —xm”,z’)|0)

Let z be a vector defined as in (55), then from Lemma 1
(T (yi, —m 3)|0) = p(T (215 Ty — Tmrl0), i=1,...,n.
Hence, given thak,, is the transmitted codeword, thenc A,,,, for somem’ # m if and only if z € T, ,,,, where
I, PTG o = o )IO) enT} | (58)
Zm”;ﬁm/ [Tz (T (215 Tmji — T 3)]0)
From (55), the conditional undetected error probability5@) is rewritten in the form

Pim= D>, > D (59)

m'#m z€l',, ./

 —— {z ey":

Using the linearity of the code, then,, ; — zym ;i = (Tm,i— T i) + (T — T i) = @1, i+ 24,,; for some indices
I, andly which correspond to non-zero codewords. ket x;, andx = x,,, then the conditional undetected error
probability in (59) is expressed equivalently in the form

Pom =2 >

xeC zel'(x)
x7£0
where, based on (58),

[T p(T (zi,2:)|0) S T
Zici% [Tie p(7 (2, 2 + 2;)[0) —

This proves the independence property for the undetected event, and it concludes the proof of Proposition 2.

[(x)2ze)":

APPENDIX B
PROOF OFPROPOSITION3

Similarly to Appendix A, also the following proof considareemoryless symmetric channels with discrete-output
alphabets, where the generalization to continuous outjpitabets is direct. Lep be the transition probability
function of the considered channélbe an(n, k) linear block code over an alphabet whose cardinality, isnd7
be a mapping as specified in Definition 1. It is assumed thahalcodewords of are sent with equal probability.
For an arbitrary seA C Y™ and a codeworc,, € C, let

Zn(A) £ {z e V" T(z,2m;) € A}. (60)

In addition, we use the notatiohR(x,,,) for the decision regiom'R in (7) of the codewordk,,. Note that for the
concerned decoding rule wifhi > 0, the decision regions are disjoint. The following techhleenma is introduced:

Lemma 2. Let Z,, be the mapping defined in (60), and be the decision region in (7). Then,
Zo (ASR) = AR (xp — xp), Vm,m’ € {1,... ") (61)
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Proof: Let us choose € Z,, (AL}), and lety = (y1,...,y,) be defined via the equality
vi =T (2, Tm,i), 1=1,...,n. (62)
From (7) and (60)
p(Y|Xm/2) B

wherex,,» andx,,, are the most probable codewords, in a descending ordey, & a received vector. Using the
symmetry of the channel, it follows from (1) that

Py [%m) = p(2[Xm — Xm).

As a resultx,,, —x,, is the most probable codeword4fis the received vector (otherwise, if there exists a coddwor
X # X — X, Which is more probable, then there exists a more probableweod fory which is different from
X). The same argument shows that, — x,, is the second most probable codeword Zpand

p(2[Xm — Xm) nT
p(Z|Xm/2 —Xm)
This verifies thatz € A"R(x, — x;,,) Which shows thatZ,, (AL}) C A"R(x,, — x;,). To show the opposite

inclusion, which then yields that these two sets are eqgety, £ A'R(x,,, — x,,). This implies that the codeword
X — Xm 1S the most probable codewordi4fis the received vector, and

p(z‘xm’ - xm) > nT
p(2[xXmy)
wherex,,,; is the second most probable codeword forAgain, using the symmetry of the channel, for a vector
y as in (62), it follows thatx,, is the most probable codeword fgr x,,; + x,, is the second most probable
codeword fory, and
p(y|xm’) > enT
PY[Xmy +%m) —
As a resultz € Z,, (A:}), which yields thatA'R (x,,, — x,,,) € Z,, (ALY). This concludes the proof of (61).m

From (62), the conditional block error probability satisfie

P = Y p(ylxm)

yEALR

@ 3 o)

z¢ Z,, (ALR)

b
€ S plo)
zZAR(0)

where (a) follows from (1) and (62), and (b) follows from (6This proves the message independence property for
the conditional block error probability. Using the sameusingnts, the message independence property is established
for the conditional undetected error probability:

Pue|m = Z Z ‘xm

m' #m yc AR,

=Y > »pEo

mEm ez, (AR)

B SR S

m/#m ze AR(x,,, — xm)

=ZZ

x € (C zeEAR(x

x#0
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where the second equality follows from (62) and since thepimap? is bijective, the third equality follows from
(61), and the last equality follows from the linearity of tbede.

APPENDIXC
PROOF OFPROPOSITION4

Considering ties as error evefitshe conditional block error probability for a list of siZe satisfies

Py = Y p(y|%m) (63)
YEAL
where
AL & {yey": HmdE, stomy £ m, p(y[xm,) > p(y]xm) V1 <i< L} (64)

is the complementary of the decision regiongf, € C under list decoding of fixed-sizé& (here {m;}L, is a
sequence of distinct integers), i.e.yifc AZ then the codeworet,, is not included in the list for a received vector
y. Using the change of variables in (62), it follows from (6Bt for linear block codes whose transmission takes
place over memoryless symmetric channels

Pe|m = Z p(Z|0)

z€Z,,(AL)
where Z,, (A,Ln) is as defined in (60). The following lemma concludes the pafdProposition 4:

Lemma 3. Let Z,, be a mapping defined in (60), ard;, be the decoding region of,, € C under list decoding
with a fixed sizeL. Then,

Zm (A7) = AT

for all 1 < m < ¢*, whereAf is the complementary of the decision region of the all-zexdesvordx; = 0 under
list decoding of sizel..

Proof: Let us choose € Z (A%L). From (60), there existg € A% where
vi =T (2, Zmi), 1=1,...,n (65)
and7 is a specified in Definition 1. From (64), there exists a listLoflistinct codewords{xmi}le, for which
p(¥|Xm,) > p(¥|xm), i=1,...,L. (66)
Using the symmetry of the channel, it follows that
p(2|Xm, — Xm) > p(z|0). (67)

This assures that € Al, which shows thatz,, (A%) C A}
Next, in order to show the opposite inclusion, et AIL. Then, there exists a list af non-zero codewords
{%m, Y|, mi # 1, satisfying
p(z[xm,) > p(2|0)

and therefore from the symmetry of the mappihgand the equality in (65), we get
P(Y[%m, +Xm) > p(y[xm)

It assures that € Z,, (AL) which implies thatAf C Z,, (AL). This two inclusions complete the proof of the
lemma. |

2Such a pessimistic assumption is reasonable, see also larsissumption in [32, p. 59].
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APPENDIXD
PROOF OFPROPOSITIONS
Let A,,, be the generalized decision region as defined in (5).yF@rA,,, it follows that
1=eTe T <™ pi(yb(m/) ) (68)
- i P 1%m)

Let s and p satisfy0 < s < p < 1, and recall the following inequality (see [32, p.197]):

> oai< (Z az*)A (69)

which holds ifa; > 0 and0 < X\ < 1. Setting

a; = p(ylx:) N\ = s

p(y[xm)’ p
it follows from (2), (68) and (69) that the conditional erqmrobability of them-th message satisfies

P < S plylxm) (Z ply 'Xm’ ) (70)

yEAS, /;ém
(ylxn) V)
p X/ P
<ot S plyben) | (D))
= it \ Py )

Let ¢ (y) designate an arbitrary probability tilting measure (whiohy depend on the transmitted codeword),
then it follows that

s\ P
Pepm < €™ 3 07 (y)05 (v) ™ 2y Ixom) ( 2 (W) )
y

i \P(Y[%m)
s\ P
nTs m m % p(y\xm/) »
< ZTZJ ( ()™ 7 p(y[%m) m%:m <7p(y1xm)> ) :

Next, invoking Jensen’s inequality gives

Py < "7 (an plyln)r S (p(yxm’)y)p'

i \P(Y[Xm)
This concludes the proof of (9) by setting

G (y)p(y[%m)
>y Gr(y)p(y|xm)

whereG)'(y) is an arbitrary non-negative function.

An undetected error event occurs if the received vectordiided in the decision region of a codeword which
differs from the transmitted codeword. Consequently, therage undetected error event satisfies

Pe=— Z > plylem). (72)

m=1yeA,, m'#m

Yo' (y) =




E. HOFET AL.: PERFORMANCE BOUNDS FOR ERASURE, LIST AND FEEDBACK SCHEME®TH LINEAR BLOCK CODES 37

Note that in the case where list decoding is considered {he.decision regions are not disjoint), the LHS of (71)
is no longer a probability. However, for the latter case #Mpression equals the number of incorrect codewords
in the decoded list. It follows from (71) that fér < s < 1, the undetected error probability satisfies

T (=) (=)

m=1yeA,,

M S
< e"T(S_l)% S5 p(ylxon) ( Z rly ) (72)

m=1y ’;ﬁm

where the last inequality holds since forec A, and0 < s <1

1—s
p(Y’Xm) nT(1—s)
>e .
(Zm’;ﬁm p(y[xm/)>

The rest of the proof follows in a similar way to the derivatiof (9) when comparing the bound in (70) with (72).

APPENDIXE
PROOF OFCOROLLARY 1

Consider the ensemble of fully random block codes of lengtymbols where thé// = e codewords of a
codebook are chosen independently at random accordingetprtbability distributiongx on X™.

Let Dy, (m G, s, p) denote the functionaDg(m, G}, s, p) in (11) where the dependence on a specific
codebook{x; }1, is expressed explicitly. Given a fixed codewotg, for the m-th message, the expectation over
the otherM — 1 codewords on the right-hand side of (9) gives that(fof s < p <1

Z (H QX(Xi)) D{Xi}f‘il (m, ng, S, p)

(M \fx} \im

1—p
<2Gm Y‘xm)>
S\ P
-1 (pyXm) )
(Z ZQX (xm) ZP (Y[xm)GR (¥) <m> )

m/Z£m X/

1—p
(ZGm Y|Xm)>
’ z P
(qu S ptylen) ) (p(y'x)) ) (73)

p(y[xm)

where (a) follows from (11) and by mvokmg Jensen’s ineguaNext, by substituting the non-negative function

s\ P
Gy 2 (qu<x> (o) )

X

in (73), one obtains that far < s <p<landm=1,...,. M

Z (H QX(Xi)) Dy ym (m, G, s,p)

L\ xm} \i#m

p(ylx) \+\"
M—1)" > p(ylxm) ( ax x )
Zy: 2 ( ylxm)>
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By averagingDy » (m, G}, s, p) over theM codewords, we get that for every index (1 < m < M)

M
> (HQX(Xz’)> Dixym (m, Gy, s, p)

feidil, =l

= ax(xm) Y (H qx(xi)) Dy, (m, G5, p)

{xi}?il\{XM} i#m

M =1 375" gx (m)p(yl%m) (Zq < yylzcm))>%>”

y X’VYL

= (M Z{(qu p(ylx)! 8) (qu p(y[x')> )P} (74)

Since the right-hand S|de of (74) does not depend on the indethen this bound also applies to the expectation
of the quantltyM Z 1 Dix, (m, Gy s, p). Therefore, there exists a block code for which the valuehaf t
quantity is not larger than the average over the considemedmble, i.e.,

1 M
M Z D{xl}f\i1 (m7 G:Ln, S, p)
m=1

< (M Z{(qu p(yx)'~ ) (qu p(y[x') f>p}. (75)

From (9), (10) and (75), it follows that the above block codéssies simultaneously

1 M
Pe:Mn;Pem

1
<emt. i > Dy, (m, Gy s,p)
m=1

s {(Sawooman) (S
<e"(ST+”RZ{<qu p(ylx)'~ )(Zq (x )(yIX)%>p}

x/
= e_n(EU(57p7QX)_pR—8T)

and

P Z{(qu p(y[x)'™ ) <qu p(ylx') )P}

_ o—(Bo(s.pax)—pR—(s-1)T)

where the last two equalities follow from (15), and since ithygut distribution and the channel are assumed to be

memoryless, i.e.,
n
p(ylx) = Hp (wilas),  ax(x) =[] ax (@)
i=1

The proof of Corollary 1 is completed by optimizing the bosmyer the parametersands (where0 < s < p < 1)
and the input distributioryx. This gives the exponent8; and F» in (14) for the upper bounds oA, and P,
respectively.
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APPENDIXF
PROOF OFPROPOSITIONG

The bounds in Proposition 6 are derived from Proposition folsws: setting

p(ylx) = Hp yilw:)

and "
=T s(w)

i=1

in (11), and relying on the useful rule for interchanging samal product sign$ _¢ T fly) =11, > Fyi),

one gets from (9) the RHS of (16) as an upper bound™gi Since the considered block code is linear and the
communication channel is memoryless and symmetric, theddau (16) follows from the message independence
property in Proposition 2. The derivation of the bound in)(i&lies on (10) where it is first proved that for a

linear block code whose transmission takes place over a mydese symmetric channel, the resulting expression
for Dg(m, G, s, p) is independent ofn. To this end, letZ be a mapping as defined in Definition 1, then for all

1<71<n

> 29w plylem,) (M)

i Em yey P(Y|Tm.,i)
1-1 p(T(i% —Tm i)’wm’ i — Tm z) %
= % X o) T =m0 L
25 (T (y,—2m)[0)
_1 P Z|Ty 4 %
=S Yo'l ()
1#0 z€) p
As a result, it follows that for a memoryless and symmetriarotel
| XM
M ZDB(m>G?aS>P) :D(Q,S,p) (76)

where D(g, s, p) is introduced in (18). The proof of the upper bound Bp as given in (17) is completed by
substituting (76) in (17).

APPENDIX G
PROOF OFPROPOSITION7

Let ALR designate the decision region in (7), then fog ALR

p(y‘xm) nT

<e
p(¥[%Xm,)
wherex,,, is the second most probable codeword. Hences for0, the conditional block error probability satisfies
Pe\m < esT Zp(y‘xm) Z <IM> . (77)
" i \P(y[%m)

The bound in (42) follows from (77), using the argumentsdaihg (70).
Fory € AR wherem’ # m, it follows from (7) that

(y,Xm’) > enT
p(Y|Xm/2) N
wherex,,, is the second most probable codeword given the receivedgcat the channel output. As a result,
the conditional undetected block error probability satisfifor alls > 0, the following upper bound:

Pigm <™ plylxm) Y <%> :

y m'#m
The rest of the proof of (42) is, again, similar to the deiatfollowing (70).
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APPENDIXH
PROOF OFPROPOSITION8

The derivation of the bounds in Proposition 8 is primarilgndical to the analysis in [8] and [24, Section 3.2.4],
for which the reader is referred for a complete treatmenthefanalysis under ML decoding. We assume a BPSK
modulation over AWGN channel with enerdys per transmitted coded symbol, and a white Gaussian noige wit
two-sided power spectral density éji Hence, the received vectgr satisfies

y=7x+n (78)

where~y £ W/ZTE;S, x € C C {—1,+1}" is the transmitted codeword (with BPSK modulation), anis a normal
random vector with independent coordinates (all with zeeamand unit variance). Setting

maxxecd\{x[)}p(}"x) RS 1}
p(ylxo0) B

where(C, is the set of all codewords whose Hamming weight,igndx is the all-zero codeword, it follows from
(7) and the union bound that the conditional decoding errobability is upper bounded by

Ee(d) 2 {y ey

Pyo < Y Pr(Ee(d)) (79)

d=dmin

whered,,;, denotes the minimal Hamming distancefConsider the following inequality on the probability of
an error event:

Pr(E) <Pr(E,y e R)+Pr(y ¢ R) (80)
where E denotes an error event,€ )" is the received vector, ar@ C Y™. From (79) and (80), it follows that
Pp< > (Pr(Ee(d),y €R)+Pr(y ¢ R)). (81)
d=dmin

Using the union bound, we have

Pr(Ee(d),y € R) < ZPr< P(y[x) "Tzl,yeR>

x€Cq ’XO)
nT
(g) Z Pr <<Y>X> > <Y>X0> - 77 y € R> (82)
xeCy

where equality (a) follows from (78), antk,y) = >, z;5; denotes the scalar multiplication of the vectars
andy. Similarly to the derivation of bound in [8] (under ML decad), we choose

R2{y: |y = mxol® < nr?} (83)
wheren andr are arbitrary parameters which are subject to optimizatioraddition, define
Z £ <y7X> - <y7X0>
W 2 ||y — nyxo||* —nr
then it follows from (82) and (83), using the Chernoff bouhdtt

2

Pr(Ee(d), yeR)+Pr(y ¢ R) < e ICq| E [etZJr“W] +E [esw} (84)

forallt >0, v <0, ands > 0. Evaluating the expectations in (84) and setting (1 — 2un), we have similarly
to [8] and [24, Section 3.2.4]:

nT(1—run)

Pr(Ee(d), y €R) +Pr(y ¢ R) <e™ = [Cale™™ (fr (v,u,m)" % (f2 (v,u,m))*
e (f (v 5,m)" (85)
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where
a-m2~2a
A [ 1-2a
hyan) = e
72 -2an?)
ae T 1
Y Y = T < P
fa (v, ,m) —= <3
Optimizing the terme™ on the right-hand side of (85), gives
s U s 1
Pr(Eo(d),y € R) + Pr(y ¢ R) < 2(:5) a5 0<s<5 u<0 (86)

where

AE(fi(v.sm)"
B2 ™50 (f (v wm)™ ™ (fa (o, us )

and ho designates the binary entropy function on base 2. Using tlege of variables

A S
p:

S—U
8= p(1—2u)
¢ = p(1—2un)

where0 < p < 1,0 < g <1, and{ > 0, the bound in (86) transforms to
Pr(Ee(d), y € R) + Pr(y ¢ R) < 2P nB(Fs/Nod/n5.p.6)+ 255 (87)

where

N P P 1—p L—p &2 (1-¢)?
E(076767p7§)__prn(5)_§1n <B> - B ln<1_ﬁ>+c<l—(1—5)ﬁ— 1—ﬁ )

The parameters, 5 and¢ are optimized in [8], [24] such that the error exponglit, 6, 3, p, &) is maximized (note
that the bound fofl’ = 0 coincides with the bound which refers to ML decoding), settihe optimal parameters
yields the first argument in (47). The second term inside ti@mization on the right-hand side of (47) follows
from a union bound on the error probability

RS Y pr (2502 1 > 1)

d=dmin XECq p(y\xo)

where for every codeword € Cy
p(ylx) .1 > < nT’ )
Pr et >1) = Vid — .
<p<yr><o> 2l =@\ 5 T

The derivation of the upper bound on the undetected errobalitity follows some similar arguments, and is
therefore omitted.

%It is possible to obtain the optimized and ¢ when maximizing the entire exponefi(c, 8, 5, p, &) + % To this end,§ needs to be

shifted by—% and the optimalp remains without change. The parametgiis required to be numerically optimized over< g < 1.

Nevertheless, the resulting bound gives only a marginai geer the bound which maximizes(c, 4, 3, p, ) without the addition of%.
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APPENDIX |
PROOF OFPROPOSITION9

The main ingredient for proving the DS2 bound on the blockreprobability under ML decoding (and also the
well known random-coding bound) is that for a received viegtavhich is not included in the decision regiady,
as given in (3), the following inequality holds:

p

A
1< Z<M> . Ap=0. (88)

i \ Py )

When an error event under fixed-size) (ist decoding is considered, there exigtslistinct codewords, all different
from the transmitted codeword, whose a-posterior proliabd larger than the one of the transmitted codeword.
Hence, the sum on the right-hand side of (88) is divided’bySpecifically for a received vectgr that results in
an error event, the following inequality is satisfied:

p

A
1< %Z<M> . Ap=0 (89)

T \P(Y[Xm)

Following the derivation of the DS2 bound in [24, p. 96] whéhe right-hand side of (88) is replaced with (89)
leads to the derivation of the bound in Proposition 9.
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