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I. INTRODUCTION

Fluorescence microscopy is a powerful tool in biology and biomedical sciences. It is used to

study specimens that can fluoresce. In fluorescence, a material is excited by light in one wave-

length band and emits light at another band. Both bands are characteristic of the specific material.

Microscopic specimens usually yield fluorescence images that are dim and thus suffer from low

signal-to-noise ratio (SNR). Apparently, a higher SNR can be achieved either by increasing

the intensity of the excitation light source or by using longer exposure times. However, these

are often impractical in fluorescence microscopy of living organisms, because the fluorescence

intensity is decreased due to photo bleaching. The examination of living organisms is even

more difficult since their motion does not permit long exposures. In addition, high intensity

illumination can also cause cell damage. We propose a different approach for increasing the

SNR in images obtained by a fluorescence microscope. Our approach is based on multiplexing.

We are motivated by previous works in the fields of computer vision and photography. They

showed that images of dim scenes that were obtained using multiplexed illumination, had higher

SNR than single source images. Therefore we propose to multiplex excitation light sources of

different wavelengths, as well as different output emission bands in fluorescence microscopy,

while imaging multiple fluorescent materials. This way we obtain raw images having higher

intensity than a standard image, which is acquired using a single source. Then we decode the

desired single source/filter image from the multiplexed images using a computer. We study

the limitations of the fluorescence procedure and develop the optimal scheme for multiplexing

sources and output filters to achieve the highest quality images. In addition, we propose to

use multiplexed images in order to estimate the concentrations (unmixing) of each fluorescent

material in the sample more accurately.
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II. EXCITATION MULTIPLEXING

A. Case of 3 Excitation Sources and 1 Emission Filter

First we consider a simple case in which the number of excitation wavelengths is 3. An

acquired measurement is denoted by a. A measurement i would have been measured, had only

one excitation wavelength band been used. Let s denote the index of an excitation source. An

estimate of is is denoted by îs. For example, i1 is measured if the first excitation wavelength is

used.

Now, let two excitation wavelengths bands be used simultaneously, per acquired measurement.

For instance, let the second measurement, a2, be acquired using excitation bands 2 and 3. The

fluorescence intensities are additive, therefore,

a2 = i2 + i3 . (1)

Let the third measurement, a3, be acquired using excitation bands 1 and 3. This measurement

is thus

a3 = i1 + i3 . (2)

We construct the vector of individual measurements as,

i =




i1

i2

i3




. (3)

Similarly, the vector of multiplexed measurements is,

a =




a1

a2

a3




. (4)

Due to the linear relations between the measurements a and the individual energies i, it is

convenient to use a matrix form. There is a multiplexing matrix for excitation, W. For example:



a1

a2

a3




︸ ︷︷ ︸
a

=




1 1 0

0 1 1

1 0 1




︸ ︷︷ ︸
W




i1

i2

i3




︸ ︷︷ ︸
i

(5)
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B. General Number of Excitation Sources

Let S denote the number of excitation wavelength sources. The vector of the single source

measurements at a single pixel is

i =




i1

i2
...

iS




. (6)

The elements of i are denoted by is, where s is the index of the excitation source.

We denote by a(x, y) the vector of multiplexed measurements. The acquired measurements

represent fluorescent intensities. Therefore, i(x, y) and a(x, y) are related by a linear superposi-

tion

a(x, y) = W i(x, y) , (7)

where W is the multiplexing weighting matrix. Elements of W are denoted by wm,s. Let M be

the number of totl measurements. Each element in row m ∈ [1, . . . , M ] represents the relative

power of the excitation source s in measurement m. The power is normalized relatively to its

maximum potential value. For example, if wm,s = 0, then excitation wavelength s is turned off

completely at measurement m; if wm,s = 1, then this excitation source is at its maximum power.

All excitation sources are turned on with a ratio of their respective maximum power i.e.

0 ≤ wm,s ≤ 1 . (8)

III. PHYSICAL MODEL

When a fluorescent specimen is irradiated with a laser source having intensity Ls, the molecules

absorb light and become excited. Their return to the ground state is accompanied by emission

of light with intensity i. Let s denote the index of an excitation source and d the index of the

fluorescent dye. The fluorescent light intensity that is acquired per pixel linearly depends on the

following factors:

• Ls

[
Watt
cm2

]
- maximum excitation intensity of source s.

• texp [sec] - exposure time.

• h [cm] - thickness of the specimen.
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• αd,s [%] - absorbtion coefficinet of fluorophore d under excitation source s. Peak value is

normalized to 1.

• ed [%] - integral of the emission spectrum (peak value is normalized to 1) of fluorophore d

in the emission filter band.

• cd

[
M

pixel

]
- concentration of unbleached fluorophore d.

• Φd [%] - quantum yield for emission of fluorophore d.

• εd [M−1cm−1] - extinction coefficient of fluorophore d.

• τ optics [%] - attenuation constant of the microscope.

• Qcamera [%] - quantum efficiency of the CCD camera.

• kcamera
gray

[
graylevel
electrons

]
- digital output of the CCD camera.

Therefore, the fluorescent intensity that is captured per pixel for dye d, while excitation source

s is active, can be expressed as

ids = kcamera
gray Qcamera τ optics texp h Ls εd αd,s Φd ed cd . (9)

Let D different dyes be present in the specimen. Therefore, using Eq. (9), the fluorescent

intensity that is captured per pixel, while excitation source s is active is

is = kcamera
gray Qcamera τ optics texp h Ls

D∑

d=1

εd αd,s Φd ed cd . (10)

The constant values in Eq. (10) can be combined into a single constant and Eq. (10) can be

written as

is = κsystem Ls

D∑

d=1

εd αd,s Φd ed cd , (11)

where κsystem = kcamera
gray Qcameraτ opticstexph.

The physical properties of fluorescent materials that are available for us are sometimes not

accurate and therefore it is always preferable to work with normalized properties. Therefore,

we define normalized quantities for the source intensities, the quantum efficiency and for the

extinction coefficient as follows:

Lnorm
s max

1...S
{Ls} = Ls ; Φnorm

d max
1...D

{Φd} = Φd ; εnorm
d max

1...D
{εd} = εd. (12)

By substituting Eq. (12) into Eq. (11), we obtain

is = κsystem κmax Lnorm
s

D∑

d=1

εnorm
d αd,s Φnorm

d ed cd , (13)

where κmax = max1...S{Ls}max1...D{εd}max1...D{Φd}.
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IV. DECODING CONCENTRATIONS - UNMIXING

In this section the purpose is to decode the concentration cd for each dye d. We can write

Eq. (13) in a vector form in the following way:

i = κsystem κmax
X c , (14)

where X is the mixing matrix of size S × D which has

xs,d = Lnorm
s εnorm

d αd,s Φnorm
d ed (15)

as its elements. The vector c of length D is the vector of the concentrations. It has cd as its

elements.

Now, let multiple sources be active in each measurement (multiplexing). Using Eqs. (7) and

(14) the vector of multiplexed measurements can be expressed as

a = κsystem κmax
W X c . (16)

We wish to decode the concentrations (vector c) from a vector of multiplexed measurements

a. Therefore, based on Eq. (16) and the fact that WX is generally not square, the estimation of

c(x, y) is computed by

ĉ(x, y) =
1

κsystem κmax

(
W

xT
W

x
)
−1

W
xT

a(x, y) , (17)

where

W
x = WX . (18)

As mentioned before, we do not have very accurate physical properties of the materials we work

with. Thus, the estimation of the concentrations up to a constant value is good enough for the

unmixing purposes. Therefore, we wish to decode

c̃(x, y) =
(
W

xT
W

x
)
−1

W
xT

a(x, y) , (19)

where c̃ = ĉ κsystem κmax.
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V. OPTIMAL EXCITATION MULTIPLEXING

Let statistically independent additive noise be present in the measurements a. It has zero mean

and variance σ2. Following Eq. (19), this noise propagates to c̃(x, y). The mean squared error

(MSE) of î(x, y) at each pixel [1], [2] is

MSE =
σ2

D
trace

[
(WxT

W
x)−1

]
. (20)

In this work, we seek the multiplexing matrix W that minimizes the MSE.

A. Gradient Descent

In this section, the signal-dependency of the noise is not considered. Therefore, σ2 is constant.

Define

M̃SE =
1

D
trace

[
(WxT

W
x)−1

]
. (21)

Our optimization problem is equivalent to

Ŵ = arg min
W

M̃SE . (22)

Using the gradient descent method [4], M̃SE is iteratively minimized as a function of W. In

each iteration n, W is updated by its gradient ∂M̃SE
∂W

:

Wn+1 = Wn − γ
∂M̃SE

∂Wn

(23)

where γ is the parameter controlling the step size. The updated matrix is then projected onto

the constraint in Eq. (8).

B. Calculation of the Gradient

To facilitate Eq. (23), we differentiate M̃SE with respect to W. We define G as the gradient

of M̃SE with respect to W
x. Then, we use G to calculate the partial derivative. From [2],

∂M̃SE

∂Wx
≡ G =

−2

D
(WxT

W
x
W

xT )−1 . (24)

We use the following chain rule [5] in order to calculate the partial derivatives:

∂M̃SE

∂wm,s

=
M∑

p=1

D∑

d=1

∂M̃SE

∂wx
p,d

·
∂wx

p,d

∂wm,s

=
M∑

p=1

D∑

d=1

gp,q ·
∂wx

p,d

∂wm,s

(25)

where gp,q is an element in G and wx
p,d is an element in W

x.
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Next we explain the computation of the derivatives in Eq. (25). Based on Eq. (18)

wx
p,d =

S∑

s=1

wp,sxs,d . (26)

Therefore,

∂wx
p,d

∂wm,s

=





xs,d p = m

0 else
(27)

Substituting Eq. (27) into Eq. (25)

∂M̃SE

∂wm,s

=
D∑

d=1

gm,dxs,d . (28)
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VI. EXCITATION AND EMISSION MULTIPLEXING

A. Case of 3 Excitation Wavelengths and 3 Output Filters

First we consider a special case in which the number of excitation wavelengths is 3, and the

number output filters is also 3. An acquired measurement is denoted by a. An energy i would

have been measured, had only one excitation wavelength band and one output band-pass filter

been used. Let s denote the index of an excitation source and f denote the index of an emission

filter band. An estimate of is,f is denoted by îs,f . For example, i1,2 is the energy measured if

the first excitation wavelength is used while the second output band-pass filter is employed.

Now, let two excitation wavelengths bands and two output band-pass filters be used simul-

taneously, per acquired measurement. For instance, let the fourth measurement, a4, be acquired

using excitation bands 2 and 3, and emission filters 1 and 2. The energies are additive, therefore,

a4 = i2,1 + i3,1 + i2,2 + i3,2 . (29)

Let the fifth measurement, a5, be acquired using excitation bands 2 and 3, and emission filters

1 and 3. This measurement is thus

a5 = i2,1 + i3,1 + i2,3 + i3,3 . (30)

Our purpose is to estimate the vector of individual energies, i, based on the vector of mea-

surements a. In order to estimate energies for three excitation and three emission bands, nine

measurements are needed. We construct the vector of individual energies as,

i =

[
i1,1 i1,2 i1,3︸ ︷︷ ︸

i2,1 i2,2 i2,3︸ ︷︷ ︸
i3,1 i3,2 i3,3︸ ︷︷ ︸

]
T

emission spectrum emission spectrum emission spectrum
under excitation band 1 under excitation band 2 under excitation band 3

, (31)

where T denotes transposition. Due to the linear relations between the measurements a and the

individual energies i, it is convenient to use a matrix form. There are two multiplexing matrices:

one for excitation, W
excite, and the other for emission, W

emit. First, there is excitation, and

therefore W
excite operates on i before W

emit. After the measurements are taken, the vector i

of energies corresponding to the individual excitation and emission bands can be decoded from

the vector of measurements a by inverting the multiplexing matrices.

For each emission band, the energies corresponding to simultaneous active excitations bands

are summed. In measurement a4, (Eq. 29), we first sum the individual energies of the active
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excitation bands (2 and 3), per each active emission filter. We thus construct the forth and fifth

rows of the multiplexing matrix W
excite as




...

i2,1 + i3,1

i2,2 + i3,2
...




=




...

0 0 0 1 0 0 1 0 0

0 0 0 0 1 0 0 1 0
...




︸ ︷︷ ︸
Wexcite




i1,1

i1,2

i1,3

i2,1

i2,2

i2,3

i3,1

i3,2

i3,2




. (32)

After excitation, the energies from different active emission filters are summed to obtain a4.

The active emission filters are f = 1, 2 and therefore we can construct the forth row of the

multiplexing emission matrix, W
emit. This row acts on the result of Eq. (32) to obtain




...

a4
...




=




...

i2,1 + i3,1 + i2,2 + i3,2
...




=




...

0 0 0 1 1 0 0 0 0
...




︸ ︷︷ ︸
Wemit




...

i2,1 + i3,1

i2,2 + i3,2
...




. (33)

To obtain the measurement a5, (Eq. 30), we only change the emission filters that are activated.

Hence, the active emission filters are f = 1, 3 while the active excitation sources are unchanged,

i.e. s = 2, 3. To point to s = 2, 3 while f = 3, the sixth row of W
excite is introduced. To mix
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this results with that of s = 2, 3 while f = 1, the fifth row of W
emit is introduced:




...

a4

a5
...




=




...

0 0 0 1 1 0 0 0 0

0 0 0 1 0 1 0 0 0
...




︸ ︷︷ ︸
Wemit




...

0 0 0 1 0 0 1 0 0

0 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0 1
...




︸ ︷︷ ︸
Wexcite




i1,1

i1,2

i1,3

i2,1

i2,2

i2,3

i3,1

i3,2

i3,3




. (34)

Notice that in Eq. (34), the measurements a4 and a5 differ only by the active emission filters,

while having the same active excitation sources. In this example, we continue the construction

of the multiplexing matrices using two out of three excitation and emission bands in each

measurement. Each time, only two of the excitation sources and emission filters are active.

Recall that after the acquisition of a, the vector i is decoded. This decoding is well-posed

when all the permutations of excitations and emissions are covered. The vector i in Eq. (31) is

constructed such that the first three energies are a response to excitation s = 1, in three different

emission filters (emission spectrum). The next three energies in i are a response to excitation

s = 2 in these three emission filters, etc. Therefore in the first three measurements, a1, a2 and

a3, we change the emission filters, but use the same excitation. The measurements of the last

three components in a are analogous: but with a different active excitation. The values that are
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acquired per pixel are



a1

a2

a3

a4

a5

a6

a7

a8

a9




=




1 1 0

1 0 1

0 1 1

0 0

0

1 1 0

1 0 1

0 1 1

0

0 0

1 1 0

1 0 1

0 1 1







1 0 0 1 0 0 0 0 0

0 1 0 0 1 0 0 0 0

0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 0 0

0 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0 1

1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 1







i1,1

i1,2

i1,3

i2,1

i2,2

i2,3

i3,1

i3,2

i3,3




.

(35)

The first matrix which operates on i is W
excite. The second matrix is W

emit.

B. General Number of Bands

Let S denote the number of excitation wavelength sources and F the number of output

emission single band-pass filters. The vector of energy values at a single pixel is

i =

[
i1,1 i1,2 · · · i1,F︸ ︷︷ ︸

i2,1 · · · i2,F︸ ︷︷ ︸
· · · is,f · · · iS,1 · · · iS,F︸ ︷︷ ︸

]
T

emission spectrum emission spectrum emission spectrum
under excitation band 1 under excitation band 2 under excitation band S

. (36)

The elements of i are denoted by is,f , where s is the index of the excitation source and f is

the index of the emission filter. In Eq. (36), for excitation source s, the emission spectrum is

measured by band-pass filters 1 to F . The consecutive F elements of i correspond to excitation

source s + 1, and the emission spectrum is represented again by band filters 1 to F , etc.

We denote by a(x, y) the vector of multiplexed measurements. The number of acquired

measurements, which is the length of a(x, y) is also SF . The acquired measurements represent

energies. Therefore, i(x, y) and a(x, y) are related by a linear superposition

a(x, y) = W i(x, y) , (37)

where W is the multiplexing weighting matrix. Based on Eq. (37), the estimation of i(x, y) is

computed by inverting the multiplexing matrix W:

î(x, y) = W
−1

a(x, y) . (38)
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Actually, W is a function of two multiplexing matrices.

W = W
emit

W
excite , (39)

where W
emit is the emission weighting matrix and W

excite is the excitation weighting matrix.

Now we present the structure of these weighting matrices.

1) Structure of W
excite: Let us assume for a moment, that just a single emission band is

measured by the system. In this case, the only degree of freedom is the excitation source. Thus

the vector of individual energies is

i =




i1,1

i2,1
...

iS,1




, (40)

of length S. The length of a is also S. Let wex be an S×S weighting matrix of different excitation

sources. Elements of w
ex are denoted by wex

m,s. Each element in row m ∈ [1, . . . , S] represents the

relative power of the excitation source s in measurement m. The power is normalized relatively

to its maximum potential value. For example, if wex
m,s = 0, then excitation wavelength s is turned

off completely at measurement m; if wex
m,s = 1, then this excitation source is at its maximum

power. All excitation sources are turned on with a ratio of their respective maximum power i.e.

0 ≤ wex
m,s ≤ 1 ∀m, s ∈ [1, . . . , S] . (41)

In this case of a single emission band,

W = W
excite = w

ex . (42)

Now, let us consider a more general case, where there are F emission bands (samples of

emission spectra). In this general case, the vectors i and a are of length SF and i is arranged

as in Eq. (36). Let us examine vector elements corresponding to energies in a specific emission

band f but under different excitation sources. As seen in Eq. (36), these elements are interspaced

by F − 1 unrelated elements. Only the elements having a fixed f and corresponding to different

excitations sources need be summed when multiplexing S excitation sources.1 Let p denote the

1For now, there is no emission multiplexing.
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index of measurement number. For example, let ap correspond to a measurement using emission

filter band f = 1:

ap =
S∑

s=1

wex
m,s is,1 . (43)

where the index m is related to p according to:

m =
⌈

p

F

⌉
(44)

Recall that the emission spectrum per excitation is obtained using F measurements, correspond-

ing to F consecutive elements in i. For example, measurement ap+1, which corresponds to

emission band f = 2, is obtained using the same excitation weights

ap+1 =
S∑

s=1

wex
m,s is,2 (45)

Using matrix notation for W
excite, this repetition of excitation is expressed by having the

elements wex
m,s interspaced with zeros, and duplicated F times with a shift. This structure is

expressed by using the Kronecker product [3]

W = W
excite = w

ex ⊗ IF , (46)

where IF is the identity matrix of size F × F and ⊗ denotes the Kronecker product. Eq. (46)

yields

W
excite =




wex
1,1IF · · · wex

1,sIF · · · wex
1,SIF

...
. . . · · · · · ·

...

wex
m,1IF · · · wex

m,sIF · · · wex
m,SIF

... · · · · · ·
. . .

...

wex
S,1IF · · · wex

S,sIF · · · wex
S,SIF




. (47)

A general element {k, l} in W
excite is denoted by wexcite

k,l .

2) Structure of W
emit: Now we deal with both emission and excitation multiplexing. Let w

em
(s)

be an F × F weighting matrix of different emission filter bands, used under a fixed excitation

source s. Elements of w
em
(s) are denoted by wem

(s),r,f . Each element in row r ∈ [1, · · · , F ] represents

the transmittance of the corresponding emission filter f in measurement r. For example, if

wem
(s),r,f = 0, then the filter blocks the energy of band f in measurement r under excitation s; if

wem
(s),r,f = 1, then all the emission energy of this band is transmitted to the detector. In general,

0 ≤ wem
(s),r,f ≤ 1 ∀r, f ∈ [1, . . . , F ] , ∀s ∈ [1, . . . , S] . (48)
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Only the elements corresponding to a fixed s need to be summed, when multiplexing F emis-

sion bands. Consider again the structure of vector i in Eq. (36). All the elements corresponding

to a fixed s reside consecutively in the vector i. Therefore, Wemit is a block matrix. The diagonal

blocks are w
em
(s). The structure of W

emit is thus:

W
emit =




w
em
(1) 0 0 · · · 0

0
. . . 0 · · ·

...
... 0 w

em
(s) 0 0

... 0 0
. . . 0

0 · · · 0 0 w
em
(S)




. (49)

A general element {h, j} in W
emit is denoted by wemit

h,j .

3) Structure of W: Using Eqs. (39,46,47) and (49), we obtain

W =




wex
1,1w

em
(1) · · · wex

1,sw
em
(1) · · · wex

1,Sw
em
(1)

...
. . . · · · · · ·

...

wex
m,1w

em
(m) · · · wex

m,sw
em
(m) · · · wex

m,Sw
em
(m)

... · · · · · ·
. . .

...

wex
S,1w

em
(S) · · · wex

S,sw
em
(S) · · · wex

S,Sw
em
(S)




. (50)

A general element {p, q} in W is denoted by wp,q (p is the index of measurement number).

Each element in Eq. (50) is

wp,q = wex
m,sw

em
(m),r,f (51)

such that:

m =
⌈

p

F

⌉
, s =

⌈
q

F

⌉
(52)

r = p − (
⌈

p

F

⌉
− 1)F , f = q − (

⌈
q

F

⌉
− 1)F (53)

for all p, q ∈ [1, . . . , SF ]. The inverse formulas are

p = r + (m − 1)F , q = f + (s − 1)F (54)

for all m, s ∈ [1, . . . , S] and r, f ∈ [1, . . . , F ].
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VII. OPTIMAL MULTIPLEXING

Similarly to section V let statistically independent additive noise having zero mean and

variance σ2 be present in the measurements a. Following Eq. (38), this noise propagates to

î(x, y). The mean squared error (MSE) of î(x, y) at each pixel [1], [2] is

MSE =
σ2

FS
trace

[
(WT

W)−1
]

. (55)

Hear, we seek the multiplexing matrix W that minimizes the MSE.

A. Gradient Descent

In this section, the signal-dependency of the noise is not considered. Therefore, σ2 is constant.

Define

M̃SE =
1

FS
trace

[
(WT

W)−1
]

. (56)

Our optimization problem is equivalent to

Ŵ = arg min
W

M̃SE . (57)

Using the gradient descent method [4], M̃SE is iteratively minimized as a function of W
excite

and W
emit. In each iteration n, W

excite and W
emit are updated by their gradients ∂M̃SE

∂Wexcite and

∂M̃SE
∂Wemit :

W
excite
n+1 = W

excite
n

− γ
∂M̃SE

∂Wexcite
n

(58)

W
emit
n+1 = W

emit
n

− γ
∂M̃SE

∂Wemit
n

, (59)

where γ is the parameter controlling the step size. The updated matrices are then projected onto

the constraints in Eqs. (41) and (48).

B. Calculation of Gradients

To facilitate Eqs. (58) and (59), we differentiate M̃SE with respect to W
excite and with respect

to W
emit, separately. We define G as the gradient of M̃SE with respect to W. Then, we use G

to calculate the partial derivatives. From [2],

∂M̃SE

∂W
≡ G =

−2

FS
(WT

WW
T )−1 . (60)
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We use the following chain rule [5] in order to calculate the partial derivatives:

∂M̃SE

∂wexcite
k,l

=
∑

p

∑

q

∂M̃SE

∂wp,q

·
∂wp,q

∂wexcite
k,l

=
∑

p

∑

q

gp,q ·
∂wp,q

∂wexcite
k,l

(61)

∂M̃SE

∂wemit
h,j

=
∑

p

∑

q

∂M̃SE

∂wp,q

·
∂wp,q

∂wemit
h,j

=
∑

p

∑

q

gp,q ·
∂wp,q

∂wemit
h,j

, (62)

where gp,q is an element in G. In sections VII-B.1 and VII-B.2 we explain in detail the

computation of the derivatives in Eqs. (61) and (62).

1) Calculation of ∂M̃SE
∂Wexcite : Let us examine the structure of W

excite in Eq. (47). Notice that

the actual number of degree of freedom is less than SF × SF . The reason is that there are

S × S elements that are repeated F times each, while the other elements of W
excite have null

value. Therefore, the formulation in Eq. (61) is both inefficient and redundant. We exploit the

sparsity and redundancy in the structure of W
excite: we can differentiate wp,q in Eq. (61) only

with respect to the elements wex
m,s. We divide G into blocks of F × F sub-matrices G̃

ex

m,s:

G =




G̃
ex

1,1 · · · G̃
ex

1,S

...
. . .

...

G̃
ex

S,1 · · · G̃
ex

S,S




. (63)

Eq. (61) is a summation over element-wise multiplications. Based on Eq. (50), this summation

(Eq. 61) can be expressed as,

∂M̃SE

∂wex
m,s

= trace
[
G̃
ex

m,s(w
em
(s))

T
]

, (64)

for all m, s ∈ [1, . . . S, ]. In view of Eqs. (47) and (61), the gradient of M̃SE with respect to

W
excite can be represented as:

∂M̃SE

∂Wexcite
=




∂M̃SE
∂wex

1,1

IF · · · ∂M̃SE
∂wex

1,S

IF

...
. . .

...

∂M̃SE
∂wex

S,1

IF · · · ∂M̃SE
∂wex

S,S

IF




. (65)

2) Calculation of ∂M̃SE
∂Wemit : Let us examine the structure of W

emit in Eq. (49). Here, like in

W
excite, the actual number of degrees of freedom is less than SF × SF . There are S blocks

in the diagonal having F × F elements each, while other elements have null value. Therefore,

the formulation in Eq. (62) is inefficient. Similarly to the case of W
excite, we can exploit the

sparsity in the structure of W
emit: we can differentiate wp,q in Eq. (62) only with respect to the
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elements wem
(s),r,f . In this case, we divide G into blocks of F × SF sub-matrices G̃

em

s , where s

indexes a block of G:

G =




G̃
em

1

...

G̃
em

s

...

G̃
em

S




. (66)

We also divide W
excite into blocks of F × SF sub-matrices B̃s, where s indexes a block of

W
excite:

W
excite =




B̃1

...

B̃s

...

B̃S




. (67)

Based on Eqs. (50) and (62), we can construct the diagonal blocks of ∂M̃SE
∂Wemit :

∂M̃SE

∂wem
s

= G̃
em

s (B̃s)
T (68)

for s ∈ [1, . . . , S]. Using Eq. (49) the gradient of M̃SE with respect to W
emit is presented as:

∂M̃SE

∂Wemit
=




∂M̃SE
∂wem

1

0 0 · · · 0

0
. . . 0 · · ·

...
... 0 ∂M̃SE

∂wem
s

0 0
... 0 0

. . . 0

0 · · · 0 0 ∂M̃SE
∂wem

S




. (69)

VIII. BLEACHING MODEL

Based on Eq. (9), the emitted energy that is captured per pixel for dye d, while excitation

source s and emission filter f were active, can be expressed as

ids,f = kcamera
gray Qcamera τ optics texp h Ls εd αd,s Φd ed,f cd , (70)

where ed,f [%] is the integral of the emission spectrum of fluorophore d (peak value is normalized

to 1) in the emission filter band f . When multiplexing multiple excitation sources and multiple
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emission filters, multiple measurements need to be acquired for decoding. There are several

limiting processes that can decrease fluorescent emission energy and inhibit the power that is

allowed to irradiate the specimen. In this work, we incorporate into the model the phenomenon

of photobleaching [6].

A. Bleaching in a single dye, under a single excitation source

Chemical alteration which causes photobleaching decreases the fluorophores’ ability to fluo-

resce. The molecular structure of a specific fluorophore and the experiment conditions affect,

in particular, the number of excitation/emission cycles that this fluorophore can undergo before

photobleaching.2 Due to photobleaching, the concentration cd of the molecules that contribute

to the fluorescent emission energy decays in response to the total excitation dosage. This decay

is assumed to have exponential nature [7]. Let P unbleach
d be the probability for not bleaching a

molecule of dye d:

P unbleach
d ≡

cd(t
total)

c0
d

, (71)

where ttotal is the total accumulated time over all prior measurements, cd(t
toatl) is the time de-

pendent expected concentration of fluorescing molecules in the dye, c0
d is the initial concentration

of the specimen at time ttotal = 0. Therefore,

cd(t
total) = c0

d P unbleach
d . (72)

Substituting Eq. (72) into Eq. (70) yields

ibleacheds,f (ttotal) = kcamera
gray Qcamera τ optics texp h Ls εd αd,s Φd ed,f c0

d P unbleach
d . (73)

According to Eq. (73) the energy that is emitted from the specimen depends on the accumulated

exposure time. Therefore, each additional measurement having exposure time texp increases the

total accumulated exposure time by texp. Let p denote the index of measurement number. Up to

this measurement, the total accumulated exposure time is

ttotal = (p − 1)texp . (74)

2Another physical limitation is saturation of the fluorophore. Saturation occurs when all the molecules are already in the

excited state. Then, an increase in excitation energy is not followed by a corresponding increase in fluorescence emission. This

does not impose a practical constraint on the excitation sources. The reason is that in the range of excitation intensities that are

used in biological specimen, saturation is not the limiting factor, but photobleaching.
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As the total accumulated exposure time increases, the number of molecules that are able to

fluoresce is reduced (Eq. 71).

The effective excitation energy falling on the specimen in each measurement depends on the

values of W
excite. Thus, from now on, Ls is the maximum laser intensity available for source s.

The intensity of source s in each measurement equals wex
m,sLs. The total accumulated irradiated

energy up to measurement p is proportional to the sum of the excitation weights over all previous

measurements. Therefore, the total accumulated absorbed energy per molecule of dye d due to

all previously active excitation sources until measurement p, can be presented as

Ed ≡ texp
S∑

s=1

Ls αd,s

p−1∑

p′=1

wex
m,s . (75)

Here kbleach
d [% J−1] is the percent of molecules that undergo bleaching, per absorbed energy.3

In Eq. (75) the index m is related to p′ by m = ⌈ p′/F ⌉, similarly to Eq. (52). Based on Eqs. (74)

and (75) we can express the probability for not bleaching dye d by the time of measurement p

as

P unbleach
d (p) = e−(p−1) Ed kbleach

d . (76)

Using Eqs. (73) and (76) the emitted energy from dye d that is captured in measurement p while

source s and filter band f are active (no multiplexing in this particular measurement) is:

ibleacheds,f (p) = kcamera
gray Qcamera τ optics texp h Ls εd αd,s Φd ed,f c0

d P unbleach
d (p) . (77)

B. Bleaching in multiple dyes, under a single excitation source

Let D different dyes be present in the specimen. Therefore, using Eqs. (73) and (13), the

energy that is emitted per pixel from the specimen is

ibleacheds,f (p) = κsystem κmax Lnorm
s

D∑

d=1

εnorm
d αd,s Φnorm

d ed,f c0
d P unbleach

d (p) . (78)

Using Eqs. (76) and (78), we express the bleaching ratio between ibleacheds,f (p) and ibleacheds,f (p = 1):

Rbleach
s,f (p) =

ibleacheds,f (p)

ibleacheds,f (p = 1)
=

∑D
d=1 εnorm

d αd,s ed,f Φnorm
d c0

d P unbleach
d (p)

∑D
d=1 εnorm

d αd,s ed,f Φnorm
d c0

d

, (79)

where ibleacheds,f (p = 1) is the energy that is captured if no bleaching has occurred. Based on

Eq. (79),

ibleacheds,f (p) = Rbleach
s,f (p) ibleacheds,f (p = 1) . (80)

3While the energy is low.
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C. Bleaching in multiple dyes, and multiplexing

Now, let multiple sources and multiple emission filters be active in each past measurement

p′ < p (multiplexing). The value that is obtained in each measurement ap (an element of a), is

attenuated as a result of bleaching that had been caused by previous measurements p′ < p. To

express this, we replace the elements of vector i in Eq. (37) with the elements ibleacheds,f (p) from

Eq. (80). In this case, each measurement can be expressed as:

ap =
SF∑

q=1

wp,qi
bleached
s,f (p) =

SF∑

q=1

wp,q Rbleach
s,f (p) ibleacheds,f (p = 1) . (81)

Here the indexes {s, f} are related to the index q by Eqs. (52) and (53). According to Eq. (81), in

order to express the attenuation of the energy due to bleaching, we need to multiply each element

in the multiplexing matrix W by the corresponding value of Rbleach
s,f (p). This would result in

the total multiplexing matrix W
bleach, accounting for bleaching. Each element in W

bleach is

wbleach
p,q = wp,q · R

bleach
s,f (p) , (82)

where the indexes {s, f} are related to the index q by Eqs. (52) and (53). Thus,

a(x, y) = W
bleach

i(x, y) . (83)

We wish to decode the energies per wavelength and per emission filter (vector i), as if there

was no bleaching. Therefore, the estimation of i(x, y) is computed by inverting the multiplexing

matrix W
bleach. From Eq. (83) we get

î(x, y) =
(
W

bleach
)
−1

a(x, y) . (84)

According to Eq. (79) the values Rbleach
s,f (p) are calculated using the initial concentrations of

dyes c0
d. The concetrations c0

d differ from pixel to pixel. Therefore, the values Rbleach
s,f (p) are

calculated per pixel. Based on Eq. (82), this results in different multiplexing matrices (Wbleach)

for each pixel. However, it can not be implemented in a real experiment. Therefore, the inital

concentrations c0
d need to be decoded.

IX. DECODING INITIAL CONCENTRATIONS - UNMIXING

In this section the purpose is to decode the initial concentration c0
d for each dye d. Similarly

to Eq. (14)

i = κsystem κmax
X c

0 , (85)
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where X is the mixing matrix of size SF × D which has

xq,d = Lnorm
s εnorm

d αd,s Φnorm
d ed,f (86)

as its elements. The indexes {s, f} are related to the index q by Eqs. (52) and (53) . The vector

c
0 of length D is the vector of the initial concentrations. It has c0

d as its elements.

Based on Eqs. (78,85) and (86), the vector of the captured energies up to measurement p,

i
bleached(p), can be expressed as

i
bleached(p) = κsystem κmax

X
bleach(p) c

0 , (87)

where X
bleach(p) is a mixing matrix accounting for bleaching. Each element in X

bleach(p) equals

xbleach
q,d (p) = xq,d · P

unbleach
d (p) . (88)

We wish to decode the initial concentrations (vector c
0) from a vector of multiplexed mea-

surements a. Using Eqs. (37) and (87) each multiplexed measurement can be expressed as

ap = wp i
bleached(p) = κsystem κmax

wp X
bleach(p) c

0 , (89)

where wp is the p’s row of the multiplexing matrix W. Therefore, we can define a different

multiplexing matrix W
bleach that accounts for bleaching. Each row p in W

bleach is

w
bleach
p = wp X

bleach(p) . (90)

Overall, the vector of multiplexed acquired measurements is

a = κsystem κmax
W

bleach
c

0 . (91)

We wish to decode the concentrations per dye (vector c
0). Therefore, based on Eq. (91) and

the fact that W
bleach is generally not square, the estimation of c

0(x, y) is computed by

ĉ
0(x, y) =

1

κsystem κmax

(
W

bleachT
W

bleach
)
−1

W
bleachT

a(x, y) . (92)

As mentioned before, the estimation of the concentrations up to a constant value is good enough

for the unmixing purposes. Therefore, we wish to decode c̃ = ĉ κsystem κmax.

Once the initial concentrations per pixel are available, we can synthesize the values of energies

that would have been captured per excitation source and emission filter as if there was no bleach-

ing (Eq. 85). This way we obtain an image which has higher SNR and which is componsated

for bleaching. Then, we wish to compare the synthesized results with the ones decoded from
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multiplexed measurements based on Eq. (38) (no bleaching compensation). If the results of both

cases (with bleaching compensation and without) are approximately close, then the conclusion

is that bleaching is not a significant factor and that we can neglect this phenomenon.

X. OPTIMAL MULTIPLEXING WITH BLEACHING

In the case of Eq. (17), the M̃SE is as in [8]:

M̃SE
bleach

=
1

D
trace

[
(WbleachT

W
bleach)−1

]
, (93)

where W
bleach is defined in Eq. (90). We seek the multiplexing matrix W that minimizes this

MSE similarly to section VII.

A. Calculation of Gradients

To facilitate Eqs. (58) and (59) we differentiate M̃SE
bleach

with respect to W
excite and with

respect to W
emit, separately. We define G

bleach as the gradient of M̃SE
bleach

with respect to

W
bleach. Then, we use G

bleach to calculate the partial derivatives. Eq (60) becomes:

∂M̃SE
bleach

∂Wbleach
≡ G

bleach =
−2

D
W

bleach(WbleachT
W

bleach)−2 . (94)

We use the same chain rule as in section VII-B in order to calculate the partial derivatives:

∂M̃SE
bleach

∂wexcite
k,l

=
∑

p

∑

d

gbleachp,d ·
∂wbleach

p,d

∂wexcite
k,l

(95)

∂M̃SE
bleach

∂wemit
h,j

=
∑

p

∑

d

gbleachp,d ·
∂wbleach

p,d

∂wemit
h,j

, (96)

where gbleachp,d is an element in G
bleach and wbleach

p,d is an element in W
bleach. According to

Eqs. (88) and (90)

wbleach
p,d = P unbleach

d (p)
SF∑

q=1

wp,q xq,d . (97)
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1) Calculation of ∂M̃SE
bleach

∂Wexcite : Similarly to section VII-B.1, we exploit the sparsity and redun-

dancy in the structure of W
excite: we can differentiate wbleach

p,d in Eq. (95) only with respect to

the elements wex
m,s. Therefore,

∂M̃SE
bleach

∂wex
m,s

=
∑

p

∑

d

gbleachp,d ·
∂wbleach

p,d

∂wex
m,s

(98)

According Eqs. (75) and (76), P unbleach
d (p) depends on the sum of the excitation weights (wex

m,s)

over all previous measurements. Recall the special structure of W
excite where each excitation

weight wex
m,s, corresponding to excitation source s, is repeated F times for all emission filter

bands (Eq. 47). Therefore, P unbleach
d (p) is derived with respect to wex

m,s. Based on Eqs. (51) and

(97):

∂wbleach
p,d

∂wex
m,s

=
∂P unbleach

d (p)

∂wex
m,s

SF∑

q=1

wem
(m),r,fw

ex
m,sxq,d + P unbleach

d (p)
F∑

f ′=1

wem
(m),r,f ′xq′,d , (99)

where all the indexes are related according to Eqs. (52,53) and (54) and q′ = f + (s − 1)F .

Using Eqs. (76) and (75)

∂P unbleach
d (p)

∂wex
m,s

= −[p − 1]P unbleach
d (p)kunbleach

d

∂Ed(p)

wex
m,s

, (100)

where

∂Ed(p)

∂wex
m,s

=





texpLsαd,s

[
p − 1 −

(⌈
p−1
F

⌉
− 1

)
F

]
wex

m,s p > 1

0 p = 1
. (101)

The structure of ∂M̃SE
bleach

∂Wexcite is similar to the structure of W
excite.

2) Calculation of ∂M̃SE
bleach

∂Wemit : Similarly to the case of W
excite, we can exploit the sparsity in

the structure of W
emit: we can differentiate wbleach

p,d in Eq. (96) only with respect to the elements

wem
(m),r,f . Therefore,

∂M̃SE
bleach

∂wem
(m),r,f

=
∑

p

∑

d

gbleachp,d ·
∂wbleach

p,d

∂wem
(m),r,f

(102)

Here there is no need to derive P unbleach
d (p) with respect to wem

(m),r,f . The reason is that unlike

in the case of excitation, bleaching is not influenced by the emission filters. Thus, based on

Eqs. (51) and (97)
∂wbleach

p,d

∂wem
(m),r,f

= P unbleach
d (p)

S∑

s=1

wex
m,sxq′,d , (103)

where all the indexes are related according to Eqs. (52,53) and (54) and q′ = f + (s− 1)F . The

structure of ∂M̃SE
bleach

∂Wemit is similar to the structure of W
emit.
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XI. CALIBRATION OF P unbleach
d

Before performing the experiment using Eq. (91), the elements of the matrix W
bleach must

be calibrated for each dye independently. According to Eqs. (88) and (90) the only unknown

parameter, which is dependent on p, is P unbleach
d (p). Therefore, we need to calibrate it, in order

to obtain the elements of the matrix W
bleach.

From Eqs. (74,76) and (77), the energy acquired at measurement p for source s, dye d and

filter f is

ibleacheds,f (p) = kcamera
gray Qcamera τ optics texp h Ls εd αd,s Φd ed,f c0

d e−(p−1) Ed kbleach
d . (104)

Let us write Eq. (104) in a compact way combining the various parameters

ibleacheds,f (p) = be−(p−1)β , (105)

where

b = kcamera
gray Qcamera τ optics texp h Ls εd αd,s Φd ed,f c0

d (106)

and

β = Edk
bleach
d . (107)

Our purpose is to perform a calibration experiment to find β and then to extract kbleach
d . Taking

ln of both sides of Eq. (105) yields the following equation for a line, having β as a slope:

ln[ibleacheds,f (p)] = −(p − 1)β + ln(b) , (108)

For each dye, we perform a calibration experiment. We measure ibleacheds,f (p) as a function of

measurement number p while maintaining the same source intensity for all measurements. Then,

we plot the ln of acquired measurements ibleacheds,f (p) as a function of measurement number p

and compute its slop to obtain β. The value of kbleach
d is then computed based on Eq. (107),

where Ed is known from Eq. (75).
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