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Abstract 

The lithography used for 32 nanometers and smaller VLSI process 

technologies restricts the admissible interconnect widths and spaces to very 

few discrete values with some interdependencies, making traditional 

interconnect sizing by continuous-variable optimization techniques 

impossible. Single-net bottom-up power-delay optimization for discrete wire 

widths has been solved and got a lot of attention in literature. This article 

presents a dynamic programming (DP) algorithm for interconnect width and 

space allocation yielding the optimal power-delay tradeoff function. It sets 

the width and spacing of all interconnects simultaneously, thus finding the 

global optimum. The DP algorithm is generic and can handle a variety of 

power-delay objectives, such as total power or delay, or weighted sum of 

both, power-delay product, max delay and alike. The algorithm consistently 

yields more than 10% dynamic power and 5% delay reduction for real data 

blocks designed in 32 nanometer process technology. 

 

1. Introduction and Motivation 

Power and delay of VLSI systems and their tradeoff is important design 

consideration of microprocessors and other products. The traditional pace of 

higher clock rate consumes more power, while recent demand for cool 

products is driving power reduction  [1],  [2]. Unfortunately power and delay 

conflict each other and their tradeoff is delicate and challenging, offering 
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opportunities for new design methods and algorithms for simultaneous 

power reduction and clock speedup.  

 

Few interconnect resizing algorithms were proposed to speedup clock cycle, 

 [3] [4] [5] [6] to reduce dynamic power  [7] [8] [9], and to maintain some 

tradeoff of both  [10]. Most of the techniques assume that interconnect width 

and space can vary in a continuous range called design rules. This 

assumption holds up to 65 nanometers process technologies. First discrete 

design rules appeared in 45 nanometer node for lower metal layers up to 

third metal.  This trend continued for 32 nanometers technology and will 

remain so for 22 nanometers and smaller feature size  [1]. There, more 

discrete geometric rules have shown up, and upper metal layers are also 

subject to discrete design rules. 

 

Modern manufacturing process technologies restrict the admissible width 

and space of interconnect to very few discrete values. Moreover, not all 

width and space combinations are allowed and some interdependencies 

restrictions are imposed on their choice  [1] [11]. Design and optimization 

under such restrictions is a challenge for both circuit designers and CAD.  

 

Interconnect delay and power consumption due to charging and discharging 

of wire capacitances are dominant components  [12] [14]. The split of delay 

between devices and interconnects is discussed in  [13]. While devices 

continue to speedup, interconnects cross-coupling capacitance was growing 

and turns to be the dominant portion of the delay  [15].  Similar trend 

happens in power, where interconnects become the dominant contributor of 

dynamic power consumption  [12]. A typical breakdown of dynamic power 
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dissipation in 65 nanometer high-end microprocessor is illustrated in Fig. 1, 

indicating that half of dynamic power consumed by functional blocks is due 

to cross-coupling capacitance between adjacent wires of same layer. This 

portion is increasing in 32 nanometers and smaller process technologies. 

 

This paper finds the optimal power-delay tradeoff function, obtaining the 

minimum power for a given delay and vice versa. Finding this tradeoff is 

accomplished by a DP algorithm which derives all the feasible power-delay 

pairs that can be obtained such that neither the power nor the delay can be 

further decreased without increasing the counterpart. This is called also 

shape-function, which has been discussed by many papers  [16] [18] [19] for 

the optimization of a single net by sizing its wires and inserting buffers. The 

main limitation of single-net optimization is its blindness to other adjacent 

nets, hence ignoring the cross-capacitance incurring between nets, thus 

yielding sub-optimal results. Moreover, single-net optimization cannot 

account the area resource available at block level, which may lead to non 

feasible sizing. Shape function by similar DP algorithms for floor planning 

has also been widely used  [19] [20]. These DP algorithms are working 

bottom-up  [21] due to the tree structure of the problem. A general approach 

for the solution of such problems by using efficient data structure has been 

lately reported in  [22].  

 

Simultaneous optimization of all nets in order to achieve minimum delay or 

power has been addressed by few papers  [5] [7] [8] [10]. Such optimizations 

account for the block’s area constrained and obtain the provable minimum 

which stems from the convexity of the power and delay expressions. These 

algorithms assume a continuous range of admissible widths and spaces, 
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which are independent of each other, assumptions holding up to 

65nanometer process technologies. 

  

The width and space allocation are naturally mapped into sequential decision 

making for which dynamic programming algorithm is very useful  [21]. The 

development of such algorithm, the proof of its optimality and its 

implementation for real VLSI interconnects is the essence of this paper, the 

rest of which is organized as follows. Section 2 presents interconnects and 

process technology models with their delay and power equations. Section 3 

develops the DP solution and section 4 presents results obtained for real 

industrial design of 32 nanometers process technology.  

 

2. Delay and power of interconnects in a homogeneous bus 

Let nσσ ,...,1 be n signals of a homogeneous bus, and let be their 

corresponding wire segments positioned between two shielding wires 

nII ,...,1

0I and 

 connected to ground, as shown in Fig 2. Let 1+nI 0 , ..., ns s be the spaces 

between the wires and be their widths. It is assumed that wire 

admissible widths and spaces are taken from the following sets: 

nww ,...,1

(2.1) , and { }1 , ...,i ps S S S∈ =

(2.2) . { }1 , ...,i qw W W W∈ =

p and q usually do not exceed 5. Sometimes, a mix of discrete values with 

continuous ranges is allowed, but design practice is usually using only 

limited set of values, turning the problem into pure discrete. Some 

technologies may also prohibit certain width and space combinations by 

imposing interdependencies between the values in (2.1) and (2.2). We’ll 
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ignore such restrictions as those doesn’t affect the optimality of the 

algorithm, but only narrows the solution space. 

 

The delay of signal 
iσ can be approximated by Elmore model  [23] as 

follows: 

(2.3) ( ) ( )( )1 1, , 1 1 ,   1i i i i i i i i i i i i i iD s w s w w w s s i nα β γ δ ε− −= + + + + + ≤ ≤ . 

The coefficients , , ,   and  i i i i iα β γ δ ε  capture process parameters, driver’s 

resistance and capacitive load, and interconnect length, which is fixed in this 

setting. The dynamic switching power consumed by iP iσ is given by: 

(2.4) ( ) ( )1 1, , 1 1 ,   1i i i i i i i i iP s w s w s s i nκ η− −= + + ≤ ≤ . 

The coefficients  capture process parameters, signal activity and 

interconnect length. The parameters of the delay and power expressions are 

fix and not subject to optimization. Delay and power models in (2.3) and 

(2.4) are commonly used in the literature  [24]. 

  and  iκ iη

 

The total sum of delays, maximal delay and total interconnects power 

consumption are given respectively by: 

(2.5) ( ) ( )11
, ,

nsu m

i i i ii
,D s w D s w s−=

= ∑ , and 

(2.6) ( ) ( )m ax

1
1

, m ax , ,i i i i
i n

D s w D s w s−≤ ≤
= . 

 (2.7) ( ) ( 11
, ,

n

i i i ii
),P s w P s w s−=

= ∑ . 

An important property of the objectives in (2.5), (2.6) and (2.7) that makes 

DP algorithm viable is their being monotonic non-decreasing. The 

simultaneous power-delay optimization of (2.5) and (2.7) or (2.6) and (2.7) 
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is guaranteed to yield the power-delay shape function as shown in the 

subsequent. 

 

3 Width and space allocation in homogeneous interconnect bus 

This section develops the computational model of the DP algorithm for the 

homogeneous interconnect bus shown in Fig. 2. We’ll prove that it finds all 

the optimal power-delay combinations and then analyze its complexity.  

 

3.1 Size allocation as a sequential decision problem 

The total width A of the bus in Fig. 2 is a resource being allocated to the 

space and width alternating sequence ( )0 0 1 1: , , , ,..., ,n nw s w s w sω . For the 

sake of convenience an artificial width 0 0w = is introduced, but it doesn’t 

affect the feasibility of the problem and the calculations of power and delay.  

 

Sequenceω needs to satisfy (2.1) and (2.2). It is assumed that a feasible 

allocation does exist, namely there exists at least one allocation satisfying, 

(3.1) . 01 0

n n

ii i
w s

= =
+ =∑ ∑ A

For a subsequence ( )0 0 1 1, , , ,... ,j jw s w s w s ω⊂  we define 

(3.2) ( )0.. 11
, ,j

jsum

i i i ii
D D s w s−=

= ∑ , 

(3.3) ( ) ( )0..

m ax

1
1

0, m ax , ,j i i i i
i j

D j D s w−≤ ≤
= s

i

, 

(3.4) ( )0 .. 11
, ,

j

j i i ii
P P s w s−=

= ∑ . 

Equations (2.5), (2.6) and (2.7) can be calculated incrementally by (3.2), 

(3.3) and (3.4), respectively, which at nj =  they are coinciding. 
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Cumulated sum of delay in (3.2) and max delay in (3.3) are similar in terms 

of monotony and independence of their past calculation. Replacing the 

operations and  by , we obtain delay and power that are getting 

updated step-by-step as follows: 

+ max ⊕

(3.5) ( )0.. 0.. 1 1 , ,j j j j jD D D s w s− −= ⊕ j

j

, 

(3.6) . ( )0 .. 0 .. 1 1 , ,j j j j jP P P s w s− −= +

At  the objectives (2.5), (2.6) and (2.7) are completely defined.  nj =

 

Objective functions satisfy the following properties: 

Property 1: The functions in (3.5) and (3.6) are monotonic non-decreasing in 

allocation step j .  

Property 2: For any1  there exists: 1

n

n

j n≤ ≤ −

(3.7) , 0.. 0.. 1..n j jD D D += ⊕

(3.8) . 0 .. 0 .. 1 ..n j jP P P += +

Property 3: After first j allocations are done, optimization of the rest 

allocations depends only on  and 1n + − j js ( ).. 0

j j

0j n ii i i
A A w

= =
= − +∑ ∑ s

j

 which is 

available for the rest  wires, and its optimization is independent of 

how the first 

1n + −

j allocation decisions have been made. 

  

Let  be the set of all possible allocations and define a partial order as 

follows: 

Ω

Definition 1 (dominancy): Allocation ( )0 0: , ,..., ,j jw s w sω′ ′ ′ ′ ′ ∈Ω  is dominating 

allocation ( )0 0: , ,..., ,
j j

w s w sω′′ ′′ ′′ ′′ ′′ ∈Ω if: 

1. ( ) ( )∑∑∑∑ ====
′′+′′−≥′+′−

j

i i

j

i i

j

i i

j

i i wsAwsA
0000

,  
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2. , and jj ss ′′≥′

3. ( ) ( ) ( ) ( )0 . . 0 . . 0 . . 0 . .j j j jD D P Pω ω ω′ ′′ ′≤ ∧ ≤ ω ′′ . 

It follows that ω′′cannot yield better solution than ω ′  does and can 

therefore be safely dropped from any further consideration of optimal 

solution. Sequence ω′′ is called redundant.   

 

It follows that for every pair of ..  and  j n jA s there is a set of non-redundant 

( ) ( ){ }.. .., , ,k j n j k j n j
k

P A s D A s⎡
⎣

⎤
⎦

)

 power-delay pairs.  Therefore, the triple 

( ) (.. .. .., , , , ,j n j j n j j n jA s P A s D A s⎡⎣ ⎤⎦  fully characterizes the first j allocations with their 

outcoming power and delay, and is the only information required to yield the 

optimal allocation of all wires. We code such triple in a so called state 

defined as follows: 

n

Definition 2 (state): A triple ( ) ( ).. .. .., , , , ,j n j j n j j n jA s D A s P A s⎡ ⎤⎣ ⎦  is called state. 

 

A state is feasible if . It follows by definition that (all area 

is consumed). A stage  is the set of all feasible non-redundant states 

obtained by all possible size allocations of the first wires. The states of a 

stage are totally ordered by lexicographic comparison of their A, s and P. 

Such order is important for efficient insertion, deletion and redundancy 

check of states in a stage, allowing to access states in logarithmic time with 

appropriate data structure. It follows from non-redundancy that ordering by 

P implies reverse order by D. 

.. 0
j n

A ≥ .. 0n nA =

jΛ

j
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3.2 State augmentation and satisfaction of optimality  

Size allocation proceeds from jI  to 1jI +  as follows. Stage is initially 

empty. Every state of is attempted for augmentation by every possible 

width and space pair 

1j+Λ

jΛ

( ),w s  satisfying (2.1) and (2.2). Only feasible 

augmentations satisfying ( )1.. .. 0j n j nA A w s+ = − + ≥  are considered and a new 

state ( ) ( )1.. 1.. 1.., , , , ,j n j n j nA s D A s P A s+ + +
⎡ ⎤⎣ ⎦ is thus defined. 

 

If no state with the pair 
1..  and  j nA s+ exists yet in 1j+Λ  a new state is added 

to . Otherwise, if it is found to dominate an already existing state 

of , the latter is deleted, while a new one is added. If it is found 

redundant then it is ignored. In this way 

1j+Λ

1j+Λ

1j+Λ is built incrementally and 

maintains only non-redundant states, until all state augmentation of  are 

consumed. Fig. 3 illustrates the progression from 

jΛ

jΛ to 1j+Λ .  

 

Theorem 1 (optimality): Stage n
Λ of the DP algorithm contains all the 

feasible non-redundant, and hence optimal, power-delay pairs that can be 

obtained by any width and space allocation to n wires. 

 

Proof: The proof proceeds in two steps. First we’ll show that is non 

empty. Then we’ll show it must contain all optimal solutions. Assume in 

contrary that is empty. Let

n
Λ

n
Λ ( )0 0 1 1: , , , ,..., ,n nw s w s w sω  be a feasible 

allocation sequence. Let ( )0 0 1 1: , , , ,..., ,j jw s w s w sω ω′ ⊂  be the longest sub 
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sequence yielding a state jλ∈Λ  and ( )0 0 1 1 1 1: , , , ,..., , , ,j j j jw s w s w s w sω ω+ +′′ ⊂  

does not yield a state in 1j+Λ . Such ω ′ must exist since ( )0 0,w s ω⊂  

obviously yields some state in 0Λ .  Augment now jλ∈Λ by the 

pair ( )11, ++ jj sw , which is definitely feasible since
1

0

j

i ii
w s A

+

=
+ ≤∑  by 

assumption. This yields a state in 1j+Λ , a contradiction to ω ω′ ⊂  being the 

longest subsequence having a corresponding state.  

 

Having proved that n
φΛ ≠ , we’ll show similarly that any feasible non-

redundant power-delay pair of a complete feasible allocation is obtained by 

some state in . Assume in contrary that nΛ * *,P D⎡ ⎤⎣ ⎦  is non-redundant power-

delay obtained by  but doesn’t yield a state 

in . Let 

(
0 0 1 1

* * * * * * *: , , , , ..., ,
n n

w s w s w sω )

n
Λ ( )

0 0 1 1

* * * * * * *: , , , ,..., ,
j jw s w s w s

*ω ω′ ⊂ be the longest sub sequence 

yielding a state in jΛ , while the subsequence 

( )
0 1 1 2 1

* * * * * * * * *

1: , , , ,..., , , ,
j jj j

s w s w w s w sω
+ +

″
 does not yield a state in 1j+Λ . 

Augmentation by ( )* *

1 1,j jw s+ + results in same contradiction as before.■ 

 

Knowing that DP algorithm yields all power-delay non-redundant pairs, they 

define the power-delay envelop of the bundle. One can plot the power-delay 

curve as shown in Fig. 4. This curve is by the very definition of dominancy 

monotonic increasing in one parameter and monotonic decreasing in the 

other one. The curve divides the first quadrant of the power-delay plane into 

an upper-right region where all feasible power-delay solution exist and into 

lower-left portion where no feasible solution exists.  Such envelop has the 
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same nature of the well known shape-function being dealt by the bottom-up 

buffer insertion and wire resizing algorithms  [16] [17] [18].  

 

The function plotted in Fig. 4 provides all the data needed to allocate the 

width and space to the wires of the bus. In order to enable sizing retrieval, 

the DP algorithm stores all the feasible non-redundant states at any 

stage . In addition, any new state at stage ,   1i i nΛ ≤ ≤
1j+Λ points back to the 

state in from which it was augmented. The back pointer stores the width 

and space that have been allocated at the augmentation. We can decide on 

the best power-delay tradeoff among all pairs of 

jΛ

nΛ and then retrieve the 

entire widths and spaces by backward traversals. Starting from ( ),
n n

w s that 

correspond to the desired power-delay solution, we obtain with the aid of the 

above pointers all , until ( ), ,   i iw s n i> ≥ 1 ( )0 0,w s is reached. 

 

3.3 Generalization of power-delay optimization 

We showed how a DP algorithm finds the power-delay Pareto curve 

representing optimal design. Some papers proposed to minimize a weighted 

sum of the power and delay  [10] or minimize a product of their powers  [25]. 

It is a straight forward consequence that any two-variable function that is 

monotonic increasing in any of its variables will achieve its minimum at a 

point of the power-delay shape-function. Functions as f P Dα β= +  

and f P D
α β= , where 0  and  >0α β> , are examples. s 

 

 11



Theorem 2: A power-delay function ( ),f P D  which is monotonic increasing 

in and achieves its minimum on the boundary of the power-delay feasible 

region. 

P D

 

Proof: In contrary, if it was not the case then ( ),f P D would have been 

minimized at some internal point of the power-delay feasible region, 

corresponding to redundant power-delay pair, say ( ),P D′ ′ . Therefore there 

exists a power-delay point ( ),P D′′ ′′  achievable by the DP algorithm 

satisfying . It follows by elementary calculus that 

is monotonic decreasing along the closed interval connecting the 

internal point (  with the point 

  and  P P D D′′ ′ ′′ ′< <

)

)

( ,f P D

,P D′ ′ ( ),P D′′ ′′ . Therefore, ( ) (, ,f P D f P D′′ ′′ ′ ′< ) , 

hence a contradiction. ■ 

 

3.4 Time and memory bounds of DP algorithm 

The calculation of any of the objective functions in (3.5) and (3.6) requires 

time. It follows from (2.1) and (2.2) that a state is attempted for 

augmentation by  width-space combinations.  The number of states at a 

stage is factored by the number of distinct 

( )1O

p q×

( ).. 0 0

j j

j n ii i iA A w
= =

= − +∑ ∑ s  

values. Let  denote the greatest common divisor of the values 

inW given in (2.1) and (2.2), so 

gcd

S∪ A gcd bounds the number of distinct 

values of . In modern VLSI processes  is typically half of 

minimum feature size.  The area A of a homogeneous bus containing n wires 

is proportional to n, hence the number of distinct values of

( njA , ) gcd

..j n
A  is . ( )O n
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Let us consider the number of distinct non-redundant (essential) power-delay 

pairs ( ) ( ).. .., , ,j n j nD A s P A s⎡⎣ ⎤⎦  resulted for certain ..  and  j nA s . Power and 

delay of a wire depend on two factors. The first involves process technology, 

drivers and receivers parameters, and wire length.  These are not subject to 

change by optimization. The other involves wire width which has p values 

and left and right spaces which has q values each. Consequently, a wire can 

contribute to the total sum ( )2
O p q× distinct power and delay values. The 

objectives functions (3.5) and (3.6) are non-decreasing, and may increase at 

any augmentation, so we wish to know how many distinct power-delay 

values can result in. If the power and delay values of a wire were arbitrary 

real number, the number of distinct sums could grow exponentially with n.  

Fortunately, the number of distinct power-delay values can be bounded 

by n ε as described below, where 1ε <<  is arbitrarily small accuracy 

parameter. 

 

Let  ( ) be the maximal power (delay) resulted by a wire. We define 

a power (delay) resolution as 

maxP maxD

maxPε  ( maxDε ), and snap every calculated power 

(delay) to the nearest integral multiplication of this resolution. The addition 

of power (delay) values will be then closed by definition, taking values from 

the set { }max 1k P k nε ε≤ ≤  ({ }max 1k D k nε ε≤ ≤ ), whose size is n ε . It follows 

that there are at most n ε distinct non-redundant power-delay pairs since the 

very definition of non-redundancy implies reciprocal monotony of power 

and delay. Given [ ]1 1,P D  and [ ]2 2,P D  two non-redundant power-delay pairs, 

there exists . Power and delay accuracy can be controlled by 

setting

1 2 1P P D D> ⇔ < 2

ε to any desired small value. Notice also that the error occurring at a 
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wire is randomly negative or positive due to snapping to nearest quantized 

value, so cumulative error stays very close to zero in practice.  

 

A new state is checked for redundancy. We store all the states of a stage in 

an ordered balanced tree. With the above counting arguments, a stage has a 

total of ( ) ( ) ( )2
O n q O n O qnε ε× × =  distinct 

states ( ) ( )( ) ( )( ), , , , , , , ,A j n s D A j n s P A j n s⎡⎣ ⎤⎦ . The insertion of a new state 

with its redundancy test consumes therefore ( )logO n  time. In conclusion 

there are  stages, each has n ( )2
O qn ε states and each state is attempted 

p q× times for augmentation, where an augmentation consumes  

time. We summarize in the following: 

( )logO n

 

Theorem 3 (time and storage bounds): Given -signal homogeneous bus 

and process technology having 

n

p  admissible widths and  admissible 

spaces, the time complexity of DP algorithm to find width and space 

allocation yielding the optimal power-delay curve in accuracy 

q

ε  is bounded 

by ( 2 3 logO pq n n )ε . The storage is bounded by ( )3
O qn ε . 

 

4 Implementation and experimental results 

The DP algorithm described in Section 3 was coded in C++ under 

OpenAccess environment. It was experimented on industrial blocks used in 

full-custom processor design in 32nm process technology. Our algorithm 

was employed in an attempt to reduce the delay and dynamic power by 

resizing of interconnects and their spacing. Signals such as power rails and 

clocks were not touched and their position remained unchanged. 
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We then tweaked the DP algorithm in order to maximize power and delay in 

order to explore where the commercial routing tool in use is falling in the 

power-delay envelop obtained by all wire sizing and spacing allocations as 

shown in Fig. 4. The exploration of maximum power-delay provides some 

idea about the entire power-delay envelop that can be achieved by resizing 

and re-spacing of interconnecting wires. Such data is important since in 

some sense it tells about the quality of the standard routing tool and the 

potential to improve it by algorithms as developed in this paper. 

 

Power-delay envelop exploration can be easily done by reversing the 

dominancy in Definition 1. The inequalities in 2 and 3 are reversed, so 

maximum is obtained instead of minimum.  

 

5 Conclusion and further research 

The algorithm developed in this paper has been deployed for the benefit of 

functional blocks which use lower level metal layers, which in 32 nanometer 

and smaller feature size are obeying only discrete value design rules. As 

process technology will progress to 22 nanometer feature size, few upper 

level layers will turn to discrete rules as well, so the application of DP 

algorithm can cover full-chip routing as well and further power-delay 

reduction can be achieved. 

 

This paper dealt with the blocks where the interconnecting wires aimed at 

optimization belong to one level of hierarchy, namely, data for optimization 

is flat. In custom design however, some of the blocks such those of data-path 

and register-file are bit oriented and may contain many level of hierarchy. 
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DP paradigm well suits flat routing, and its enhancement for hierarchical 

routing is of high benefit and left as an open question whether it is possible. 
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Figure 1: Breakdown of dynamic power into local blocks and global 

interconnects. As can be seen, the cross capacitances between local wires in 

functional blocks contribute 40% of the total dynamic power, hence  have 

high potential for power save. 
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Figure 2: Fundamental cross coupling and ground capacitance model. Wires 

run in parallel and the entire bundle is shielded on both sides by wires 

connected to ground. 
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Figure 3: The progression of DP from stage to stage  by state 

augmentation. Left circles represent states of stage 

j 1j +

jΛ . The solid outgoing 

arcs represent allocation of a width to wire w
1jI +  and the successive space 

between s
1jI + and

2jI +  yielding feasible states at stage
1j+Λ . Dashed arcs 

represent non feasible state augmentations. 
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Figure 4: Power-delay design envelop. Circles represent all feasible width 

and space feasible allocations yielding some power-delay. The red circles 

are the optimal power-delay results, connected by a curve called shape-

function. The green circles are the worst power-delay results. 
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