

 IRWIN AND JOAN JACOBS
CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

Dynamic Atomic Storage
Without Consensus

Marcos K. Aguilera, Idit Keidar,
Dahlia Malkhi, Alexander Shraer

CCIT Report #731
May 2009

Electronics
Computers
Communications

DEPARTMENT OF ELECTRICAL ENGINEERING
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL

Dynamic Atomic Storage Without Consensus

Marcos K. Aguilera∗ Idit Keidar† Dahlia Malkhi∗ Alexander Shraer†

June 2, 2009

Abstract

This paper deals with the emulation of atomic read/write (R/W) storage in dynamic asynchronous mes-
sage passing systems. In static settings, it is well known that atomic R/W storage can be implemented in a
fault-tolerant manner even if the system is completely asynchronous, whereas consensus is not solvable.
In contrast, all existing emulations of atomic storage in dynamic systems rely on consensus or stronger
primitives, leading to a popular belief that dynamic R/W storage is unattainable without consensus.

In this paper, we specify the problem of dynamic atomic read/write storage in terms of the interface
available to the users of such storage. We discover that, perhaps surprisingly, dynamic R/W storage
is solvable in a completely asynchronous system: we present DynaStore, an algorithm that solves this
problem. Our result implies that atomic R/W storage is in fact easier than consensus, even in dynamic
systems.

1 Introduction
Distributed systems provide high availability by replicating the service state at multiple processes. A fault-
tolerant distributed system may be designed to tolerate failures of a minority of its processes. However,
this approach is inadequate for long-lived systems, because over a long period, the chances of losing more
than a minority inevitably increase. Moreover, system administrators may wish to deploy new machines due
to increased workloads, and replace old, slow machines with new, faster ones. Thus, real-world distributed
systems need to be dynamic, i.e., adjust their membership over time. Such dynamism is realized by providing
users with an interface to reconfiguration operations that add or remove processes.

Dynamism requires some care. First, if one allows arbitrary reconfiguration, one may lose liveness.
For example, say that we build a fault tolerant solution using three processes, p1, p2, and p3. Normally,
the adversary may crash one process at any moment in time, and the up-to-date system state is stored at a
majority of the current configuration. However, if a user initiates the removal of p1 while p1 and p2 are the
ones holding the up-to-date system state, then the adversary may not be allowed to crash p2, for otherwise
the remaining set cannot reconstruct the up-to-date state. Providing a general characterization of allowable
failures under which liveness can be ensured is a challenging problem.

A second challenge dynamism poses is ensuring safety in the face of concurrent reconfigurations, i.e.,
when some user invokes a new reconfiguration request while another request (potentially initiated by an-
other user) is under way. Early work on replication with dynamic membership could violate safety in such
cases [7, 22, 9] (as shown in [27]). Many later works have rectified this problem by using a centralized
sequencer or some variant of consensus to agree on the order of reconfigurations (see discussion of related
work in Section 2).

∗Microsoft Research Silicon Valley, {aguilera, dalia}@microsoft.com
†Department of Electrical Engineering, Technion. {idish@ee, shralex@tx}.technion.ac.il

1

lesley
Text Box
CCIT REPORT #731 May 2009

Interestingly, consensus is not essential for implementing replicated storage. The ABD algorithm [2]
shows that atomic read/write (R/W) shared memory objects can be implemented in a fault-tolerant manner
even if the system is completely asynchronous. Nevertheless, to the best of our knowledge, all previous
dynamic storage solutions rely on consensus or similar primitives, leading to a popular belief that dynamic
storage is unattainable without consensus.

In this work, we address the two challenges mentioned above, and debunk the myth that consensus
is needed for dynamic storage. We first provide a precise problem specification of a dynamic problem.
To be concrete, we focus on atomic R/W storage, though we believe the approach we take for defining a
dynamic problem can be carried to other problems. We then present DynaStore, a solution to this problem
in an asynchronous system where processes may undetectably crash, so that consensus is not solvable. We
note that our solution is given as a possibility proof, rather than as a blueprint for a new storage system.
Given our result that consensus-less solutions are possible, we expect future work to apply various practical
optimizations to our general approach, in order to build real-world distributed services. We next elaborate
on these two contributions.

Dynamic Problem Specification

In Section 3, we define the problem of an atomic R/W register in a dynamic system. Clearly, the progress of
such service is conditioned on certain failure restrictions in the deployed system. It is well understood how
to state a liveness condition of the static version of this problem: t-resilient R/W storage guarantees progress
if fewer than t processes crash. For an n-process system, it is well known that t-resilient R/W storage exists
when t < n/2, and does not exist when t ≥ n/2 [2].

The liveness condition of a dynamic system needs to also capture changes introduced by the user. Sup-
pose the system initially has four processes {p1, p2, p3, p4} in its configuration (also called view). Initially,
any one process may crash. Suppose that p1 crashes. Then, additional crashes would lead to a loss of live-
ness. Now suppose the user requests to reconfigure the system to remove p1. While the request is pending,
no additional crashes can happen, because the system must transfer the up-to-date state from majority of the
previous view to a majority of the new one. However, once the removal is completed, the system can tolerate
an additional crash among the new view {p2, p3, p4}. Overall, two processes may crash during the execu-
tion. Viewed as a simple threshold condition, this exceeds a minority threshold, which contradicts lower
bounds. However, the liveness condition we will formulate will not be in the form of a simple threshold;
rather, we require crashes to occur gradually, and adapt to reconfigurations.

A dynamic system also needs to support additions. Suppose the system starts with three processes
{p1, p2, p3}. In order to reconfigure the system to add a new process p4, a majority of the view {p1, p2, p3}
must be alive to effect the change. Additionally, a majority of the view {p1, p2, p3, p4} must be alive to hold
the state stored by the system. Again, the condition here is more involved than a simple threshold. That is,
if a user requests to add p4, then while the request is pending, a majority of both old and new views need to
be alive. Once the reconfiguration is completed, the requirement weakens to a majority of the new view.

In order to provide a protocol-independent specification, we must expose in the model the completion
of reconfigurations. Our service interface therefore includes explicit reconfig operations that allow the user
to add and remove processes. These operations return OK when they complete. Given these, we state the
following requirement for liveness for dynamic R/W storage: At any moment in the execution, let the current
view consist of the initial view with all completed reconfiguration operations (add/remove) applied to it. We
require that the set of crashed processes and those whose removal is pending be a minority of the current
view, and of any pending future views. Moreover, like previous reconfigurable storage algorithms [19, 11],
we require that no new reconfig operations will be invoked for “sufficiently long” for the started operations

2

to complete. This is formally captured by assuming that only a finite number of reconfig operations are
invoked.

Note that a dynamic problem is harder than the static variant. In particular, a solution to dynamic R/W
is a fortiori a solution to the static R/W problem. Indeed, the solution must serve read and write requests,
and in addition, implement reconfiguration operations. If deployed in a system where the user invokes only
read and write requests, and never makes use of the reconfiguration interface, it must solve the R/W problem
with precisely the same liveness condition, namely, tolerating any minority of failures. Similarly, dynamic
consensus is harder than static consensus, and is therefore a fortiori not solvable in an asynchronous setting
with one crash failure allowed. As noted above, in this paper, we focus on dynamic R/W storage.

DynaStore: Dynamic Atomic R/W Storage

Our algorithm does not need consensus to implement the reconfiguration operations. Intuitively, previous
protocols used consensus, virtual synchrony, or a sequencer, in order to provide processes with an agreed-
upon sequence of configurations, so that the membership views of processes do not diverge. The key obser-
vation in our work is that it is sufficient that such a sequence of configurations exists, and there is no need
for processes to know precisely which configurations belong to this sequence, as long as they have some
assessment which includes these configurations, possibly in addition to others which are not in the sequence.
In order to enable this property, in Section 4 we introduce weak snapshots, which are easily implementable
in an asynchronous system. Roughly speaking, such objects support update and scan operations accessible
by a given set of processes, such that scan returns a set of updates that is guaranteed to include the first
update made to the object (but the object cannot identify which update that is).

In DynaStore, which we present in Section 5, each view w has a weak snapshot object ws(w), which
stores reconfiguration proposals for what the next view should be. Thus, we can define a unique global
sequence of views, as the sequence that starts with some fixed initial view, and continues by following the
first proposal stored in each view’s ws object. Although it is impossible for processes to learn what this
sequence is, they can learn a DAG of views that includes this sequence as a path. They do this by creating
a vertex for the current view, querying the ws object, creating an edge to each view in the response, and
recursing. Reading and writing from a chain of views is then done in a manner similar to previous protocols,
e.g., [19, 11, 4, 23, 24].

Summary of Contributions

In summary, our work makes two contributions.

• We define a dynamic R/W storage problem that includes a clean and explicit liveness condition, which
does not depend on a particular solution to the problem. The definition captures a dynamically chang-
ing resilience requirement, corresponding to reconfiguration operations invoked by users. The ap-
proach easily carries to other problems, such as consensus. As such, it gives a clean extension of
existing static problems to the dynamic setting.

• We discover that dynamic R/W storage is solvable in a completely asynchronous system with fail-
ures, by presenting a solution to this problem. Along the way we define a new abstraction of weak
snapshots, employed by our solution, which may be useful in its own right. Our result implies that
the dynamic R/W is weaker than the (dynamic) consensus problem, which is not solvable in this
setting. This was known before for static systems, but not for the dynamic version. The result coun-
ters the intuition that emanates from all previous dynamic systems, which used agreement to handle
configuration changes.

3

2 Related Work

Several existing solutions can be viewed in retrospect as solving a dynamic problem. Most closely related
are works on reconfigurable R/W storage. RAMBO [19, 11] solves a similar problem to the one we have
formulated above; other works [21, 23, 24] extend this concept for Byzantine fault tolerance. All of these
works have processes agree upon a unique sequence of configuration changes. Some works use an auxiliary
source (such as a single reconfigurer process or an external consensus algorithm) to determine configura-
tion changes [17, 10, 19, 11, 21, 24], while others implement fault-tolerant consensus decisions on view
changes [4, 23]. In contrast, our work implements reconfigurable R/W storage without any agreement on
view changes.

Since the closest related work is on RAMBO, we further elaborate on the similarities and differences
between RAMBO and DynaStore. In RAMBO, a new configuration can be proposed by any process, and
once it is installed, it becomes the current configuration. In DynaStore, processes suggest changes and
not configurations, and thus, the current configuration is determined by the set of all changes proposed by
complete reconfigurations. For example, if a process suggests to add p1 and to remove p2, while another
process concurrently suggests to add p3, DynaStore will install a configuration including both p1 and p3

and without p2, whereas in RAMBO there is no guarantee that any future configuration will reflect all three
proposed changes, unless some process explicitly proposes such a configuration. In DynaStore, a quorum
of a configuration is any majority of its members, whereas RAMBO allows for general quorum-systems,
specified explicitly for each configuration by the proposing process. In both algorithms, a non-faulty quorum
is required from the current configuration. A central idea in allowing dynamic changes is that a configuration
can be replaced, after which a quorum of the old configuration can crash. In DynaStore, a majority of a
current configuration C is allowed to crash as soon as C is no longer current. In RAMBO, two additional
conditions are needed: C must be garbage-collected at every non-faulty process p ∈ C, and all read and
write operations that began at p before C was garbage-collected must complete. Thus, whereas in DynaStore
the conditions allowing a quorum of C to fail can be evaluated based on events visible to the application, in
RAMBO these conditions are internal to the algorithm. Note that if some process p ∈ C might fail, it might
be impossible for other processes to learn whether p garbage-collected C or not. Assuming that all quorums
required by RAMBO and DynaStore are responsive, both algorithms require additional assumptions for
liveness. In both, the liveness of read and write operations is conditioned on the number of reconfigurations
being finite. In addition, in both algorithms, the liveness of reconfigurations does not depend on concurrent
read and write operations. However, whereas reconfigurations in RAMBO rely on additional synchrony or
failure-detection assumptions required for consensus, reconfigurations in DynaStore, just like its read and
write operations, only require the number of reconfigurations to be finite.

View-oriented group communication systems provide a membership service whose task is to maintain
a dynamic view of active members. These systems solve a dynamic problem of maintaining agreement
on a sequence of views, and additionally provide certain services within the members of a view, such as
atomic multicast and others [5]. Maintaining agreement on group membership in itself is impossible in
asynchronous systems [3]. However, perhaps surprisingly, we show that the dynamic R/W problem is
solvable in asynchronous systems. This appears to contradict the impossibility but it does not: We do not
implement group membership because our processes do not have to agree on and learn a unique sequence
of view changes.

The State Machine Replication (SMR) approach [14, 25] provides a fault tolerant emulation of arbitrary
data types by forming agreement on a sequence of operations applied to the data. Paxos [14] implements
SMR, and allows one to dynamically reconfigure the system by keeping the configuration itself as part of

4

the state stored by the state machine. Another approach for reconfigurable SMR is to utilize an auxiliary
configuration-master to determine view changes, and incorporate directives from the master into the repli-
cation protocol. This approach is adopted in several practical systems, e.g., [16, 20, 26], and is formulated
in [15]. Naturally, a reconfigurable SMR can support our dynamic R/W memory problem. However, our
work solves it without using the full generality of SMR and without reliance on consensus.

An alternative way to break the minority barrier in R/W emulation is by strengthening the model using a
failure detector. Delporte et al. [8] identify the weakest failure detector for solving R/W memory with arbi-
trary failure thresholds. Their motivation is similar to ours– solving R/W memory with increased resilience
threshold. Unlike our approach, they tackle more than a minority of failures right from the outset. They
identify the quorums failure detector as the weakest detector required for strengthening the asynchronous
model, in order to break the minority resilience threshold. Our approach is incomparable to theirs, i.e., our
model is neither weaker nor stronger. On the one hand, we do not require a failure detector, and on the
other, we allow the number to failures to exceed a minority only after certain actions are taken. Moreover,
their model does not allow for additions as ours does. Indeed, our goal differs from [8], namely, to model
dynamic reconfiguration in which resilience is adaptive to actions by the processes.

3 Dynamic Problem Definition

The goal of our work is to implement a read/write service with atomicity guarantees. The storage service
is deployed on a collection of processes that interact using asynchronous message passing. We assume an
unknown, unbounded and possibly infinite universe of processes Π. Communication channels between all
processes are reliable. Below we revisit the definition of reliable links in a dynamic setting.

The service stores a value v from a domain V and offers an interface for invoking read and write op-
erations and obtaining their result. Initially, the service holds a special value ⊥ 6∈ V . The sequential
specification for this service is as follows: In a sequence of operations, a read returns the latest written value
or ⊥ if none was written. Atomicity [13] (also called linearizability [12]) requires that for every execution,
there exist a corresponding sequential execution, which conforms with the operation precedence relation,
and which satisfies the sequential specification.

In addition to the above API, the service exposes an interface for invoking reconfigurations. We define

Changes
def
= {Remove, Add}×Π. We informally call any subset of Changes a set of changes. A view is a set

of changes. A reconfig operation takes as parameter a set of changes c and returns OK. We say that a change
ω is proposed in the execution if a reconfig(c) operation is invoked s.t. ω ∈ c. A process pi is active if
pi does not crash, some process invokes a reconfig operation to add pi, and no process invokes a reconfig
operation to remove pi. We do not require all processes in Π to start taking steps from the beginning of the
execution, but instead we assume that if pi is active then pi takes infinitely many steps (if pi is not active
then it may stop taking steps).

For a set of changes w, the removal-set of w, denoted w.remove, is the set {i | (Remove, i) ∈ w}. The
join set of w, denoted w.join, is the set {i | (Add, i) ∈ w}. Finally, the membership of w, denoted w.members,
is the set w.join\w.remove.

At any time t in the execution, we define V (t) to be the union of all sets c s.t. a reconfig(c) completes by
time t. Note that removals are permanent, that is, a process that is removed will never again be in members.
More precisely, if a reconfiguration removing pi from the system completes at time t0, then pi is excluded
from V (t).members, for every t ≥ t0

1. We assume a non-empty view V (0) which is initially known to

1In practice, one can add back a process by changing its id.

5

every process in the system and we say, by convention, that a reconfig(V (0)) completes by time 0. Let P (t)
be the set of pending changes at time t, i.e., for each element ω ∈ P (t) some process invokes a reconfig(c)
operation s.t. ω ∈ c by time t, and no process completes such a reconfig operation by time t. Denote by
F (t) the set of processes which have crashed by time t.

Intuitively, only processes that are members of the current system configuration should be allowed to
initiate actions. To capture this restriction, read, write and reconfig operations at a process pi are initially
disabled, until enable operations occurs at pi. Intuitively, any pending future view should have a majority
of processes that did not crash and were not proposed for removal; we specify a simple condition sufficient
to ensure this. A dynamic R/W service guarantees the following liveness properties:

Definition 1. [Dynamic Service Liveness]
If at every time t in the execution, fewer than |V (t).members|/2 processes out of V (t).members∪P (t).join
are in F (t) ∪ P (t).remove, and the number of different changes proposed in the execution is finite, then the
following holds:

1. Eventually, the enable operations event occurs at every active process that was added by a complete
reconfig operation.

2. Every operation invoked at an active process eventually completes.

A common definition of reliable links states that if processes pi and pj are “correct”, then every message
sent by pi is eventually received by pj . We adapt this definition to a dynamic setting as follows: for a message
sent at time t, we require eventual delivery if both processes are active and j ∈ V (t).join ∪ P (t).join, i.e., a
reconfig(c) operation was invoked by time t s.t. (Add, j) ∈ c.

4 The Weak Snapshot Abstraction

A weak snapshot object S accessible by a set P of processes supports two operations, updatei(c) and
scani(), for a process pi ∈ P . The updatei(c) operation gets a value c and returns OK, whereas scani()
returns a set of values. Note that the set P of processes is fixed (i.e., static). We require the following
semantics from scan and update operations:

NV1 Let o be a scani() operation that returns C. Then for each c ∈ C, an update(c) operation is invoked
by some process prior to the completion of o.

NV2 Let o be a scani() operation that is invoked after the completion of an updatej(c) operation, and that
returns C. Then C 6= ∅.

NV3 Let o be a scani() operation that returns C and let o′ be a scanj() operation that returns C ′ and is
invoked after the completion of o. Then C ⊆ C ′.

NV4 There exists c such that for every scan() operation that returns C 6= ∅, it holds that c ∈ C.

NV5 If some majority M of processes in P keep taking steps then every scani() and updatei(c) invoked by
every process pi∈M eventually completes.

Although these properties bear resemblance to the properties of atomic snapshot objects [1], NV1-NV5
define a weaker abstraction: we do not require that all updates are ordered as in atomic snapshot objects,
and even in a sequential execution, the set returned by a scan does not have to include the value of the most

6

Algorithm 1 Weak snapshot - code for process pi.
1: operation updatei(c)
2: if collect() = ∅ then
3: Mem[i].Write(c)
4: return OK

5: operation scani()
6: C ← collect()
7: if C = ∅ then return ∅
8: C ← collect()
9: return C

10: procedure collect()
11: C ← ∅;
12: for each pk ∈ P
13: c← Mem[k].Read()
14: if c 6= ⊥ then C ← C ∪ {c}
15: return C

recently completed update that precedes it. Intuitively, these properties only require that the “first” update
is seen by all scans that see any updates. As we shall see below, this allows for a simpler implementation
than of a snapshot object.

DynaStore will use multiple weak snapshot objects, one of each view w. The weak snapshot of view
w, denoted ws(w), is accessible by the processes in w.members. To simplify notation, we denote by
updatei(w, c) and scani(w) the update and scan operation, respectively, of process pi of the weak snapshot
object ws(w). Intuitively, DynaStore uses weak snapshots as follows: in order to propose a set of changes c
to the view w, a process pi invokes updatei(w, c); pi can then learn proposals of other processes by invoking
scani(w), which returns a set of sets of changes.

Implementation Our implementation of scan and update is shown in Algorithm 1. It uses an array Mem
of |P | single-writer multi-reader (SWMR) atomic registers, where all registers are initialized to ⊥. Such
registers support Read() and Write(c) operations s.t. only process pi ∈ P invokes Mem[i].Write(c) and
any process pj ∈ P can invoke Mem[i].Read(). The implementation of such registers in message-passing
systems is described in the literature [2].

A scani() reads from all registers in Mem by invoking collect, which returns the set C of values found
in all registers. After invoking collect once, scani() checks whether the returned C is empty. If so, it returns
∅, and otherwise invokes collect one more time. An updatei(c) invokes collect, and in case ∅ is returned,
writes c to Mem[i]. Intuitively, if collect() returns a non-empty set then another update is already the “first”
and there is no need to perform a Write since future scan operations would not be obligated to observe it. In
DynaStore, this happens when some process has already proposed changes to the view, and thus, the weak
snapshot does not correspond to the most up-to-date view in the system and there is no need to propose
additional changes to this view.

Standard emulation protocols for atomic SWMR registers [2] guarantee integrity (property NV1) and
liveness (property NV5). We next explain why Algorithm 1 preserves properties NV2-NV4; the formal
proof of correctness appears in Appendix B. First, notice that at most one Mem[i].Write operation can be
invoked in the execution, since after the first Mem[i].Write operation completes, any collect invoked by pi

(the only writer of this register) will return a non-empty set and pi will never invoke another Write. This
together with atomicity of all registers in Mem implies properties NV2-NV3. Property NV4 stems from

7

the fact that every scan() operation that returns C 6= ∅ executes collect twice. Observe such operation o
that is the first to complete one collect. Any other scan() operation o′ begins its second collect only after o
completes its first collect. Atomicity of the registers in Mem along with the fact that each register is written
at-most once, guarantees that any value returned by a Read during the first collect of o will be read during
the second collect of o′.

5 DynaStore

This section describes DynaStore, an algorithm for multi-writer multi-reader (MWMR) atomic storage in
a dynamic system, which is presented in Algorithm 2. A key component of our algorithm is a procedure
ContactQ (lines 31-41) for reading and writing from/to a quorum of members in a given view, used similarly
to the communicate procedure in ABD [2]. When there are no reconfigurations, ContactQ is invoked twice
by the read and write operations – once in a read-phase and once in a write-phase. More specifically, both
read and write operations first execute a read-phase, where they invoke ContactQ to query a quorum of the
processes for the latest value and timestamp, after which both operations execute a write-phase as follows:
a read operation invokes ContactQ again to write-back the value and timestamp obtained in the read-phase,
whereas a write operation invokes ContactQ with a higher and unique timestamp and the desired value.

To allow reconfiguration, the members of a view also store information about the current view. They can
change the view by modifying this information at a quorum of the current view. We allow the reconfiguration
to occur concurrently with any read and write operations. Furthermore, once reconfiguration is done, we
allow future reads and writes to use (only) the new view, so that processes can be expired and removed from
the system. Hence, the key challenge is to make sure that no reads linger behind in the old view, while
updates are made to the new view. Atomicity is preserved using the following strategy.

• The read-phase is modified so as to first read information on reconfiguration, and then read the value
and its timestamp. If a new view is discovered, the read-phase repeats with the new view.

• The write-phase, which works in the last view found by the read-phase, is modified as well. First,
it writes the value and timestamp to a quorum of the view, and then, it reads the reconfiguration
information. If a new view is discovered, the protocol goes back to the read-phase in the new view
(the write-phase begins again when the read-phase ends).

• The reconfig operation has a preliminary phase, writing information about the new view to the quorum
of the old one. It then continues by executing the phases described above, starting in the old view.

The core of a read-phase is procedure ReadInView, which reads the configuration information (line 67)
and then invokes ContactQ to read the value and timestamp from a quorum of the view (line 68). It returns
a non-empty set if a new view was discovered in line 67. Similarly, procedure WriteInView implements the
basic functionality of the write-phase, first writing (or writing-back) the value and timestamp by invoking
ContactQ in line 73, and then reading configuration information in line 74 (we shall explain lines 71-72 in
Section 5.3).

First, for illustration purposes, consider a simple case where only one reconfiguration request is ever
invoked, from w1 to w2. We shall refer to this reconfiguration operation as RC. The main insight into why
the above regime preserves read/write atomicity is the following. Say that a write operation performs a
write-phase W writing in w1 the value v with timestamp ts. Then there are two possible cases with respect
to RC. One is that RC’s read-phase observes W . Hence, RC’s write-phase writes-back a value into w2,
whose timestamp is at least as high as ts. Otherwise, RC’s read-phase does not observe W . This means

8

that W ’s execution of ContactQ writing a quorum of w1 did not complete before RC invoked ContactQ
during its read-phase, and so W starts to read w1’s configuration information after RC’s preliminary phase
has completed, updating this information. Hence, W observes w2 and the write operation continues in w2

(notice that if a value v′ with timestamp higher than ts is found in w2 then the write will no longer send v,
and instead simply writes back v′ to a quorum of w2).

In our example above, additional measures are needed to preserve atomicity if several processes con-
currently propose changes to w1. Thus, the rest of our algorithm is dedicated to the complexity that arises
due to multiple contending reconfiguration requests. Our description is organized as follows: Section 5.1
introduces the pseudo-code of DynaStore, and clarifies its notations and atomicity assumptions. Section 5.2
presents the DAG of views, and shows how every operation in DynaStore can be seen as a traversal on that
graph. Section 5.3 discusses reconfig operations. Finally, Section 5.4 presents the notion of established
views, which is central to the analysis of DynaStore. Proofs are deferred to Appendix C.

5.1 DynaStore Basics

DynaStore uses operations, upon clauses, and procedures. Operations are invoked by the user, whereas
upon-clauses are event handlers – they are actions that may be triggered whenever their condition is satisfied.
Procedures are called from an operation. In the face of concurrency, operations and upon clauses act like
separate monitors: at most one of each kind can be executed at a time. Note that an operation and an upon-
clause might execute concurrently. In addition, all accesses to local variables are atomic (even if accessed
by an operation and an upon-clause concurrently), and when multiple local variables are assigned as a tuple
(e.g., line 72), the entire assignment is atomic. Operations and local variables at process pi are denoted with
subscript i.

Operations and upon-clauses access different variables for storing the value and timestamp: vi and tsi

are accessed in upon-clauses, whereas operations (and procedures) manipulate vmax
i and tsmax

i . Procedure
ContactQ sends a write-request including vmax

i and tsmax
i (line 35) when writing a quorum, and a read-

request (line 36) when reading a quorum (msgNumi, a local sequence number, is also included in such
messages). When pi receives a write-request, it updates vi and tsi if the received timestamp is bigger than
tsi, and sends back a REPLY message containing the sequence number of the request (line 45). When a
read-request is received, pi replies with vi, tsi, and the received sequence number (line 46).

Every process pi executing Algorithm 2 maintains a local estimation of the latest view, curViewi (line 9),
initialized to V (0) when the process starts. Although pi is able to execute all event-handlers immediately
when it starts, recall that invocations of read, write or reconfig operations at pi are only allowed once they
are enabled for the first time; this occurs in line 11 (for processes in V (0)) or in line 81 (for processes added
later). If pi discovers that it is being removed from the system, it simply halts (line 53). In this section, we
denote changes of the form (Add, i) by (+, i) and changes of the form (Remove, i) by (−, i).

5.2 Traversing the Graph of Views

Weak snapshots organize all views into a DAG, where views are the vertices and there is an edge from a view
w to a view w′ whenever an updatej(w, c) has been made in the execution by some process j ∈ w.members,
updating ws(w) to include the change c 6= ∅ s.t. w′ = w ∪ c; |c| can be viewed as the weight of the edge –
the distance between w′ and w in changes. Our algorithm maintains the invariant that c ∩ w = ∅, and thus
w′ always contains more changes than w, i.e., w ⊂ w′. Hence, the graph of views is acyclic.

The main logic of Algorithm 2 lies in procedure Traverse, which is invoked by all operations. This
procedure traverses the DAG of views, and transfers the state of the emulated register from view to view

9

Algorithm 2 Code for process pi.
1: state
2: vi ∈ V ∪ {⊥}, initially ⊥ // latest value received in a WRITE message
3: tsi ∈ N0 × (Π ∪ {⊥}), initially (0,⊥) // timestamp corresponding to vi (timestamps have selectors num and pid)
4: vmax

i ∈ V ∪ {⊥}, initially ⊥ // latest value observed in Traverse
5: tsmax

i ∈ N0 × (Π ∪ {⊥}), initially (0,⊥) // timestamp corresponding to vmax
i

6: pickNewTSi ∈ {FALSE, TRUE}, initially FALSE // whether Traverse should pick a new timestamp
7: Mi: set of messages, initially ∅
8: msgNumi ∈ N0, initially 0 // counter for sent messages
9: curViewi ∈ Views, initially V (0) // latest view

10: initially:
11: if (i ∈ V (0).join) then enable operations

12: operation readi():
13: pickNewTSi ← FALSE
14: newView← Traverse(∅,⊥)
15: NotifyQ(newView)
16: return vmax

i

17: operation writei(v):
18: pickNewTSi ← TRUE
19: newView← Traverse(∅, v)
20: NotifyQ(newView)
21: return OK

22: operation reconfigi(cng):
23: pickNewTSi ← FALSE
24: newView← Traverse(cng,⊥)
25: NotifyQ(newView)
26: return OK

27: procedure NotifyQ(w)
28: if did not receive 〈NOTIFY, w〉 then
29: send 〈NOTIFY, w〉 to w.members
30: wait for 〈NOTIFY, w〉 from majority of w.members

31: procedure ContactQ(msgType, D)
32: Mi ← ∅
33: msgNumi ← msgNumi + 1;
34: if msgType = W then
35: send 〈REQ, W, msgNumi, v

max
i , tsmax

i 〉 to D
36: else send 〈REQ, R, msgNumi〉 to D
37: wait until Mi contains a 〈REPLY, msgNumi, · · ·〉

from a majority of D
38: if msgType = R then
39: tm← max{t:〈REPLY, msgNumi, v, t〉 is in Mi}
40: vm← value corresponding to tm
41: if tm > tsmax

i then (vmax
i , tsmax

i)←(vm, tm)

42: upon receiving 〈REQ, msgType, num, v, ts〉 from pj :
43: if msgType = W then
44: if (ts > tsi) then (vi, tsi)← (v, ts)
45: send 〈REPLY, num〉 to pj

46: else send message 〈REPLY, num, vi, tsi〉 to pj

47: procedure Traverse(cng, v)
48: desiredView← curViewi ∪ cng
49: Front← {curViewi}
50: do
51: s← min{|`| : ` ∈ Front}
52: w ← any ` ∈ Front s.t. |`| = s
53: if (i 6∈ w.members) then halt
54: if w 6= desiredView then
55: updatei(w, desiredView\w)
56: ChangeSets← ReadInView(w)
57: if ChangeSets 6= ∅ then
58: Front← Front \ {w}
59: for each c ∈ ChangeSets
60: desiredView← desiredView ∪ c
61: Front← Front ∪ {w ∪ c}
62: else ChangeSets← WriteInView(w, v)
63: while ChangeSets 6= ∅
64: curViewi ← desiredView
65: return desiredView

66: procedure ReadInView(w)
67: ChangeSets← scani(w)
68: ContactQ(R, w.members)
69: return ChangeSets

70: procedure WriteInView(w, v)
71: if pickNewTSi then
72: (pickNewTSi, v

max
i , tsmax

i)←
(FALSE, v, (tsmax

i .num + 1, i))
73: ContactQ(W, w.members)
74: ChangeSets← scani(w)
75: return ChangeSets

76: upon receiving 〈NOTIFY, w〉 for the first time:
77: send 〈NOTIFY, w〉 to w.members
78: if (curViewi ⊂ w) then
79: pause any ongoing Traverse
80: curViewi ← w
81: if (i ∈ w.join) then enable operations
82: if paused in line 79, restart Traverse from line 48

83: upon receiving 〈REPLY, · · ·〉:
84: add the message and its sender-id to Mi

10

along the way. Traverse starts from the view curViewi. Then, the DAG is traversed in an effort to find all
membership changes in the system; these are collected in the set desiredView. After finding all changes,
desiredView is added to the DAG by updating the appropriate ws object, so that other processes can find it
in future traversals.

The traversal resembles the well-known Dijkstra algorithm for finding shortest paths from some single
source [6], with the important difference that our traversal modifies the graph. A set of views, Front, contains
the vertices reached by the traversal and whose outgoing edges were not yet inspected. Initially, Front =
{curViewi} (line 49). Each iteration processes the vertex w in Front closest to curViewi (lines 51 and 52).

During an iteration of the loop in lines 50–63, it might be that pi already knows that w does not contain
all proposed membership changes. This is the case when desiredView, the set of changes found in the
traversal, is different from w. In this case, pi installs an edge from w to desiredView using updatei (line 55).
As explained in Section 4, in case another update to ws(w) has already completed, update does not install
an additional edge from w; the only case when multiple outgoing edges exist is if they were installed
concurrently by different processes.

Next, pi invokes ReadInView(w) (line 56), which reads the state and configuration information in this
view, returning all edges outgoing from w found when scanning ws(w) in line 67. By property NV2, if
pi or another process had already installed an edge from w, a non-empty set of edges is returned from
ReadInView. If one or more outgoing edges are found, w is removed from Front, the next views are added
to Front, and the changes are added to desiredView (lines 59–61). If pi does not find outgoing edges from
w, it invokes WriteInView(w) (line 62), which writes the latest known value to this view and again scans
ws(w) in line 74, returning any outgoing edges that are found. If here too no edges are found, the traversal
completes.

Notice that desiredView is chosen in line 52 only when there are no other views in Front, since it contains
the union of all views observed during the traversal, and thus any other view in Front must be of smaller
size (i.e., contain fewer changes). Moreover, when w 6= desiredView is processed, the condition in line 54
evaluates to true, and ReadInView returns a non-empty set of changes (outgoing edges) by property NV2.
Thus, WriteInView(w, ∗) is invoked only when desiredView is the only view in Front, i.e., w = desiredView
(this transfers the state found during the traversal to desiredView, the latest-known view). For the same
reason, when the traversal completes, Front = {desiredView}. Then, desiredView is assigned to curViewi in
line 64 and returned from Traverse.

To illustrate such traversals, consider the example in Figure 1. Process pi invokes Traverse and let
initView be the value of curViewi when Traverse is invoked. Assume that initView.members includes at
least p1 and pi, and that cng = ∅ (this parameter of Traverse will be explained in Section 5.3). Initially,
its Front, marked by a rectangle in Figure 1, includes only initView, and desiredView = initView. Then,
the condition in line 54 evaluates to false and pi invokes ReadInView(initView), which returns {{(+, 3)},
{(+, 5)}, {(−, 1), (+, 4)}}. Next, pi removes initView from Front and adds vertices V1, V2 and V3 to Front
as shown in Figure 1. For example, V3 results from adding the changes in {(−, 1), (+, 4)} to initView.
At this point, desiredView = initView∪{(+, 3), (+, 5), (−, 1), (+, 4)}. In the next iteration of the loop
in lines 50–63, one of the smallest views in Front is processed. In our scenario, V1 is chosen. Since
V1 6= desiredView, pi installs an edge from V1 to desiredView. Suppose that no other updates were made to
ws(V1) before pi’s update completes. Then, ReadInView(V1) returns {{(+, 5), (−, 1), (+, 4)}} (properties
NV1 and NV2). Then, V1 is removed from Front and V4 = V1 ∪ {(+, 5), (−, 1), (+, 4)} is added to Front.
In the next iteration, an edge is installed from V2 to V4 and V2 is removed from Front.

Now, the size of V3 is smallest in Front, and suppose that another process pj has already completed
updatej(V3, {(+, 7)}). pi executes update (line 55), however since an outgoing edge already exists, a new

11

initView

V1

V2

{(+, 3)}

{(+, 5)}

{(-, 1), (+, 4)} {(+, 7)}V3

V6

Initial
Front

Front after
iteration 1

Front after
iteration 4

V4

V5

=initView ∪ {(+, 3), (+, 5),
 (-, 1), (+, 4), (+, 7)}

{(+, 5), (-, 1),
 (+, 4)}

{(+, 3), (-, 1),
 (+, 4)}

{(+, 7)}

{(+, 3),(+, 5)}

Front after
iteration 6

Legend

edge returned
from ReadInView

edge updated by pi

Figure 1: Example DAG of views.

edge is not installed. Then, ReadInView(V3) is invoked and returns {{(+, 7)}}. Next, V3 is removed from
Front, V5 = V3 ∪ {(+, 7)} is added to Front, and (+, 7) is added to desiredView. Now, Front = {V4, V5},
and we denote the new desiredView by V6. When V4 and V5 are processed, pi installs edges from V4 and
V5 to V6. Suppose that ReadInView of V4 and V5 in line 56 return only the edge installed in the preceding
line. Thus, V4 and V5 are removed from Front, and V6 is added to Front, resulting in Front = {V6}. During
the next iteration ReadInView(V6) and WriteInView(V6) execute and both return ∅ in our execution. The
condition in line 63 terminates the loop, V6 is assigned to curViewi and Traverse completes returning V6.

5.3 Reconfigurations (Liveness)

A reconfig(cng) operation is similar to a read, with the only difference that desiredView initially contains the
changes in cng in addition to those in curViewi (line 48). Since desiredView only grows during a traversal,
this ensures that the view returned from Traverse includes the changes in cng. As explained earlier, Front =
{desiredView} when Traverse completes, which means that desiredView appears in the DAG of views.

When a process pi completes WriteInView in line 62 of Traverse, the latest state of the register has
been transfered to desiredView, and thus it is no longer necessary for other processes to start traversals from
earlier views. Thus, after Traverse completes returning desiredView, pi invokes NotifyQ with this view as
its parameter (lines 15, 20 and 25), to let other processes know about the new view. NotifyQ(w) sends a
NOTIFY message (line 29) to w.members. A process receiving such a message for the first time forwards
it to all processes in w.members (line 77), and after a NOTIFY message containing the same view was
received from a majority of w.members, NotifyQ returns. In addition to forwarding the message, a process
pj receiving 〈NOTIFY, w〉 checks whether curViewj ⊂ w (i.e., w is more up-to-date than curViewj), and if
so it pauses any ongoing Traverse, assigns w to curViewj , and restarts Traverse from line 48. Restarting
Traverse is necessary when pj waits for responses from a majority of some view w′ where less than a
majority of members are active. Intuitively, Definition 1 implies that w′ must be an old view, i.e., some
reconfig operation completes proposing new changes to system membership. We prove in Appendix C.3
that in this case pj will receive a 〈NOTIFY, w〉 message s.t. curViewj ⊂ w and restart its traversal.

Note that when a process pi restarts Traverse, pi may have an outstanding scani or updatei operation
on a weak snapshot ws(w) for some view w, in which case pi restarts Traverse without completing the
operation. Later, it is possible that pi needs to invoke another operation on ws(w). In that case, we require
that pi first terminates previous outstanding operations on ws(w) before it invokes the new operation. The
mechanism to achieve this is a simple queue, and it is not illustrated in the code.

12

Restarts of Traverse introduce an additional potential complication for write operations: suppose that
during its execution of write(v), pi sends a WRITE message with v and a timestamp ts. It is important
that if Traverse is restarted, v is not sent with a different timestamp (unless it belongs to some other write
operation). Before the first message with v is sent, we set the pickNewTSi flag to false (line 72). The
condition in line 71 prevents Traverse from re-assigning v to vmax

i or incorrect tsmax
i , even if a restart

occurs.
In Appendix C.3 we prove that DynaStore preserves Dynamic Service Liveness (Definition 1). Thus,

liveness is conditioned on the number of different changes proposed in the execution being finite. In reality,
only the number of such changes proposed concurrently with every operation has to be finite. Then, the
number of times Traverse can be restarted during that operation is finite and so is the number of views
encountered during the traversal, implying termination.

5.4 Sequence of Established Views (Safety)

Our traversal algorithm performs a scan(w) to discover outgoing edges from w. However, different pro-
cesses might invoke update(w) concurrently, and different scans might see different sets of outgoing edges.
In such cases, it is necessary to prevent processes from working with views on different branches of the
DAG. Specifically, we would like to ensure an intersection between views accessed in reads and writes. For-
tunately, property NV4 guarantees that all scan(w) operations that return non-empty sets (i.e., return some
outgoing edges from w), have at least one element (edge) in common. Note that a process cannot distinguish
such an edge from others and therefore traverses all returned edges. This property of the algorithm enables
us to define a totally ordered subset of the views, which we call established, as follows:

Definition 2. [Sequence of Established Views] The unique sequence of established views E is constructed
as follows:

• the first view in E is the initial view V (0);

• if w is in E , then the next view after w in E is w′ = w ∪ c, where c is an element chosen arbitrarily
from the intersection of all sets C 6= ∅ returned by some scan(w) operation in the execution.

Note that each element in the intersection mentioned in Definition 2 is a set of changes, and that property
NV4 guarantees a non-empty intersection. In order to find such a set of changes c in the intersection, one
can take an arbitrary element from the set C returned by the first collect(w) that returns a non-empty set in
the execution. This unique sequence E allows us to define a total order relation on established views. For
two established views w and w′ we write w ≤̇ w′ if w appears in E no later than w′; if in addition w 6= w′

then w <̇ w′. Notice that for two established views w and w′, w <̇ w′ if an only if w ⊂ w′.
Notice that the first graph traversal in the system starts from curViewi = V (0), which is established by

definition. When Traverse is invoked with an established view curViewi, every time a vertex w is removed
from Front and its children are added, one of the children is an established view, by definition. Thus, Front
always includes at least one established view, and since it ultimately contains only one view, desiredView,
we conclude that desiredView assigned to curViewi in line 64 and returned from Traverse is also established.
Thus, all views sent in NOTIFY messages or stored in curViewi are established. Note that while a process
encounters all established views in its traversal, it only recognizes a subset of established views as such
(whenever Front contains a single view, that view must be in E).

It is easy to see that each traversal performs a ReadInView on every established view in E between
curViewi and the returned view desiredView. Notice that WriteInView (line 62) is always performed in an

13

established view. Thus, intuitively, by reading each view encountered in a traversal, we are guaranteed to
intersect any write completed on some established view in the traversed segment of E . Then, performing
the scan before ContactQ in ReadInView and after the ContactQ in WriteInView guarantees that in this
intersection, indeed the state is transferred correctly, as explained in the beginning of this section. A formal
correctness proof of our protocol appears in Appendix C.

6 Conclusions

We defined a dynamic R/W storage problem, including an explicit liveness condition stated in terms of user
interface and independent of a particular solution. The definition captures a dynamically changing resilience
requirement, corresponding to reconfiguration operations invoked by users. Our approach easily carries to
other problems, and allows for cleanly extending static problems to the dynamic setting.

We presented DynaStore, which is the first algorithm we are aware of to solve the atomic R/W storage
problem in a dynamic setting without consensus or stronger primitives. In fact, we assumed a completely
asynchronous model where fault-tolerant consensus is impossible even if no reconfigurations occur. This
implies that atomic R/W storage is weaker than consensus, not only in static settings as was previously
known, but also in dynamic ones. Our result thus refutes a common belief, manifested in the design of all
previous dynamic storage systems, which used agreement to handle configuration changes. Our main goal
in this paper was to prove feasibility; future work may study the performance tradeoffs between consensus-
based solutions and consensus-free ones.

Acknowledgments

We thank Ittai Abraham, Eli Gafni, Leslie Lamport and Lidong Zhou for early discussions of this work.

References

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshots of shared memory.
J. ACM, 40(4):873–890, 1993.

[2] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing systems. J. ACM,
42(1):124–142, 1995.

[3] T. D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On the impossibility of group mem-
bership. In Proceedings of the 15th Annual ACM Symposium on Principles of Distributed Computing
(PODC’96), pages 322–330, 1996.

[4] G. Chockler, S. Gilbert, V. C. Gramoli, P. M. . Musial, and A. A. Shvartsman. Reconfigurable dis-
tributed storage for dynamic networks. In 9th International Conference on Principles of Distributed
Systems (OPODIS), 2005.

[5] G. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: A comprehensive
study. ACM Computing Surveys, 33(4):1–43, 2001.

[6] T. T. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. MIT Press, Cambridge,
MA, USA, 1990.

14

[7] D. Davcev and W. Burkhard. Consistency and recovery control for replicated files. In 10th ACM
SIGOPS Symposium on Operating Systems Principles (SOSP), pages 87–96, 1985.

[8] C. Delporte, H. Fauconnier, R. Guerraoui, V. Hadzilacos, P. Kouznetsov, and S. Toueg. The weakest
failure detectors to solve certain fundamental problems in distributed computing. In Proceedings of
the ACM Symposium on Principles of Distributed Computing (PODC 2004), pages 338–346, 2004.

[9] A. El Abbadi and S. Dani. A dynamic accessibility protocol for replicated databases. Data and
Knowledge Engineering, 6:319–332, 1991.

[10] B. Englert and A. A. Shvartsman. Graceful quorum reconfiguration in a robust emulation of shared
memory. In ICDCS ’00: Proceedings of the The 20th International Conference on Distributed Com-
puting Systems (ICDCS 2000), page 454, Washington, DC, USA, 2000. IEEE Computer Society.

[11] S. Gilbert, N. Lynch, and A. Shvartsman. Rambo ii: Rapidly reconfigurable atomic memory for
dynamic networks. In Proceedings of the 17th Intl. Symp. on Distributed Computing (DISC), pages
259–268, June 2003.

[12] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[13] L. Lamport. On interprocess communication – part ii: Algorithms. Distributed Computing, 1(2):86–
101, 1986.

[14] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, May 1998.

[15] L. Lamport, D. Malkhi, and L. Zhou. Brief announcement: Vertical paxos and primary-backup repli-
cation. In 28th ACM Symposium on Principles of Distributed Computing (PODC), August 2009. Full
version appears as Microsoft Technical Report MSR-TR-2009-63, May 2009.

[16] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual disks. In Proceedings of the Seventh Inter-
national Conference on Architectural Support for Programming Languages and Operating Systems,
pages 84–92, Cambridge, MA, 1996.

[17] N. Lynch and A. Shvartsman. Robust emulation of shared memory using dynamic quorum-
acknowledged broadcasts. In In Symposium on Fault-Tolerant Computing, pages 272–281. IEEE,
1997.

[18] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco, 1996.

[19] N. A. Lynch and A. A. Shvartsman. RAMBO: A reconfigurable atomic memory service for dynamic
networks. In 5th International Symposium on Distributed Computing (DISC), 2002.

[20] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and L. Zhou. Boxwood: Abstractions as the
foundation for storage infrastructure. In OSDI, pages 105–120, 2004.

[21] J.-P. Martin and L. Alvisi. A framework for dynamic byzantine storage. In Proceedings of the Inter-
national Conference on Dependable Systems and Networks, 2004.

[22] J. Paris and D. Long. Efficient dynamic voting algorithms. In 13th International Conference on Very
Large Data Bases (VLDB), pages 268–275, 1988.

15

[23] R. Rodrigues and B. Liskov. Rosebud: A scalable byzantine-fault-tolerant storage architecture. Tech-
nical Report TR/932, MIT LCS, 2003.

[24] R. Rodrigues and B. Liskov. Reconfigurable byzantine-fault-tolerant atomic memory. In Twenty-
Third Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), St.
John’s, Newfoundland, Canada, July 2004. Brief Announcement.

[25] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: a tutorial.
ACM Comput. Surv., 22(4):299–319, 1990.

[26] R. van Renesse and F. B. Schneider. Chain replication for supporting high throughput and availability.
In Sixth Symposium on Operating Systems Design and Implementation (OSDI 04), December 2004.

[27] E. Yeger Lotem, I. Keidar, and D. Dolev. Dynamic voting for consistent primary components. In 16th
ACM Symposium on Principles of Distributed Computing (PODC), pages 63–71, August 1997.

16

A Additional Definitions and Assumptions

Our algorithm implements a multi-writer/multi-reader (MWMR) register, from which any client may read
or write. Such register is defined via a sequential specification, which indicates its behavior in sequential
executions. The sequential specification requires that each read operation returns the value written by the
most recent preceding write operation, if there is one, and the initial value ⊥ otherwise. We assume that
different write operations are invoked with different values, and that no write operation is invoked writing
the initial value ⊥. This is done so that we are able to link a value to a particular write operation in the
analysis, and can easily be implemented by having write operations augment the value with the identity of
the writer and a local sequence number.

As operations take time, they are represented by two events – an invocation and a response. A history
of an execution consists of the sequence of invocations and responses occurring in the execution. An oper-
ation is complete in a history if it has a matching response. We sometimes consider the subsequence of a
history σ consisting of all events corresponding to the read and write operations in σ, without any events
corresponding to reconfig operations, and denote this subsequence of σ by σRW .

Definition 3 (linearizability [12]). A history σ is linearizable w.r.t. a MWMR read/write register X , if σRW

can be extended (by appending zero or more response events) to a history σ′, and there exists a sequential
permutation π of the subsequence of σ′ consisting only of complete operations such that:

1. π preserves the real-time order of σ; and
2. The operations of π satisfy the sequential specification of X .

We assume that executions of our algorithm are well-formed, i.e., the sequence of events at each client
consists of alternating invocations and matching responses, starting with an invocation. Finally, we assume
that every execution is fair, which means, informally, that it does not halt prematurely when there are still
steps to be taken or messages to be delivered (see the standard literature for a formal definition [18]).

B Analysis of Weak Snapshot Objects

First, note that whenever a process pi performs scani(w) or updatei(w, c), it holds that i ∈ w.members
because of the check in line 53. Thus, it is allowed to perform these operations on w. The following lemmas
prove correctness of a single weak snapshot object accessible by a set of processes P. We assume that all
registers in Mem are initialized to ⊥ and that no process invokes update(⊥), which is indeed preserved by
DynaStore. The first lemma shows that each register Mem[i] can be assigned at-most one non-initial value.

Lemma 1. For any i ∈ P , the following holds: (a) if Mem[i].Read() is invoked after the completion of
Mem[i].Write(c), and returns c′, then c′ = c; and (b) if two Mem[i].Read() operations return c 6= ⊥ and
c′ 6= ⊥, then c = c′.

Proof. Recall that only pi can write to Mem[i] (by invoking an update operation). We next show that
Mem[i].Write can be invoked at most once in an execution. Suppose for the sake of contradiction that
Mem[i].Write is invoked twice in the execution, and observe the second invocation. Section 5.3 mentions
our assumption of a mechanism that always completes a previous operation on a weak snapshot object, if
any such operation has been invoked and did not complete (because of restarts), whenever a new operation
is invoked on the same weak snapshot object. Thus, when Mem[i].Write is invoked for the second time, the
first Mem[i].Write has already completed. Before invoking the Write, pi completes collect, which executes

17

Mem[i].Read. By atomicity of Mem[i], since the first Write to Mem[i] has already completed writing a non-
⊥ value, collect returns a set containing this value, and the condition in line 2 in Algorithm 1 evaluates to
FALSE, contradicting our assumption that a Write was invoked after the collect completes.

(a) follows from atomicity of Mem[i] since Mem[i].Write is invoked at most once in the execution.
In order to prove (b), notice that if c 6= c′, since pi is the only writer of Mem[i], this means that both
Mem[i].Write(c) and Mem[i].Write(c′) are invoked in the execution, which contradicts the fact that Mem[i].Write
is invoked at most once in the execution.

Properties NV1 (integrity) and NV5 (liveness) can be guaranteed by using standard emulation protocols
for atomic SWMR registers [2]. The following lemmas prove that Algorithm 1 preserves properties NV2-
NV4.

Lemma 2. Let o be a scani() operation that is invoked after the completion of an updatej(c) operation, and
that returns C. Then C 6= ∅.

Proof. Since updatej(c) completes, either Mem[i].Write(c) completes or collect returns a non-empty set.
In the first case, when o reads from Mem[i] during both first and second collect, the Read returns c by
Lemma 1. The second case is that collect completes returning a non-empty set. Thus, a read from some
register Mem[j] during this collect returns c′ 6= ⊥. By atomicity of Mem[j] and Lemma 1, since o is invoked
after updatej(c) completes, any read from Mem[j] performed during o returns c′. Thus, in both cases the
first and second collect during o return a non-empty set, which means that C 6= ∅.

Lemma 3. Let o be a scani() operation that returns C and let o′ be a scanj() operation that returns C ′ and
is invoked after the completion of o. Then C ⊆ C ′.

Proof. If C = ∅, the lemma trivially holds. Otherwise, consider any c ∈ C. Notice that c is returned by
a Read r from some register Mem[k] during the second collect of o. Atomicity of Mem[k] and Lemma 1
guarantee that every Read r′ from the same register invoked after the completion of r returns c. Both times
collect is executed during o′, it reads from Mem[k] and since o′ is invoked after o completes both times a set
containing c is returned from collect, i.e, c ∈ C ′.

Lemma 4. There exists c such that for every scan() operation that returns C ′ 6= ∅, it holds that c ∈ C ′.

Proof. Let o be the first scani() operation during which collect in line 6 returns a non-empty set, and let
C 6= ∅ be this set. Let o′ be any scan() operation that returns C ′ 6= ∅. We next show that C ⊆ C ′, which
means that any c ∈ C preserves the requirements of the lemma. Since C ′ 6= ∅, the first invocation of
collect() during o′ returns a non-empty set. By definition of o, the second collect during o′ starts after the
first collect of o completes. For every c ∈ C, there is a Mem[k].Read() executed by the first collect of o that
returns c 6= ⊥. By Lemma 1 and atomicity of Mem[k], a Read from the same register performed during the
second collect of o′ returns c. Thus, C ⊆ C ′.

C Analysis Of DynaStore

C.1 Traverse

We use the convention whereby each time Traverse is restarted, a new execution of Traverse begins; this
allows us to define one view from which a traversal starts – this is the value curViewi when the execution of
Traverse begins in line 48.

18

Lemma 5. At the beginning and end of each iteration of the loop in lines 50-63, it holds that
⋃

w∈Front w ⊆
desiredView.

Proof. We prove that if an iteration begins with
⋃

w∈Front w ⊆ desiredView then this invariant is preserved
also when the iteration ends. The lemma then follows from the fact that at the beginning of the first iteration
Front = {curViewi} (line 49) and desiredView = curViewi ∪ cng (line 48).

Suppose that at the beginning of an iteration
⋃

w∈Front w ⊆ desiredView. If the loop in lines 59-61 does
not execute, then Front and desiredView do not change, and the condition is preserved at the end of the
iteration. If the loop in lines 59-61 does execute, then w ⊆ desiredView is removed from Front, w ∪ c is
added to Front and c is added to desiredView, thus the condition is again preserved.

Lemma 6. Whenever updatei(w, c) is executed, c 6= ∅ and c ∩ w = ∅.

Proof. updatei(w, c) is executed only in line 55 when w 6= desiredView and c = desiredView\w, which
means that c ∩ w = ∅. By Lemma 5, since w 6= desiredView, it holds that w ⊂ desiredView. Thus,
c = desiredView\w 6= ∅.

Lemma 7. Let T be an execution of Traverse that starts from curViewi = initView. For every view w that
appears in Front at some point during the execution of T , it holds that initView ⊆ w.

Proof. We prove that if an iteration of the loop in lines 50-63 begins such that each view in Front contains
initView, then this invariant is preserved also when the iteration ends. The lemma then follows from the fact
that at the beginning of the first iteration Front = {curViewi} (line 49).

Suppose that at the beginning of an iteration each view in Front contains initView. Front can only change
during this iteration if the condition in line 57 evaluates to true, i.e., if ChangeSets 6= ∅. In this case, the
loop in lines 59-61 executes at least once, and w ∪ c is added to Front in line 61 for some c. Since w was
in Front in the beginning of this iteration, by our assumption it holds that initView ⊆ w, and therefore w ∪ c
also contains initView.

Lemma 8. Let w ∈ Front be a view. During the execution of Traverse, if w is removed from Front in some
iteration of the loop in lines 50-63, then the size of any view w′ added to Front in the same or a later
iteration, is bigger than |w|.

Proof. Suppose that w is removed from Front during an iteration. Then its size, |w|, is minimal among the
views in Front (lines 51 and 52) at the beginning of this iteration. By line 61, whenever a view is inserted
to Front, it has the form w ∪ c where c ∈ ChangeSets returned by scani in line 67. By property NV1, some
update(w, c) operation is invoked in the execution, and by Lemma 6, c 6= ⊥ and c ∩ w = ∅. Thus, the view
w ∪ c is strictly bigger than w removed from Front in the same iteration. It follows that any view w′ added
to Front in this or in a later iteration has size bigger than |w|.

Lemma 9. If at some iteration of the loop in lines 50-63 ReadInView returns ChangeSets = ∅, then w =
desiredView and Front = {desiredView}.

Proof. Suppose for the sake of contradiction that w 6= desiredView. Before ReadInView is invoked, up-
datei(w, desiredView \ w) completes, and then by Lemma 2 when ReadInView completes it returns a non-
empty set, a contradiction.

Suppose for the sake of contradiction that there exists a view w′ ∈ Front s.t. w′ 6= desiredView. By
Lemma 5, w′ ⊆ desiredView. Since w′ 6= desiredView, we get that w′ ⊂ desiredView and thus |w′| <
|desiredView|, contradicting the fact that w = desiredView, and not w′, is chosen in line 52 in the iteration.

19

Lemma 10. desiredView returned from Traverse contains cng.

Proof. At the beginning of Traverse, desiredView is set to curViewi∪cng in line 48, and during the execution
of Traverse, no element is removed from desiredView. Thus, cng ⊆ desiredView when Traverse completes.

Lemma 11. curViewi is an established view. Moreover, desiredView in line 64 of Traverse is established and
whenever WriteInView(w, ∗) is invoked, w is an established view.

Proof. We prove the lemma using the following claim:

Claim 11.1. If curViewi from which a traversal starts is an established view, then Front at the beginning and
end of the loop in lines 50-63 contains an established view, and the view desiredView assigned to curViewi

in line 64 in Traverse is established. Moreover, whenever WriteInView(w, ∗) is invoked, w is an established
view.

Proof. Initially, Front contains curViewi (line 48), which is established by assumption, and therefore Front
indeed contains an established view when the first iteration of the loop begins. If a view w is removed from
Front in line 58, then ChangeSets 6= ∅. We distinguish between two cases: (1) if w is not an established
view, then Front at the end of the iteration still contains an established view; (2) if w is an established view,
then, by Lemma 4 and the definition of E , since ChangeSets is a non-empty set returned by scani(w), there
exists c ∈ ChangeSets such that w ∪ c is established. Since for every c ∈ ChangeSets, w ∪ c is added to
Front in line 61, the established view succeeding w in the sequence is added to Front, and thus Front at the
end of this iteration of the loop in lines 50-63 still contains an established view.

By Lemma 9, when the loop in lines 50-63 completes, as well as when WriteInView(w, ∗) is invoked,
Front = {desiredView}. Since during such iterations, ReadInView returns ∅, Front does not change from the
beginning of the iteration. We have just shown that Front contains an established view at the beginning of the
do-while loop, and thus, desiredView in line 64 is established, and so is any view w passed to WriteInView.

We next show that the precondition of the claim above holds, i.e., that curViewi is an established view,
by induction on |curViewi|. The base is curViewi = V (0), in which case it is established by definition.
Assuming that curViewi is established if its size is less than k, observe such view of size k > |V (0)|.
Consider how curViewi got its current value – it was assigned either by some earlier execution of Traverse at
pi in line 64, or in line 80 when a NOTIFY message is received, which implies that some process completes
a traversal returning this view. In either case, since curViewi 6= V (0), some process pj has desiredView =
curViewi in line 64, while starting the traversal with a smaller view curViewj . Notice that curViewj is
established by our induction assumption, and since curViewi is the value of desiredView in line 64 of a
Traverse which started with an established view, it is also established by Claim 11.1.

Lemma 12. Let T be an execution of Traverse and initView be the value of curViewi when pi starts this
execution, then (a) if T invokes WriteInView(w, ∗) then T completes a ReadInView(w′) which returns a
non-empty set for every established view w′ s.t. initView ≤̇ w′ <̇ w, and a ReadInView(w) which returns ∅;
and (b) if T reaches line 64 with desiredView = w′′, then it completes WriteInView(w′′, ∗) which returns ∅.

Proof. When T begins, the established view w′ = initView is the only view in Front. Since some iteration
during T chooses w in lines 51 and 52, which has bigger size than w′, it must be that w′ is removed from
Front. This happens only if some ReadInView(w′) during T returns ChangeSets 6= ∅. After w′ is removed

20

from Front, for every c ∈ ChangeSets, w′∪c is added to Front, and thus, the established view succeeding w′

in E is added to Front (by Lemma 4 and the definition of E). The arguments above hold for every established
view w′ s.t. initView ≤̇ w′ <̇ w, since a bigger view w is chosen from Front during T . During the iteration
when WriteInView(w, ∗) is invoked, ReadInView(w) completes in line 56 and returns ∅, which completes
the proof of (a).

Suppose that T reaches line 64 with desiredView = w′′. By Lemma 9, w during the last iteration
of the loop equals to w′′. Observe the condition in line 63, which requires that ChangeSets = ∅ for the
loop to end. Notice that ChangeSets is assigned either in line 56 or line 62. If it was assigned in line 62,
then WriteInView(w, ∗) was executed which completes the proof of (b). Otherwise, ReadInView(w) returns
ChangeSets = ∅ in line 56, which causes line 62 to be executed. Then, since this is the last iteration,
WriteInView(w, ∗) returns ∅.

C.2 Atomicity

We say that WriteInView writes a timestamp ts if tsmax
i sent in the REQ message by ContactQ(W, *) equals

ts. Similarly, a ReadInView reads timestamp ts if at the end of ContactQ(R, *) invoked by the ReadInView,
tsmax

i is equal to ts.

Lemma 13. Let W be a WriteInView(w, *) that writes timestamp ts and returns C, and R be a ReadInView(w)
that reads timestamp ts′ and returns C ′. Then, either ts′ ≥ ts or C ′ ⊆ C. Moreover, if R is invoked after
W completes, then ts′ ≥ ts.

Proof. Because both operation invoke ContactQ in w, there exists a process p in w.members from which
both W and R get a REPLY message before completing their ContactQ, i.e., p’s answer counts towards the
necessary majority of replies for both W and R. If p receives the 〈REQ, W, · · ·〉 message from W with
timestamp ts before the 〈REQ, R, · · ·〉 message from R, then by lines 44 and 46 it responds to the message
from R with a timestamp at least as big as ts. By lines 39-41, when R completes ContactQ(R, w.members),
tsmax

i is set to be at least as high as ts, and thus ts′ ≥ ts. It is left to show that if p receives the 〈REQ, R, · · ·〉
message from R with timestamp ts before the 〈REQ, W, · · ·〉 message from W , then C ′ ⊆ C.

Suppose that p receives the 〈REQ, R, · · ·〉 message from R first. Then, when this message is received by
p, ContactQ(W, w.members) has not yet completed at W , and thus W has not yet invoked scan(w) in line 74.
On the other hand, since R has started ContactQ(R, w.members), it has already completed its scan(w) in
line 67, which returned C ′. When W completes its ContactQ it invokes scan(w), which then returns C. By
Lemma 3 it holds that C ′ ⊆ C.

Notice that if R is invoked after W completes then it must be the case that p receives the 〈REQ, W, · · ·〉
message from W first, and thus, in this case, ts′ ≥ ts.

Lemma 14. Let T be an execution of Traverse that completes returning w and upon completion its tsmax
i

is equal to ts, and T ′ be an execution of Traverse that reaches line 64 with tsmax
i equal to ts′ and its

desiredView equal to w′. If w <̇ w′ then ts ≤ ts′.

Proof. Consider the prefix of E up to w′: V0, V1, · · · , Vl s.t. V0 = V (0), Vl = w′, and w = Vi where
i ∈ {0, . . . , l − 1}. Moreover, let w′′ be the view from which T ′ starts the traversal (w′′ is established by
Lemma 11).

First, consider the case that w′′ ≤̇ w. By Lemma 12, since T returns w, it completes WriteInView(w, ∗)
which returns C = ∅. Since T ′ starts from w′′ ≤̇ w and reaches line 64 with desiredView = w′ s.t. w <̇ w′,
by Lemma 12 it completes a ReadInView(w) which returns C ′ 6= ∅ (notice that ReadInView(w) might be

21

executed in two consecutive iterations of T ′, in which case during the first iteration ReadInView(w) returns
∅; we then look on the next iteration, where a non-empty set is necessarily returned). Since C ′ 6⊆ C, by
Lemma 13 we have that tsmax

i upon the completion of the ReadInView(w) by T ′ is at least as big as tsmax
i

upon the completion of WriteInView(w, ∗) by T , which equals to ts. Since tsmax
i does not decrease during

T ′ and ts′ is the value of tsmax
i when T ′ reaches line 64, we have that ts′ ≥ ts.

The second case to consider is w <̇ w′′, which implies that w′′ 6= V (0). In this case, there exists a
traversal T ′′ which starts from a view w′′′ <̇ w′′ and reaches line 64 before T begins, with desiredView =
w′′ (T ′′ is either an earlier execution of Traverse by the same process that executes T ′, or by another process,
in which case T ′′ completes and sends a NOTIFY message with w′′ which is then received by the process
executing T ′ before T ′ starts). Let ts′′ be the tsmax

i when T ′′ reaches line 64. Notice that T ′′ completes
WriteInView(w′′, ∗) before T ′ starts ReadInView(w′′), and by Lemma 13 when ReadInView(w′′) completes
at T ′ its tsmax

i is at least ts′′. Since tsmax
i at T ′ can only increase from that point on, we get that ts′ ≥ ts′′.

It is therefore enough to show that ts′′ ≥ ts in order to complete the proof. In order to do this, we apply
the arguments above recursively, considering T ′′ instead of T ′, w′′ instead of w′ and ts′′ instead of ts′

accordingly (recall that w <̇ w′′). Notice that since the prefix of E up to w′ is finite, and since w′′′ <̇ w′′,
i.e., the starting point of T ′′ is before that of T ′ in E , the recursion is finite and the starting point of the
traversal we consider gets closer to V (0) in each recursive step. Therefore, the recursion will eventually
reach a traversal which starts from an established view α and reaches line 64 with desiredView equal to an
established view β s.t. α ≤̇ w and w <̇ β, which is the base case we consider.

By definition of E , if w is an established view then for every established view w′ in the prefix of E before
w (not including), some scani(w′) returns a non-empty set. However, the definition only says that such a
scani(w′) exists, and not when it occurs. The following lemma shows that if w is returned by a Traverse T
at time t, then some scan on w′ returning a non-empty set must complete before time t. Notice that this scan
might be performed by a different process than the one executing T .

Lemma 15. Let T be an execution of Traverse that reaches line 64 at time t with desiredView equal to w s.t.
w 6= V (0), and consider the prefix of E up to w: V0, V1, · · · , Vl s.t. V0 = V (0) and Vl = w. Then for every
k = 0, . . . , l − 1, some scan(Vk) returns a non-empty set before time t.

Proof. Since w 6= V (0) there exists a traversal T ′ that starts from Vi <̇ w and reaches line 64 with
desiredView = w no later than t. Notice that T ′ can be T if T starts from a view different than w, or
alternatively T ′ can be a traversal executed earlier by the same process, or finally, a traversal at another
process that completes before T begins. By Lemma 12, a ReadInView(Vj) performed during T ′ returns a
non-empty set for every j = i, . . . , l − 1. If i = 0 we are done. Otherwise, Vi 6= V (0) and we continue the
same argument recursively, now substituting Vl with Vi. Since the considered prefix of E is finite and since
each time we recurse we consider a subsequence starting at least one place earlier than the previous starting
point, the recursion is finite.

Corollary 16. Let T be an execution of Traverse that returns a view w and let T ′ be an execution of Traverse
invoked after the completion of T , returning a view w′. Then w ≤̇ w′.

Proof. First, note that by Lemma 11 both w and w′ are established. Suppose for the purpose of contradiction
that w′ <̇ w. By Lemma 15, some scan(w′) completes returning a non-empty set before T completes. Since
T ′ returns w′, its last iteration performs a scan(w′) that returns an empty set. This contradicts Lemma 3 since
T ′ starts after T completes.

22

Corollary 17. Let T be an execution of Traverse that returns a view w and let T ′ be an execution of Traverse
invoked after the completion of T . Then T ′ does not invoke WriteInView(w′, ∗) for any view w′ <̇ w.

Proof. First, by Lemma 11, WriteInView is always invoked with an established view as a parameter. Suppose
for the sake of contradiction that WriteInView(w′, ∗) is invoked during T ′ for some view w′ <̇ w. Since
T returns w and w′ <̇ w, by Lemma 15 some scan(w′) completes returning a non-empty set before T
completes. Since T ′ invokes WriteInView(w′, ∗), by Lemma 12 a ReadInView(w′) returned ∅ during T ′.
Thus, during the execution of this ReadInView(w′), a scan(w′) returned ∅ during T ′. This contradicts
Lemma 3 since T ′ starts after T completes.

We associate a timestamp with read and write operations as follows:

Definition 4 (Associated Timestamp). Let o be a read or write operation. We define ats(o), the timestamp
associated with o, as follows: if o is a read operation, then ats(o) is tsmax

i upon the completion of Traverse
during o; if o is a write operation, then ats(o) equals to tsmax

i when its assignment completes in line 72.

Notice that not all operations have associated timestamps. The following lemma shows that all com-
plete operations as well as writes that are read-from by some complete read operation have an associated
timestamp.

Lemma 18. We show three properties of associated timestamps: (a) for every complete operation o, ats(o)
is well-defined; (b) if o is a read operation that returns v 6= ⊥, then there exists o′ = write(v) operation,
ats(o′) is well-defined, and it holds that ats(o) = ats(o′); (c) if o and o′ are write operations with associated
timestamps, then ats(o) 6= ats(o′) and both are greater than (0,⊥).

Proof. There might be several executions of Traverse during a complete operation, but only one of these
executions completes. Therefore, ats(o) is well-defined for every complete read operation o. If o is a
complete write, then notice that pickNewTSi = TRUE until it is set to FALSE in line 72, and therefore the
condition in line 71 is TRUE until such time. Thus, for a write operation, line 72 executes at least once – in
WriteInView which completes right before the completion of a Traverse during o (notice that WriteInView
might be executed earlier as well). Once line 72 executes for the first time, pickNewTSi becomes FALSE.
Thus, this line executes at-most once in every write operation and exactly once during a complete write
operation, which completes the proof of (a).

To show (b), notice that vmax
i equals to v upon the completion of o. Moreover, since v 6= ⊥, v is not

the initial value of vmax
i . Observe the first operation o′ that sets vmax

i to v during its execution, and notice
that vmax

i is assigned only in lines 41 and 72. Suppose for the purpose of contradiction that the process
executing o′ receives v in a REPLY message from another process and sets vmax

i to v in line 41. A process pi

sending a REPLY message always includes vi in this message, and vi is set only to values received by pi in
〈REQ, W, · · ·〉messages. Thus, some process sends a 〈REQ, W, · · ·〉message with v before o′ sets its vmax

i to
v. Since a 〈REQ, W, · · ·〉message contains the vmax

i of the sender, we conclude that some process must have
vmax
i = v before o′ sets its vmax

i to v, contradiction to our choice of o′. Thus, it must be that o′ sets vmax
i to

v in line 72. We conclude that o′ is a write(v) operation which executes line 72. As mentioned above, this
line is not executed more than once during o′ and therefore ats(o′) is well-defined.

Recall our assumption that only one write operation can be invoked with v. Thus, o′ is the operation
that determines the timestamp with which v later appears in the system (any process that sets vi to v, also
sets tsi to the timestamp sent with v by o′, as the timestamp and value are assigned atomically together in
line 44). This timestamp is ats(o′), determined when o′ executes line 72. When o sets vmax

i to v, it also

23

sets tsmax
i to ats(o′), as the timestamp and value are always assigned atomically together in line 41. Thus,

ats(o) = ats(o′).
Finally, notice that the associated timestamp of a write operation is always of the form (tsmax

i .num +
1, i), which is strictly bigger than (0,⊥). Since i is a unique process identifier, if o and o′ are two write
operations executed by different processes, ats(o) 6= ats(o′). If they are executed by the same process, since
tsmax

i pertains its value between operation invocations, increasing the first component of the timestamp by
one makes sure that ats(o) 6= ats(o′), which completes the proof of (c).

Lemma 19. Let o and o′ be two complete read or write operations such that o completes before o′ is invoked.
Then ats(o) ≤ ats(o′) and if o′ is a write operation, then ats(o) < ats(o′).

Proof. Denote the complete execution of Traverse during o by T , and let w be the view returned by T and ts
be the value of tsmax

i when T returns. Note that ats(o) ≤ ts, since tsmax
i only grows during the execution

of o, and if o is a read operation then ats(o) = ts. Notice that there might be several incomplete traversals
during o′ which are restarted, and there is exactly one traversal that completes.

There are two cases to consider. The first is that o′ executes a ReadInView(w) that returns. Before
this ReadInView(w) is invoked, T completes a WriteInView(w, ∗), writing a value with timestamp ts. By
Lemma 13, after the ReadInView(w) completes during o′, tsmax

i ≥ ts ≥ ats(o) and thus, when o′ completes
tsmax

i ≥ ats(o). If o′ is a read operation then ats(o′) is equal to this tsmax
i , which proves the lemma.

Suppose now that o′ is a write operation. Then during o′, pickNewTSi = TRUE until it is set to FALSE in
line 72. By Corollary 17, no traversal during o′ invokes WriteInView for any established view α <̇ w. Thus,
ReadInView(w) completes during o′ before any WriteInView is invoked. By Lemma 18, ats(o′) is well-
defined and therefore exactly one traversal during o′ executes line 72. As explained, since ReadInView(w)
has already completed when line 72 executes, tsmax

i ≥ ats(o) and then, tsmax
i is assigned (tsmax

i .num +
1, i), implying that ats(o′) > ats(o).

The second case is that no ReadInView(w) completes during o′. Let T ′ be the traversal which deter-
mines ats(o′). Let w′ be the view from which T ′ starts, and notice that since T ′ sets ats(o′), it completes
ReadInView(w′). By Lemma 11, w′ is an established view. We claim that w <̇ w′. First, if o′ is a read,
then T ′ completes and returns some view w′′. By Corollary 16, w ≤̇ w′′ and by Lemma 12, T ′ performs
a ReadInView on all established views between w′ and w′′. Since o′ does not complete ReadInView(w), it
must be that w <̇ w′, which shows the claim. Now suppose that o′ is a write. By Corollary 17, T ′ does not
invoke WriteInView(α, ∗) for any view α <̇ w. It is also impossible that T ′ invokes WriteInView(w, ∗) as it
does not complete ReadInView(w). Thus, it must be that T ′ sets ats(o′) when it invokes WriteInView(α, ∗)
where w <̇ α. By Lemma 12, T ′ performs a ReadInView on all established views between w′ and α. Since
it does not complete ReadInView(w), it must be that w <̇ w′, which shows the claim.

Since w <̇ w′, w′ 6= V (0). Moreover, since curViewi = w′ when T ′ starts, there exists a traversal T ′′

which reaches line 64 with desiredView equal to w′ before T ′ begins. Let ts′′ be the tsmax
i when T ′′ reaches

line 64. By Lemma 14, since w <̇ w′, it holds that ts ≤ ts′′ and thus ats(o) ≤ ts′′. Since T ′′ performs
WriteInView(w′, ∗) and after it completes, T ′ invokes and completes ReadInView(w′), by Lemma 13 we
get that tsmax

i when ReadInView(w′) completes is at least as high as ts′′. If o′ is a read, then ats(o′)
equals to tsmax

i when T ′ completes, and since tsmax
i only grows during the execution of T ′, we have that

ats(o′) ≥ ts′′ ≥ ats(o). If o′ is a write, then ats(o′) is determined when line 72 executes. Since this occurs
only after ReadInView(w′) completes, tsmax

i is already at least as high as ts′′. Then, line 72 sets ats(o′) to
be (tsmax

i .num + 1, i) and therefore ats(o′) > ts′′ ≥ ats(o), which completes the proof.

24

Theorem 20. Every history σ corresponding to an execution of DynaStore is linearizable.

Proof. We create σ′ from σRW by completing operations of the form write(v) where v is returned by some
complete read operation in σRW . By Lemma 18 parts (a) and (b), each operation which is now complete
in σ′ has an associated timestamp. We next construct π by ordering all complete read and write operations
in σ′ according to their associated timestamps, such that a write with some associated timestamp ts appears
before all reads with the same associated timestamp, and reads with the same associated timestamp are
ordered by their invocation times. Lemma 18 part (c) implies that all write operations in π can be totally
ordered according to their associated timestamps.

First, we show that π preserves real-time order. Consider two complete operations o and o′ in σ′ s.t. o′

is invoked after o completes. By Lemma 19, ats(o′) ≥ ats(o). If ats(o′) > ats(o) then o′ appears after o
in π by construction. Otherwise ats(o′) = ats(o) and by Lemma 19 this means that o′ is a read operation.
If o is a write operation, then it appears before o′ since we placed each write before all reads having the
same associated timestamp. Finally, if o is a read, then it appears before o′ since we ordered reads having
the same associated timestamps according to their invocation times.

To prove that π preserves the sequential specification of a MWMR register we must show that a read
always returns the value written by the closest write which appears before it in π, or the initial value of the
register if there is no preceding write in π. Let or be a read operation returning a value v. If v = ⊥ then since
vmax
i and tsmax

i are always assigned atomically together in lines 41 and 72, we have that ats(or) = (0,⊥),
in which case or is ordered before any write in π by Lemma 18 part (c). Otherwise, v 6= ⊥ and by part (b)
of Lemma 18 there exists a write(v) operation, which has the same associated timestamp, ats(or). In this
case, this write is placed in π before or, by construction. By part (c) of Lemma 18, other write operations in
π have a different associated timestamp and thus appear in π either before write(v) or after or.

C.3 Liveness

Recall that all active processes take infinitely many steps. As explained in Section 2, termination has to be
guaranteed only when certain conditions hold. Thus, in our proof we make the following assumptions:

A1 At any time t, fewer than |V (t).members|/2 processes out of V (t).members ∪ P (t).join
are in F (t) ∪ P (t).remove.

A2 The number of different changes proposed in the execution is finite.

Lemma 21. Let ω be any change s.t. ω ∈ desiredView at time t. Then a reconfig(c) operation was invoked
before t such that ω ∈ c.

Proof. If ω ∈ V (0), the lemma follows from our assumption that a reconfig(V (0)) completes by time 0. In
the remainder of the proof we assume that ω 6∈ V (0). Let T ′ be a traversal that adds ω to its desiredView
at time t′ s.t. t′ is the earliest time when ω ∈ desiredView for any traversal in the execution. Thus, t′ ≤ t.
Suppose for the purpose of contradiction that ω is added to desiredView in line 60 during T ′. Then ω ∈ c,
s.t. c is in the set returned by a scan in line 67. By property NV1, an update completes before this time
with c as parameter. By line 55, ω ∈ desiredView at the traversal that executes the update, which contradicts
our choice of T ′ as the first traversal that includes ω in desiredView. The remaining option is that ω is
added to desiredView in line 48 during T ′. Since no traversal includes ω in desiredView before t′, and since
ω 6∈ V (0), we conclude that ω 6∈ curViewi. Thus, ω ∈ cng. This means that T ′ is executed during a
reconfig(c) operation invoked before time t, such that ω ∈ c, which is what we needed to show.

25

Lemma 22. (a) If w is an established view, then for every change ω ∈ w, a reconfig(c) operation is invoked
in the execution s.t. ω ∈ c; (b) If w is a view s.t. w ∈ Front at time t then for every change ω ∈ w, a
reconfig(c) operation is invoked before t such that ω ∈ c.

Proof. We prove the claim by induction on the position of w in E . If w = V (0), then the claim holds by
our assumption that a reconfig(V (0)) completes by time 0. Assume that the claim holds until some position
k ≥ 0 in E . Let w be the k-th view in E and observe w′, the k + 1-th established view. By definition of E ,
there exists a set of changes c such that w′ = w∪ c, where c was returned by some scan(w) operation in the
execution. By property NV1, some update(w, c) operation is invoked. By line 55, c ⊆ desiredView at the
traversal that executes the update. (a) then follows from Lemma 21. (b) follows from Lemma 21 since by
Lemma 5 we have that w ⊆ desiredView and therefore ω ∈ desiredView at time t.

Corollary 23. The sequence of established view E is finite.

Proof. By Lemma 22, established views contain only changes proposed in the execution. Since all views in
E are totally ordered by the “⊂” relation, and by assumption A2, E is finite.

Definition 5. We define tfix to be any time s.t. ∀t ≥ tfix the following conditions hold:

1. V (t) = V (tfix)

2. P (t) = P (tfix)

3. (V (t).join ∪ P (t).join) ∩ F (t) = (V (tfix).join ∪ P (tfix).join) ∩ F (tfix)
(i.e., all processes in the system that crash in the execution have already crashed by tfix).

The next lemma proves that tfix is well-defined.

Lemma 24. There exists tfix as required by Definition 5.

Proof. V (t) contains only changes that were proposed in the execution (for which there is a reconfiguration
proposing them that completes). Since no element can leave V (t) once it is in this set, V (t) only grows
during the execution, and from assumption A2 there exists a time tv starting from which V (t) does not
change. No reconfig operation proposing a change ω 6∈ V (t) can complete from tv onward, and therefore
no element leaves the set P from that time and P can only grow. From assumption A2 there exists a time
tp starting from which P (t) does not change. Thus, from time tvp = max(tv, tp) onward, V and P do not
change. By assumption A2, V (tvp).join ∪ P (tvp).join is a finite set of processes. Thus, we can take tfix

to be any time after tvp s.t. all processes from this set that crash in the execution have already crashed by
tfix.

Recall that an active process is one that did not fail in the execution, whose Add was proposed and
whose Remove was never proposed.

Lemma 25. If w is a view in Front s.t. V (tfix) ⊆ w, then at least a majority of w.members are active.

Proof. By Lemma 22, all changes in w were proposed in the execution. Since all changes proposed in the
execution are proposed by time tfix, w ⊆ V (tfix) ∪ P (tfix). Denote the set of changes w \ V (tfix) by
AC. Notice that AC ⊆ P (tfix). Each element in AC either adds or removes one process. Observe the set
of members in w, and let us build this set starting with M = V (tfix).members and see how this set changes
as we add elements from AC. First, consider changes of the form (+, j) in AC. Each change of this form

26

adds a member to M , unless j ∈ V (tfix).remove, in which case it has no effect on M . A change of the
form (−, k) removes pk from M . According to this, we can write w.members as follows: w.members =
(V (tfix).members∪ Jw) \Rw, where Jw ⊆ P (tfix).join \ V (tfix).remove and Rw ⊆ P (tfix).remove. We
denote V (tfix).members∪Jw by L and we will show that a majority of L is active. Since Rw contains only
processes that are not active, when removing them from L (in order to get w.members), it is still the case
that a majority of the remaining processes are active, which proves the lemma.

We next prove that a majority of L are active. By definition of tfix, all processes proposed for removal
in the execution have been proposed by time tfix. Notice that no process in V (tfix).members ∪ Jw is also
in V (tfix).remove by definition of this set, and thus, if the removal of a process in L was proposed by time
tfix, this process is in P (tfix).remove. Since L ⊆ V (tfix).join ∪ P (tfix).join, by definition of tfix every
process in L that crashes in the execution does so by time tfix. Thus, F (tfix) ∪ P (tfix).remove includes
all processes in L that are not active. Assumption A1 says that fewer than |V (tfix).members|/2 out of
V (tfix).members ∪ P (tfix).join are in F (tfix) ∪ P (tfix).remove. Thus, fewer than |V (tfix).members|/2
out of V (tfix).members ∪ Jw, which equals to L, are in F (tfix) ∪ P (tfix).remove. This means that a
majority of the processes in L are active.

Lemma 26. Let pi be an active process and w be an established view s.t. i ∈ w.members. Then i ∈
w′.members for every established view w′ s.t. w ≤̇ w′.

Proof. Since w ⊆ w′ and i ∈ w.members, we have that (+, i) ∈ w′. Since pi is active, no reconfig(c) is
invoked s.t. (−, i) ∈ c, and by Lemma 22 we have that (−, i) 6∈ w′. Thus, i ∈ w’.members.

Lemma 27. If pi and pj are active processes and pi sends a message to pj during the execution of DynaStore,
then pj eventually receives this message.

Proof. Recall that the link between pi and pj is reliable. Since pi and pj are active, it remains to show
that if the message is sent at time t then j ∈ V (t).join ∪ P (t).join. Note that pi sends messages only to
processes in w.members, where w is a view in Front during Traverse, and therefore (+, j) ∈ w at time t. By
Lemma 22, a reconfig(c) was invoked before time t s.t. (+, j) ∈ c. If such operation completes by time t,
then j ∈ V (t).join, and otherwise j ∈ P (t).join.

Lemma 28. If a reconfig operation o completes such that Traverse returns the view w, then every active
process pj s.t. j ∈ w.members eventually receives a message 〈NOTIFY, w̃〉 where w ≤̇ w̃.

Proof. Since o completes, there is at least one complete reconfig operation in the execution. Let wmax be
a view returned by a Traverse during some complete reconfig operation, such that no reconfig operation
completes in the execution during which Traverse returns a view w′ where wmax <̇ w′. wmax is well
defined since every view returned from Traverse is established (Lemma 11), and E is finite by Corollary 23.
Notice that w ≤̇ wmax. We next prove that V (tfix) ⊆ wmax. Suppose for the purpose of contradiction that
there exists a change ω ∈ V (tfix) \ wmax. Since ω ∈ V (tfix), a reconfig(c) operation completes where
ω ∈ c. By Lemma 10, Traverse during this operation returns a view w′ containing ω. By Lemma 11 w′ is
established, and recall that all established views are totally ordered by the “⊂” relation. Since ω ∈ w′\wmax

it must be that wmax <̇ w′. This contradicts the definition of wmax. We have shown that V (tfix) ⊆ wmax,
which implies that a majority of wmax are active, by Lemma 25.

Since a reconfig operation completes where Traverse returns wmax, a 〈NOTIFY, wmax〉message is sent in
line 29, and it is received by a majority of wmax.members. Each process receiving this message forwards it in
line 77. Since a majority of wmax are active, and every two majority sets intersect, one of the processes that

27

forwards this message is active. By Lemma 26, since w ≤̇ wmax, every active process pj s.t. j ∈ w.members
is also in wmax.members. By Lemma 27, every such pj eventually receives this message.

Lemma 29. Consider an operation executed by an active process pi that invokes Traverse at time t0 starting
from curViewi = initView. If no 〈NOTIFY, newV iew〉 messages are received by pi from time t0 onward s.t.
initView ⊂ newView then Traverse eventually returns and the operation completes.

Proof. Since operations are enabled at pi only once i ∈ curViewi.join (lines 11 and 81) and curViewi only
grows during the execution, i ∈ initView.join. By Lemma 7, for every view w which appears in Front during
the traversal it holds that initView ⊆ w and therefore i ∈ w.join. Since pi is active, no reconfig(c) is invoked
such that (−, i) ∈ c. By Lemma 22 we have that (−, i) 6∈ w and therefore i ∈ w.members. This means that
pi does not halt in line 53, and by Lemma 27 pi receives every message sent to it by active processes in w.

Let w be any view that appears in Front during the execution of Traverse. Notice that w is not necessarily
established, however we show that V (tfix) ⊆ w. Suppose for the purpose of contradiction that there
exists ω ∈ V (tfix) \ w. Since initView ⊆ w, ω ∈ V (tfix) \ initView. Since ω ∈ V (tfix), a reconfig(c)
operation completes where ω ∈ c, and by Lemma 10 this operation returns a view w′ s.t. ω ∈ w′. By
Lemma 11 both initView and w′ are established, and since ω ∈ w′ \ initView, we get that initView <̇ w′.
Since i ∈ initView.members and pi is active, by Lemma 26 we have that i ∈ w’.members. By Lemma 28, a
〈NOTIFY, w′′〉 message where w′ ≤̇ w′′ is eventually received by pi. Since initView <̇ w′′, this contradicts
the assumption of our lemma.

We have shown that V (tfix) ⊆ w, and from Lemma 25 there exists an active majority Q of w.members.
By Lemma 27, all messages sent by pi to w.members are eventually received by every process in Q, and
every message sent to pi by a process in Q is eventually received by pi. Thus all invocations of Con-
tactQ(∗, w.members), which involves communicating with a majority of w.members, eventually complete,
and so do invocations of scani and updatei by property NV5. Given that all such procedures complete during
a Traverse and it is not restarted (this follows from the statement of the lemma since no NOTIFY messages
that can restart Traverse are received at pi starting from t0), it is left to prove that the termination condition
in line 63 eventually holds. After Traverse completes, NotifyQ(w) is invoked where w is a view returned
from Traverse. By Lemma 9, Front = {w} when Traverse returns, and therefore NotifyQ(w) completes as
well since there is an active majority in w.members, as explained above.

By assumption A2 and Lemma 22, the number of different views added to Front in the execution is
finite. Suppose for the purpose of contradiction that Traverse does not terminate and consider iteration k of
the loop starting from which views are not added to Front unless they have been already added before the
k-th iteration (notice that by Lemma 8, when a view is removed from Front, it can never be added again to
Front; thus, from iteration k onward views can only be removed from Front and the additions have no affect
in the sense that they can add views that are already present in Front but not new views or views that have
been removed from Front). We first show that in some iteration k′ ≥ k, |Front| = 1. Consider any iteration
where |Front| > 1, and let w be the view chosen from Front in line 52 in this iteration. By Lemma 5, in this
case w 6= desiredView, as desiredView contains the changes of all views in Front, and |Front| > 1 means
that there is at least one view in Front which contains changes that are not in w. Then, line 55 executes, and
by Lemma 2, ReadInView returns a non-empty set. Next, the condition in line 57 evaluates to true and w
is removed from Front in line 58. Since no new additions are made to Front starting with the k-th iteration
(i.e., only a view that is already in Front can be added in line 61), the number of views in Front decreases by
1 in this iteration. Thus, there exists an iteration k′ ≥ k where only a single view remains in Front.

Observe iteration k′, where |Front| = 1, and let w be the view chosen from Front in line 52 in this
iteration. Suppose for the purpose of contradiction that the condition on line 57 evaluates to true. Then, w is

28

removed from Front, and the loop on lines 59–61 executes at least once, adding views to Front. By Lemma 8,
the size of these views is bigger than w, and therefore every such view is different than w, contradicting the
fact that starting from iteration k only views that are already in Front can be added to Front (recall that
k′ ≥ k). Thus, starting from iteration k′ the condition on line 57 evaluates to false, and WriteInView is
invoked in iteration k′. Assume for the sake of contradiction that WriteInView does not return ∅. In this
case, the loop would continue and w (the only view in Front) is chosen again from Front in iteration k′ + 1.
Then, ReadInView(w) returns a non-empty set by Lemma 3 and the condition in line 57 evaluates to true,
which cannot happen, as explained above. Thus, in iteration k′, the condition in line 57 evaluates to false,
WriteInView(w, ∗) returns ∅, and the loop terminates.

Theorem 30. DynaStore preserves Dynamic Service Liveness (Definition 1). Specifically: (a) Eventually,
the enable operations event occurs at every active process that was added by a complete reconfig operation.
(b) Every operation o invoked by an active process pi eventually completes.

Proof. (a) Let pi be an active process that is added to the system by a complete reconfig operation. If
i ∈ V (0).join then the operations at pi are enabled from the time it starts taking steps (line 11). Otherwise,
a reconfig adding pi completes, and let w be the view returned by Traverse during this operation. By
Lemma 10, (+, i) ∈ w. Since pi is active, no reconfig(c) operation is invoked s.t. (−, i) ∈ c. By Lemma 22
we get that (−, i) 6∈ w, which means that i ∈ w.members. By Lemma 28, pi eventually receives a 〈NOTIFY,
w′〉 message such that w ≤̇ w′. By Lemma 26, (+, i) ∈ w′, i.e., i ∈ w′.join. This causes operations at pi to
be enabled in line 81 (if they were not already enabled by that time).

(b) Every operation o invokes Traverse and during its execution, whenever a 〈NOTIFY, newView〉 mes-
sage is received by pi s.t. curViewi ⊂ newView, curViewi becomes newView in line 80, and Traverse is
restarted. By Corollary 23, E is finite. By Lemma 11, only established views are sent in NOTIFY messages.
Thus, the number of times a Traverse can be restarted is finite and at some point in the execution, no more
〈NOTIFY, newView〉messages can be received s.t. curViewi ⊂ newView. By Lemma 29, Traverse eventually
returns and the operation completes.

29

