

 IRWIN AND JOAN JACOBS
CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

Correctness of Gossip-Based
Membership under Message Loss

Maxim Gurevich and Idit Keidar

CCIT Report #732
May 2009

Electronics
Computers
Communications

DEPARTMENT OF ELECTRICAL ENGINEERING
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL

Correctness of Gossip-Based Membership

under Message Loss

Maxim Gurevich∗ Idit Keidar

Dept. of Electrical Engineering

Technion, Haifa 32000, Israel

gmax@tx.technion.ac.il, idish@ee.technion.ac.il

Abstract

Due to their simplicity and effectiveness, gossip-based membership protocols have become
the method of choice for maintaining partial membership in large P2P systems. A variety of
gossip-based membership protocols were proposed. Some were shown to be effective empirically,
lacking analytic understanding of their properties. Others were analyzed under simplifying
assumptions, such as lossless and delay-less network. It is not clear whether the analysis results
hold in dynamic networks where both nodes and network links can fail.

In this paper we try to bridge this gap. We first enumerate the desirable properties of a
gossip-based membership protocol, such as view uniformity, independence, and load balance. We
then propose a simple Send & Forget protocol, and show that even in the presence of message
loss, it achieves the desirable properties.

1 Introduction

Large-scale dynamic systems are nowadays being deployed in many places, including peer-to-peer
networks over the Internet, in data centers, and computation grids. Such systems are subject to
churn, i.e., their membership constantly changes, as nodes dynamically join and leave. Moreover,
such systems are often comprised of unreliable components, where node failures and message losses
are frequent.

In order to allow nodes to communicate with each other, each node must know the ids (for
example, IP addresses and ports), of some other nodes. Such ids are stored at each node in a local
view (sometimes called membership), or view for short. In large systems, it is uncommon to store
full views including all nodes in the system, not only because of the amount of memory this would
require, but also because of the high maintenance overhead that churn would induce. Instead, one
typically stores small views, e.g., logarithmic in system size [8, 2]. Local views are maintained by
a distributed group membership protocol.

The views of all nodes induce a membership graph (overlay network), over which communication
takes place. Two nodes are neighbors if one of their views includes the id of the other. The properties

∗Supported by the Eshkol Fellowship of the Israeli Ministry of Science.

1

lesley
Text Box
CCIT REPORT #732 May 2009

of local views have significant consequences for the respective graph’s diameter, connectivity, load-
balance, and robustness. Our goal in this paper is to mathematically analyze the proprieties of
such views, and in particular, to understand the impact that message loss has on these properties.

We begin, in Section 2, by identifying the goals that a membership service strives to achieve:
First, to bound the load on each node, each node has to maintain a small view and have a bounded
degree (number of neighbors). Additionally, the “holy grail” for a membership service is to choose
view entries independently of each other (we call this spatial independence) and uniformly at ran-
dom [8, 21, 7]. Indeed, such choices result in an expander graph, with good connectivity and
robustness, and low diameter [9], ensuring fast and reliable communication. Note that in a dy-
namic system subject to churn, local views must evolve to reflect joining nodes and exclude ones
that left or failed, and the system should converge to independent uniform views from any initial
topology.

Beyond maintaining the membership graph for communication, independent random node id
samples are useful for a variety of additional applications, such as gathering statistics, gossip-based
aggregation, and choosing locations for data caching [17, 12, 5]. Such applications constantly
require fresh random node ids, independent of past views, which requires views to evolve even in
the absence of churn or failures. We thus identify an additional goal for a membership service:
temporal independence– evolving into new graphs whose dependence on the past decays rapidly.

The most common approach to maintaining small local views is using gossip-based membership
protocols [11, 8, 2, 24, 16]. In such protocols, nodes exchange (“gossip about”) ids from their views
with their neighbors, and use this information to update their views (see Section 3). Such protocols
make random choices, and their evolution is therefore a random process. Gossip-based membership
has been empirically shown to lead to good load balance of node degrees [8, 16], and certain variants
of gossip were proven to ensure low probability for partitions [2]. On the other hand, most gossip-
based protocols do, in fact, induce spatial dependencies among neighboring nodes. This is because
an id that is gossiped to a neighbor typically remains in the sender’s view.

Spatial dependencies can be eliminated by deleting ids sent to a neighbor. In order to avoid
having unused entries in views, this is usually done in actions involving bidirectional communication,
where the id received in a reply replaces the sent id [2, 18, 19]. However, such actions were previously
analyzed under the assumption that they occur atomically, without overlapping in time with any
other action, even though they involve multiple nodes. In practice, it is unclear how overlap
can be avoided, as protocol actions are initiated from different nodes asynchronously, and a node
might receive a message initiating a new action while it is already engaged in another. Moreover,
implementing such atomic actions requires bookkeeping at each node, and is of course impossible
in the presence of message loss [14] or node failures.

In Section 4, we present a model for studying gossip-based membership without atomicity as-
sumptions. We follow [18, 19], and model protocol actions as random graph transformations. In
order to apply this methodology to real systems, we break up protocol actions into steps that can
be executed atomically at a single node, allowing the analysis to account for message loss.

In Section 5, we present Send & Forget (S&F), a simple and practical protocol that eliminates
bidirectional communication, at the cost of allowing for unused (empty) entries in views. Message
loss increases the number of unused entries. The protocol compensates for loss by creating new,
dependent view entries. The goal is to create as little dependencies as possible.

In Section 6, we analyze node degree distributions induced by S&F . Our analysis shows that
S&F can operate with small views– constant (e.g., with 40 entries), or logarithmic in system size.

2

It further shows that the distribution of node degrees is very well balanced– close to the binomial
distribution.

In Section 7 we study the distribution of membership graphs the protocol evolves to (i.e., the
protocol’s properties in the steady state). We define a Markov Chain (MC) on the global states
(membership graphs) reachable by S&F starting from any weakly connected membership graph.
We show that without loss, S&F achieves the desired properties of uniformity and independence.
With positive loss, uniformity still holds but there exist spatial dependencies among entries in
the same view as well as among views of neighboring nodes. These dependencies increase very
moderately with the loss rate: The fraction of dependent entries in views is bounded, and grows
like twice the loss rate. As the loss is typically in the order of 1% [23, 4], the vast majority of
view entries are expected to be independent. From this bounded spatial dependence, we prove
that the temporal independence is preserved. We show that in a system of size n, starting from a
random state (membership graph) G in the MC, once each node initiates O(s log n) actions, where
s is a view size and n is the number of nodes in the system, the system evolves to a state whose
dependence on G can be made arbitrarily small. For space limitations, some formal proofs are
deferred to the full paper [15].

In summary, we make the following contributions:

• We spell out the desired properties of membership protocols that maintain small views.

• We provide a model for studying membership graph evolution with non-atomic protocol
actions.

• We present a practical membership protocol, S&F , which is amenable to formal analysis.

• In the absence of message loss, S&F provides all the desired properties of a membership
service.

• We present the first formal analysis of a membership protocol in the presence of message loss.
The salient properties of S&F are preserved even under reasonable loss rates.

2 Goals for a Distributed Membership Service

We consider a dynamic distributed system with up to n nodes active at any given time. When using
a distributed membership service, no single participant has the complete membership information.
Instead, each node u maintains a local view – a multiset, u. lv, of s node ids, also denoted u. lv[1..s].
We say that u is an in-neighbor of v, and that v is an out-neighbor of u, if v ∈ u. lv. We denote
such a view entry by (u, v). We say that two nodes are neighbors if one of them is either an in-
or out-neighbor of another. The outdegree of u, denoted d(u), is the number of out-neighbors u
has. Since some view entries might be empty, this number may be smaller than s. Similarly, u’s
indegree, denoted din(u), is the number of in-neighbors u has.

We now formalize the desirable properties of a distributed membership service. First, in large
systems it is infeasible (in terms of memory, bandwidth, and processing time) for each node to
maintain the full membership information. We thus require:

Property (M1 - Small Views). The view size s≪ n.

3

Typically, logarithmic size views are used in order to ensure fast dissemination of gossiped infor-
mation [8]. Other applications work with constant-size views [21]. Property M1 has to hold at all
times.

We next define the load-balance, uniformity, and independence properties of the membership
graph. Note that nodes can be expected to be uniformly and independently represented in views
only after they have been in the system “long enough” for their representation to spread in the
system; these properties cannot be expected to hold for newly joined or recently departed nodes
whose ids are still included in views. Therefore, similarly to previous studies [6], we require the
following properties to hold only if churn ceases from some point onward. For simplicity, we model
this by considering a static system of n nodes u1, u2, . . . , un. Note that our load-balance, uniformity,
and spatial independence properties are required to eventually hold, starting from any initial state,
and thus we effectively deal with churn that affects the initial topology.

The number of messages received by a node (sent by the membership protocol or by an appli-
cation) is proportional to the number of its in-neighbors. We therefore require load balancing of
indegrees:

Property (M2 - Load Balance). Starting from any initial state, eventually, the variance of node
indegrees is bounded.

The main quality measure of a local view is how well it approximates an independent and
identically distributed (IID) uniform sample of the nodes The next two properties stipulate that
views should converge to IID uniform ones, from any state.

Property (M3 - Uniform Sample). Starting from any initial state, eventually, for each u, v, w,

Pr(v ∈ u. lv) = Pr(w ∈ u. lv).

Note the difference between M2 and M3: M2 means that eventually, in each membership graph
each node is represented near-uniformly in other nodes’ views. M3, on the other hand, implies that
after the system runs for a long time, every id eventually has the same likelihood of appearing in
any given view entry.

Uniformity, by itself, does not imply independence among view entries of the same node or
of different nodes at the same time. Since typical membership protocols exchange data between
neighbors, the most likely dependencies are within the same view, or among the views of neighboring
nodes. We say that two nonempty view entries u. lv[i] and v. lv[j] are independent of each other if

Pr(u. lv[i] = w|v. lv[j] = w) = Pr(u. lv[i] = w).

By slight abuse of terminology, we simply label edges in a membership graph as dependent without
specifying what edges they depend on, as follows: (1) All self-edges (u. lv[i] = u) are dependent;
(2) For v = u or v ∈ u. lv, if u. lv[i] is not independent of v. lv[j] for some j then we say that one
of u. lv[i] or v. lv[j] is dependent. In case of dependencies among several edges, all but one of these
edges are considered dependent. Every edge that is not dependent is independent. We are now
ready to define spatial independence.

Property (M4 - Spatial Independence). Starting from any initial state, eventually, for each u and
1 ≤ i ≤ s such that u. lv[i] is nonempty, we wish to bound the probability that u. lv[i] is independent.

4

Typical membership protocols update only a part of the view in each step. Thus, there is a
temporal dependence between the views before and after the update. We are interested in protocols
that lead to fast dependence decay:

Property (M5 - Temporal Independence). Starting from an expected initial state (formally defined
in Section 4), we wish to bound the number of actions the protocol needs to take in order to reach
a state that is independent of the initial state.

Note that the above bound is weaker than a bound on mixing time, which considers convergence
time from an arbitrary state, rather than a random one.

3 Background: Membership Protocols

We provide a brief taxonomy of the basic actions of gossip-based membership protocols.

Action initiator. A node u can contact one of its out-neighbors v to either push some node id
to it, or to pull an id from it. The pushed id is added to v’s view. In a pull, v is expected to return
some id, which u adds to its view. In some protocols, push and pull are combined into a single
protocol action [2, 18, 19].

The ids sent. Allavena et al. [2] identified two crucial components for a good membership proto-
col: In a reinforcement component, a node adds its own id to an other node’s view. Reinforcement
leads to a uniform representation of nodes in other nodes’ views, and fixes any non-uniformity that
might have been caused by a bad initial views or churn. In a mixing component, a node adds to
its view an id from an other node’s view. This component spreads membership information among
nodes, thus providing independence.

Note that each of the components can be implemented by either push or pull. While many
protocols implement reinforcement by push and mixing by pull, e.g., [2, 19], Lpbcast [8] uses push for
both. We do the same in this paper. A practical optimization, made in many protocols, e.g., [8, 2],
is performing several actions at once, thus reducing message overhead. Such protocols, however,
are difficult to analyze, so most analyses assume that actions are executed serially [2, 18, 19], as
we do in this paper.

Protocols also differ in whether the sender deletes the ids it sent from its local view or keeps
them. Most protocols, e.g., [8, 2] keep the sent ids, thus inducing dependence between neighbor
views. Those that delete the sent ids, e.g., shuffle [1, 19], and flipper [18], are unable to withstand
message loss or node failures since the system gradually loses more and more ids. Jelasity et al. [16]
combine shuffle, which does not create dependencies but may lose ids, with regular push-pull,
which creates dependencies but is immune to loss. In their approach, shuffle operations constitute
a pre-determined fraction of all operations, regardless of actual loss or churn. In contrast, in S&F ,
dependencies are created only to compensate for actually lost ids, and can be kept arbitrarily low
with no loss.

Other sampling approaches. An important advantage of gossip-based membership is the use of
local operations, where each node communicates only with its immediate neighbors. An alternative
(non-local) approach is to use random walks (RWs) (on the membership graph) to obtain new ids
for local views [13, 5, 20]. However, a RW requires many steps, and its correctness depends on the
graph topology; if the actual topology is different from the assumed one, then the sample may be
far from uniform [13]. Moreover, the analysis of RW convergence ignores the dynamic nature of

5

the graph; recent work suggests that RWs may be much less effective on dynamic graphs [3]. In
this paper, we consider local operations only.

Another characteristic of gossip-based membership protocols is that they use the local view for
two purposes: (1) to provide node id samples to the application, and (2) to define the communication
graph over which messages of the gossip protocol itself are transmitted. It is possible to separate
the two. For example, Brahms [6] uses fast evolving local views, which might be non-uniform, and
complements them with membership samples, which converge to uniform ones over time. However,
the latter do not provide temporal independence, as they are designed to persist rather than evolve.
We note that Brahms was designed for Byzantine settings, where maintaining uniform views is
challenging. In this paper, we consider benign settings, and are interested in evolving yet uniform
local views.

4 Modeling Membership Protocols by Graph Transformations

We model membership as a directed multigraph G = (V, E) where vertices represent nodes and
edges represent membership information: E is a multiset containing an edge (u, v) for each u and
v such that v ∈ u. lv, with the multiplicity equal to the multiplicity of v in u. lv. Unless specified
otherwise, we assume the graph to be weakly connected. That is, there is an undirected path
between every two nodes.

Protocol actions can be described as transformations on graph G. For example, a push action
of w’s id from u to v adds an edge (v, w), and pulling id w by u from v adds an edge (u, w).

We consider only memoryless random transformations. That is, each transformation allowed
by a particular protocol occurs with a probability that depends only on the current membership
graph. Every protocol thus defines a Markov Chain (MC) G̃(0), G̃(1), . . ., where G̃(i) represents
the distribution of the membership graphs after the i-th action of the protocol. We analyze a
protocol’s MC graph, where vertices are all possible membership graphs, and edge weights are
transition probabilities of the protocol. A stationary distribution π of such an MC (assuming it
exists) describes the steady state of the system. We thus can analyze the properties of an expected
(according to π) membership graph and and the extent to which it satisfies the desired properties
defined in Section 2.

4.1 Distributed Operations

Because each node’s knowledge of the system is partial, only a limited set of transformations can
occur as a result of a distributed protocol in any given state. Protocol actions are composed of
steps, as defined below:

Protocol steps. A step is a transformation that can be implemented at a single node and consists
of the following three elements: (1) receiving of 0 or 1 messages, (2) modifying the local view by
adding ids received in the message (including the sender’s id) and deleting and duplicating arbitrary
ids, and (3) sending 0 or more messages that can include ids received in the message in (1), ids
from the current view or from the previous view before performing (2). A key property of a step is
that it can be executed atomically, even in an environment with message loss.

Protocol actions. A number of steps can be combined into a protocol action, starting with
a step of an initiating node u, followed by a sequence of steps that receive messages sent in the

6

previous steps. For example, in a push action from u to its out-neighbor v, u’s send to v is a step
and v’s receive and view modification is another step.

Previous analyses, e.g., [2, 18, 19], assumed atomic actions, with no overlap in time. However,
guaranteeing atomicity of multi-step actions in a real system may be complex, and is in some
cases impossible, e.g., in the presence of message loss or of unreliable nodes and asynchronous
communication [14, 10].

Modeling Loss with Non-atomic Actions. We assume there is some probability ℓ that a
sent message is not delivered at its destination. We further assume this probability to be unknown
to the protocol, identical for all messages, and independent of other messages. We assume that
the sender cannot detect that the message it sent was lost, so it cannot retransmit the message.
This means that in a multi-step action, each step is executed with probability 1− ℓ, given that the
previous step was executed (except for the first step, which is executed with probability 1).

5 Send & Forget Protocol

We present S&F , a simple and practical protocol that overcomes loss. S&F avoids bidirectional
communication within the same action; after it sends a message, it “forgets” about it. Thus, actions
at each node are trivially non-overlapping. The protocol running at each node is shown in Figure 1
(u.a.r. stands for uniformly at random). Each node u maintains a view u. lv – an array of size s,
where s ≥ 6 is even. In order to overcome loss (non-atomic actions), the protocol is parametrized
by a threshold 0 ≤ dL ≤ s−6 that sets a lower bound on node outdegree. The gap between dL and
s makes the outdegree flexible enough for the protocol to be effective.

The protocol at node u works as follows: the node selects two different entries i and j in its
view uniformly at random. If any of them is empty, nothing happens and the views of all the
nodes remain unchanged. If both v = u. lv[i] and w = u. lv[j] are nonempty, then u performs the
following steps: (1) sends to v a message including its own id and w; and (2) clears both entries i
and j in its view, unless d(u) ≤ dL, in which case we say the entries are duplicated. On receiving a
message, a node adds both received ids to empty entries in its view, unless d(u) = s, in which case
we say the received ids are deleted. Figure 2 (a)-(b) shows the graph transformation performed by
the protocol when sender’s and receiver’s outdegrees are between dL and s, (which happens most of
the times). Figure 2 (c) shows the effect of duplication at the sender; and Figure 2 (d) illustrates
message loss or deletion at the receiver.

1: function S&F -InitiateActionu()
2: select 1 ≤ i 6= j ≤ s u.a.r.
3: v ← u. lv[i]
4: w ← u. lv[j]
5: if v 6= ⊥ AND w 6= ⊥ then
6: send [u, w] to v
7: if d(u) > dL then
8: u. lv[i]← ⊥
9: u. lv[j]← ⊥

1: function S&F -Receiveu(v1, v2)
2: if d(u) < s then
3: select i u.a.r. so that u. lv[i] = ⊥
4: select j u.a.r. so that u. lv[j] = ⊥
5: u. lv[i]← v1

6: u. lv[j]← v2

Figure 1: The Send & Forget protocol at node u.

7

u v

w

u v

w

(a) before (b) after no duplication
and no deletion

u v

w

(c) after duplication
u v

w

(d) after deletion
or loss

Figure 2: Possible outcomes of a transformation of S&F , initiated by u sending message [u,w] to v. (a)
Before the transformation. Possible states after the transformation where: (b) d(u) > dL,d(v) < s, message
delivered; (c) d(u) = dL,d(v) < s, message delivered; (d) d(u) > dL, and d(v) = s or message lost.

The purpose of the duplications, controlled by the threshold dL, is to compensate for loss.
In the absence of loss, dL can be set to zero, disabling duplications. Under positive loss and
without duplications, node outdegrees would gradually decrease, until eventually all nodes become
isolated. To prevent such a scenario, the protocol performs duplications and creates new edges in
the membership graph instead of lost ones. One might wonder why not fill up empty view entries
by replicating ids in the view. We avoid such replications since it increases dependencies among
ids in the same view. Instead, we allow the sent ids to remain in the sender’s view. Although such
duplication still creates dependencies among neighbors’ views, it does not directly create redundant
parallel edges. As the protocol occasionally creates too many edges, it may need to delete some,
when there are no empty view entries to store the received ids. In Section 6, we analyze the impact
of dL and s (recall that the view size is bounded by s), which in turn provides a “rule-of-thumb”
for selecting their values.

In our analysis, we assume that a central entity repeatedly selects a random node, invokes
its S&F -InitiateActionu() method, and waits for the completion of S&F -Receiveu(v1, v2) by the
receiving node (in case a message was sent). In practice, a similar behavior can be implemented by
each node periodically invoking its S&F -InitiateActionu() method when the invocation rate is the
same for all nodes. The next proposition follows immediately.

Proposition 5.1. The probability for every node u, and every two entries in u’s view to be chosen
in an action is the same.

6 Node Degree Analysis and Setting Degree Thresholds

In this section we show that S&F satisfies the properties M1 - Small Views (i.e., s ≪ n) and M2
- Load Balance, defined in Section 2. We assume that the initial membership graph is weakly
connected and that node outdegrees are between dL and s and are even (S&F preserves the latter).

We start, in Section 6.1, with additional assumptions that the protocol actions are atomic (no
loss), that the views are initialized so that for all u, d(u)+2din(u) = dm for some even dm ≤ s, and
that no edge duplications or deletions are taking place (e.g., by setting dL = 0). We analytically

8

derive approximate node degree distributions.
In Section 6.2 we remove the additional assumptions and model the evolution of node indegree

and outdegree as a Degree Markov Chain (Degree MC). This model is more accurate than the
analytical one since it assumes positive loss and makes weaker assumptions on initialization. We
show that when using parameters corresponding to the assumptions in Section 6.1 (dL = 0, constant
d(u)+2din(u) for all u), the resulting degree distributions are close to the ones obtained analytically.

In Section 6.3 we propose guidelines for selecting protocol parameters s and dL. We show that
S&F can operate with small views– constant or logarithmic in system size.

Finally, in Section 6.4 we compute the stationary distribution of the Degree MC and show that
the protocol preserves M2 - Load Balance.

6.1 Analytically Approximating Degree Distributions without Loss

We start from defining a node sum degree:

Definition 6.1 (Sum Degree). Define ds(u) = d(u) + 2din(u) to be a sum degree of u.

In this analysis we assume that protocol actions are atomic (no loss), that all views are initialized
so that for each u, ds(u) = dm for some even dm ≤ s, and that no edge duplications or deletions
are taking place (e.g., by setting dL = 0).

The following proposition shows that sum degrees are preserved by the protocol under the above
assumptions.

Lemma 6.2. If there is no loss, the initial state is chosen so that for some u and some even
dm ≤ s, ds(u) = dm and for all v, ds(v) ≤ s, and dL = 0, then ds(u) = dm is an invariant.

Proof. From the initialization, and by the protocol properties, 0 ≤ d(v) ≤ s for each v. Thus, since
dL = 0, protocol actions do not perform duplication or deletions. From the protocol, actions that
do not involve duplications or deletions do not alter sum degrees.

Lemma 6.3. If there is no loss, the initial state is chosen so that for each u, ds(u) = dm for some
even dm ≤ s, and dL = 0, the expected node indegree and outdegree is dm /3.

Proof. By basic graph properties, E(d(u)) = E(din(u)). By initialization and by Lemma 6.2,
E(d(u)) + 2 E(din(u)) = ds(u) = dm. Clearly, only E(din(u)) = E(d(u)) = dm

3 satisfies the above
equations.

To analyze node degree distributions under the assumptions of no loss and no duplications or
deletions, we start from selecting a node u and dm nodes v1, . . . , vdm

. We now decide, for each vi,
whether it becomes an in-neighbor, out-neighbor, or not-a-neighbor of u, while making sure that
ds(u) = dm. For a given even outdegree d∗ ∈ [0, dm] (and the corresponding indegree of dm −d∗

2),
the number of different assignments of v1, . . . , vdm

to in-neighbor, out-neighbor, or not-a-neighbor
of u that achieve this outdegree is at most:

a(d) ,

(

dm

d∗

)(

dm−d∗

dm −d∗

2

)

.

Given u, v1, . . . , vdm
, and some assignment Λ, denote the number of different membership graphs

containing the assigned subgraph by b(u, v1, . . . , vdm
, Λ). Different choices of u, v1, . . . , vdm

, and Λ

9

result in different values of b(u, v1, . . . , vdm
, Λ), since different assignments leave slightly different

degrees of freedom in the assignments of other nodes. Nevertheless, when n is large, these values
are similar, and for the sake of the analysis in this section we assume them to be equal. We later
show that this assumption has only a minor effect on our results.

In Section 7.2 (Lemma 7.3) we show that under the assumptions of this section, the protocol
is equally likely to reach each membership graph satisfying sum degree invariant (ds(u) = dm for
each u). Thus,

Pr(d(u) = d∗) = Pr

(

din(u) =
dm−d∗

2

)

≈ a(d∗)
∑

d′=0,2,4,...,dm
a(d′)

. (6.1)

The only source of imprecision is the slight variation of the remaining degrees of freedom described
above. Figure 3 compares these analytical results with a more precise numerical study (Section 6.2).
It shows that that the actual outdegree distribution has similar form and variance. Moreover, it can
be seen that the degree distributions of S&F have lower variance than the binomial distributions
with same expectations.

0

0.05

0.1

0.15

0.2

0 10 20 30 40
Node indegree

Binomial
S&F Analytical
S&F Markov

0

0.05

0.1

0.15

0.2

0 20 40 60 80
Node outdegree

Binomial
S&F Analytical
S&F Markov

Figure 3: S&F node degree distributions (analytical approximation and exact, from Degree MC) and
binomial distributions with same expectation. s = 90, dL = 0, ℓ = 0, ds(u) = 90 for each u.

6.2 Degree Markov Chain

Allavena [1] analyzed the indegree distribution of a different protocol, with a constant outdegree,
assuming no message loss, using a one-dimensional MC. Since in S&F both node indegree and
outdegree can vary, we construct a two-dimensional Degree Markov Chain, where one dimension is
indegree and the other is outdegree, reflecting their joint evolution at a single node. We assume
that the initial membership graph is weakly connected and that node outdegrees are between dL

and s and are even (S&F preserves the latter).
A schematic diagram of the Degree Markov Chain is shown in Figure 4. Note that the state

corresponding to an isolated node (zero indegree and outdegree) is disconnected from the rest of
the states. In the settings we consider, when the loss is nonzero, dL > 0, so the outdegree cannot

10

outdegree� � � �

ind
eg
ree

����
…

…

…

…

…

…

…

…

Figure 4: Degree Markov Chain. Dark circles are reachable states and the light circle is an unreachable state.
Solid lines correspond to (nonempty) transformations occurring with atomic actions (no loss, duplications,
or deletions). Dashed lines correspond to (nonempty) transformations occurring due to loss, duplications,
or deletions.

decrease to 0. With no loss, we allow dL = 0 but since the initial membership graph is weakly
connected, by Lemma 6.2 no node can become isolated.

Unfortunately, there is a cycle here: the degree distributions can be learned from the stationary
distribution of the MC, but the transition probabilities, in turn, depend on the degree distributions.
For example, the probability of a node to receive a message depends on that node’s indegree. We
therefore search the correct degree distributions iteratively, starting from an arbitrary one, comput-
ing the corresponding MC’s stationary distribution, and deriving from it the degree distributions,
with which we start the next iteration. In each iteration, we compute the MC’s stationary distri-
bution numerically, by multiplying the transition matrix by itself until it converges. We stop the
computation when the process converges to a MC with matching degree distributions and transition
probabilities.

Note that since the sum degree invariant (Lemma 6.2) does not hold with non-atomic actions,
sum degrees are not bounded. Considering all possible sum degrees is computationally infeasible.
We observed that states with sum degrees close to 3s had negligible probabilities under the sta-
tionary distribution, so there is not point in computing probabilities for states with higher sum
degrees. Therefore, we considered sum degrees to be bounded by 3s, removing states with higher
sum degrees from the MC and replacing edges leading to these states with self-loops.

The resulting degree distributions, for s = 90, dL = 0, ℓ = 0, and ds(u) = 90 for each u, shown
in Figure 3, have lower variance than that of the binomial distribution. It validates our analysis in
Section 6.1, which we use next to set protocol degree thresholds.

6.3 Setting the Thresholds

We first select d̂ – the expected outdegree we are interested in without loss. d̂ should be chosen
based on the application needs (typically d̂ = O(log n) [8]), and, as we see later, on the expected
loss rate. Given d̂, we now show how to set dL and s so that without loss, the probability of
edge duplications and deletions is arbitrarily low, while keeping the expected outdegree close to d̂.

11

Suppose we are interested in duplication and deletion probabilities of at most δ, we then look for dL

and s satisfying, under no loss, the following conditions: (1) E(d(u)) = d̂, (2) Pr(d(u) ≤ dL) < δ,
and (3) Pr(d(u) ≥ s) < δ. For a given δ < 1/2 we use Equation 6.1 (where dm = 3d̂ by Lemma 6.3)
to set

dL = max
d′=0,2,4,...,d̂ : Pr(d(u)≤d′)≤δ

d′,

s = min
d′=d̂,d̂+2,d̂+4,...,dm : Pr(d(u)≥d′)≤δ

d′.

Since the values of dL and s are discrete, Pr(d(u) ≤ dL) and Pr(d(u) ≥ s) are close but not
necessarily equal. Consequently, the resulting expected outdegree may differ from d̂ slightly. For
example, for d̂ = 30 and δ = 0.01, dL should be set to 18 and s to 40, resulting in expected outdegree
of 30.167. Note that while high δ increases dependencies between nodes’ views, setting δ too low
decreases the ability of the protocol to fix degree imbalances caused by loss. Typically, δ = 0.01
provides a good balance of keeping low duplication and deletion probabilities with no loss, and
fixing degree imbalances under moderate loss.

We conclude that S&F satisfies M1 - Small Views property, as even a constant size (in the
system size n) views are sufficient for the protocol to function properly.

6.4 Node Degrees with Loss

Figure 5 shows the indegree and the outdegree distributions for several different loss rates and the
values dL = 18 and s = 40 from the example in Section 6.3.

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40
Node indegree

l=0
l=0.01
l=0.05
l=0.1

(a)

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80
Node outdegree

l=0
l=0.01
l=0.05
l=0.1

(b)

Figure 5: S&F node degree distributions (exact, from Degree MC) for different loss rates ℓ = 0, 0.01, 0.05, 0.1
(dL = 18, s = 40).

It can be seen that while the average degree decreases with loss, the indegree distribution
remains concentrated around the expected degree. Thus, most nodes have similar indegrees and
we conclude that the protocol satisfies property M2 - Load Balance.

The next lemma proves what is evident from Figure 5 – that the expected outdegree decreases
with increasing loss.

Lemma 6.4. The expected node outdegree decreases with increasing ℓ.

12

Proof. Assume loss rate ℓ1 and the corresponding average outdegree d1 and duplication probability
dup1. Suppose now the loss rate increases to ℓ2 > ℓ1. To accommodate higher loss rate, the
duplication probability have to increase to dup2 > dup1, while the deletion probability should not
grow. For duplication probability to increase, node outdegrees should reach its lower threshold
dL more frequently, and its its upper threshold s at most as frequently as with ℓ1. This, in turn,
implies that expected outdegree decreases. We conclude that in the under loss rate ℓ2, the expected
outdegree d2 < d1.

By Lemma 6.4, with increasing loss rate, the expected outdegree approaches its lower bound
of dL. Hence, the variance of node outdegree decreases (can be observed in Figure 5(b)), and the
following observation follows.

Observation 6.5. The deletion probability decreases with increasing ℓ.

This is illustrated in Figure 5(b), where the deletion probability is the probability density at
the right edge of the curve, as deletions occur only when the outdegree reaches s.

7 Uniformity and Independence

In this section we analyze the remaining protocol properties of uniformity and independence (M3 –
M5). In Section 7.1 we define a global Markov Chain graph that we use to model protocol actions.
In Section 7.2 we prove that with no loss and no duplications or deletions, all membership graphs
reachable from a weakly connected initial graph are equally likely to be reached by the protocol.
In Section 7.3 we show that eventually each node id is equally likely to appear in each other node’s
view. In Section 7.4 we show that the expected fraction of independent entries in views is at least
1− 2(ℓ +δ). Finally, in Section 7.5 we show that the number of actions each node needs to initiate
in order to reach a state that is independent of the initial state is bounded by O(log n) for constant
size views and by O(log2

n) for logarithmic views.

7.1 The Global Markov Chain Graph

We define G(s, dL, ℓ) to be the Global Markov Chain Graph induced by S&F with given s, dL, and
ℓ. For simplicity, we omit the parameters and refer to this graph as G. We call vertices in G states,
as each vertex represents a global state of the views of all nodes. The set of vertices of G can
be represented as a union V = V0

⋃

V1 of two disjoint sets of states: V0 that contains all weakly
connected membership graphs where all node outdegrees are between dL and s−2 (inclusive) and
are even; and V1 that contains all weakly connected membership graphs that are not in V0 (i.e.,
membership graphs where some nodes have outdegree of s), and that can be reached by S&F
transformations from some membership graph in V0. States G1 and G2 are connected by a directed
edge (G1, G2) if there exists at least one transformation from G1 to G2. The weight of the edge,
p(G1, G2) is the sum of probabilities of all transformations from G1 to G2.

Note that some membership graphs are partitioned, e.g., when some node has no incoming
edges and all its outgoing edges are self-edges. Since partitioned states are excluded from G, we
replace the edges leading to them from states in G by self-loops. In Section 7.4 we show sufficient
conditions for making the probability of reaching such partitioned membership graphs arbitrarily
small. When these conditions do not hold, e.g., when the loss rate is 100%, the analysis in this
section is not applicable.

13

Some states where some nodes have full views, i.e., outdegree of s, are unreachable from states
in G. Nodes with full views cannot effectively exchange ids with their neighbors (which may also
have full views) without performing deletions and thus decreasing their outdegrees. For example,
states where all views are full are clearly unreachable by S&F transformations from G. We assume
the initial state to be in G, i.e., not among these unreachable states.1

Note that each state in G has a self-loop edge corresponding to self-loop transformations, that
occur as a result of actions where one of the selected view entries is empty so the action has no
effect on the views.

The proof of the following lemma appears in Appendix A.1.

Lemma 7.1. When 0 < ℓ < 1, G is strongly connected.

Lemma 7.1 implies that from any initial state, any state in G can be reached by a sequence of S&F
transformations.

Lemma 7.2. The Markov Chain on G has a unique stationary distribution π.

Proof. Clearly, G is finite. By Lemma 7.1 it is irreducible. It is aperiodic (meaning that the greatest
common denominator of the lengths of directed paths connecting any two nodes in G is 1) since
each state in G has a self-loop edge. From the above, the Markov Chain is ergodic, and, by the
fundamental theorem of the theory of Markov Chains, has a unique stationary distribution.

Definitions.

Steady state is a random state distributed according to π.

Expected outdegree dE is the expected node outdegree in the steady state. It is immediate that
dE ≥ dL.

Expected independence α is the expected fraction of independent entries in views in the steady
state.

7.2 Stationary Distribution with No Loss

We now complete the analysis of Section 6.1, by proving that with no loss and when for each u,
0 < ds(u) ≤ s and is even, the stationary distribution over all reachable states in G is uniform. As
we assume no loss, there is no need to compensate for it using duplications, so we set dL = 0. It
is easy to see that in the above setting, no duplications or deletions take place. Observe that by
Lemma 6.2, S&F preserves the sum degree of each node. Let d̄s = (ds(u), ds(v), . . .) be a vector
mapping each node to its sum degree. For the sake of the analysis in this section, we define G

d̄s

to be the subgraph of G where all states satisfy a given degree sum vector d̄s. Then, G
d̄s

is the
MC graph induced by S&F under the above assumptions, where d̄s is the sum degree vector of the
initial state.

In Appendix A.2, we prove the following lemma, which asserts that the stationary distribution
of the MC on G

d̄s
is uniform. The proof is basically an adaptation of the proof in [19] to S&F .

Lemma 7.3. The stationary distribution of the MC on G
d̄s

is the uniform distribution over all
states in G

d̄s
.

1 In practice, if the initial state is among the unreachable states, the membership graph is expected to rapidly
evolve to one of the states in G.

14

7.3 Proving Uniformity (M3)

We now return to the general case, where loss may occur. We show that property M3 - Uniform
Sample holds, with the exception that the probability that u’s view contains its own id may be
different (higher) than the uniform probability to contain any other id v 6= u.

Lemma 7.4. In the steady state, for each u, u’s view contains each v 6= u with equal probability.

Proof. Consider two arbitrary nodes u and v. Denote by G(u,v) the set of states in G that contain
edge (u, v). As G includes all weakly connected membership graphs where dL ≤ d(u′) ≤ s for each
u′, and since all nodes behave exactly the same way, by symmetry, for all u, v, w, z, such that u 6= v
and w 6= z, the subgraph spanned by G(u,v) is isomorphic to the subgraph spanned by G(w,z). Thus,
in G’s stationary distribution π, the probability of being in one of the states in G(u,v) equals the
probability of being in one of the states in G(w,z). From here, every node v 6= u has the same
positive probability to appear in u’s view.

7.4 Proving Spatial Independence (M4)

We next analyze property M4 - Spatial Independence and show that in the steady state, the
expected fraction of independent entries in all views, α, can be bounded from below by some
positive constant.

In this section, we restrict the initial state, and assume that initially, the fraction of independent
entries in views is at least 2/3. We show that under moderate loss, this fraction converges to a
much higher value. Thus, α remains higher than 2/3.

Assumption 7.5. α ≥ 2/3.

Note that due to Assumption 7.5 our analysis is not applicable for high loss rates, where α
might become too low. Nevertheless, since our analysis is not tight, we speculate that the protocol
may work well also with α below 2/3. The exact dependence of α on the loss rate will become
evident in the analysis below.

Observe that spatial independence decreases only when the protocol performs duplication, cre-
ating dependent entries in views of immediate neighbors. Recall that δ is the duplication probability
of the protocol with no loss. We get the following bound on duplications:

Lemma 7.6. The duplication probability during non-self-loop transformations is at most ℓ+δ.

Proof. In the steady state, the probability of duplication equals ℓ plus the probability of deletion.
By Observation 6.5, for ℓ > 0, the probability of deletion decreases below δ. The lemma follows.

The following analysis shows that the expected fraction of independent entries in views is
bounded from below by 1− 2(ℓ+δ). Note that typically, both ℓ (see [23, 4]) and δ (see Section 6)
are in the order of 1%, hence the vast majority of view entries are expected to be independent.

The following lemma is proven in Appendix A.3. It coarsely bounds the probability for a
dependent view entry that u sends to return to u in the future. By slight abuse of terminology,
we use the term dependent entry to refer to a particular instance of an id that was created by
duplication. The dependent entry is created in some view entry of u, and later may be sent to
other nodes and reside in their views. In this lemma we ignore the possibility that a dependent
entry is duplicated again, and account for this in a later lemma.

15

Lemma 7.7. Suppose u sends a dependent entry to one of its neighbors. In the steady state, the
probability for this entry to be sent back to u in the future is at most 1/2.

Intuitively, the lemma follows from the fact that u’s neighbors have many additional neighbors,
and thus the id is more likely to travel away from u than to return.

Lemma 7.8. In the steady state, the expected fraction of independent entries in views is bounded
from below: α ≥ 1− 2(ℓ +δ).

Proof. We analyze the expected time a nonempty entry in a view is independent. Since the protocol
is memoryless, we use a simple Dependence Markov Chain to model the state of the entry, which
can be either “dependent” or “independent”.

Ind
ep

en
de

nt

De
pe

nd
en

t

���	
�	� ������	��� ��������� ���������� ������	�
���	
�	���	 ������	���

Figure 6: Dependence Markov Chain.

We consider non-self-loop transformations corresponding to actions initiated by a random node
u and bound the transition probabilities between these states. We then compute the stationary
distribution of the Dependence MC, shown in Figure 6, and derive from it the bound on the expected
time a nonempty entry in a view is independent. We ignore self-loop transformations since they do
not cause any change in views and thus do not alter the dependence state of any entry.

We start with computing probability of going from the independent to the dependent state. By
Proposition 5.1 each entry has the same probability to be involved in a transformation. Thus, by
Lemma 7.6, the probability of a entry to become dependent during a non-self-loop transformation
is at most ℓ+δ. By Lemma 7.7, the probability of receiving previously duplicated entry in the
future is at most 1/2. Thus, in the steady state, the arrival rate of the returning dependent entries
is at most half of the rate of creation of the new dependent entries. Summing up, the probability
of going from the independent to the dependent state is at most (1 + 1

2)(ℓ +δ) = 3
2(ℓ+δ).

We now bound the probability of going from the dependent to the independent state. An action
removes a dependent entry from a view if (1) the target node is different from the action initiator,
and (2) the entry is not duplicated again. By Lemma 7.6, the probability of (2) is bounded by
1− (ℓ+δ). We next bound the probability of (1).

Let β be the probability of an entry to be a self-edge, i.e., u. lv[i] = u. The most likely scenario
for creating a self-edge in u’s view is: (1) u creates two parallel edges (v, u) by initiating two
actions involving one of its out-neighbor v (in both u sends a message to v which is not lost or
deleted), where the first action performs duplication so that v’s id remains in u’s view; then, (2)
v initiates an action involving both of these parallel edges (v, u), send message [v, u] to u and
the message is not lost or deleted. Since the probability of (2) is at most 1/2 by Lemma 7.7, we
conclude that at most half of the dependent entries are self-edges. Since we assumed α ≥ 2/3
(Assumption 7.5), the probability β of a random view entry to be a self-edge is at most 1

3 · 1
2 = 1

6 .

16

Summing up, the probability of going from the dependent to the independent state is at least
(1− β)(1− (ℓ+δ)) = 5

6(1− (ℓ+δ)).
Thus, an entry is expected to spend at most 1

5

6
(1−(ℓ +δ))

out of 1
3

2
(ℓ +δ)

+ 1
5

6
(1−(ℓ +δ))

transformations

in the dependent state.

1
5

6
(1−(ℓ +δ))

1
3

2
(ℓ +δ)

+ 1
5

6
(1−(ℓ +δ))

=

6

5

(1−(ℓ +δ))
2

3
(1−(ℓ +δ))+ 6

5
(ℓ +δ)

(ℓ +δ)(1−(ℓ +δ))

=
6
5(ℓ +δ)

2
3 + 8

15(ℓ +δ)
=

ℓ+δ
5
9 + 4

9(ℓ +δ)
≤ 2(ℓ +δ).

The lemma follows.

Connectivity conditions. A sufficient condition for a membership graph to be weakly connected
is that each node has at least three independent out-neighbors [9]. Although we do not know
the exact distribution of the number of independent ids in views, since the loss (and hence the
duplications) are uniform and independent, we speculate that the number of independent ids in
node views is distributed similarly to node outdegree but with lower expectation (α dE instead of
dE). That is, the number of independent ids in a view is distributed close to a binomial distribution
with expectation of at least α dL. Thus, for any given probability ǫ and loss rate ℓ, we can find the
minimal dL guaranteeing that the probability of a node to have less than 3 independent neighbors
is at most ǫ. E.g, for ℓ = δ = 1%, and ǫ = 10−30, dL should be set to at least 26.

7.5 Proving Temporal Independence (M5)

We next analyze M5 - Temporal Independence. Consider a random initial state G(0) = G̃ chosen
from π. Clearly, the state G̃(1) after one transformation is highly dependent on G(0). However,
as more transformations are performed, the dependence between G̃(i) and G(0) decreases. For a
given ǫ, we would like to find the minimum time τǫ(G) such that for all subsets of states S,

|Pr[G̃(τǫ(G)) ∈ S|G(0) = G̃]− π(S)| < ǫ.

That is, after τǫ(G) transformations, the membership graph is ǫ-independent of the initial graph.
Note that this does not bound the MC’s mixing time, since we start from a random G̃, distributed
according to π. We do this in order to avoid starting from rare pathological states where view
entries are much more dependent than expected. Fortunately, as we showed in Section 7.4, in an
expected state the fraction of dependent entries is bounded by a small constant. Thus, the total
weight of such pathological states under π is negligible.

For the sake of this analysis, we assume that there are exactly n nodes in all states in G and
that s ≪ √n. We derive (in Appendix A.4) the expected conductance – a generalization of graph
expansion around the expected state – of G from three properties: (1) each transition from each
state is induced by two entries selected uniformly at random in a view of a random node; (2)

both of these transitions are not self-loops (due to empty view entries) with probability dE(dE −1)
s(s−1) ;

and (3) the expected fraction of independent entries in views is bounded from below by α, hence
different transitions involving independent view entries lead to different states, independently of
other transitions, with probability of at least α. We then use standard techniques typically used
to deduce the mixing time from conductance to show (also in Appendix A.4):

17

Lemma 7.9. Assuming s≪ √n,

τǫ(G) ≤
16 s2(s−1)2

dE
2(dE−1)2 α2

(

n s · log(n) + log
4

ǫ

)

.

Note that for zero loss, α = 1, and temporal independence is achieved in O(n s log n) transfor-
mations. That is, after each node initiates O(s log n) actions in expectation, the views of all nodes
are independent of the initial state. For logarithmic view sizes this translates to O(log2

n) time
until the dependence on the initial state becomes arbitrarily low. For a positive but moderate loss,
α remains a constant bounded away from 0, and the time it takes to achieve temporal independence
increases by a constant factor.

8 Conclusions

We formalized the desired properties of distributed membership service: small local views, bounded
number of node neighbors, uniformity of views, and their low correlation with past and neighbors’
views. We proposed a formal model for studying membership graph evolutions with non-atomic
protocol actions. We presented a simple and practical membership protocol, S&F and showed
that it provides all the desired properties of a membership service. This is the first analysis of a
membership protocol in the presence of message loss that we are aware of. It might be interesting
to apply our methodology in order to analyze additional gossip-based protocols under message loss.

Acknowledgments

We are grateful to Fabian Kuhn for stimulating discussions on the expansion of random graphs.

References

[1] A. Allavena. On the correctness of gossip-based membership protocols. PhD thesis, Cornell University,
2006.

[2] A. Allavena, A. Demers, and J. E. Hopcroft. Correctness of a gossip based membership protocol. In
PODC, pages 292–301, 2005.

[3] C. Avin, M. Koucký, and Z. Lotker. How to explore a fast-changing world (cover time of a simple
random walk on evolving graphs). In ICALP, pages 121–132, 2008.

[4] O. Bakr and I. Keidar. Evaluating the running time of a communication round over the internet. In
PODC, pages 243–252, 2002.

[5] Z. Bar-Yossef, R. Friedman, and G. Kliot. RaWMS - Random Walk based Lightweight Membership
Service for Wireless Ad Hoc Networks. In ACM MobiHoc, pages 238–249, 2006.

[6] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and A. Shraer. Brahms: byzantine resilient random
membership sampling. In PODC, pages 145–154, New York, NY, USA, 2008. ACM.

[7] Y. Busnel, M. Bertier, and A.-M. Kermarrec. Bridging the Gap between Population and Gossip-based
Protocols. Research Report RR-6720, INRIA, 2008.

[8] P. T. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and A.-M. Kermarrec. Lightweight
probabilistic broadcast. ACM TOCS, 21(4):341–374, 2003.

18

[9] T. I. Fenner and A. M. Frieze. On the connectivity of random m-orientable graphs and digraphs.
Combinatorica, 2(4):347–359, 1982.

[10] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty
process. J. ACM, 32(2):374–382, Apr. 1985.

[11] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie. SCAMP: Peer-to-Peer Lightweight Membership
Service for Large-Scale Group Communication. In Networked Group Communication, pages 44–55,
2001.

[12] D. Gavidia, S. Voulgaris, and M. van Steen. Epidemic-style monitoring in large-scale sensor networks.
Technical Report IR-CS-012, Vrije Universiteit, Netherlands, March 2005.

[13] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in peer-to-peer networks. In IEEE INFOCOM,
2004.

[14] J. Gray. Notes on data base operating systems. In Advanced Course: Operating Systems, pages 393–481,
1978.

[15] M. Gurevich and I. Keidar. Correctness of gossip-based membership under message loss. Technical
Report CCIT Report #732, Department of Electrical Engineering, Technion, 2009.

[16] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van Steen. Gossip-based peer sam-
pling. ACM Trans. Comput. Syst., 25(3):8, 2007.

[17] C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstructured peer-to-peer
networks. In ICS, pages 84–95, 2002.

[18] P. Mahlmann and C. Schindelhauer. Peer-to-peer networks based on random transformations of con-
nected regular undirected graphs. In SPAA, pages 155–164, 2005.

[19] P. Mahlmann and C. Schindelhauer. Distributed random digraph transformations for peer-to-peer
networks. In SPAA, pages 308–317, New York, NY, USA, 2006. ACM.

[20] L. Massoulie, E. L. Merrer, A.-M. Kermarrec, and A. J. Ganesh. Peer Counting and Sampling in Overlay
Networks: Random Walk Methods. In PODC, pages 123–132, 2006.

[21] R. Melamed and I. Keidar. Araneola: A scalable reliable multicast system for dynamic environments.
J. of Parallel and Distributed Computing, 68(12):1539 – 1560, 2008.

[22] B. Morris and Y. Peres. Evolving sets, mixing and heat kernel bounds. Probability Theory and Related
Fields, 133(2):245–266, 2005.

[23] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson. The end-to-end effects of internet path
selection. SIGCOMM Comput. Commun. Rev., 29(4):289–299, 1999.

[24] S. Voulgaris, D. Gavidia, and M. van Steen. CYCLON: Inexpensive Membership Management for
Unstructured P2P Overlays. J. of Network and Systems Management, 13(2):197–217, July 2005.

A Uniformity and Independence

A.1 The Global Markov Chain Graph

In this section we show that the global MC graph is strongly connected. We first prove this for
the loss-free case, in Lemma A.2, and then prove the general case with positive loss in Lemma 7.1.
Recall that the sum degree of node u, ds(u) = d(u)+2din(u). In the loss-free case, the sum degrees
remain invariant. We define the following loss-free transformations on membership graphs:

19

Edge exchange transformation of (u, w) and (v, z). This transformation exchanges a pair of
outgoing edges between two nodes. That is, we want to remove edges (u, w) and (v, z) and
create edges (u, z) and (v, w) instead. First, assume that u and v be are connected by an
edge (u, v). A prerequisite for this transformation is d(u) > dL and d(v) < s. We use this
transformation only when the prerequisite holds. The following two S&F actions implement
the edge exchange transformation: u initiates an action, selects entries containing v and w in
its view, removes these entries from its view, and sends a message [u, w] to v. On receiving
the message, v creates an edge (v, u). Then, v initiates an action and sends [v, z] to u (note
that v necessarily has u in its view), and u creates edge (u, z). It is easy to see that except
the edge exchange, the rest of the membership graph remains unchanged.

We now generalize the edge exchange to any two nodes u and v that are not necessarily
neighbors. Since the graph is weakly connected, there exists at least one undirected path
between u and v. Let this path be u, y1, y2, . . . , yk, v. We use simple edge exchange between
neighbors to “send” the edges we want to exchange along the path. That is, u exchanges
edge (u, w) with some arbitrary y1’s edge, say (y1, x1). Then, y1 exchanges edge (y1, w) with
y2 and so on, until yk exchanges edge (yk, w) with v’s edge (v, z). Now yk exchanges edge
(yk, z) with yk−1’s edge (yk−1, xk). This way, an edge to z travels towards u while returning
the temporarily misplaced edges x1, x2, . . . , xk to their original owners. A prerequisite for the
generalized edge exchange transformation between u and v is the existence of an undirected
path between u and v such that for each two neighbors in the path connected by an edge
(y1, y2), d(y1) > dL and d(y2) < s.

Degree borrowing transformation between u and v. The goal of this transformation is to
decrease the outdegree of node u, and to increase the outdegree of node v, while keeping
their sum degrees invariant. We first define a degree borrowing transformation between
two neighbor nodes u and v, and later generalize it to two arbitrary nodes. Obviously, a
prerequisite for this transformation is that d(u) > dL and d(v) < s. Degree borrowing is then
implemented by u initiating an action and sending a message that is not lost, to v.

Degree borrowing between two arbitrary nodes u and v is then implemented as follows: We
identify another node w, such that there exists an edge (w, v), and exchange an arbitrary
u’s edge (u, z) with w’s edge (w, v), thus making u and v neighbors. We then proceed with
degree borrowing between neighbors. A prerequisite for the generalized degree borrowing
transformation between u and v is a nonzero indegree of v and the ability to perform edge
exchange between u and at least one of v’s in-neighbors.

Recall (Section 7.2) that d̄s = (ds(u1), ds(u2), . . .) is a vector mapping each node to its sum
degree, and that G

d̄s
is the subgraph of G where in all states all node sum degrees are according

to d̄s. The next lemma proves that in a static setting with n nodes and when each pair of nodes
satisfy the prerequisite for edge exchange, G

d̄s
is strongly connected.

Lemma A.1. When in each state in G
d̄s

, each two nodes satisfy the prerequisite for edge exchange,
G
d̄s

is strongly connected.

Proof. We show that for each G, G′ ∈ G
d̄s

, there exists a sequence of transformations transforming
G to G

′. We use only transformations not involving loss, duplications, or deletions. We transform
G into G

′ in two steps: (1) transform G into G
∗ such that node outdegrees in G

∗ equal to those in

20

G
′ (note that by the sum degree invariant, the indegrees become equal too); and (2) transform G

∗

into G
′.

We implement (1) as follows: We iteratively identify pairs of nodes so that one has outdegree
higher than its outdegree in G

′ and another has outdegree lower than its outdegree in G
′. Since

the total number of edges in the membership graph remains constant, such pairs are guaranteed
to exist as long as at least one node has an outdegree different from its outdegree in G

′. For each
such pair, we invoke the degree borrowing transformation making the outdegrees of the two nodes
closer to their outdegrees in G

′. Note that since degree borrowing does not alter node sum degrees,
as a result of the transformation we get a state that is in G

d̄s
. Clearly, after a finite number of such

transformations, we get G
∗ where node outdegrees are equal to those in G

′.
To implement (2) we repeatedly identify “misplaced” edges and use edge exchange transforma-

tions to move them to the nodes they belong to according to G
′. As the number of edges in the

membership graph is finite, a finite number of such transformations is needed to to transform G
∗

into G
′.

The next lemma proves that with no loss (i.e., ℓ = 0 and dL = 0), and for d̄s such that for each
u, 0 < ds(u) ≤ s, G

d̄s
is strongly connected.

Lemma A.2. When 0 < ds(u) ≤ s for each u, ℓ = 0 and dL = 0, G
d̄s

is strongly connected.

Proof. We first show that in the setting of the lemma, in each state in G
d̄s

, each two nodes that
do not satisfy the prerequisite for edge exchange (outdegree above dL for the initiating node and
outdegree below s for the other node), can temporarily increase/decrease its outdegree using degree
borrowing with one of its neighbors. The lemma then follows from Lemma A.1.

Since 0 < ds(u) ≤ s for each u and dL = 0, if d(u) = dL = 0, then, by the sum degree invariant,
u has at least one in-neighbor y such that 0 < d(y). Similarly, if d(u) = s, then u has at least
one out-neighbor y such that d(v) < s. Thus, for any node that has an outdegree of dL or s, we
can perform degree borrowing before and after the edge exchange, so that the node satisfies the
edge exchange prerequisite. The degree borrowing performed after the edge exchange, involves the
same nodes as the one performed before the edge exchange, thus eliminating any effects of degree
borrowing on the membership graph. We do this also for edge exchange transformations used
within degree borrowing. Thus, for every u whose outdegree is lower than s−2 and every v whose
outdegree is greater than 2, the prerequisites for degree borrowing of u from v can be satisfied.

We now take message loss into account (ℓ > 0), and show that also G is strongly connected.
Recall (Section 7.1) that the states of G include states in V0, where all node outdegrees are between
dL and s−2 (inclusive) and are even, and states in V1, where some nodes have outdegrees of s and
that are reachable by S&F from V0.

Lemma 7.1 (restated) When 0 < ℓ < 1, G is strongly connected.

Proof. We prove the lemma in several steps. We first prove that any two states in V0 are reachable
from each other (Lemma A.3), and then show that there is a path from any state in V1 to some
state in V0 (Lemma A.4). In the following two lemmas, unless specified otherwise, we consider
transformations that do not involve message loss.

Lemma A.3. For each G, G′ ∈ V0, there exists a sequence of S&F transformations transforming
G to G

′.

21

Proof. We first construct from G
′ another membership graph G

′′ by adding outgoing edges from
every node whose outdegree in G

′ is dL to two arbitrary nodes. Note that G
′′ is also in V0. Clearly,

G
′′ can be transformed to G

′ by invoking S&F transformations involving only these additional
edges, where these edges are lost. The remainder of the proof is dedicated to transforming G to
G

′′. Note that since in Section 5 we require dL ≤ s−6, we are guaranteed that s−2 > dL +2.
We start by transforming G into G1 where each node has outdegree of at least dL +2. We first

increase the outdegrees of nodes with outdegree dL. We pick u such that d(u) = dL and perform
the following transformation: If u has an in-neighbor with outdegree of at least dL +4, we invoke
an S&F transformation where this neighbor sends a message to u thus increasing its outdegree
to dL +2. If u does not have an in-neighbor with outdegree of at least dL +4, we invoke an S&F
transformation where u sends a message to any of its out-neighbors (involving duplication), and
then a transformation where that neighbor sends a message back to u. Thus, the outdegree of u
becomes dL +2 while other node outdegrees do not change.

From now on, we maintain the outdegrees of all nodes in the range [dL +2, s−2]. Thus, the
prerequisites for edge exchange and degree borrowing transformations between any two nodes are
satisfied.

We next transform G1 into G2 where the total number of edges is as in G
′′. To decrease the

number of edges, we invoke S&F transformations involving loss at nodes whose outdegree is still
above dL +2. To increase the number of edges, we need to invoke S&F transformations that perform
duplication, which happens only when a node has outdegree of dL. To this end, we pick an arbitrary
node u, and perform degree borrowing transformations to decrease the outdegrees of u and of all of
its out-neighbors to dL. Once u reaches an outdegree of dL, we invoke S&F transformations where
u sends messages to its out-neighbors and performs duplications, until the neighbors’ outdegrees
reach s−2 (or the desired number of edges is reached). We then invoke S&F transformation where
one of u’s in-neighbors sends u a message, thus increasing u’s outdegree to dL +2. We continue
the above process (possibly repeating it with different nodes), until we reach the desired number of
edges. All subsequent transformations will preserve the total number of edges in the membership
graph.

We next transform G2 into G3 where for each node u, its sum degree is as in G
′′. We iteratively

identify pairs of nodes u and v so that ds(u) is too low and ds(v) is too high until for each u, ds(u)
is as in G

′′. (Such pairs are guaranteed to exist as long as at least one node u has a different sum
degree than in G

′′.) For such a pair u, v, we identify an arbitrary node w and use edge exchanges
between w and the in-neighbors of u and v to create edges (w, u) and (w, v). (If u or v do not have
in-neighbors, we perform degree borrowing to create the needed in-neighbors.) We then temporarily
decrease the outdegree of w to dL using degree borrowing (as described earlier), and perform the
following sequence of S&F transformations between w and its arbitrary out-neighbor y 6= u, v: (1)
w sends and duplicates [w, u] to y, thus creating edges (y, w) and (y, u); (2) y sends [y, u] to w,
removing edges (y, w) and (y, u) and creating edges (w, y) and (w, u) (both these edges have now
multiplicity of at least 2); (3) w sends [w, v] to y and the message is lost, thus removing edges
(w, y) and (w, v). The outcome of this entire sequence is creating one new incoming edge to u and
removing one incoming edge from v, thus increasing u’s sum degree by 2 and decreasing v’s sum
degree by 2. The total number of edges in the membership graph remains unchanged. We now can
undo all degree borrowing transformations so that node outdegrees are again between dL +2 and
s−2. After a finite number of such transformations, we get G3 where for each node u, ds(u) is as
in G

′′.

22

By Lemma A.1, G
′′ is reachable from G3, and the lemma follows.

We next prove that there is a path from any state in V1 to some state in V0.

Lemma A.4. For each G ∈ V1, there exists a sequence of transformations transforming G to some
G

′ ∈ V0.

Proof. In order to get from G to some G
′ ∈ V0 we need to decrease the outdegrees of all nodes

to at most s−2. To this end, we iteratively pick nodes having outdegrees of s, and initiate S&F
transformations involving entries in their views and also involving message loss. Each such trans-
formation decreases source node’s outdegree from s to s−2 without affecting the outdegree of any
other node. After at most n such transformations we get to some G

′ ∈ V0.

Proof of Lemma 7.1. By Lemmas A.3 and A.4, and since by the definition of G all states in
V1 are reachable from some state in V0, the lemma follows.

A.2 Stationary Distribution with No Loss

We use the following auxiliary lemmas to prove Lemma 7.3. We first observe that G
d̄s

is in fact
undirected:

Lemma A.5. G
d̄s

is reversible.

Proof. Consider arbitrary G ∈ G
d̄s

, and arbitrary transformation initiated by node u, sending u
and w to v, and the resulting G

′ ∈ G
d̄s

. Clearly, G
′ can be transformed back to G by v sending

v and w to u. By Proposition 5.1, all transitions happen with the same probability. The lemma
follows.

Lemma A.6. The outdegrees and the indegrees of all states in G
d̄s

are equal.

Proof. G’s outdegree is the sum of probabilities of all transformation of G. Since each transforma-
tion involves an arbitrary node, and by Proposition 5.1, the probability of each transformation is
the same.

By Lemmas A.6 and A.5, G
d̄s

induces a doubly stochastic Markov Chain transition matrix.

Lemma 7.3 (restated) The stationary distribution of the MC on G
d̄s

is the uniform distribution
over all states in G

d̄s
.

Proof. Consider the Markov Chain induced by G
d̄s

. Clearly, G
d̄s

is finite. From Lemma A.2 it
is irreducible. It is aperiodic (meaning that the greatest common denominator of the lengths of
directed paths connecting any two nodes in G

d̄s
is 1) since each state G ∈ G

d̄s
has a self-edge. From

the above, the Markov Chain is ergodic, and, by the fundamental theorem of the theory of Markov
Chains, has a unique stationary distribution.

By Lemma A.5, G
d̄s

is undirected. On undirected graphs, the probability of each state under
the stationary distribution is proportional to its degree. Since by Lemma A.6 the degrees of all
states are equal, the stationary distribution of a Markov Chain on graph G

d̄s
is uniform.

23

A.3 Proving Spatial Independence (M4)

Lemma 7.7 (restated) Suppose u sends a dependent entry to one of its neighbors. In the steady
state, the probability for this entry to be sent back to u in the future is at most 1/2.

Proof. We (crudely) bound the probability of a dependent entry being sent back to its originator as
follows. In the worst case, when all dependent entries of u’s out-neighbors point to u, the probability
of u getting back a dependent entry from its immediate neighbor is at most 1 − α(1 − 1/n). For
simplicity, we neglect 1/n (assuming n≫ 1) and thus use 1−α for the above bound. More generally,
the probability of a dependent entry getting back to u after traversing i edges under the worst case
assumptions that all dependent entries of all nodes reachable from it by i edges are “devoted” to
such back edges to u, is bounded by (1− α)i. Thus, the probability of a given dependent entry to
return to u after being removed from u’s view is bounded by

∞
∑

i=1

(1− α)i =
1

1− (1− α)
− 1 =

1

α
− 1.

Since we assumed α ≥ 2/3 (Assumption 7.5), the above expression is at most 1/2.

Note that the above bound is not tight due to the following worst-case assumptions: (1) for
each i ∈ [1,∞), all dependent entries of all nodes reachable from u by i edges are devoted edges
back to u; (2) ignoring the probability of the entry to disappear due to loss or deletions; and (3)
summing the return probabilities for all i, ignoring the fact that if the entry returns after traversing
i edges, it will not return after traversing j edges for j > i.

A.4 Proving Temporal Independence (M5)

For simplicity, the following analysis assumes that there are exactly n nodes, fixed during the period
we analyze. Our analysis makes use of the well-established notions of neighbor set and boundary:

Definition A.7 (Neighbor set). Let x be a vertex in G. Then, the neighbor set of x, Γi(x) is the
subset of V reachable from x by paths of at most i edges.

Recall that p(x, y) is the transition probability of the MC from state x to y. Intuitively, the
boundary size of S is the “flow” from S to the rest of the graph relative to the stationary distribution
π.

Definition A.8 (Boundary size). For x, y ∈ V, let Q(x, y) = π(x)p(x, y), and for A, B ⊂ V let
Q(A, B) =

∑

x∈A,y∈B Q(x, y). The boundary size of S ⊂ V, |∂S|, is then |∂S| = Q(S, Sc), where
Sc = V \ S is the complement of S.

Definition A.9 (Conductance). The conductance of S ⊂ V, φ(S) is defined as follows: φ(S) = |∂S|
π(S) .

The conductance of graph G is defined as follows: φ(G) = minS⊂V:π(S)≤1/2(φ(S)).

As explained above, we focus on starting from a random state rather than from and arbitrary
one. We thus introduce the new notion of expected conductance:

24

Definition A.10 (Expected conductance). The expected conductance of graph G, Φ(G), is defined
as follows:

Φ(G) = E

(

min
i:π(Γi(X))≤1/2

(φ(Γi(X)))

)

,

where X is a random state in V distributed according to π.

The following lemma bounds the expected conductance of G.

Lemma A.11. Assuming s≪ √n, the expected conductance of G satisfies Φ(G) ≥ dE(dE −1) α
2 s(s−1) .

Proof. Recall the definition of the expected conductance:

Φ(G) = E

(

min
i:π(Γi(X))≤1/2

(φ(Γi(X)))

)

,

where X is distributed according to π, and

φ(Γi(X)) =

∑

x∈Γi(X)

(

π(x)
∑

y∈Γi(X)c p(x, y)
)

π(Γi(X))
.

We bound
∑

y∈Γi(X)c p(x, y) – the sum of all transition probabilities from x to states in Γi(X)c as
follows. Recall that each two entries in a view of each node have the same probability to be involved
in a transformation. We thus have n·s ·(s−1) view entry pairs in x, each involved in a transformation
with probability 1

n·s ·(s−1) . We now bound the probability of a random transformation from a

random state in Γi(X) leading to one of the states in Γi(X)c. The probability of both view entries

being nonempty is dE(dE −1)
s(s−1) , and the probability of each of them to point to a random node

independently of other view entries is α. Thus, a random transformation has probability of at least
dE(dE −1) α

s(s−1) to lead to one of the states in Γi(X)c, independently of other transformations. Due to the

assumption that s≪ √n, the probability of several such independent transformations leading to a
same state in Γi(X)c is negligible for small Γi(X), and is at most half when π(Γi(X)) ≈ 1/2. (More
frequent duplicate selections would imply that there is a higher fraction than 1 − α of dependent
entries, since duplicate selection is caused by several different sequences of transformation reaching
the same state.) Thus,

Φ(G) ≥ dE(dE−1)α

2 s(s−1)
.

Lemma 7.9 (restated) Assuming s≪ √n,

τǫ(G) ≤
16 s2(s−1)2

dE
2(dE−1)2 α2

(

n s · log(n) + log
4

ǫ

)

.

Proof. The Markov Chain mixing time Tǫ(G) is related to the MC graph conductance as follows [22]:

Tǫ(G) ≤ 1 +
4

φ2(G)

(

log
1

π∗
+ log

4

ǫ

)

,

25

where π∗ = minx∈V π(x) is the probability, under stationary distribution, of a least probable “worst
case” state. Since we are starting from a random state X distributed according to π, we use Φ(G)
instead of φ(G), and π′ = E(π(X)) instead of π∗. Thus,

τǫ(G) ≤ 1 +
4

Φ2(G)

(

log
1

π′
+ log

4

ǫ

)

,

As we do not know the distribution π explicitly, we bound E(π(X)) from below as if each state
had the same probability. In each state in G, each node selects, uniformly at random, at most s

neighbors out of n nodes independently of other selections. Thus, there are at most nn s different
states in G. Since some states have higher probability relative to π than the others (e.g., since most
views are expected to contain less than s entries),

E(π(X)) ≥ 1

nn s
.

Substituting the result of Lemma A.11, we get,

τǫ(G) ≤
16 s2(s−1)2

dE
2(dE−1)2 α2

(

log(nn s) + log
4

ǫ

)

=
16 s2(s−1)2

dE
2(dE−1)2 α2

(

n s · log(n) + log
4

ǫ

)

.

26

	Introduction
	Goals for a Distributed Membership Service
	Background: Membership Protocols
	Modeling Membership Protocols by Graph Transformations
	Distributed Operations

	Send & Forget Protocol
	Node Degree Analysis and Setting Degree Thresholds
	Analytically Approximating Degree Distributions without Loss
	Degree Markov Chain
	Setting the Thresholds
	Node Degrees with Loss

	Uniformity and Independence
	The Global Markov Chain Graph
	Stationary Distribution with No Loss
	Proving Uniformity (M3)
	Proving Spatial Independence (M4)
	Proving Temporal Independence (M5)

	Conclusions
	Uniformity and Independence
	The Global Markov Chain Graph
	Stationary Distribution with No Loss
	Proving Spatial Independence (M4)
	Proving Temporal Independence (M5)

