

IRWIN AND JOAN JACOBS

CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

On Avoiding Spare Aborts in

Transact ional Mem ory

I dit Keidar and Dm it r i Perelm an

CCI T Report # 7 3 3

May 2 0 0 9

Electronics
Computers
Communications

DEPARTMENT OF ELECTRICAL ENGINEERING

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL

On Avoiding Spare Aborts in Transactional Memory

Idit Keidar Dmitri Perelman

Dept. of Electrical Engineering

Technion, Haifa 32000, Israel

idish@ee.technion.ac.il, dima39@tx.technion.ac.il

Abstract

This paper takes a step toward developing a theory for understanding aborts in transactional memory

systems (TMs). Existing TMs may abort many transactions that could, in fact, commit without violating

correctness. We call such unnecessary aborts spare aborts. We classify what kinds of spare aborts can

be eliminated, and which cannot. We further study what kinds of spare aborts can be avoided efficiently.

Specifically, we show that some unnecessary aborts cannot be avoided, and that there is an inherent

tradeoff between the overhead of a TM and the extent to which it reduces the number of spare aborts.

We also present an efficient example TM algorithm that avoids certain kinds of spare aborts, and analyze

its properties and performance.

lesley
Text Box
CCIT REPORT #733 May 2009

1 Introduction

The emergence of multi-core architectures raises the problem of efficient synchronization in multithreaded

programs. Conventional locking solutions introduce a host of well-known problems: coarse-grained locks

are not scalable, while fine-grained locks are error-prone and hard to design. Transactional memory [10, 15]

has gained popularity in recent years as a new synchronization abstraction for multithreaded systems, which

has the potential to overcome the pitfalls of traditional locking schemes. A transactional memory toolkit,

or TM for short, allows threads to bundle multiple operations on memory objects into one transaction.

Similarly to database transactions [16], transactions are executed atomically: either all of the transaction’s

operations appear to take effect simultaneously (in this case, we say that the transaction commits), or none

of transaction’s operations are seen (in this case, we say that transaction aborts). We formally define the

model and correctness criterion in Section 3.

A transaction’s abort may be initiated by a programmer or may be the result of a TM decision. In the

latter case, we say that the transaction is forcefully aborted by the TM. For example, when one transaction

reads some object A and then writes to some object B, while another transaction reads the old value of B

and then attempts to write A, one of the transactions must be aborted in order to ensure atomicity. Most

existing TMs perform unnecessary (spare) aborts, i.e., aborts of transactions that could have committed

without violating correctness; see Section 2. Spare aborts have several drawbacks: work done by the aborted

transaction is lost, computer resources are wasted, and the overall throughput decreases. Moreover, after the

aborted transactions restart, they may conflict again, leading to livelock and degrading performance even

further.

The aim of this paper is to advance the theoretical understanding of TM aborts, by studying what kinds of

spare aborts can or cannot be eliminated, and what kinds of spare aborts can or cannot be avoided efficiently.

Specifically, we show that some unnecessary aborts cannot be avoided, and that there is an inherent tradeoff

between the overhead of a TM and the extent to which it refrains from spare aborts.

Previous works introduced two related notions: commit-abort ratio [6] and permissiveness [7]. The latter

stipulates that in runs that do not violate correctness, no aborts should happen. However, while shedding

insight on the inherent limitations of online TMs, these notions do not provide an interesting yardstick for

comparing TMs. This is because under these measures, all online TMs inherently perform poorly for some

worst-case workloads, as we show in Section 4.

In Section 5, we then define measures of spare aborts that are appropriate for online TMs. Intuitively,

our strict online permissiveness property allows a TM to abort some transaction only if not aborting any

transaction would violate correctness. Unlike ealier notions, strict online permissiveness does not prevent

the TM from taking an action that might lead to an abort in the future. Thus, the information available to the

TM at every given moment suffices to implement strict online permissiveness. Clearly, this property depends

on the correctness criterion the TM needs to satisfy. In this paper, we consider opacity [8] or slight variants

thereof (see Section 3). In this context, strict online permissiveness prohibits aborting a transaction whenever

the execution history is equivalent to some sequential one. We prove that strict online permissiveness cannot

be satisfied efficiently by showing a reduction from the NP-hard view serializability [13] problem. We

then define a more relaxed property, online permissiveness, which allows the TM to abort transactions if

otherwise it would have to change the serialization order between already committed transactions. We show

that online permissiveness also has inherent costs — it cannot be satisfied by a TM using invisible reads.

Moreover, the information about a read should be exposed in shared memory immediately after the read

operation returns.

In Section 6, we show a polynomial time TM protocol satisfying online permissiveness. The protocol

1

maintains a precedence graph of transactions and keeps it acyclic. Unfortunately, we show that the graph

must contain some committed transactions. But without removing any committed transactions, detecting

cycles in the precedence graph would be impractical as it would induce a high runtime complexity. Hence,

we define precise garbage collection rules for removing transactions from the graph. Even so, a naı̈ve traver-

sal of the graph would be costly; we further introduce optimization techniques that decrease the number of

nodes traversed during the acyclity check.

Finally, we note that our goal is not to build a better TM, but rather to understand what can and what

cannot be achieved, and at what cost. Future work may further explore the practical aspects of the complexity

vs. spare-aborts tradeoffs; our conclusions appear in Section 7.

2 Related Work

Most existing TM implementations, e.g., [9, 5, 4, 3] abort one transaction whenever two overlapping trans-

actions access the same object and at least one access is a write. While easy to implement, this approach

may lead to high abort rates, especially in situations with long-running transactions and contended shared

objects. Aydonat and Abdelrahman [2] referred to this problem and proposed a solution based on a con-

flict serializability graph and multi-versioned objects in order to reduce the number of unnecessary aborts.

However, their solution still induces spare aborts, and does not characterize exactly when such aborts are

avoided. Moreover, they implement a stricter correctness criterion than opacity, which inherently requires

more aborts. Riegel et al. [14] looked at the problem of spare aborts from a different angle, and introduced

weaker correctness criteria, which allow TMs to reduce the number of aborts.

Napper and Alvisi [12] described a serializable TM, based upon multi-versioned objects, which used

cycle detection in the precedence graph when validating the correctness criterion. The focus of the paper

was providing a lock-free solution. The authors did not refer to the aspect of spare aborts and, in fact, their

TM did lead to spare aborts due to a limitation on write operation, which had to insert the new version

after the latest one. In addition, Napper and Alvisi did not refer to the problems of garbage collection and

computational complexity of operations.

Gramoli et al. [6] referred to the problem of spare aborts and introduced the notion of commit-abort

ratio, which is the ratio between the number of committed transactions and the overall number of trans-

actions in the run. Clearly, the commit-abort ratio depends on the choice of the transaction that should be

aborted in case of a conflict. This decision is the prerogative of a contention manager [9]. Attiya et al. [1]

showed a Ω(s) lower bound for the competitive ratio for transactions’ makespan of any online deterministic

contention manager, where s is the number of shared objects. Their proof, however, does not apply to our

model, because it is based upon the assumption that whenever multiple transactions need exclusive access

to the same shared object, only one of these transactions may continue, while others should be immediately

aborted. In contrast, our model allows the TM to postpone the decision regarding which transaction should

be aborted till the commit, thus introducing additional knowledge and improving the competitive ratio. In

this paper, we show that every TM is Ω(L) competitive in terms of commit-abort ratio, where L is the num-

ber of live transactions in the system. This result suggests that it is not interesting to compare (online) TMs

by their commit-abort ratio, as the distance from the optimal result turns out to be an artifact of the workload

rather than the algorithm, and every TM has a workload on which it performs poorly by this measure.

Input acceptance is also a notion presented by Gramoli et al. [6] — a TM accepts a certain input pattern

(sequence of invocations) if it commits all of its transactions. The authors compared different TMs according

to their input acceptance patterns. Guerraoui et al. [7] introduced the related notion of π-permissiveness.

Informally, a TM satisfies π-permissiveness for a correctness criterion π, if every history that does not

2

violate π is accepted by the TM. Thus, π-permissiveness can be seen as optimal input acceptance. However,

Guerraoui et al. focused on a model with single-version objects, and their correctness criterion was based

upon conflict serializability, which is stronger than opacity and thus allows more aborts. They ruled out

the idea of ensuring permissiveness deterministically, and instead provide a randomized solution, which is

always correct and avoids spare aborts with some positive probability. In contrast, we do not limit the model

to include single-version objects only, our correctness criterion is a generalization of opacity [8], and we

focus on deterministic guarantees. Although permissiveness does not try to regulate the decisions of the

contention manager, we show that no online TM may achieve permissiveness. Intuitively, this results from

the freedom of choice for returning the object value during the read operation — returning the wrong value

might cause an abort in subsequent operations, which is avoided by a clairvoyant (offline) algorithm.

3 Preliminaries and System Model

Transactions. Our definition of Transactional Memory (TM) is based on [8]. A TM allows threads to run

transactions. Transactions perform operations on shared objects. The objects considered in this paper are

read/write registers. The status of a transaction may be either live, aborted, or committed. A transaction can

perform operations as long as it is live. Each transaction has a unique identifier (id). Retrying an aborted

transaction is interpreted as creating a new transaction with a new id. The maximal possible number of live

transactions is L.

The API of the TM includes the following operations. The operation startTransaction() returns the id of

a newly created transacton. The status of a newly created transaction is always live. When Ti is live, it can

invoke the following operations: read(Ti,o), which returns the value of register o, and write(Ti,o,v), which

writes value v to register o. For the sake of simplicity, we assume that the values written to the registers are

unique. When Ti wishes to terminate, it invokes operation tryCommit(Ti) or tryAbort(Ti). If tryCommit(Ti)

returns Ci, the status of Ti changes to committed, while tryAbort(Ti) always returns Ai, indicating that Ti is

aborted. The abort value Ai may also be returned as a response to read, write or tryCommit invocations, in

which case we say that the TM forcefully aborts transaction Ti. If the TM forcefully aborts transaction Tj

as a result of another transaction’s operation, then the returned value of the subsequent operation of Tj will

be Aj . The read-set and the write-set of Ti are denoted as read(Ti) and write(Ti) respectively, and are not

known in advance.

The calls to the TM are blocking — the invoking thread waits for a response before invoking more

operations. We assume that TM operations issued by different threads are executed atomically. This allows

us to neglect issues related to overlapping operation executions, which are not the focus of this paper; in

practice, such atomicity can be implemented using locks or well-known lock-free solutions, e.g., [5]. Note,

however, that transactions may overlap.

The TM guarantees that each operation invocation eventually gets a response, even if all other threads are

sleeping. This limits the TM’s behavior upon operation invocation, so that it may either return an operation

response, or abort a transaction, but cannot wait for other transactions to invoke operations.

Transaction histories. A transaction history is the sequence of operations issued by transactions in a given

TM execution, ordered by the time at which they are issued (in the rest of the paper we use the notion of

run as a synonim to a transaction history). Two histories H1 and H2 are equivalent if they contain the same

transactions and each transaction Ti issues the same operations in the same order with the same responses

in both. A history H is complete if it does not contain live transactions. If history H is not complete, we

may build from it a complete history Complete(H) by adding an abort operation for every live transaction.

3

We define committed(H) to be the subsequence of H consisting of all the operations of all the committed

transactions in H .

The real-time order on transactions is as follows: if the first event of transaction Ti is issued after the last

response of transaction Tj in H , then Tj ≺H Ti. Transactions Ti and Tj are concurrent if neither Tj ≺H Ti,

nor Ti ≺H Tj . A history S is sequential if it has no concurrent transactions. A sequential history S is legal

if it respects the sequential specification of each object accessed in S. Transaction Ti is legal in S if the

largest subsequence S′ of S, such that, for every transaction Tk ∈ S′, either (1) k = i, or (2) Tk is committed

and Tk ≺S Ti, is a legal history.

Correctness. Our correctness criterion resembles the opacity condition of Guerraoui and Kapalka [8]. Let

Γ(H) be a partial order on transactions. A TM satisfies Γ-opacity if for every history H generated by the

TM there exists a sequential history S, s.t.:

• S is equivalent to Complete(H).

• Every transaction Ti ∈ S is legal in S.

• If (Ti, Tj) ∈ Γ(H), then Ti ≺S Tj .

When Γ(H) includes all the ordered pairs of non-concurrent transactions in H , the history S should

preserve the real-time order of H . On the other hand, when Γ is empty, the correctness criterion is a serial-

izability with consideration of aborted transactions. The use of Γ makes it possible to require transactional

ordering that lies between serializability and strict serializability according to any arbitrary rule (e.g., Riegel

et al. [14] considered demanding real-time order only from transactions belonging to the same thread). We

define a more general criterion in order to broaden the scope of our results. In the rest of this paper, we will

assume that Γ(H) is a subset of the real-time order on transactions, unless stated otherwise.

We should note that our notion of Γ-opacity is somewhat stronger than the original one defined by

Guerraoui and Kapalka [8], in that it is a safety property (i.e., prefix-closed). Since the set of histories of

every TM is prefix closed, every TM satisfying the original (weaker) property also satisfies the (stronger)

version we define. Moreover, the notion of opacity-permissiveness does not make sense in the context of

the former because no TM may generate opaque histories that have non-opaque prefixes. Indeed, the paper

that defines permissiveness [7] uses an even stronger notion of opacity, which is in fact prefix-closed.

4 Limitations of Previous Measures

4.1 Commit-Abort Ratio

The commit-abort ratio (τ) [6] is the ratio between the number of committed transactions and the overall

number of transactions in the history. Unfortunately, no online TM may guarantee optimal commit-abort

ratio. Recall that L is the number of live transactions. We show that every TM is Ω(L) competitive in terms

of its commit-abort ratio.

We use the style of [14] to depict transactional runs. Objects are represented as horizontal lines o1, o2,

etc. Transactions are drawn as polylines with circles corresponding to accesses to the objects. Filled circles

indicate writes, and empty circles indicate reads. Commit is indicated by the letter C, and abort by the letter

A. If the TM implements the access to the object as if it had appeared in past, the dashed arc indicates the

point in time at which the access to the object appears according to the TM serialization.

4

o1

T1

o2

T2

T3

C A

o3

... T4TL

A A A...

(a) Run r1: T2 commits, all other transactions

abort: τ =
1

L

o1

T1

o2

T2

T3

CA

o3

... T4TL

A A A...

(b) Run r2: T1 commits, all other transactions

abort: τ =
1

L

Figure 1: No online TM may know whether to abort T1 or T2 in order to obtain an optimal commit-abort ratio.

Lemma 1. Every TM is Ω(L) competitive in terms of its commit-abort ratio.

Proof. Consider the scenarios depicted in Figure 1. The runs are indistinguishable until the time when TL

tries to commit. Transactions T1 and T2 cannot both commit because both write o1 after reading its previous

value. In run r1 (Figure 1(a)), the TM commits T2, then T1 aborts and then the transactions T3 · · ·TL try to

write to o3 and must be aborted because they conflict with T2, resulting in τ = 1

L
. In run r2 (Figure 1(b)),

the TM aborts T2, T1 commits and then the transactions T3 · · ·TL try to write to o2 and therefore must be

aborted, resulting again in τ = 1

L
. The optimal offline TM in these cases would abort only one transaction,

yielding τ = L−1

L
. The online TM, however, cannot distinguish between r1 and r2 at the moment it should

decide whether to abort T1 or T2, hence the competitive ratio is Ω(L).

4.2 Permissiveness

Since requiring an optimal commit-abort ratio is too restrictive, we consider a weaker notion that limits

aborts only in runs where none are necessary: a TM provides permissiveness [7] if it accepts every history

satisfying Γ-opacity. Gramoli et al. showed that existing TM implementations do not accept all inputs they

could have, and hence are not permissive. We show that this is an inherent limitation.

o1

T1

o2

T2C

A
t0

T3

o3
C

(a) Run r1: T2 reads the value v1

o1

T1

o2

T2C

A
t0

T3

o3
C

T4

(b) Run r2: T2 reads the value v0

Figure 2: At time t0, no online TM knows which value should be returned to T2 when reading o1 in order to allow

for commit in the future.

The formal impossibility illustrated in Figure 2 is captured in the following lemma:

Lemma 2. For any Γ, there is no online TM implementation providing Γ-opacity-permissiveness.

5

Proof. Consider the scenario depicted in Figure 2. All the objects have initial values, v0. All the transactions

start at the same time, ti, and are therefore not ordered according to the real-time order, thus the third

condition of our correctness criterion holds for any Γ.

T1 writes values v1 to o2 and o1. At time t0, there is a read operation of T2 and the TM should decide

what value should be returned. In general, the TM has four possibilities: (1) return v1, (2) return v0, (3)

return some value v′ different from v0 and v1, and (4) abort T2. If the TM chooses to abort, then opacity-

permissiveness is violated and we are done. (3) is not possible, for returning such a value would produce a

history, for which any equivalent sequential history S would violate the sequential specification of o1 and

thus would not be legal.

Consider case (1): the TM returns v1 for T2 at time t0. This serializes T2 after T1. Consider run r1

depicted in Figure 2(a), where T3 tries to write to o3 and commit. In this run, the TM has to forcefully abort

T3, because not doing so would produce a history H with no equivalent sequential history: T1 ≺ T2 ≺ T3 ≺
T1. However, if T2 would read v0 in run r1, then T2, T1 and T3 would be legal, and no transaction would

have to be forcefully aborted. So Γ-opacity-permissiveness is violated.

In case (2), the TM returns v0 for transaction T2 at time t0, serializing T2 before T1. Consider run r2

depicted in Figure 2(b). Transaction T4 writes to o2, and afterwards reads and writes to o3. Transaction T4

has to be serialized after T1, because T1 has read v0 from o2. When T2 will try to write to o3 and commit,

the TM will have to forcefully abort some transaction, because not doing so would produce a history with

no equivalent sequential history: T2 ≺ T1 ≺ T4 ≺ T2. But if T2 would read v1 in run r2, then no transaction

would have to be forcefully aborted. So again, Γ-opacity-permissiveness is violated.

Runs r1 and r2 are indistinguishable to the TM at time t0. Therefore, no online TM can accept both of

the patterns, while an offline TM can accept both of them.

5 Online permissiveness: limitations and costs

5.1 Strict Online Opacity-Permissiveness

We next define a property that prohibits unnecessary aborts, and yet is possible to implement.

Definition 1. A TM satisfies strict online Γ-opacity-permissiveness if the TM forcefully aborts a set S of live

transactions only when aborting any subset S′ ⊂ S of transactions violates Γ-opacity for the given Γ.

Note that this property does not define which transaction should be aborted if abort happens, and does

not prohibit returning a value that will cause aborts in the future. For example, in the scenarios depicted in

Figure 2, at time t0, a TM satisfying this property may return either value, even though this might cause an

abort in the future.

An algorithm satisfying strict online opacity-permissiveness should be able to detect whether returning

a given value creates a history satisfying Γ-opacity. We show that this cannot be detected efficiently. To this

end, we recall a well-known result about checking the serializability of the given history, which was proven

by Papadimitriou [13].

Given history H , the augmented history H̄ is the history, which is identical to H , except two additional

transactions: Tinit that initializes all variables without reading any, and Tread that is the last transaction of

H̄ , reading all variables without changing them. The set of live transactions in H is defined in the following

way: (1) Tread is live in H , (2) If for some live transaction Tj , Tj reads a variable from Ti, then Ti is also

live in H . Note that aborted transaction cannot be live according to this definition (no transaction may read

the values written by the aborted one). Transaction is dead if it is not live. Two histories H and H ′ are view

6

equivalent if and only if (1) they have the same sets of live transactions and (2) Ti reads from Tj in H if and

only if Ti reads from Tj in H ′. History H is view serializable, if for every prefix H ′ of H , complete(H ′) is

view equivalent to some serial history S.

Theorem 1 (Papadimitriou). Testing whether the history H is view-serializable is NP-complete in the size

of the history, even if H has no dead transactions.

Lemma 3. For any Γ, detecting whether the history H satisfies Γ-opacity is NP-complete in the size of the

history.

Proof. We will show a reduction from the NP-complete problem of detecting view-seializability of history

H without dead transactions to the problem of detecting whether some history H ′ satisfies Γ-opacity. Con-

sider history H with no dead transactions. In the absence of aborted transactions, the definition of view

serializability differs from the definition of opacity only in the fact that opacity refers to the partial order Γ,

which is a subset of a real-time order. We construct history H ′, which is identical to history H except the

following addition: for each Ti in H , we add start(Ti) at the beginning of H ′. We will show that H is view

serializable if and only if H ′ satisfies Γ-opacity.

H is view serializable if and only if there exists a legal sequential history S, which is view equivalent to

Complete(H). All the transactions in H ′ are concurrent (start(Ti) follows before any other event for every

Ti), therefore the third condition of Γ-opacity vacuously holds for any Γ. In the absence of aborts in H ′,

H ′ satisfies Γ-opacity if and only if there exists a legal sequential history S′, so that every transaction in H ′

issues the same invocation events and receives the same response events as in S′. Therefore, H ′ satisfies

Γ-opacity if and only if H ′ is view-serializable.

5.2 Online Opacity-Permissiveness

o1

T1

T2

o2

o3

T4

T3

C

C C

C

t0

Figure 3: The order of transactions T1 and T2 is changed after their commit time.

Intuitively, the problem with strict online opacity-permissiveness lies in the fact that the order of com-

mitted transactions may be undefined and may change in the future. Consider, for example, the scenario

depicted in Figure 3. Transactions T1 and T2 are not ordered according to real-time order, therefore they

are not ordered by Γ. At time t0, the serialization order is T1 → T2, as o1 holds the value written by

T2. When T3 commits, the serialization order of T1 and T2 becomes undefined, since T3 overwrites o1 be-

fore any transaction reads the value written by T2. And when T4 commits, the serialization order becomes

T2 → T4 → T1 → T3. If the partial serialization order induced by the run cannot change after being defined,

the problem becomes much easier. We capture this intuition with the following definition:

Definition 2. A TM satisfies λ-persistent ordering for a partial order λ if for every run λ is updated accord-

ing to the following rules: (1) at the beginning of the run λ is empty; (2) at any point in time λ is a transitive

7

closure over a relation ordering exactly all the pairs of Ti, Tj , s.t. write(Ti) ∩ write(Tj) 6= ∅; and (3) each

time λ is updated, its new value preserves the one previously defined.

In other words, if Ti and Tj are committed transactions in H that have written to the same object in a

given TM, then they are ordered by λ and their order will persist in every extension of the run.

We now define a more relaxed property, online Γ-opacity-permissiveness, which may be satisfied at a

reasonable implementation cost.

Definition 3. A TM satisfies online Γ-opacity-permissiveness for a given Γ if the TM satisfies λ-persistent

ordering for some λ consistent with Γ, and the TM forcefully aborts a set S of live transactions only when

aborting any subset S′ ⊂ S of transactions violates (Γ ∪ λ)-opacity.

Note that Definition 3 implies that each committing transactions should define its serialization order with

regard to all other committed transactions that have written to the same objects. To the best of our knowing,

all existing TMs do in fact define the order on two transactions that write to the object by the time the

latter commits. We note that this requirement might be limiting for TMs that wish to exploit the benefits of

commutative or write-only operations (see [11]), and do not necessarily define the serialization point of the

committed transactions. However, this limitation is essential for an effective check of the opacity criterion.

In the following sections we show a polynomial-time TM satisfying online opacity-permissiveness. We

now prove that such an implementation, nevertheless, has some inherent costs.

One of the basic decisions that needs to be made during the design of a TM is whether to expose the

fact that transaction Ti has read the object o, i.e. make a change in shared memory as a result of the read,

making the read visible. In case we expose the read, there arises another question, regarding whether we can

postpone exposing the read until the commit. One of the central problems with exposing the read is that it

requires writing metadata in shared memory. One typically tries to avoid writes to shared memory, because

writing data that is read by different cores has a high cache penalty. Postponing exposing the read until the

commit may save redundant writes in case the transaction eventually aborts.

Unfortunately, if a TM satisfying online opacity-permissiveness does not expose a read operation im-

mediately when the read happens, then all read operations through the entire execution must return the

respective objects’ initial values, rendering such a TM implementation completely useless:

Lemma 4. For any Γ, if a TM satisfies online Γ-opacity-permissiveness and never exposes read operations

when the reads happen, then no transaction Ti can read from a committed transaction Tj if Tj has written

to more than one object.

o1

T2

o2

o3
T3

C

C

t0

(a) Run r1: T3 commits,

o1

T1

T2

o2

o3
T3

C

t0

A

(b) Run r2: T3 cannot commit

Figure 4: T3 does not distinguish between r1 and r2 at time t0. If T1 does not expose its reads, it is not allowed to

read the value written by T2, because otherwise the commit of T3 would violate Γ-opacity.

8

Proof. Assume by contradiction that there exists a TM, satisfying online Γ-opacity-permissiveness that does

not expose read operations when the reads happen, and which allows transactions to read values written by

the transactions with more than one object in the write-set. Consider run r1 depicted in Figure 4. Transaction

T3 reads o3 without exposing it. Afterwards transaction T2 writes to o3 and o2. Then T3 writes to o1 and

tries to commit. We next construct r2, where transaction T1 reads the value written by transaction T2, as

depicted in Figure 4(b). By our assumption, this value can indeed be read by some transaction. T1 then

continues to read o1. Note that T1 is not aware of transaction T3 preceding T2 because T3 did not expose its

read. All the transactions start at the same time and therefore cannot be ordered by real-time order. In run

r1, T3 must commit because the run satisfies Γ-opacity. In run r2, however, T3 cannot commit because that

would create a precedence cycle T1 → T3 → T2 → T1 and thus violate Γ-opacity. But since we assumed

that reads are invisible, runs r1 and r2 are indistinguishable to T3 at time t0, a contradiction.

6 The AbortsAvoider Algorithm

We now present AbortsAvoider, a TM algorithm implementing online opacity-permissiveness. The ba-

sic idea behind AbortsAvoider is to maintain a precedence graph of transactions, and keep it acyclic, as

explained in Section 6.1. A simplified version of the protocol based on this graph is then presented in Sec-

tion 6.2. The key challenge AbortsAvoider faces is that completed transactions cannot always be removed

from the graph, whereas keeping all transactions forever is clearly impractical. We address this challenge

in Section 6.3, presenting a garbage collection mechanism for removing terminated transactions from the

graph. In Section 6.4 we present another optimization, which shortens paths in the graph to reduce the

number of terminated transactions traversed during the acyclity check. Our complexity analysis appears in

the same section.

6.1 Basic Concept: Precedence Graph

Information bookkeeping. Our protocol maintains object version lists. We now explain what such a

TM does: (1) each object o is associated with a totally ordered set of versions, (2) a read of o returns the

value of one of o’s versions, and (3) a write to o adds a new version of o upon commit. For simplicity,

at any given moment, we number the versions of the object in increasing order. (Note that the numbering

is for analysis purposes only, and the numbers of the versions change during the run as the versions are

inserted and removed from the versions list). The object version o.vn includes the data, o.vn.data, the writer

transaction, o.vn.writer, and a set of readers, o.vn.readers. Each transaction has a readList and a writeList.

An entry in a readList points to the version that has been read by the transaction. A writeList entry points to

the object that should be updated after commit, the new data, and the place to insert the new version, (which

may be undefined till the commit).

Precedence graph. Transactions may point to one another, forming a directed labelled precedence graph,

PG. PG reflects the dependencies among transactions as created during the run. The vertexes of PG are

transactions, the edges of PG are as follows (Figure 5):

If (Tj , Ti) ∈ Γ, then PG contains (Tj , Ti) labelled LΓ (Γ order). If Ti reads o.vn and Tj writes o.vn,

then PG contains (Tj , Ti) labelled LRaW (Read after Write). If transaction Ti writes o.vn and Tj writes

o.vn−1, then PG contains (Tj , Ti) (Write after Write) labelled LWaW . If transaction Ti writes o.vn and Tj

reads o.vn−1, then PG contains (Tj , Ti) labelled LWaR (Write after Read).

9

o.vn

writer

readers

o.vn-1

writer

readers

RaW

WaW

RaW
W

aR

Figure 5: Object versions and the precedence graph, PG.

Below we present lemmas that link maintaining acyclity in PG and satisfying online-permissiveness.

To this end, we restrict our discussion to non-local histories, which we now define. We say that a read

operation of Ti readi(o) in H is local if it is preceded in H|Ti by a write operation writei(o,v). A write

operation writei(o,v) is local if it is followed in H|Ti by another write operation writei(o,v’). The non-local

history of H is the longest subsequence of H not containing local operations [8]. Note that the precedence

graph does not refer to local operations.

Lemma 5. Consider a TM maintaining object version lists. If PG is acyclic throughout some run, then the

non-local history H of the run satisfies Γ-opacity.

Proof. Let H be a history over transactions {T1 . . . Tn}. Let HC = Complete(H), i.e. H with Ai added for

every live Ti ∈ H .

Since PG is acyclic, it can be topologically sorted. Let Ti1, . . . , Tin be a topological sort of PG, and let

S be the sequential history Ti1, . . . , Tin. Clearly, S is equivalent to HC because both of the histories contain

the same transactions and each transaction issues the same operations and receives the same responses in

both of them.

We now prove that every Ti ∈ S is legal. Assume by contradiction that there are non-legal transactions

in S. Let Ti be the first such transaction. If Ti is non-legal, Ti reads a value of object o that is not the latest

value written to o in S by a committed transaction. (Recall that by definition of object version lists, only

values written by committed transactions can be read.) S contains only non-local operations, and therefore

Ti reads the version o.vn written by another transaction Tj . Therefore, there is an edge from Tj to Ti in PG.

It follows that Tj is committed in S and ordered before Ti according to the topological sort. If the value of

o.vn is not the latest value written in S before Ti, then there exists another committed transaction T ′

j that

writes to o and is ordered between Tj and Ti in S. If T ′

j writes to a version earlier than o.vn, then there is

a path from T ′

j to Tj in PG, and therefore T ′

j is ordered before Tj in S. If T ′

j writes to a version later than

o.vn, then there is a path from Ti to T ′

j in PG, and therefore T ′

j is ordered after Ti in S. In any case, T ′

j

cannot be ordered between Tj and Ti in S, a contradiction.

Finally, for each pair Ti ≺Γ Tj , PG contains an edge from Ti to Tj . Therefore, according to the

topological sort, S preserves the partial order Γ.

Summing up, Complete(H) is equivalent to a legal sequential history S, and S preserves partial order Γ.

Therefore H is Γ-opaque.

We define λPG to be the following binary relation: if PG contains a path from Ti to Tj consisting

of LWaW edges, then Ti ≺λPG
Tj . Note that if PG is acyclic, then λPG is reflexive, antisymmetric and

transitive, and therefore λPG is a partial order.

Lemma 6. Every TM that maintains object version lists and keeps PG acyclic satisfies λPG-persistent

ordering.

10

Proof. We will show that every TM maintaining object version lists and keeping PG acyclic satisfies the

three necessary conditions for λPG-persistent ordering.

(1) Initially PG does not contain edges and thus λPG is empty.

(2) Consider an arbitrary point during the run. Let χ be the transitive closure of the partial order con-

taining exactly all the pairs of transactions Ti, Tj committed up to this point, s.t. write(Ti)∩ write(Tj) 6= ∅,

where Ti ≺χ Tj iff Tj writes a higher numbered version than Ti. We show that λPG is equal to χ.

We show first that λPG ⊇ χ. Consider two committed transactions Ti ≺χ Tj that have a common object

o in their write-sets, s.t. Ti has written to the version o.vi and Tj has written to the version o.vj , where

i < j. Then PG contains a path from Ti to Tj consisting of LWaW edges and therefore λPG contains a

pair (Ti, Tj). λPG is transitive by definition, and therefore λPG ⊇ χ. It remains to show that λPG ⊆ χ.

If Ti ≺λPG
Tj , then PG contains a path from Ti to Tj consisting of LWaW edges. Every edge on the path

defines a pair of committed transactions that have written to the same object and therefore are ordered by

χ. By transitivity of χ, we conclude that Ti ≺χ Tj . We have shown that both λPG ⊇ χ and λPG ⊆ χ.

Therefore, λPG = χ.

(3) Finally, edges are never removed from PG, therefore each time λPG is updated, its new value

preserves the previously defined order.

Lemma 7. Consider a TM maintaining object version lists that forcefully aborts a set S of live transactions

only when aborting any subset S′ ⊂ S of transactions creates a cycle in PG. Then this TM satisfies online

Γ-opacity-permissiveness.

Proof. Consider the partial order λPG. As shown in Lemma 6, the TM satisfies λPG-persistent ordering.

We need to show that if there is a cycle in PG, then the run violates (Γ ∪ λPG)-opacity.

We show first that if there is an edge (Ti, Tj) in PG, then every legal sequential history S preserving

Γ ∪ λPG and equivalent to Complete(H) orders Ti before Tj . Consider two transactions Ti and Tj s.t. there

is an edge (Ti, Tj) in PG. If the edge is labelled LΓ, then (Ti, Tj) ∈ Γ, and S orders Ti before Tj . If the

edge is labelled LRaW , then Tj reads a value written by Ti and S also orders Ti before Tj . If the edge is

labelled LWaW , then Ti < Tj according to λPG, hence S also orders Ti before Tj . If the edge is labelled

LWaR, then Ti reads o.vn while Tj writes o.vn+1. On the one hand, Tj should be ordered after o.vn.writer

in S (there is an edge from o.vn.writer to Tj labelled LWaW). On the other hand, Tj cannot be ordered

between o.vn.writer and Ti, because Ti must read the value written by o.vn.writer in S. Therefore, Tj is

ordered after Ti in S in this case as well.

Summing up, an edge (Ti, Tj) in the precedence graph induces the order of Ti before Tj in any legal

sequential history S preserving Γ∪ λPG and equivalent to Complete(H). Therefore, if PG contains a cycle,

no such sequential history exists, and the TM cannot satisfy Γ ∪ λ-opacity.

Corollary 1. Consider a TM maintaining object version lists that keeps PG acyclic and forcefully aborts

a set S of live transactions only when aborting any subset S′ ⊂ S of transactions creates a cycle in PG.

Then this TM satisfies Γ-opacity and online Γ-opacity-permissiveness.

6.2 Simplified Γ-AbortsAvoider Algorithm

AbortsAvoider algorithm maintains object version lists as explained above, keeps PG acyclic and force-

fully aborts a transaction only if not aborting any transaction would create a cycle in PG. Read and write

operations are straightforward, they are depicted in Algorithm 1. A read operation (line 4) looks for the

latest possible object version to read without creating a cycle in PG. Write operations (line 13) postpone

the actual work till the commit.

11

Algorithm 1 Γ-AbortsAvoider for Ti - Read/Write.

1: procedure START()

2: Tprev ← the latest transaction preceding Ti by Γ

3: PG.ADDEDGES({(Tprev, Ti)})

4: procedure READ(Object o)

5: if o ∈ Ti.writeList then return Ti.writeList[o].data

6: if o ∈ Ti.readList then return Ti.readList[o].data

7: n← the latest version that can be read without creating a cycle in PG
8: if n =⊥ then return abort event Ai

9: PG.ADDEDGES({(o.vn.writer, Ti),(Ti, o.vn+1.writer)})
10: o.vn.readers.ADD(Ti)

11: Ti.readList.ADD(〈o.vn〉)
12: return o.vn.data

13: procedure WRITE(Object o, ObjectData val)

14: if o ∈ Ti.writeList then

15: Ti.writeList[o].data← val; return

16: if o ∈ Ti.readList then

17: ⊲ non-blind write, victim version is read version

18: writeNode← 〈o,readList[o].version, val〉
19: else

20: ⊲ blind write, victim version is not known

21: writeNode← 〈o,⊥,val〉
22: Ti.writeList.ADD(writeNode)

o1

T1 T2

o2

o3
T3

C

C

A

(a) Run with greedy check

o1

T1 T2

o2

o3
T3

C

C

C

(b) Run with no spare aborts

Figure 6: Checking the written objects in a greedy way during the commit may lead to a spare abort.

The commit operation is more complicated. Intuitively, for each object written during transaction, the

algorithm should find a place in the object’s version list to insert the new version without creating a cycle.

Unfortunately, checking the objects one after another in a greedy way can lead to spare aborts, as we illus-

trate in Figure 6(a). Committing T3 first seeks for a place to install the new version of o1 and decides to

install it after the last one (serializing T3 after T2). When T3 considers o2, it discovers that the new version

cannot be installed after the last one, because T3 should precede T1, but it also cannot be installed before the

last one, because that would make T3 precede T2, so T3 is aborted. However, installing the new version of

o1 before the last one would have allowed T3 to commit, as depicted in Figure 6(b), that is why aborting T3

violates online Γ-opacity-permissiveness.

Our commit operation (Algorithm 2, line 23) is divided to two phases. We call the object version after

which the new version is to be installed a victim version. The victim version is known only for the non-blind

writes (that is version, which has been read before the write, line 18). In the first phase the algorithm tries

to install the non-blind writes (lines 27–33). In the second phase (lines 35–48) the algorithm tries to find the

12

vicim versions for the blind writes in iterations. Initially, the victim is the object’s latest version. In each

iteration, the algorithm traverses the objects and for each one searches for the latest possible victim to install

the new version without creating a cycle in PG (line 40). When victim o.vn is found, an edge from Ti to the

writer of o.vn+1 is added to PG (line 46). We add only the outgoing edges at this point, because changing

the victim from o.vn to o.vn−1 may remove some incoming edges to Ti but cannot remove outgoing ones.

Meanwhile, incoming edges are kept in inEdges. After each iteration, there are possibly new outgoing edges

added to PG, that would mean that the previously found victim versions might not suit anymore and a new

iteration should be run. Once there is an iteration when no new edges are added, the algorithm commits

— it installs the new versions after their victims and adds all the edges, including inEdges from the latest

iteration, to the PG.

The following lemma immediately follows from the protocol.

Lemma 8. Γ-AbortsAvoider maintains PG acyclic.

Proof. The edges added to the graph are defined in functions READ (line 7) and VALIDATEWRITE (line 63).

Both functions validate that adding the new edges preserves PG acyclity.

We now want to show that the algorithm does not introduce unnecessary abotrs.

Theorem 2. Γ-AbortsAvoider forcefully aborts a transaction only if not aborting any transaction would

create a cycle in PG.

Proof. The read operation of object o (line 4) returns Ai only if there is no object version to read without

introducing a cycle in PG. Write operation (line 13) does not abort any transaction — it postpones all the

work till the commit.

Commit operation (line 23) tries to write the new versions of all the objects written during the transac-

tion. If the object is written in the non-blind way, then the victim version is known beforehand and the new

version has to be installed after the version that has been read (line 29). In this case the validation is done

by validateWrite function (line 63), which fails if and only if adding the appropriate edges to PG creates a

cycle.

It remains to show that commit function does not succeed to execute the blind writes only if that creates

a cycle in PG. We will show now that if there exists a way to execute the blind writes without creating a

cycle in PG, the algorithm will find it.

First of all, we will analyze the variable newEdges (line 24), which keeps the set of the edges added to

PG upon successful commit. Edge (Ti, Tj) ∈ newEdges is compulsory, if PG must have a path from Ti to

Tj after successful commit (to that end, the edge represents a real, compulsory dependency).

Lemma 9. During COMMIT() function of AbortsAvoider algorithm, newEdges set contains compulsory

edges only.

Proof. In the first phase of COMMIT(), AbortsAvoider proceeds the non-blind writes (lines 27–33). There

is a single possible victim version for the non-blind write, and therefore the edges added to newEdges set

during the first phase are compulsory.

Consider the second phase of COMMIT(), when AbortsAvoider proceeds the blind writes (lines 35–48).

We will show by induction that all the edges added to newEdges in the second phase are compulsory.

Induction basis. At the beginning of the second phase newEdges set contains only the edges added by

the non-blind writes, which are compulsory, as shown before.

Induction step. Let’s assume, that all the edges added to newEdges by the algorithm so far are compul-

sory. Consider new edge (Ti, o.vk+1.writer) added to newEdges by the algorithm in line 46. This happens

13

if o.vk is chosen to be a victim version for writing to object o. According to the algorithm, o.vk is chosen

to be the victim version only if all the versions o.vk′ for k′ > k did not suit to be the victim versions for a

given newEdges set. According to the induction assumption, newEdges set contains compulsory edges only,

therefore all the versions o.vk′ for k′ > k cannot be victim versions for the write operation. According to

the algorithm, choosing any object version o.vk′ for k′ ≤ k (i.e., object version that is earlier than o.vk)

yields a path from Ti to o.vk+1.writer in PG, finishing the proof.

For each object written in a blind way the algorithm checks the victim versions starting from the latest

one. Victim version validation is executed in the following way: PG is checked for acyclity after inserting

the edges from newEdges set together with the edges corresponding to adding the new version after o.vk. As

stated in Lemma 9, newEdges set contains compulsory edges only, therefore validation fail for o.vk means

that neither o.vk, nor any version later than o.vk can be the victim version of o. The algorithm traverses the

objects in iterations, till it finds a combination of victim versions that does not create a cycle in PG (and

then commits), or discovers object o s.t. none of o’s versions can be the victim version (and then aborts).

Corollary 2. Γ-AbortsAvoider satisfies Γ-opacity and online Γ-opacity-permissiveness.

We have shown that Γ-AbortsAvoider protocol is correct and avoids unnecessary aborts. In the rest of

the paper we will show the garbage collection rules and optimization techniques for the protocol.

6.3 Garbage Collection

A TM should garbage collect unused metadata. In this section, we describe how terminated transactions

may be garbage collected.

Read operations. Consider transaction Ti reading object o. The following lemma stipulates that some of

the edges added to the precedence graph in the simplified protocol are redundant, and in fact, the only edges

that need to be added by the protocol during read operations are incoming ones.

Lemma 10. When Ti reads o.vn, it suffices to add one edge from o.vn.writer to Ti in PG.

Proof. We say that adding an edge (v1, v2) is unnecessary, if PG already contains a path from v1 to v2,

thus adding this edge does not influence on the cycle detection. We will show that adding the outgoing edge

from Ti to o.vn.writer during a read is unnecessary. Therefore the only edge that need to be added by the

protocol is the edge from o.vn−1.writer to Ti.

The protocol adds outgoing edge from Ti to o.vn.writer if Ti reads version o.vn−1. According to the

algorithm, Ti tries first to read the latest version o.vn+k, if this read creates a cycle, it tries to read o.vn+k−1,

o.vn+k−2 and so on till it arrives to o.vn−1. Note, that before starting the read, the graph PG was acyclic.

If Ti does not succeed to read o.vn+k, it means that adding an edge from o.vn+k.writer to Ti would create

a cycle, hence there is a path from Ti to o.vn+k.writer before the start of the read. When Ti tries to read

o.vn+k−1 and does not succeed, it means that adding the edges {(o.vn+k−1.writer, Ti), (Ti, o.vn+k.writer)}
creates a cycle in PG. As we have concluded, before the read, PG contained a path from Ti to o.vn+k.writer

and was acyclic, therefore adding the single edge (o.vn+k−1.writer, Ti) creates a cycle in PG, i.e. there was

a path from Ti to o.vn+k−1.writer before the read. Continuing in the same way, we conclude that before

the read there was a path from Ti to o.vn.writer. Therefore, adding an edge from Ti to o.vn.writer is

unnecessary.

Using the optimization above, no incoming edge is ever added to a terminated transaction as a result of

a read operation.

14

Write operations. We would like to know whether the new incoming edges may be added to a terminated

transaction as a result of write operation. Consider committed transaction Ti that has written to o. If the new

version o.vn has been written in a non-blind way (i.e. transaction Ti has read the version o.vn−1 and then

installed o.vn), then no other transaction Tj will be able to install a new version between o.vn−1 and o.vn,

for that would cause a cycle between Ti and Tj . Blind writes, however, are more problematic. Consider,

for example, the scenario depicted in Figure 7. At time t0, T1 has no incoming edges, but we are still not

allowed to garbage collect it as we now explain. There is a transaction T2 that read object o1 with a live

preceding transaction T3. At the time of T3’s commit, it discovers that it cannot install the last version

of o1, and tries to install the preceding version. Had we removed T1 from PG, this would have caused a

consistency violation, because we would miss the cycle between T1 and T3.

o1

T1

T2

o2
T3

C

C

t0

A

Figure 7: The blind write of transaction T1 does not allow us to garbage collect it at time t0.

The example above demonstrates the importance of knowing that from some point onward, Ti may have

no new incoming edges. The lemma below shows that some edge additions can be saved:

Lemma 11. If Ti is a terminated transaction, then no incoming edges need to be added to Ti in PG as long

as for each o.vn written blindly by Ti there is no reader with a live preceding transaction.

Proof. Consider a terminated transaction Ti satisfying conditions of the lemma. According to Lemma 10

no transaction may add incoming edges to Ti as a result of read operation. It remains to check the writes.

According to the protocol, the incoming edge to Ti may be added only if transaction Tj installs the version

prior to the version o.vn written by Ti. First of all we should notice that o.vn should be written in a blind

way in order to make this scenario happen. Secondly, if Tj tries to insert a new version before o.vn, it means

that Tj failed to insert its version after o.vn, i.e. adding the edges from Ti and from the readers of o.vn to Tj

created a cycle. But we know that Tj cannot precede the readers of o.vn according to the condition of the

lemma, that is why there was a path from Tj to Ti before the write operation of Tj . Therefore there is no

need to add the edge from Tj to Ti when installing the new version.

Garbage collection conditions. We say that a transaction is stabilized if no incoming edges may be added

to it in the future. At the moment when Ti has no incoming edges and it is stabilized, we know that Ti will

not participate in any cycle, and thus may be garbage collected.

Theorem 3. The terminated transaction Ti is stabilized at time t0 if either (1) Ti has not written blindly any

object version o.vn, or (2) all live transactions at time t0 and all the transactions beginning after t0 follow

Ti according to Γ.

Proof. According to Lemma 11, no incoming edges need to be added to terminated Ti in PG if Ti has no

blind writes. If transaction Tj follows Ti according to Γ, then according to AbortsAvoider algorithm, PG

will contain a path from Ti to Tj after START() operation of Tj . Therefore, Tj may not add incoming edge

15

to Ti if Ti ≺Γ Tj . Hence, if all live transactions at t0 and all the transactions beginning after t0 follow Ti

according to Γ, then no new incoming edges will be added to Ti.

For this, we deduce that terminated transactions with no incoming edges satisfying one of the conditions

of Theorem 3 may be garbage collected. Note that in the runs with no blind writes, every terminated

transaction is stabilized and thus the transaction may be garbage collected at the moment it has no incoming

edges.

6.4 Path Shortening and Runtime Analysis

AbortsAvoider protocol allows adding new edges to PG only if they do not introduce cycles in PG. The

straightforward cycle detection algorithm runs DFS starting from Ti, traversing a set of nodes we refer to as

ingressi. We now present an optimization that reduces the number of nodes in ingressi.

Consider stabilized terminated Tj . The idea is to connect the ingress nodes to the egress nodes of Tj

directly, thus preventing DFS from traversing Tj . This becomes possible because Tj is stabilized and thus

may not have new ingress nodes, hence the egress nodes do not miss the precedence info when they lose

their edges from Tj . Once a terminated transaction Tj satisfies the conditions of Lemma 11 and it can no

longer have additional incoming edges, (e.g., any transaction with no blind writes), we remove all of its

outgoing edges by connecting its ingress nodes directly to its egress nodes as described above, and indicate

that Tj is a sink, i.e., cannot have outgoing edges in the future. Once a transaction is marked as a sink,

any outgoing edge that should be added from it is instead added from its ingress nodes. Note that our path

shortening only bypasses stabilized nodes. Had we bypassed also non-stabilized ones, we would have had

to later deal with adding new incoming nodes to their egress nodes, which could require a quadratic number

of operations in the number of terminated transactions. Hence, we chose not to do that.

Runtime complexity of the operations. Running DFS on ingressi takes O(V 2), where V is the number

of transactions preceding Ti, whose nodes have not been garbage collected. In the general case, V =
#terminated + #live. But if all the transactions preceding Dsci had no blind writes, V = #live.

o1

T1

o2
C

T2

C

T3

C

Tk

Figure 8: All object versions must be kept, as their writers have a live preceding transaction T2.

The read operation seeks the proper version to read in the version list. Unfortunately, the number

of versions that need to be kept is limited only by the number of terminated transactions. Consider the

scenario depicted in Figure 8. Here, the only version of o2 that may be read by T1 is the first, all other

versions are written by transactions that T1 precedes. In order to find a latest suitable version, the read

operation may use a binary search – O(log(#terminated)) versions should be checked. Adding the edges

takes O(#live). So altogether, the read complexity is O(log(#terminated) ·max{#live2, #terminated2}), and

O(log(#terminated) · #live2) when there are no blind writes.

The write operation postpones all the work till the commit. The number of iterations in the commit

phase is O(#writes · #terminated), and in each iteration O(#writes) validate operations should be run. So

16

the overall write cost is O(#writes2 · #terminated · max{#live2, #terminated2}), and O(#live2) when there

are no blind writes.

Finally, we would like to emphasize that although in the worst-case, these costs may seem high, trans-

actions without blind writes are garbage collected immediately upon commit. Moreover, the only nodes in

ingressi where cycles are checked are transactions that conflict with Ti. Typically, in practice, the number

of such conflicts is low, suggesting that our algorithm’s common-case complexity is expected to be good.

On the other hand, if the number of conflicts is high, then most TMs existing today would abort one of the

transactions in each of these cases, which is not necessarily a better alternative.

7 Conclusions

The paper took a step towards providing a theory for understanding TM aborts, by investigating what kinds

of spare aborts can or cannot be eliminated, and what kinds can or cannot be avoided efficiently. We have

shown that some unnecessary aborts cannot be avoided, and that there is an inherent tradeoff between the

overhead of a TM and the extent to which it reduces the number of spare aborts: while strict online opacity-

permissiveness is NP-hard, we presented a polynomial time algorithm AbortsAvoider, satisfying the weaker

online opacity-permissiveness property. Understanding the properties of spare aborts is still far from being

complete. For example, relaxations of the online opacity-permissiveness property or restrictions of the

workload may be amenable to more efficient solutions. Moreover, the implications of the inherent “spare

aborts versus time complexity” tradeoff we have shown are yet to be studied.

Acknowledgments

We would like to thank Hagit Attiya, Eshcar Hilel and Alessia Minali, as well as the anonymous reviewers

for their helpful comments.

References

[1] H. Attiya, L. Epstein, H. Shachnai, and T. Tamir. Transactional contention management as a non-clairvoyant

scheduling problem. In PODC ’06: Proceedings of the twenty-fifth annual ACM symposium on Principles of

distributed computing, pages 308–315, New York, NY, USA, 2006. ACM.

[2] U. Aydonat and T. Abdelrahman. Serializability of transactions in software transactional memory. In Second

ACM SIGPLAN Workshop on Transactional Computing, 2008.

[3] D. Dice, O. Shalev, and N. Shavit. Transactional locking 2. In Proceedings of the 20th International Symposium

on Distributed Computing, 2006.

[4] R. Ennals. Cache sensitive software transactional memory. Technical report, Intel.

[5] K. Fraser. Practical lock-freedom. Technical report, Cambridge, 2004.

[6] V. Gramoli, D. Harmanci, and P. Felber. Toward a theory of input acceptance for transactional memories. In

Proceedings of the 12th International Conference On Principles Of Distributed Systems (OPODIS’08), volume

5401 of LNCS, pages 527–533. Springer-Verlag, dec 2008.

[7] R. Guerraoui, T. A. Henzinger, and V. Singh. Permissiveness in Transactional Memories. In DISC 2008, 2008.

[8] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In Proceedings of the 13th ACM

SIGPLAN Symposium on Principles and practice of parallel programming, pages 175–184, 2008.

17

[9] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software transactional memory for dynamic-sized

data structures. In PODC ’03: Proceedings of the twenty-second annual symposium on Principles of distributed

computing, pages 92–101, New York, NY, USA, 2003. ACM.

[10] M. Herlihy and J. E. B. Moss. Transactional memory: architectural support for lock-free data structures.

SIGARCH Comput. Archit. News, 21(2):289–300, 1993.

[11] J. E. B. Moss. Open nested transactions: Semantics and support. In Workshop on Memory Performance Issues

(WMPI’06), 2006.

[12] J. Napper and L. Alvisi. Lock-free serializable transactions. Technical report, The University of Texas at Austin,

2005.

[13] C. H. Papadimitriou. The serializability of concurrent database updates. J. ACM, 1979.

[14] T. Riegel, C. Fetzer, H. Sturzrehm, and P. Felber. From causal to z-linearizable transactional memory. Technical

report, Université de Neuchâtel, Institut d’Informatique, 2007.

[15] N. Shavit and D. Touitou. Software transactional memory. In Proc. of the 12th Annual ACM Symposium on

Principles of Distributed Computing (PODC), pages 204–213, 1995.

[16] G. Weikum and G. Vossen. Transactional Information Systems: Theory, Algorithms, and the Practice of Con-

currency Control and Recovery. Morgan Kaufmann, 2002.

18

Algorithm 2 Γ-AbortsAvoider for Ti - Commit.

23: procedure COMMIT

24: newEdges← ∅ ⊲ edges added upon commit

25: blinds← ∅ ⊲ the set of blind writes

26: ⊲ Phase I — install the non-blind writes

27: for each n in Ti.writeList do

28: if n.victim 6=⊥ then

29: (v,edgs)←VALIDATEWRITE(newEdges,n.victim)

30: if v = FALSE then return abort event Ai

31: newEdges← newEdges ∪ edgs

32: else

33: blinds← blinds ∪ {n}
34: ⊲ Phase II — install the blind writes

35: repeat

36: foundOutEdges← FALSE

37: inEdges← ∅
38: for each n in blinds do

39: ⊲ find the latest possible victim

40: (victim,edges)←FINDVICTIM(newEdges,n)

41: if victim =⊥ then return abort event Ai

42: for each e in edges do

43: if e is incoming to Ti then

44: inEdges← inEdges ∪ e
45: else if e /∈ newEdges then

46: newEdges← newEdges ∪ {e}
47: foundOutEdges← TRUE

48: until foundOutEdges = FALSE

49: ⊲ commit point

50: for each n in Ti.writeList do

51: install the new version right after n.victim

52: PG.ADDEDGES(newEdges ∪ inEdges)

53: procedure FINDVICTIM(List〈Edge〉 newEdges, WriteNode wn) : (ObjectVersion, List〈Edge〉)
54: ⊲ find the latest possible victim

55: if wn.victim =⊥ then vctm←wn.latestVersion

56: else vctm← wn.victim

57: while vctm 6=⊥ do

58: ⊲ check installing the new version after vctm

59: (valid, edges)←VALIDATEWRITE(newEdges,vctm)

60: if valid = TRUE then return (vctm,edges)

61: vctm← vctm.prev ⊲ go to the previous version

62: return (⊥,⊥) ⊲ no suitable victim found

63: procedure VALIDATEWRITE(List〈Edge〉 edges, ObjectVersion o.vn) : (boolean, List〈Edge〉)
64: added←{(o.vn.writer, Ti), (o.vn.readers, Ti), (Ti, o.vn.next.writer)}
65: valid←acyclity of PG after adding edges ∪ added

66: return (valid, added)

19

