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Abstract

We consider a broadcast channel with a degraded message set, in which a single
transmitter sends a common message to two receivers and a private message to one
of the receivers only. The main goal of this work is to find new lower bounds to the
error exponents of the strong user, the one that should decode both messages, and of
the weak user, that should decode only the common message. Unlike previous works,
where suboptimal decoders where used, the exponents we derive in this work pertain
to optimal decoding and depend on both rates. We take two different approaches.

The first approach is based, in part, on variations of Gallager-type bounding tech-
niques that were presented in a much earlier work on error exponents for erasure/list
decoding. The resulting lower bounds are quite simple to understand and to compute.

The second approach is based on a technique that is rooted in statistical physics,
and it is exponentially tight from the initial step and onward. This technique is based
on analyzing the statistics of certain enumerators. Numerical results show that the
bounds obtained by this technique are tighter than those obtained by the first ap-
proach and previous results. The derivation, however, is more complex than the first
approach and the retrieved exponents are harder to compute.

1 Introduction

In the broadcast channel (BC), as introduced by Cover [1], a single source is communicating

to two or more receivers. In this work, we concentrate on the case of two receivers. The
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encoder sends a common message, to be decoded by both receivers, and a private message

for each decoder. In the case of a degraded message set, one of the private messages is

absent. The capacity region of the BC with a degraded message set was found in [2]. A

coding theorem for degraded broadcast channels was given by Bergmans [3] and the converse

for the degraded channel case was given by Gallager [4]. Bergmans suggested the use of a

hierarchical random code: First draw “cloud centers”. Next, around each “cloud center”,

draw a cloud of codewords. The sender sends a specific codeword from one of the clouds.

The strong decoder (the one with the better channel) can identify the specific codeword

while the weak decoder can only identify the cloud it originated from (see Section II and

[3]).

The error exponent is the rate of exponential decay of the average probability of error as

a function of the block length. Unlike in the single user regime, where the error exponent

is a function of the rate at which the transmitter operates, in the multiuser regime, the

error exponent for each user is a function of all rates in the system. We can define an error

exponent region, that is, a set of achievable error exponents for fixed rates of both users (see

[5]). The tradeoff between the exponents is controlled by the choice of the random coding

distributions.

Earlier work on error exponents for general degraded broadcast channels includes [4] and

[6]. Both [4] and [6] used the coding scheme of [3], but did not use optimal decoding. In [4],

a direct channel from the cloud center to the weak user is defined and the error exponent is

calculated for this channel. By defining this channel, the decoder does not use its knowledge

of the refined codebook of each cloud. The resulting exponent depends only on one of the

rates - the one corresponding to the number of clouds. When the clouds are “full” (high rate

of the private message), not much is lost by the use of the defined direct channel. However,

for low rates of the private message, the decoding quality can be improved by knowing the

codebook. In [6], universally attainable error exponents are given for a suboptimal decoder.

Lower and upper bounds to the error exponents, that depend on both rates, are given.

In this work, we derive new lower bounds to the error exponents for both the weak and
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the strong decoder of a degraded BC with degraded message sets. The derived exponents

pertain to optimum decoding and they depend simultaneously on both rates. We present

two approaches to derive the exponents, which start from the same initial step, but are

substantially different otherwise.

The first approach is based, in part, on variations of Gallager-type bounding techniques

along with refinements that were used in Forney’s work on error exponents for erasure/list

decoding [7]. Using these techniques, we derive new lower bounds which are quite simple to

understand and compute. Both this approach and the approach of [4] use Jensen’s inequality,

as well as other inequalities, which possibly risk the tightness of the obtained bounds in the

exponential scale.

Our second approach avoids the use of these inequalities. Instead, an exponentially tight

evaluation of the relevant expressions is derived by assessing the moments of a certain type

class enumerators. The underlying ideas behind the second approach are inspired from the

statistical mechanical point of view on random code ensembles [8],[9]. The analysis tools

we use in this approach are applicable to other problem settings as well, e.g., [10] and [11],

where they lead to tighter bounds than those of other methods previously used. The second

approach, after its initial step, is guaranteed to be exponentially tight, and is shown to obtain

tighter bounds than the first approach and previous results. However, this tightness comes

at the price of the complexity of both the derivation and the final results, which makes the

task of obtaining numerical results quite involved.

The outline of the remaining part of this work is as follows: Section 2 gives the formal

setting and notation. In Section 3 we summarize the main results of this paper, giving the

resulting exponents of each of the approaches. in Sections 4 and 5, we derive the exponents

using the first and second approach, respectively. At the end of each of the sections, we give

numerical results for the degraded binary symmetric channel (BSC). We conclude our work

in section VI.
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2 Preliminaries

We begin with notation conventions. Capital letters represent scalar random variables (RVs)

and specific realizations of them are denoted by the corresponding lower case letters. Random

vectors of dimension n will be denoted by bold-face letters. Indicator functions of events

will be denoted by I(·). We write [x]+ for the positive part of a real number x, i.e [x]+
△
=

max(x, 0). The expectation operator will be denoted by E{·}. When we wish to emphasize

the dependence of the expectation on a certain underlying probability distribution, say, Q,

we subscript it by Q. i.e. EQ{·}. We consider a memoryless broadcast channel with a finite

input alphabet X and finite output alphabets Y and Z, of the strong decoder and the weak

decoder, respectively, given by P (y, z|x) =
∏n

t=1 P (yt, zt|xt), (x, y, z) ∈ X n×Yn×Zn. We

are interested in sending one of Myz = enRyz messages to both receivers and one of My = enRy

to the strong receiver, that observes y.

Consider a random selection of a hierarchical code [3] as follows: First, Myz = enRyz “cloud

centers” u1, . . . ,uMyz ∈ Un are drawn independently, each one using a distribution P (u) =
∏n

t=1 P (ut), where u ∈ U is an auxiliary random variable. Then, for each m = 1, 2, . . . ,Myz,

My = enRy codewords xm,1, . . . ,xm,My ∈ X n are drawn according to P (x|u) =
∏n

t=1 P (xt|ut),

with u = um.

The strong decoder is interested in decoding both indices (m, i) of the transmitted code-

word xm,i, whereas the weak decoder, the one that observes z, is only interested in decoding

the index m. Thus, while the strong decoder best applies full maximum likelihood (ML)

decoding, (m̂(y), î(y)) = arg maxm,i P1(y|xm,i), the best decoding rule for the weak de-

coder is given by m̃(z) = arg maxm
1

My

∑My

i=1 P3(z|xm,i), where P3(z|x) =
∏n

t=1 P3(zt|xt) =
∏n

t=1

∑

y P (y, zt|xt).

The capacity region for a BC with degraded message sets is given [2] by the closure of:

{Ryz, Ry : Ryz ≤ I(U ; Z), Ry ≤ I(X; Y |U), Ryz + Ry ≤ I(X; Y )}

for some P (u, x, y, z) = P (u)P (x|u)P (y, z|x) and |U| ≤ |X | + 2. If the channel is degraded,
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since we have U ↔ X ↔ Y ↔ Z, the restriction on the sum of rates is trivially satisfied

and can be omitted. The capacity region for the general BC is still an open problem. The

best inner bound for it is given by Marton [12] and, in a simpler manner, by El Gamal and

Meulen [13]:

{Ryz, Ry : Ryz ≤ I(U ; Z), Ry ≤ I(V, Y ), Ryz + Ry ≤ I(U ; Z) + I(V ; Y ) − I(U ; V )}

for some p(x, u, v), where u, v are auxiliary random variables with finite ranges.

Denote the average error probability of the strong decoder by

P y
E = Pr

{

(m̂(y), î(y)) 6= (m, i)
}

and the average error probability of the weak decoder by

P z
E = Pr {m̃(z) 6= m}. The exponents of the strong and weak decoders will be denoted

by Ey and Ez, respectively. A pair (Ey, Ez) is said to be an attainable pair in the random

coding sense, for a given (Ry, Ryz), if there exist random coding distributions {P (u)} and

{P (x|u)} such that the random coding exponents satisfy Ey ≤ lim infn→∞− 1
n

log P y
E and

Ez ≤ lim infn→∞− 1
n

log P z
E, where all logarithms throughout the sequel are taken to the

natural base. For a given pair (Ry, Ryz), we say that Ez is an attainable exponent for the

weak user if there there exists Ey > 0 such that the pair (Ey, Ez) is attainable in the random

coding sense.

3 Main Results

In this section, we outline the main results of this paper. As described in the Introduction,

we use two different approaches to derive the error exponents of a general degraded broadcast

channel, pertaining to optimal decoding. We introduce the resulting exponents of each of

these approaches in the following two subsections.
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3.1 Gallager-type bound

Denoting f(a, b, z) =
∑

u P (u)
[
∑

x P (x|u)P3(z|x)a/b
]b

, we define:

E0(ρ, λ, α, µ) = − log

[

∑

z

f(1 − ρλ, α, z) · f(λ, µ, z)

]

,

E1
y(Ry, ρ) = −ρRy − log

∑

y

∑

u

P (u)

[

∑

x

P (x|u)P1(y|x)
1

1+ρ

]1+ρ

,

E2
y(Ry, Ryz, ρ) = −ρ(Ry + Ryz) − log







∑

y

[

∑

x

P (x)P1(y|x)
1

1+ρ

]1+ρ






(1)

Let

Ez,1(Ryz, Ry) = max
0≤ρ≤1,0≤λ≤µ≤1,1−ρλ≤α≤1

{E0(ρ, λ, α, µ) − (α + ρµ − 1)Ry − ρRyz}

Ey,1(Ryz, Ry) = min

(

max
0<ρ<1

E1
y(Ry, ρ), max

0<ρ<1
E2

y(Ry, Ryz, ρ)

)

(2)

The first main result of this paper is the following theorem.

Theorem 1: For the degraded broadcast channel defined in Section II, the pair

(Ez,1(Ryz, Ry), Ey,1(Ryz, Ry)), as defined in eq. (2), is an attainable pair in the random

coding sense.

We prove this theorem in Section 4. Unlike in earlier papers [4], [6], [5], the exponents

of Theorem 1 pertain to optimal decoding and depend on both rates. For the weak decoder

exponent, the optimization on all parameters, although possible, is hard computationally.

We therefore examine a few interesting choices of the parameters, in order to reduce the

dimensionality of the optimization process.

1. Let α = µ. In this case, we show in Appendix A.1 that ∀λ : E0(ρ, 1
1+ρ

, α, α) ≥
E0(ρ, λ, α, α), thus, the choice of λ = 1

1+ρ
is optimal. Applying α = µ, λ = 1

1+ρ
our bound

becomes:

E(Ry, Ryz) = max
0≤ρ≤1, 1

1+ρ
≤α≤1

E0

(

ρ,
1

1 + ρ
, α, α

)

− [α(1 + ρ) − 1]Ry − ρRyz. (3)
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This is a somewhat more compact expression with only two parameters. Numerical results

indicate that, at least for the BSC we tested, the choice α = µ is the optimal choice. However,

we do not have a proof that this is true in general.

2. As a further restriction of item no. 1 above, consider the choice α = µ = 1
1+ρ

. In this

case, the expressions in the inner–most brackets of (17) and (18) become
∑

x Q(x|u)P3(z|x)
△
=

P4(z|u), and α + ρµ − 1 = 0. Thus, we get an exponent given by

E0

(

ρ,
1

1 + ρ
,

1

1 + ρ
,

1

1 + ρ

)

− ρRyz =

− log







∑

z

[

∑

u

P (u)P4(z|u)1/(1+ρ)

]1+ρ






− ρRyz (4)

which is exactly the ordinary Gallager function for the channel P (z|u), obtained by sub–

optimal decoding at the weak user [4], ignoring the knowledge of the refined codebook of

each cloud center. This means that the exponents of Theorem 1 are at least as tight as the

result of [4]. Numerical results show that, at least for the degraded BSC case, the exponents

of Theorem 1 are tighter.

3. Another further restriction of item no. 1 is the choice α = µ = 1, which gives:

E0

(

ρ,
1

1 + ρ
, 1, 1

)

− ρ(Ry + Ryz) = −ρ(Ry + Ryz)

− log







∑

z

[

∑

x

Q(x)P3(z|x)1/(1+ρ)

]1+ρ






. (5)

This corresponds to i.i.d. random coding according to Q(x)
△
=
∑

u Q(u)Q(x|u) at rate Ry +

Ryz.

3.2 A bound based on Type class enumerators

Let (X, U, Y, Z) be a quadruplet of random variables, taking values in X × U × Y ×Z, and

being governed by a generic joint distribution QXUY Z = {QXUY Z(x, u, y, z), x ∈ X , u ∈
U , y ∈ Y z ∈ Z}, where, as introduced in Section 2, X ,Y ,Z are, respectively, the channel
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input and output alphabets and U is the alphabet of the auxiliary random variable which is of

finite cardinality. Let us denote the various marginals and conditional distributions derived

from QXUY Z , using the standard conventions, e.g., QX is the marginal distribution of X,

QU |Z is the conditional distribution of U given Z, etc. Expectation w.r.t. QXUY Z , or Q for

short, will be denoted by EQ. Similarly, information measures, like entropy and conditional

entropy induced by Q, will be subscripted by Q, e.g., HQ(X|U,Z) is the conditional entropy

of X given U and Z under Q = QXUZY . In the following description, we allow various joint

distributions {Q} to govern (X, U, Y, Z).

Let QY , QZ be given. We define G(Ry, QU |Z) to be the set of conditional distributions

{QX|U,Z} that satisfy Ry +EQ log P (X|U)+HQ(X|U,Z) > 0, where, as described in Section

2, P (x|u) is the random coding distribution according to which the codewords {xm,i} are

drawn given um. Similarly, let G(Ry, QU |Y ) be the set of conditional distributions {QX|U,Y }
that satisfy Ry + EQ log P (X|U) + HQ(X|U, Y ) > 0. Next define,

α(QU |Z)
△
= (1 − ρλ) max

QX|UZ∈G(Ry ,QU|Z)
[EQ log P (X|U)+

HQ(X|U,Z) + EQ log P3(Z|X)] (6)

β(QU |Z)
△
= ρλRy + max

QX|UZ∈Gc(Ry ,QU|Z)
[EQ log P (X|U)+

HQ(X|U,Z) + (1 − ρλ)EQ log P3(Z|X)] ,

Eαβ(QU |Z) = max{α(QU |Z), β(QU |Z)}. (7)

where, as described in Section 2, P3(·|·) is the overall channel to the weak user. Similarly,

define:

γ(QU |Y )
△
= ρ

(

Ry + max
QX|U,Y ∈G(Ry ,QU|Y )

[EQ log P (X|U)+

HQ(X|Y, U) + λEQ log P1(Y |X)]) (8)

ζ(QU |Y )
△
= Ry + max

QX|U,Y ∈Gc(Ry ,QU|Y )
[EQ log P (X|U)+

HQ(X|U, Y ) + (ρλ)EQ log P (Y |X)] (9)

Eγζ(QU |Z) = max{γ(QU |Z), ζ(QU |Z)}. (10)
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Also, define

m̄(QU |Z)
△
= Ryz + HQ(U |Z) + EQ log P (U)

where, as said, {P (u)} is the random coding distribution of the cloud centers {um}. Now,

N(QX|Z , QU |Z , Ry)
△
= Ry + max

QX|UZ

[EQ log P (X|U)+

HQ(X|U,Z)] , (11)

where the maximization is over all {QX|UZ} that are consistent with QX|Z . Next, we define

Gz(Ryz)
△
= {QU |Z : Ryz + HQ(U |Z) + E log P (U) ≥ 0},

B(QX|Z , QU |Z , Ry) = ρN(QX|Z , QU |Z , Ry) · λI{N(QX|Z ,QU|Z ,Ry)>0} (12)

and

C(QX|Z , QU |Z , Ry) = N(QX|Z , QU |Z , Ry) · (ρλ)I{N(QX|Z ,QU|Z ,Ry)>0}, (13)

We similarly define Gy(Ryz), N(QX|Y , QU |Y , Ry) and m̄(QU |Y ) by replacing the respective role

of Z by Y . Next define

D(QX|Y , QU |Y , Ry) = N(QX|Y , QU |Y , Ry) · ρI{N(QX|Y ,QU|Y ,Ry)>0}, (14)

We also define

E(QX|Z)
△
= max

{

max
QU|Z∈Gz(Ryz)

[B(QX|Z , QU |Z , Ry)+

ρm̄(QU |Z)], max
QU|Z∈Gc

z(Ryz)
[C(QX|Z , QU |Z , Ry) + m̄(QU |Z)]

}

,

E(QX|Y )
△
= max

{

ρ max
QU|Y ∈Gy(Ryz)

[N(QX|Y , QU |Y , Ry) + m̄(QU |Y )],

max
QU|Y ∈Gc

y(Ryz)
[D(QX|Y , QU |Y , Ry) + m̄(QU |Y )]

}

,
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E1(QZ , Ry, Ryz, ρ, λ)
△
= min

QU|Z

[

EQ log
1

P (U)
− HQ(U |Z) − Eαβ(QU |Z)

]

,

E2(QZ , Ry, Ryz, ρ, λ)
△
= min

QX|Z

[

ρλ log
1

P3(Z|X)
− E(QX|Z) + ρλRy

]

,

E3(QY , ρ, λ)
△
= min

QX,U|Y

[

EQ log
1

P (U,X)
− HQ(X, U |Y ) + (1 − ρλ)EQ log

1

P (Y |X)

]

E4(QY , Ry, Ryz, ρ, λ)
△
= min

QU|Y

[

EQ log
1

P (U)
− Eγζ(QU |Y ) − H(U |Y )

]

E5(QY , Ry, Ryz, ρ, λ)
△
= min

QX|Y

[

λρÊyx log
1

P1(Y |X)
− E(QX|Y )

]

Finally,

Ez,2(Ryz, Ry) = max
ρ≥0

max
0≤λ≤1/ρ

min
QZ

[E1(QZ , Ry, Ryz, ρ, λ)+

E2(QZ , Ry, Ryz, ρ, λ) − HQ(Z)].

Ey,2(Ryz, Ry) = max
ρ≥0

max
λ≥0

min
QY

[E3(QY , ρ, λ) + max{E4(QY , Ry, Ryz, ρ, λ),

E5(QY , Ry, Ryz, ρ, λ)} − HQ(Y )]. (15)

The second main result of this paper is given in the following theorem:

Theorem 2: For the degraded broadcast channel defined in Section II, the pair

(Ez,2(Ryz, Ry), Ey,2(Ryz, Ry)), as defined in eq. (15), is an attainable pair in the random

coding sense.

These exponents also pertain to optimal decoding and they depend on both rates. Unlike

the exponent of Theorem 1, where the weak decoder exponent had four free parameters, here,

Ez,2 has only two free parameters (λ, ρ). Moreover, (Ez,2(Ryz, Ry), Ey(Ryz, Ry)) are at least

as tight as the exponents of the previous section since, as we will see in the following, their

derivation is exponentially tight after the same initial step we take in the proof of Theorem

1. Numerical results show that Ez,2 is tighter, at least for the binary symmetric case.

4 Derivation of the Gallager Type Bound

In this section we prove Theorem 1.
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4.1 The Weak Decoder

Applying Gallager’s general upper bound [14, p. 65] to the “channel” P (z|m) = 1
My

∑My

i=1 P3(z|xm,i),

we have for λ ≥ 0, ρ ≥ 0:

P z
Em

≤
∑

z

[

1

My

My
∑

i=1

P3(z|xm,i)

]1−ρλ

×





∑

m′ 6=m

(

1

My

My
∑

j=1

P3(z|xm′,j)

)λ




ρ

.

Thus, the average error probability w.r.t. the ensemble of codes is upper bounded in terms of

the expectations of each of the bracketed terms above (since messages from different clouds

are independent). Define:

A
△
=E







[

1

My

My
∑

i=1

P3(z|Xm,i)

]1−ρλ






B
△
=E











∑

m′ 6=m

(

1

My

My
∑

j=1

P3(z|Xm′,j)

)λ




ρ





As for A, we have

A = E







[

1

My

My
∑

i=1

P3(z|Xm,i)

]1−ρλ






= Mρλ−1
y · E







[

My
∑

i=1

P3(z|Xm,i)

]1−ρλ






= Mρλ−1
y ·

∑

u

P (u) · E











(

My
∑

j=1

P3(z|Xm,i)

)(1−ρλ)/α




α

|u







≤ Mρλ−1
y ·

∑

u

P (u) · E







[

My
∑

j=1

P3(z|Xm,i)
(1−ρλ)/α

]α

|u







α ≥ 1 − ρλ

≤ Mα+ρλ−1
y ·

∑

u

P (u) ·
[

∑

x

P (x|u)P3(z|x)(1−ρλ)/α

]α

α ≤ 1 (16)
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For a memoryless channel and Q(u), Q(x|u) as defined in Section 2, we have

= Mα+ρλ−1
y ·

∑

u

P (u) ·
[

∑

x

n
∏

t=1

P (xt|ut)P3(zt|xt)
(1−ρλ)/α

]α

= Mα+ρλ−1
y ·

∑

u

P (u) ·
[

n
∏

t=1

∑

x

P (x|ut)P3(zt|x)(1−ρλ)/α

]α

= Mα+ρλ−1
y ·

∑

u

P (u) ·
n
∏

t=1

[

∑

x

P (x|ut)P3(zt|x)(1−ρλ)/α

]α

= Mα+ρλ−1
y ·

n
∏

t=1

(

∑

u

P (u)

[

∑

x

P (x|u)P3(zt|x)(1−ρλ)/α

]α)

. (17)

Regarding B, we similarly obtain:

B = E











∑

m′ 6=m

(

1

My

My
∑

j=1

P3(z|Xm′,j)

)λ




ρ





= M−ρλ
y · E











∑

m′ 6=m

(

My
∑

j=1

P3(z|Xm′,j)

)λ




ρ





≤ M−ρλ
y ·



E







∑

m′ 6=m

(

My
∑

j=1

P3(z|Xm′,j)

)λ










ρ

0 ≤ ρ ≤ 1

≤ M−ρλ
y Mρ

yz ·



E







(

My
∑

j=1

P3(z|Xm′,j)

)λ










ρ

= M−ρλ
y Mρ

yz ·



E











[

My
∑

j=1

P3(z|Xm′,j)

]λ/µ




µ









ρ

≤ M−ρλ
y Mρ

yz ·



E







(

My
∑

j=1

P3(z|Xm′,j)
λ/µ

)µ










ρ

µ ≥ λ

≤ M (µ−λ)ρ
y Mρ

yz ·
[

∑

u′

P (u′)

(

∑

x′

P (x′|u′)P3(z|x′)λ/µ

)µ]ρ

µ ≤ 1

= M (µ−λ)ρ
y Mρ

yz ·
n
∏

t=1

[

∑

u′

P (u′)

(

∑

x′

P (x′|u′)P3(zt|x′)λ/µ

)µ]ρ

. (18)
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Denoting f(a, b, z) =
∑

u Q(u)
[
∑

x Q(x|u)P3(z|x)a/b
]b

, we obtain:

P z
E ≤ Mα+ρµ−1

y Mρ
yz ×

{

∑

z

f(1 − ρλ, α, z) · fρ(λ, µ, z)

}n

= e−n[E0(ρ,λ,α,µ)−(α+ρµ−1)Ry−ρRyz ] (19)

where

E0(ρ, λ, α, µ) =

− log

[

∑

z

f(1 − ρλ, α, z) · f(λ, µ, z)

]

. (20)

After optimizing over all free parameters, we get P z
E ≤ exp{−nE(Ry, Ryz)}, where

E(Ry, Ryz) = max
0≤ρ≤1,0≤λ≤µ≤1,1−ρλ≤α≤1

{E0(ρ, λ, α, µ) − (α + ρµ − 1)Ry − ρRyz} (21)

which is the weak decoder exponent of Theorem 1.

4.2 The Strong Decoder

The strong decoder (Y decoder) has to decode correctly both indices (m, i) of the transmitted

xm,i. Applying Gallager’s bound [14, p. 65], and assuming, without loss of generality, that

(m, i) = (1, 1) was sent, we have for λ ≥ 0, ρ ≥ 0:

P y
E1,1

≤
∑

y

P1(y|x1,1)





∑

(m,i) 6=(1,1)

P1(y|xm,i)
λ

P1(y|x1,1)λ





ρ

=
∑

y

P1(y|x1,1)
1−λρ

(

My
∑

i=2

P1(y|x1,i)
λ +

Myz
∑

m=2

My
∑

i=1

P1(y|xm,i)
λ

)ρ

ρ≤1

≤
∑

y

P1(y|x1,1)
1−λρ





(

My
∑

i=2

P1(y|x1,i)
λ

)ρ

+

(

Myz
∑

m=2

My
∑

i=1

P1(y|xm,i)
λ

)ρ




, PEy1 + PEy2 (22)

The two resulting expressions deal, respectively, with two separate error events:
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1. The Y decoder chose a different private message from the correct cloud.

2. The Y decoder chose a message from a wrong cloud.

The first expression was treated in [4]. We have: PEy1 ≤ 2−nEy1(Ry ,ρ), where,

Ey1(Ry, ρ) = −ρRy

− log
∑

y

∑

u

Q(u)

[

∑

x

Q(x|u)P1(y|x)
1

1+ρ

]1+ρ

(23)

We now turn to the second term in (22).

PEy2 =
∑

y

P1(y|x1,1)
1−λρ

[

Myz
∑

m=2

My
∑

i=1

P1(y|xi,m)λ

]ρ

(24)

Here, when averaging over the ensemble, since the term in brackets of (24) originates from

a different cloud, it is independent of the first term. Thus,

PEy2 =
∑

y

E
[

P1(y|X1,1)
1−λρ

]

E

[

Myz
∑

m=2

My
∑

i=1

P1(y|Xm,i)
λ

]ρ

≤
∑

y

E
[

P1(y|X1,1)
1−λρ

]

[

E

Myz
∑

m=2

My
∑

i=1

P1(y|Xm,i)
λ

]ρ

ρ ≤ 1

≤
∑

y

[

∑

x

P (x)P1(y|x)1−λρ

][

Myz
∑

m=2

My
∑

i=1

∑

x

Q(x)P1(y|x)λ

]ρ

≤ Mρ
y Mρ

yz

∑

y

[

∑

x

P (x)P1(y|x)1−λρ

][

∑

x

Q(x)P1(y|x)λ

]ρ

(25)

Selecting 1 λ = 1
1+ρ

yields

PEy2 ≤ Mρ
y Mρ

yz

∑

y

[

∑

x

P (x)P1(y|x)
1

1+ρ

]1+ρ

For a memoryless channel, we get:

PEy2 ≤ Mρ
y Mρ

yz







∑

y

[

∑

x

P (x)P1(y|x)
1

1+ρ

]1+ρ






n

= 2−nEy2(Ry ,Ryz ,ρ) (26)

1This choice is optimal for the same reason it is optimal in the single user regime. see [15] Prob. 5.6
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where

Ey2(Ry, Ryz, ρ) = −ρ(Ry + Ryz)

− log







∑

y

[

∑

x

P (x)P1(y|x)
1

1+ρ

]1+ρ






Note that this corresponds to the random coding exponent for the channel X → Y at rate

Ry + Ryz.

To summarize, we have:

P y
E(Ry, Ryz) ≤ 2−n max0<ρ<1 EY 1(Ry ,ρ)

+ 2−n max0<ρ<1 EY 2(Ry ,Ryz ,ρ)

Taking the dominant exponent of the above sum yields the strong decoder exponent of

Theorem 1.

4.3 Numerical Results for the Degraded BSC

In this section, we show some numerical results of our error exponents and compare them

to the exponents that were derived in [4]. Our setup is that of a binary broadcast channel

with a binary input X and separate binary symmetric channels to Y and Z with parameters

py, pz (py < pz < 1
2
) respectively. This channel can be recast into a cascade of (degraded)

binary symmetric channels with parameters py, α, where α = p(z 6= y) = pz−py

1−2py
. In this case,

the auxiliary random variable U is also binary. By symmetry, U is distributed uniformly on

{0, 1} and connected to X by another BSC with parameter β (see Fig. 1a). The capacity

region is given by [16]:

Rz ≤ 1 − h(β ∗ pz)

Ry ≤ h(β ∗ py) − h(py)

where β ∗ p = β(1 − p) + (1 − β)p and h(x) is the binary entropy function given by

−x log x − (1 − x) log(1 − x) for 0 ≤ x ≤ 1.
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(a) (b)

Figure 1: (a)The recast channel with the auxiliary variable. (b)The capacity region Ryz(Ry)
with py = 0.05, pz = 0.3

Denote the exponents of [4], calculated for this model, by Eg,y, Eg,z for the strong and

weak decoder, respectively. For a general channel, Eg,z is given by (4). Eg,y is the minimum

between (23) and

max
ρ







− log





∑

y

∑

u

Q(u)

(

∑

x

Q(x|u)P
1

1+ρ

1 (y|x)

)1+ρ


− ρRyz







. (27)

For given Ry and Ryz, β controls the tradeoff between the exponents (Ey, Ez). For

example, if we are interested in finding the attainable pair (Ey, Ez) with maximal Ez for a

given pair (Ry, Ryz), the maximizing β will be the smallest β s.t. Ey is positive, i.e., the

value of β that maximizes 1 − H(β ∗ pz) while keeping Ey > 0. In Fig. 5, we show the best

attainable (maximized over β) Ey(Ry) for a given Ryz and the best attainable Ez(Ryz) for a

given Ry compared to Eg,y(Ry) and Eg,z(Ryz). In both cases the new exponents are better.

Note that the exponent value vanishes when the operating point is outside the capacity

region (see Fig. 1b). The reason for this is that in Fig. 5a and Fig. 2b, we allowed the

error exponents of the strong and weak decoders respectively, to be arbitrarily small. This

allowed us to get arbitrarily close to the capacity region curve.

Although the values of Ez and Eg,z in Fig. 5a are close, in the numerical calculation, it

turned out that α = µ 6= 1
1+ρ

. We said above that in this case, the maximizing λ equals

1
1+ρ

. Therefore, since different parameters maximized Ez then the parameters in (4), the
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Figure 2: Comparing Ey, Ez (solid curves) to Eg,y, Eg,z(dotted curves) maximized over β.
(a) Ez(Ryz) vs Eg,2(Ryz) for a fixed Ry = 10−4. (b)Ey(Ry) vs Eg,1(Ry) for fixed Ryz = 0.005

new exponent is strictly larger than the exponent in [4] for all Ryz and the given Ry as long

as Ryz < 1 − h(pz).

Denote the maximal value2 of Ey, Ez by Eymax , Ezmax respectively. In Fig. 3 we repeat the

calculation of Fig. 5. However, here we restrict Ey ≥ Emin
y = Eymax/4, Ez ≥ Emin

z = Ezmax/4

in Fig. 3a and Fig. 3b, respectively. This time the exponents vanish deep inside the capacity

region.

The reason for the singular points of Ey in Fig. 2b and Fig. 3b is the behavior of Ez

as a function of β (illustrated in Fig. 4). Note that as β increases, the channel U → Z

becomes noisier. Therefore Ez(Ryz, Ry) is non increasing in β. For a given (Ryz, Ry) there

is a critical value, βc, such that for every β ≥ βc, Ez(Ry, Ryz, β ≥ βc)
△
= Ez0(Ry, Ryz) is

constant and has the form of (5), which is the single user error exponent ([14] p. 65) for the

channel X → Z at rate Ry + Ryz. If Ez0(Ry, Ryz) is greater than the threshold (for example

Ez0 ≥ Ezmax/4 in Fig. 3b) then the maximization over Ey(Ry, Ryz) is unconstrained and is

attained by β = 0.5. However, as Ry increases, Ez0(Ry, Ryz) decreases and at some critical

Ryc , Ez0(Ryc , Ryz) becomes smaller than the threshold (Illustrated in Fig 4.b).

2The maximal value is the single user error exponent ([14] p. 65) for the channel from X to Y and from
X to Z for the strong and weak decoders respectively. i.e for a given Ryz, the maximal value for Ez is
obtained with Ry = 0. For a given Ry the maximal Ey is obtained with Rz = 0, β = 0.5
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Figure 3: Comparing Ey, Ez (solid curves) to Eg,y, Eg,z(dotted curves) maximized over β.
(a) Ez(Ryz) vs Eg,2(Ryz) for a fixed Ry = 10−4 with Ey ≥ Eymax/4. (b)Ey(Ry) vs Eg,1(Ry)
for fixed Ryz = 0.005 with Ez ≥ Ezmax/4
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z
E

(b)

Figure 4: Illustration of Ez as a function of β. (a) for some Ry < Ryc . Ez is above the
threshold. (b) for Ry > Ryc .
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Thus, for Ry ≥ Ryc , the maximization of Ey becomes constrained and the largest valid

β is much smaller than 0.5. Hence the sudden drop in the value of Ey. This phenomenon is

not seen in Eg,y since Eg,z does not depend on Ry and the maximizing β is the same for all

Ry.

5 Derivation for the Type Class Enumerators Approach

In this section, we prove Theorem 2. Throughout, we rely on the method of types [17]. We

start with the notation we use in this section.

The empirical distribution pertaining to a vector x ∈ X n will be denoted by Q̂x and its type

class by Tx. In other words, Q̂x = {q̂x(a), a ∈ X}, where qx(a) = nx(a)/n, nx(a) being

the number of occurrences of the letter a in x. Similar conventions apply to empirical joint

distributions of pairs of letters, (a, b) ∈ X × Y , extracted from the corresponding pairs of

vectors (x, y). Similarly, q̂x|y(a|b) = q̂xy(a, b)/q̂y(b) will denote the empirical conditional

probability of X = a given Y = b (with convention that 0/0 = 0), and Q̂x|y will denote

{q̂x|y(a|b), a ∈ X , b ∈ Y}. Tx|y will denote the conditional type class of x given y. The

expectation w.r.t. the empirical distribution of (x, y) will be denoted by Êxy{·}, i.e., for

a given function f : X × Y → IR, we define Êxy{f(X, Y )} as
∑

(a,b)∈X×Y q̂xy(a, b)f(a, b),

where in this notation, X and Y are understood to be random variables jointly distributed

according to Q̂xy. The entropy with respect to the empirical distribution of a vector x will

be denoted by Ĥ(x). Finally, the notation an
·
= bn means that 1

n
log an

bn
→ 0 as n → ∞.

We start this section with the same initial step we used in the previous section. Namely,

Gallager’s general upper bound [14, p. 65] to the “channel” P (z|m) = 1
My

∑My

i=1 P3(z|xm,i).

The average error probability w.r.t. the ensemble of codes for λ ≥ 0, ρ ≥ 0 is given by:

PEm ≤
∑

z

E

[

1

My

My
∑

i=1

P (z|xm,i)

]1−ρλ

×

E





∑

m′ 6=m

(

1

My

My
∑

j=1

P (z|xm′,j)

)λ




ρ

λ ≥ 0, ρ ≥ 0. (28)
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We will see that both expectations depend on the z only through its empirical distribution.

All the analysis is done for a given z. The summation over all possible empirical distributions

of z is done in the last step. E1(Qz, Ry, Ryz, ρ, λ) and E2(Qz, Ry, Ryz, ρ, λ) of Theorem 2

are the exponential rates of the first and second expectations in (28), respectively. After

this initial step, our analysis is exponentially tight, whereas in the previous section, this is

not necessarily the case. The price for this tightness is that the derivation and the resulting

expression are much more involved, as we will see in the following subsections that derive

E1(Qz, Ry, Ryz, ρ, λ) and E2(Qz, Ry, Ryz, ρ, λ).

5.1 Deriving E1(Qz, Ry, Ryz, ρ, λ)

Let Nz,m(Q̂x|z,u) be a type class enumerator, that is, the number of codewords within cloud

m having the same empirical conditional probability Q̂x|z,u.

E

[

1

My

My
∑

i=1

P (z|xm,i)

]1−ρλ

= Mρλ−1
y EuEx|u

[

My
∑

i=1

P (z|xmi)

]1−ρλ

= Mρλ−1
y EuEx|u







∑

Q̂x|z,u

Nz,m(Q̂x|z,u)enÊzx log P (Z|X)







1−ρλ

·
= Mρλ−1

y Eu







∑

Q̂x|z,u

Ex|uN
1−ρλ
z,m (Q̂x|z,u)en(1−ρλ)Êzx log P (Z|X)






(29)

The last exponential equality is the first main point in our approach: It holds, even before

taking the expectations because the summation over Q̂x|z,u consists of a sub-exponential

number of terms. Thus, the key issue here is how to assess the moments of the type class

enumerator.

Note that the probability, under P (xn|un) =
∏n

i=1 P (xi|ui), to fall into Tx|u,z is

|Tx|u,z | ·
∏

a∈U ,b∈X ,c∈Z

P (b|a)nP̂ (a,b,c) ·
= en(Êxu log P (X|U)+Ĥ(x|z,u))
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Given u, we independently generate enRy codewords under P (xn|un) =
∏n

i=1 P (xi|ui). There-

fore:

Ex|uNz,m(Q̂x|z,u)
·
= en(Ry+Êxu log P (X|U)+Ĥ(x|z,u)) (30)

The second main point of our approach is that the moments of the type class enumera-

tor behave differently when the last exponent is positive or not (equivalently, Q̂x|z,u ∈
G(Ry, Q̂u|z) or not). By the same arguments as in [10, Appendix]

Ex|uN
1−ρλ
z,m (Q̂x|z,u) (31)

·
=

{

en(1−ρλ)(Ry+Êxu log P (X|U)+Ĥ(x|z,u)) Q̂x|z,u ∈ G(Ry, Q̂u|z)

en(Ry+Êxu log P (X|U)+Ĥ(x|z,u)) Q̂x|z,u ∈ Gc(Ry, Q̂u|z)
(32)

We require ρλ ≤ 1 since the probability of {Nz,m(Q̂x|z,u) = 0} is positive, and so, neg-

ative moments of Nz,m(Q̂x|u,z) diverge. The intuition behind this different behavior is

that when Q̂x|z,u ∈ G(Ry, Q̂u|z), the enumerator concentrates extremely rapidly (dou-

ble exponentially fast) around its expectation. However, when Q̂x|z,u ∈ Gc(Ry, Q̂u|z) the

enumerator is typically zero, and thus the dominant term when calculating the moment is

11−ρλ · Pr(N1−ρλ
z,m (Q̂x|z,u) = 1).

We continue from (29) by splitting the sum over all conditional types to those that belong
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to G(Ry, Qu|z) and those that do not.

Mρλ−1
y Eu





∑

Tx|z,u

Ex|uN
1−ρλ
z,m (Q̂x|z,u)e

n(1−ρλ)Êzx log P (Z|X)





·
=Eu











∑

G(Ry ,Q̂u|z )

en(1−ρλ)(Êxu log P (X|U)+Ĥ(x|z,u)+Êzx log P (Z|X))+

∑

Gc(Ry ,Q̂u|z )

en((ρλ)Ry+Êxu log P (X|U)+Ĥ(x|z,u)+(1−ρλ)Êzx log P (Z|X))











·
=Eu(e

nα(Q̂u|z ) + enβ(Q̂u|z ))

·
= max

Q̂u|z
Pr(Q̂u|z |z)(enα(Q̂u|z ) + enβ(Q̂u|z )) (33)

the last line is true since α(Q̂u|z) and β(Q̂u|z) (cf. (6), (7)) depend on u through Q̂u|z .

Pr(Q̂u|z |z) is the probability, under P (un) =
∏n

i=1 P (ui), to belong to Tu|z which equals

(exponentially) to en(Êu log P (U)+Ĥ(u|z))). If we have used Jensen’s inequality, instead of

the above tight steps, the last sum would contain only enα(Q̂u|z ) and the expression of

α(Q̂u|z) would contain a global maximization rather than the constrained optimization of

(6). Therefore, Jensen inequality is tight whenever the unconstrained achiever of α(Q̂u|z)

is in G(Ry, Q̂u|z) and α(Q̂u|z) ≥ β(Q̂u|z) (See [18, Appendix E] for more detains)

We start by evaluating α(Q̂u|z): The unconstrained achiever of the optimization in (6) is

P (x|z, u) and it belongs to G(Ry, Q̂u|z) for large enough Ry if Ry − Î(x; z|u) ≥ 0 (Here,

unlike the single user case [10], such Ry can be in the capacity region). If P (x|z, u) ∈
G(Ry, Q̂u|z) The maximum in (6) will be obtained with the empirical distribution Q̂(x|u, z) =

P (x|u, z) (as n → ∞).

We now consider the case in which P (x|z, u) ∈ Gc(Ry, Q̂u|z). Following the exact arguments

of [10, Section 4.3], any internal point of G(Ry, Q̂u|z) can be improved by a point on the

boundary of G(Ry, Q̂u|z) when P (x|z, u) ∈ Gc(Ry, Q̂u|z). The achieving pmf will thus be

Q∗(x|z, u) =
P (x|u)P

δR(u)
3 (z|x)

∑

x P (x|u)P
δR(u)
3 (z|x)

(34)
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where δR(u) is such that −Ry = ÊQ∗ log P (x|u) + ĤQ∗(x|z, u). The existence of δR(u) is

discussed in Section A.2. Using the above arguments, since the constrained maximizer will

be on the boundary of G(Ry, Q̂u|z), we can use the fact that on the boundary −Ry =

ÊQ log P (x|u) + ĤQ(x|z, u) to get:

α(Q̂u|z)
·
= (1 − ρλ)(−Ry + max

G(Ry ,Q̂u|z)
Êzx log P (Z|X)) (35)

= (1 − ρλ)(−Ry + ÊQ∗ log P (Z|X)) (36)

To summarize, when P (x|z, u) ∈ G(Ry, Q̂u|z) we have

α(Q̂u|z)
·
= (1 − ρλ)EPx|u,z

log P (X|U) + HPx|u,z
(X|U,Z) + EPx|u,z

log P3(Z|X) (37)

and when P (x|z, u) ∈ Gc(Ry, Q̂u|z) we have

α(Q̂u|z)
·
= (1 − ρλ)(−Ry + ÊQ∗ log P3(Z|X)). (38)

We now proceed by evaluating β(Q̂u|z).

The unconstrained achiever of (7) is

Q1−ρλ(x|u, z) =
P (x|u)P 1−ρλ(z|x)

∑

x′ P (x′|u)P 1−ρλ
3 (z|x′)

.

Ry, (1 − ρλ) will determine if Q1−ρλ(x|u, z) ∈ Gc(Ry, Q̂u|z). From the proof of the exis-

tence of δ(Q̂u|z) (Section A.2) it is easily seen that the unconstrained achiever is outside

Gc(Ry, Q̂u|z) when P (x|u, z) ∈ G(Ry, Q̂u|z) or when 1− ρλ ≤ δ(Q̂u|z). In this case, by the

same arguments as before, the constrained achiever will be on the boundary and therefore:

β(Q̂u|z)
·
= (1 − ρλ)

[

−Ry + ÊQ∗ log P (z|x)
]

(39)

where Q∗(x|u, z) is defined in (34).

In the case where Q1−ρλ(x|u, z) ∈ Gc(Ry, Q̂u|z) (1 − ρλ ≤ δ(Q̂u|z)), for simplicity, set
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c(1 − ρλ, U, Z) =
∑

X P (X|U)P 1−ρλ
3 (Z|X). We have

β(Q̂u|z) = ρλRy + ÊQ1−ρλ
log[P (X|U)P 1−ρλ(Z|X)] + ĤQ1−ρλ

(x|z, u)

= ρλRy + ÊQ1−ρλ

{

log[P (X|U)P 1−ρλ(Z|X)] − log Q1−ρλ(X|U,Z)
}

= ρλRy + ÊQ1−ρλ

{

log[P (X|U)P 1−ρλ(Z|X)] − log
P (X|U)P 1−ρλ(Z|X)

c(1 − ρλ, U, Z)

}

= ρλRy + Êuz log c(1 − ρλ, U, Z) (40)

To summarize:

β(Q̂u|z)
·
=

{

(1 − ρλ)(−Ry + ÊQ∗ log P (Z|X)) P (x|z, u) ∈ G(Ry, Q̂u|z) or ρλ ≥ 1 − δ(Q̂u|z)

ρλRy + Êuzc(ρλ, u, z) ρλ < 1 − δ(Q̂u|z)

(41)

And finally, letting Eαβ = max{α(Q̂u|z), β(Q̂u|z)}, substituting it into (33) and letting

n → ∞ yields E1(Qz, Ry, Ryz, ρ, λ).

5.2 Deriving E2(Qz, Ry, Ryz, ρ, λ)

We now proceed to the second expectation of the original bound.

E





∑

m′ 6=m

(

1

My

My
∑

j=1

P (z|xj,m′)

)λ




ρ

=M−ρλ
y E







∑

m′ 6=m







∑

Q̂x|z

Nz,m′(Q̂x|z)enÊzx log P3(Z|X)







λ





ρ

·
=M−ρλ

y E







∑

m′ 6=m

∑

Q̂x|z

Nλ
z,m′(Q̂x|z)enλÊzx log P3(Z|X)







ρ

·
=M−ρλ

y E







∑

Q̂x|z

∑

m′ 6=m

Nλ
z,m′(Q̂x|z)enλÊzx log P3(Z|X)







ρ

·
=M−ρλ

y

∑

Q̂x|z

enλρÊzx log P3(Z|X)E

[

∑

m′ 6=m

Nλ
z,m′(Q̂x|z)

]ρ

(42)
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Here, unlike the previous subsection, there are two main obstacles. The first is the inner

sum over m′ 6= m which has an exponential number of terms. In the previous subsection,

when we used the enumerators, the resulting sums had only a polynomial number of terms,

which allowed us to distribute the expectation operator and moments over the summands

without loosing exponential tightness. Here we have to use a different approach. The second

obstacle is that the enumerators, Nλ
z,m′(Tx|z), are distributed differently for every m′ (since

the codewords are drawn given u′
m). Note however, that for all um that belong to the same

conditional type Tu|z the corresponding enumerators are identically distributed. We use

this fact in the following.

We continue by dividing [0, Ryz] into a grid with a sub-exponential number of intervals

in n (for example, d = Ryz

n
). Evaluating the last expectation in (42), we have:

E

[

∑

m′ 6=m

Nλ
z,m′(Q̂x|z)

]ρ

= E

[

Ryz
∑

A=0

(number of times Nz,m′(Q̂x|z)
·
= enA)enλA

]ρ

·
=

Ryz
∑

A=0

enλρAE
[

(number of times Nz,m′(Q̂x|z)
·
= enA)

]ρ

·
=

Ryz
∑

A=0

enλρAE

[

∑

m′ 6=m

Im′(A)

]ρ

(43)

where Im′(A)
△
= I

(

Nz,m′(Q̂x|z)
·
= enA

)

, omitting the dependence on Q̂x|z to simplify no-

tation). Next, we partition the summation over m′ into subsets in which the enumerators

are identically distributed as described above.
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E

[

∑

m′ 6=m

Im′(A)

]ρ

= E







∑

Q̂u|z

∑

m′:um′∈Tu|z

Im′(A)







ρ

·
=
∑

Q̂u|z

E





∑

m′:um′∈Tu|z

Im′(A)





ρ

(44)

Note that the number of terms in the inner summation of (44) is a random variable. Define

MQ̂u|z
△
= |m′ : um′ ∈ Tu|z | - the number of cloud centers that belong to the same conditional

type. Since we draw enRyz cloud centers independently with P (un) =
∏n

i=1 P (ui) we have:

E
[

MQ̂u|z

]

·
= en(Ryz+Ĥ(u|z)+Êu log P (U)) △

= enm̄(Q̂u|z )

The sign of the last exponent determines if we are likely to find an exponential number of

cloud centers of this type. We show in Section A.3 that when m̄(Q̂u|z) > 0 (i.e Q̂u|z ∈
Gz(Ryz)), MQ̂u|z

converges to its expectation double exponentially fast. When m̄(Q̂u|z) ≤
0, Pr

(

MQ̂u|z
> enǫ

)

vanishes double exponentially fast.

Let PA(Q̂x|z , Q̂u|z)
△
= Pr {Im′(A) = 1} denote the probability that we have enA codewords

around cloud m′ that belong to Tx|z . Define

A∗(Q̂x|z , Q̂u|z) =
[

N(Q̂x|z , Q̂u|z , Ry)
]+

We show in Section A.4 that when A = A∗(Q̂x|z , Q̂u|z) > 0, PA∗(Q̂x|z ,Q̂u|z )(Q̂x|z , Q̂u|z)

converges to 1 and vanishes for every other A double exponentially fast. When A∗(Q̂x|z , Q̂u|z) =

0, we show that PA=0(Q̂x|z , Q̂u|z) = enN(Q̂x|z ,Q̂u|z ,Ry). Thus, the outer summation in (43)

consists only of those A∗(Q̂x|z , Q̂u|z) and the number of elements in the summation is up-

per bounded by |Q̂x|z | × |Q̂u|z | which is sub-exponential in n.

Continuing (44), there are four cases: the combinations of Q̂u|z ∈ Gz(Ryz) or not and

A∗(Q̂x|z , Q̂u|z) > 0 or A∗(Q̂x|z , Q̂u|z) = 0. We start with the case A∗(Q̂x|z , Q̂u|z) > 0.
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5.2.1 The case A = A∗(Q̂x|z , Q̂u|z) > 0

We need to evaluate:

E





∑

m′:um′∈Tu|z

Im′(A)





ρ

(45)

We use the fact that for A = A∗(Q̂x|z , Q̂u|z), PA(Q̂x|z , Q̂u|z) > 1 − ǫ, for some ǫ > 0

that vanishes double exponentially fast (see Section A.4), to show that the probability that

all the indicators, Im′(A), equal one is very likely. Denote this event by A:

Pr(A) ≥ (1 − ǫ)
MQ̂u|z = e

MQ̂u|z
log(1−ǫ) ≥ e

MQ̂u|z
−ǫ
1−ǫ (46)

MQ̂u|z
is a random variable in [0, enRyz ]. Since ǫ vanishes double exponentially fast we have

Pr(A) → 1 double exponentially fast.

E





∑

m′:um′∈Tu|z

Im′(A)





ρ

Pr(A)E





∑

m′:um′∈Tu|z

Im′(A)|A





ρ

+ Pr(Ac)E





∑

m′:um′∈Tu|z

Im′(A)|Ac





ρ

= E





∑

m′:um′∈Tu|z

Im′(A)|A





ρ

= E
[

MQ̂u|z
|A
]ρ

(47)

In the second to the last line we used the fact that Pr(Ac) → 0 fast enough to make the

second term in the summation negligible (note that the expectation value can grow, at most,

at an exponential rate while Pr(Ac) vanishes double exponentially fast). In the last step we

used the fact that given A, all the indicators are equal to one. Note that the conditioning on

the event A introduces dependencies between the drawings of the codewords x and clouds

u. (given A for instance, there might be some u ∈ U which cannot be drawn. therefore the

clouds are no longer drawn according to
∏n

i=1 P (ui)). We claim that since the conditioning

in (47) is on an event which is very likely (its probability is very close to 1), we can remove
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the conditioning without changing much the resulting value. To see this, Let MQ̂u|z
be

distributed with some distribution measure Q.

Q(MQ̂u|z
) = Pr(A)Q(MQ̂u|z

|A) + Pr(Ac)Q(MQ̂u|z
|Ac) ≥ (1 − ǫ)Q(MQ̂u|z

|A) (48)

on the other hand,

Q(MQ̂u|z
) = Pr(A)Q(MQ̂u|z

|A) + Pr(Ac)Q(MQ̂u|z
|Ac) ≤ Q(MQ̂u|z

|A) + ǫ · 1. (49)

therefore,

Q(MQ̂u|z
) − ǫ ≤ Q(MQ̂u|z

|A) ≤
Q(MQ̂u|z

)

1 − ǫ
. (50)

Since ǫ → 0 double exponentially fast, we can replace Q(MQ̂u|z
|A) by Q(MQ̂u|z

) in the

calculation of the expectation in (47) and preserve exponential tightness. Using Section A.3

for Q̂u|z ∈ Gz(Ryz) we have:

E

[

MQ̂u|z

]ρ

≤ enρ[m̄(Q̂u|z )+ǫ]Pr
{

MQ̂u|z
≤ en(m̄(Q̂u|z )+ǫ)

}

+ enRyzPr
{

MQ̂u|z
≥ en(m̄(Q̂u|z )+ǫ)

}

≤ enρ[m̄(Q̂u|z )+ǫ] + enRyze−nǫe
n[m̄(Q̂u|z )+ǫ]

(51)

On the other hand:

E

[

MQ̂u|z

]ρ

≥ enρ[m̄(Q̂u|z )−ǫ]Pr
{

MQ̂u|z
≥ en(m̄(Q̂u|z )−ǫ)

}

= enρ[m̄(Q̂u|z )−ǫ]
{

1 − Pr
{

MQ̂u|z
< en(m̄(Q̂u|z )−ǫ)

}}

≥ enρ[m̄(Q̂u|z )−ǫ]
{

1 − e−nǫe
n[m̄(Q̂u|z )−ǫ]

}

(52)

Finally we have for m̄(Q̂u|z) ≥ 0

E





∑

m′:um′∈Tu|z

Im′(A)





ρ

·
= enρ[m̄(Q̂u|z )] (53)

When Q̂u|z ∈ Gc
z(Ryz) we have:

E
[

MQ̂u|z

]ρ

≤ enρǫ Pr
{

1 ≤ MQ̂u|z
≤ enǫ

}

+ enRyz Pr
{

MQ̂u|z
≥ enǫ

}

(54)
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The second term vanishes since the probability that MQ̂u|z
> enǫ vanishes double expo-

nentially fast for Q̂u|z ∈ Gc
z(Ryz). Neglecting the second term and using the properties of

MQ̂u|z
, proved in Section A.3, we continue:

E

[

MQ̂u|z

]ρ

≤ enρǫ Pr
{

MQ̂u|z
≥ 1
}

≤ enρǫE
{

MQ̂u|z

}

= enρǫenm̄(Q̂u|z ) (55)

On the other hand:

E

[

MQ̂u|z

]ρ

≥ 1 · Pr
{

MQ̂u|z
= 1
}

= enm̄(Q̂u|z ) (56)

Therefore, since we can let ǫ vanish sufficiently slowly with n, e.g. ǫ = 1/
√

n, we have for

Q̂u|z ∈ Gc
z(Ryz):

E
[

MQ̂u|z

]ρ ·
= enm̄(Q̂u|z ) (57)

To conclude this subsection, when A∗(Q̂x|z , Q̂u|z) > 0:

E





∑

m′:um′∈Tu|z

Im′(A)





ρ

·
=

{

enρm̄(Q̂u|z ) Q̂u|z ∈ Gz(Ryz)

enm̄(Q̂u|z ) Q̂u|z ∈ Gc
z(Ryz)

(58)

5.2.2 The case A∗(Q̂x|z , Q̂u|z) = 0

Here, as before, we divide into two cases: Q̂u|z ∈ Gz(Ryz) or Q̂u|z ∈ Gc
z(Ryz). Unlike the

previous case, where we knew that PA,Q̂u|z
converges to 1 double exponentially fast, here,

we know that P0(Q̂x|z , Q̂u|z)
·
= enN(Q̂x|z ,Q̂u|z ,Ry) (N(Q̂x|z , Q̂u|z , Ry) ≤ 0, see Section

A.4). Therefore, we have to use a somewhat different approach. We start with the case of
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Q̂u|z ∈ Gz(Ryz)

E





∑

m′:um′∈Tu|z

Im′(0)





ρ

≤

enρ[m̄(Q̂u|z )+N(Q̂x|z ,Q̂u|z ,Ry)+ǫ]Pr







∑

m′:um′∈Tu|z

Im′(0) ≤ en(m̄(Q̂u|z )+N(Q̂x|z ,Q̂u|z ,Ry))+ǫ







+

enRyzPr







∑

m′:um′∈Tu|z

Im′(0) ≥ en(m̄(Q̂u|z )+N(Q̂x|z ,Q̂u|z ,Ry)+ǫ)







(59)

Focusing on the probability in second term:

Pr







∑

m′:um′∈Tu|z

Im′(0) ≥ en(m̄(Q̂u|z )+N(Q̂x|z ,Q̂u|z ,Ry))+ǫ







=
enRyz
∑

m=0

Pr
{

MQ̂u|z
·
= enm

}

×

Pr







∑

m′:um′∈Tu|z

Im′(0) ≥ en(m̄(Q̂u|z )+N(Q̂x|z ,Q̂u|z ,Ry)+ǫ)|MQ̂u|z
·
= enm







= Pr
{

MQ̂u|z
·
= enm̄(Q̂u|z )

}

×

Pr











∑

m′:um′∈Q̂u|z

Im′(0) ≥ en(m̄(Q̂u|z )+N(Q̂x|z ,Q̂u|z ,Ry)+ǫ)|MQ̂u|z
·
= em̄(Q̂u|z )











(60)

The last step is true because of the concentration of MQ̂u|z
around its expectation when

Q̂u|z ∈ Gz(Ryz). Therefore Pr
{

MQ̂u|z
·
= enm̄(Q̂u|z )

}

→ 1 double exponentially fast (see

Section A.3). Here, as in the previous subsection, we condition on an event which is ex-

tremely likely. By the same arguments we used in the previous subsection, we remove the

conditioning. Continuing (60) we have:

= Pr











e
nm̄(Q̂u|z )

∑

m=1

Im′(0) ≥ en(m̄(Q̂u|z )+N(Q̂x|z ,Q̂u|z ,Ry)+ǫ)











(61)

We are left with analyzing the probability that we have more than

en(m̄(Q̂u|z )+N(Q̂x|z ,Q̂u|z ,Ry)+ǫ) successes in enm̄(Q̂u|z ) independent Bernoulli trials with prob-
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ability enN(Q̂x|z ,Q̂u|z ,Ry) each. By using the Chernoff bound, it is easily seen that the proba-

bility that this will happen, vanishes double exponentially fast, since we have an exponential

number of trials. We therefore have:

E





∑

m′:um′∈Tu|z

Im′(0)





ρ

≤ eρ[n(m̄(Q̂u|z )+N(Q̂x|z ,Q̂u|z ,Ry)+ǫ)] (62)

The upper bound for Q̂u|z ∈ Gz(Ryz) is given by

E





∑

m′:um′∈Tu|z

Im′(0)





ρ

≥

eρ[n(m̄(Q̂u|z )+N(Q̂x|z ,Q̂u|z ,Ry)−ǫ)]Pr







∑

m′:um′∈Tu|z

Im′(0) ≥ en(m̄(Q̂u|z )+N(Q̂x|z ,Q̂u|z ,Ry)−ǫ)







= eρ[n(m̄(Q̂u|z )+N(Q̂x|z ,Q̂u|z ,Ry)−ǫ)]×






1 − Pr







∑

m′:um′∈Tu|z

Im′(0) < en(m̄(Q̂u|z )+N(Q̂x|z ,Q̂u|z ,Ry)−ǫ)













(63)

By the same arguments we used in the upper bound, the last probability vanishes double

exponentially fast. So we have for Q̂u|z ∈ Gz(Ryz):

E





∑

m′:um′∈Tu|z

Im′(0)





ρ

·
= enρ[m̄(Q̂u|z )+N(Q̂x|z ,Q̂u|z ,Ry))] (64)

We now continue to the case Q̂u|z ∈ Gc
z(Ryz). Here, we know that MQ̂u|z

is sub-

exponential (the probability that MQ̂u|z
in sub exponential converges to 1 double exponen-

tially fast). Therefore, we will not be able to apply the Chernoff bound as we did before in

(61). Again, we use a different approach.
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E





∑

m′:um′∈Tu|z

Im′(0)





ρ

= Pr
{

MQ̂u|z
< enǫ

}

E











∑

m′:um′∈Tu|z

Im′(0)





ρ
∣

∣

∣

∣

MQ̂u|z
< enǫ







+ Pr
{

MQ̂u|z
≥ enǫ

}

E











∑

m′:um′∈Tu|z

Im′(0)





ρ
∣

∣

∣

∣

MQ̂u|z
≥ enǫ







(65)

The second term can be neglected since the Pr
{

MTu|z ≥ enǫ
}

vanishes double exponentially

fast for Q̂u|z ∈ Gc
z(Ryz) and the expectation grows at most at an exponential rate. Since we

know that the number of elements in the sum over m′ is of sub exponential order, we can

distribute ρ over the summands and still preserve exponential tightness.

·
= E





∑

m′:um′∈Tu|z

Iρ
m′(0)

∣

∣

∣

∣

MQ̂u|z
< enǫ



 (66)

We now condition on MQ̂u|z
. Doing this alone would introduce dependencies between the u’s

and x and change the probability law of the indicator function. To avoid this, we condition

also on um′ . Given a specific um′ all drawing of xm′,i are independent and PA=0(Q̂x|z , Q̂u|z)

remains intact.

= EMQ̂u|z
Eu







∑

m′:um′∈Tu|z

E

[

Im′(0)|MQ̂u|z
, u
]







(67)

Given u the inner expectation is independent of the number of such u’s (MQ̂u|z
) and

becomes PA=0(Q̂x|z , Q̂u|z). Now, since PA=0(Q̂x|z , Q̂u|z) is constant for all u’s in the

conditional type Tu|z the expectation over u doesn’t change the value and we are left with:

E





∑

m′:um′∈Tu|z

Im′(0)





ρ

·
= en(m̄(Q̂u|z )+N(Q̂x|z ,Q̂u|z ,Ry)) (68)
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To summarize this subsection: When A∗(Q̂x|z , Q̂u|z) = 0 we have

E





∑

m′:um′∈Tu|z

Im′(A)





ρ

·
=

{

enρ[m̄(Q̂u|z )+N(Q̂x|z ,Q̂u|z ,Ry)] Q̂u|z ∈ Gz(Ryz)

en[m̄(Q̂u|z )+N(Q̂x|z ,Q̂u|z ,Ry)] Q̂u|z ∈ Gc
z(Ryz)

(69)

5.2.3 Wrapping up

Using the results we obtained in the previous two subsections, we are now ready to continue

(43).

E

[

∑

m′ 6=m

Nλ
z,m′(Q̂x|z)

]ρ

·
=

Ryz
∑

A≥0

enλρA
∑

Q̂u|z

E





∑

m′:um′∈Tu|z

Im′(A)





ρ

=
∑

Q̂u|z

Ryz
∑

A≥0

enλρAE





∑

m′:um′∈Tu|z

Im′(A)





ρ

(70)

We saw that for all A 6= A∗(Q̂x|z , Q̂u|z) the inner sum vanishes. Using definitions (12) and

(13) we continue:

=
∑

Q̂u|z

enλρA∗(Q̂x|z ,Q̂u|z )
E





∑

m′:um′∈Tu|z

Im′(A∗)





ρ

·
=

∑

Q̂u|z∈Gz(Ryz)

en(B(Q̂x|z ,Q̂u|z ,Ry)+ρm̄(Q̂u|z )) +
∑

Q̂u|z∈Gc
z(Ryz)

en(C(Q̂x|z ,Q̂u|z ,Ry)+m̄(Q̂u|z ))

·
= e

n·max

{

maxQ̂u|z∈Gz(Ryz)[B(Q̂x|z ,Q̂u|z ,Ry)+ρm̄(Q̂u|z )],maxQ̂u|z∈Gc
z(Ryz)[C(Q̂x|z ,Q̂u|z ,Ry)+m̄(Q̂u|z )]

}

△
= enE(Q̂x|z ). (71)

Substituting this into (42), we have:

E





∑

m′ 6=m

(

1

My

My
∑

j=1

P (z|x)

)λ




ρ

·
= e

−n

{

maxQ̂x|z
λρÊzx log 1

P (Z|X)
−E(Q̂x|z )+ρλRy

}

(72)

When n → ∞, this is the expression of E2(QZ , Ry, Ryz, ρ, λ) of Theorem 2.
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5.3 The Strong Decoder

We now proceed to the derivation of the strong decoder exponent. We start with the same

steps as in the Gallager-type approach (22):

P y
Em,i

≤ E
∑

y

P1(y|xm,i)





∑

(m′,i′) 6=(m,i)

P1(y|xm′,i′)
λ

P1(y|xm,i)λ





ρ

= E
∑

y

P1(y|xm,i)
1−λρ

(

∑

i′ 6=i

P1(y|xm,i′)
λ +

∑

m′ 6=m

My
∑

i′=1

P1(y|xm′,i′)
λ

)ρ

·
= E

∑

y

P1(y|xm,i)
1−λρ





(

∑

i′ 6=i

P1(y|xm,i′)
λ

)ρ

+

(

∑

m′ 6=m

My
∑

i′=1

P1(y|xm′,i′)
λ

)ρ




, EPEy1 + EPEy2 (73)

As before, we evaluate the expressions for a given y and sum over all y in the last step. We

start with PEy1

PEy1 = E
∑

y

P1(y|Xm,i)
1−λρ

(

∑

i′ 6=i

P1(y|Xm,i′)
λ

)ρ

=
∑

y

EP1(y|Xm,i)
1−λρE

(

∑

i′ 6=i

P1(y|Xm,i′)
λ

)ρ

(74)
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The first expectation becomes:

EP1(y|Xm,i)
1−λρ = EuEx|uP1(y|Xm,i)

1−λρ

= Eu

∑

Q̂x|uy

Pr
(

Q̂x|uy

)

e
n(1−ρλ)Êyx log P (Y |X)

·
= Eu max

Q̂x|uy
Pr
(

Q̂x|uy

)

e
n(1−ρλ)Êyx log P (Y |X)

·
= max

Q̂u|y
Pr
(

Q̂u|y

)

e
n maxQ̂x|uy

(Êxu log P (X|U)+Ĥ(x|u,y)+(1−ρλ)Êyx log P (Y |X))

·
= max

Q̂u|y
en(Êu log P (U)+Ĥ(u|y))e

n maxQ̂x|uy
(Êxu log P (X|U)+Ĥ(x|u,y)+(1−ρλ)Êyx log P (Y |X))

·
= max

Q̂u|y
max

Q̂x|uy
e

n(Êux log P (U,X)+Ĥ(x,u|y)+(1−ρλ)Êyx log P (Y |X))

·
= max

Q̂x,u|y
e

n(Êux log P (U,X)+Ĥ(x,u|y)+(1−ρλ)Êyx log P (Y |X))
(75)

The last exponent is E3(QY , Ry, Ryz, ρ, λ) of Theorem 2 as n → ∞. The derivation of the

exponent of the second expectation is quite similar to the steps of following (29) in the weak

decoder exponent. We therefore only outline the derivation here. For the second expectation

we have:

E

(

∑

i′ 6=i

P1(y|Xm,i′)
λ

)ρ

= EuEx|u







∑

Q̂x|uy

Ny,m(Q̂x|uy)e
nλÊyx log P (Y |X)







ρ

·
= Eu







∑

Q̂x|uy

Ex|uN
ρ
y,m(Q̂x|uy)e

nρλÊyx log P (Y |X)






(76)

As in the case of the weak decoder we define:

G(Ry, QU |Y ) =
{

QX|U,Y : Ry + EQ log P (X|U) + HQ(X|U, Y ) > 0
}

(77)

and we have

Ex|uN
ρ
y,m(Q̂x|z,u)

·
=

{

enρ(Ry+Ê log P (X|U)+Ĥ(x|y,u)) Q̂x|y,u ∈ G(Ry, Q̂u|y)

en(Ry+Ê log P (X|U)+Ĥ(x|y,u)) Q̂x|y,u ∈ Gc(Ry, Q̂u|y)
(78)
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Now define:

γ(QU |Y )
△
= ρ

(

Ry + max
QX|U,Y ∈G(Ry ,QU|Y )

(EQ log P (X|U) + HQ(X|Y, U) + λEQ log P (Y |X))

)

(79)

where, as described in Section 2, P1(·|·) is the channel to the strong user. Similarly, define:

ζ(QU |Y )
△
= Ry + max

QX|U,Y ∈Gc(Ry ,QU|Y )
[EQ log P (X|U) + HQ(X|U, Y ) + (ρλ)EQ log P (Y |X)]

(80)

We now continue (76) by splitting the sum over all Q̂x|uy into Q̂x|uy ∈ G(Ry, QU |Y ) and

Q̂x|uy ∈ Gc(Ry, QU |Y ).

E

(

∑

i′ 6=i

P1(y|Xm,i′)
λ

)ρ

·
= Eu

[

e
nγ(Q̂u|y)

+ e
nζ(Q̂u|y)

]

·
= max

Q̂u|y
Pr
(

Q̂u|y

) [

e
nγ(Q̂u|y)

+ e
nζ(Q̂u|y)

]

(81)

We begin with the evaluation of γ(Qu|y). The unconstrained achiever in (79) is:

Qλ(x|u, y) =
P (x|u)P λ(y|x)

∑

x′ P (x′|u)P λ
3 (y|x′)

.

If Qλ(x|u, y) ∈ G(Ry, Q̂u|y) than we can calculate γ(QU |Y ) with it. If Qλ(x|u, y) ∈ Gc(Ry, QU |Y )

Since Qλ=0(x|u, y) ∈ G(Ry, QU |Y ), we know that G(Ry, QU |Y ) is not empty, and there is a

δ(Q̂u|y) ∈ (0, λ) for which Qδ(Q̂u|y) is on the boundary of Q̂u|y. As before, our constrained

optimizer is on the boundary. So we have for γ(Qu|y):

γ(Q̂u|y) =
{

ρ (Ry + EQλ
log P (X|U) + HQλ

(X|Y, U) + λEQλ
log P (Y |X)) Qλ(x|u, y) ∈ G(Ry, Qu|y)

ρλEQδ(Q̂u|y )
log P (Y |X) Qλ(x|u, y) ∈ Gc(Ry, Qu|y) (82)

By the same arguments:

ζ(Q̂u|y) =
{

ρλEQδ(Q̂u|y )
log P (Y |X) Qρλ(x|u, y) ∈ G(Ry, Qu|y)

Ry + EQρλ
log P (X|U) + HQρλ

(X|Y,U) + ρλEQρλ
log P (Y |X) Qρλ(x|u, y) ∈ Gc(Ry, Qu|y)

(83)
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Letting Eγζ(Q̂u|y) be the dominant term between γ(Q̂u|y) and ζ(Q̂u|y) ,the second ex-

pectation of PEy1 is:

E

(

∑

i′ 6=i

P1(y|Xm,i′)
λ

)ρ

·
= e

n maxQ̂u|y
(Eγζ(Q̂u|y)+Êu log P (U)+Ĥ(u|y))

(84)

the last exponent is E4(QY , Ry, Ryz, ρ, λ) of Theorem 2 as n → ∞.

We now proceed to the evaluation of:

EPEy2 =
∑

y

EP1(y|xm,i)
1−λρE

[

∑

m′ 6=m

My
∑

i′=1

P1(y|xm′,i′)
λ

]ρ

(85)

The fist expectation is the same as before. For the second expectation, following the same

steps as is (42) we have

E

[

∑

m′ 6=m

My
∑

i′=1

P1(y|xm′,i′)
λ

]ρ

·
=
∑

Q̂x|y

e
nλρÊyx log P1(Y |X)

E

[

∑

m′ 6=m

Nz,m′(Q̂x|y)

]ρ

(86)

and by the arguments that led to (43) we have:

E

[

∑

m′ 6=m

Nz,m′(Q̂x|y)

]ρ

·
=

Ryz
∑

A≥0

enρAE

[

∑

m′ 6=m

Im′(A)

]ρ

(87)

where, here, Im′(A)
△
= I

(

Nz,m′(Q̂x|y)
·
= enA

)

(as before, we omit the dependence on Q̂x|y

to simplify notation). The only difference between (87) and (43) is that here only ρ multiplies

A in the exponent whereas in (43) we had ρλ multiplying A. This fact will change the final

result, however, the evaluation of E

[

∑

m′ 6=m Im′(A)
]ρ

is identical to the weak decoder case

by replacing the role of z with y and P3(Z|X) with P1(Y |X). We therefore have:

E

[

∑

m′ 6=m

Nz,m′(Q̂x|y)

]ρ

·
= e

nE(Q̂x|y)
(88)

and for the second expectation we have:

E

[

∑

m′ 6=m

My
∑

i′=1

P1(y|xm′,i′)
λ

]ρ

·
= e

n maxQ̂x|y

[

λρÊyx log P1(Y |X)+E(Q̂x|y)
]

(89)

the last exponent is E5(QY , Ry, Ryz, ρ, λ) of Theorem 2 as n → infty Taking the maximum

of and and using we arrive at Ey,2(Ryz, Ry) after optimizing over the free parameters.
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5.4 Numerical Results

In this subsection, we revisit the same setup as in Section 4.3. We show some numerical

results of the error exponents obtained by the type class enumerators approach and compare

them to the exponents of our Gallager type approach and to Gallager’s results [4]. Unlike

the calculation of the numerical results of Section 4, which, after setting α = µ had a

straightforward implementation and reasonable computation time, here the calculation is

much more complex. For every ρ, λ searched, we need to optimize over Q(u|z), Q(x|z) in

the intermediate steps 71,72 and finally over Q(z). In Fig. 5, we show the best attainable

Ez(Ry, Ryz) (maximized over β) for two values of Ry, compared to results in [4] and of

Section 4. In both cases, although we confined ρ to [0, 1] in order to limit the computation

time, the new exponents are better. We used Ey that was derived in Section 4 and allowed

it to be arbitrarily small (yet positive), thus complying with the definition of an attainable

exponent for the weak user.
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Figure 5: Ez for (a) Ry = 0.05[nats] and (b) Ry = 0.3[nats]. EZ,g is Gallager’s 74 result, EZ,GT is
Gallager-type approach exponent and EZ,TCE is the type class enumerators approach result.

In both plots of Fig. 5, the exponent becomes zero when the pair (Ry, Ryz) is outside

the capacity region. The improvement gained by the type class enumerators approach is

more substantial when Ry is small. As discussed in [18, Appendix E], when the number of

elements in the sum of likelihoods (28) is large enough, Jensen’s inequality becomes tighter
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and the results of the Gallager-type approach will be closer to the tight approach results.

A Appendix

A.1 proof of λ = 1
1+ρ

when α = µ

It will be shown bellow that

∀λ : E0(ρ,
1

1 + ρ
, α, α) ≥ E0(ρ, λ, α, α)

where E0(ρ, λ, α, α) was defined in (1). We use the following variant of Hölder’s inequality

[15, p. 523]: Let ai, bi, Pi be non negative numbers defined over a finite set of i with
∑

i Pi = 1

and 0 < γ < 1

∑

i

Piaibi ≤
(

∑

i

Pia
1
γ

i

)γ [
∑

i

Pib
1

1−γ

i

]1−γ

(90)

We have for the weak decoder:

E(R1, R2) = max
0≤ρ≤1

max
0≤λ≤µ≤1

max
1−ρλ≤α≤1

{E0(ρ, λ, α, µ) − (α + ρµ − 1)R1 − ρR2}

where

E0(ρ, λ, α, µ) = − log

{

∑

z

[

∑

u

Q1(u)

(

∑

x

Q2(x|u)P3(z|x)(1−ρλ)/α

)α]

×
[

∑

u′

Q1(u
′)

(

∑

x′

Q2(x
′|u′)P3(z|x′)λ/µ

)µ]ρ}

.

Substituting α = µ, (max(λ, 1 − λρ) ≤ α ≤ 1) we have for E0:

E0(ρ, λ, α, α) = − log

{

∑

z

[

∑

u

Q1(u)

(

∑

x

Q2(x|u)P3(z|x)(1−ρλ)/α

)α]

×
[

∑

u′

Q1(u
′)

(

∑

x′

Q2(x
′|u′)P3(z|x′)λ/α

)α]ρ}

. (91)

Finally,

E0(ρ,
1

1 + ρ
, α, α) = − log

∑

z

{

∑

u

Q1(u)

(

∑

x

Q2(x|u)P3(z|x)1/α(1+ρ)

)α}1+ρ
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The proof holds for 1 ≥ ρ > 0. Since when ρ = 0 (note that in this case α = 1) we have for

all λ: E0(ρ = 0, λ, 1, 1) = 0, this is sufficient for our case.

Proof. Let us observe the inner term of E0(ρ, 1
1+ρ

, α, α):

{

∑

u

Q1(u)

(

∑

x

Q2(x|u)P3(z|x)1/α(1+ρ)

)α}1+ρ

(92)

It is sufficient to show, that for every z, this term lower bounds the same term with λ instead

of 1
1+ρ

(as in (91)).

To Start, we use (90) with the following assignments: Pi = Q2(x|u), ai = P3(z|x)
1−λρ

α(1+ρ) , bi =

P3(z|x)
λρ

α(1+ρ) . Applying this we have for 0 ≤ δ ≤ 1:

{

∑

u

Q1(u)

(

∑

x

Q2(x|u)P3(z|x)1/α(1+ρ)

)α}1+ρ

≤

≤







∑

u

Q1(u)





(

∑

x

Q2(x|u)P3(z|x)
1−λρ

δα(1+ρ)

)δ(
∑

x

Q2(x|u)P3(z|x)
λρ

(1−δ)α(1+ρ)

)1−δ




α





1+ρ

.

(93)

At this point we use (90) again over the whole term with the following assignments:

Pi = Q(u)

ai =

(

∑

x

Q2(x|u)P3(z|x)
1−λρ

δα(1+ρ)

)δα

bi =

(

∑

x

Q2(x|u)P3(z|x)
λρ

(1−δ)α(1+ρ)

)α(1−δ)

Continuing from(93):

≤























∑

u Q1(u)

(

∑

x Q2(x|u)P3(z|x)
1−λρ

δα(1+ρ)

)δα/γ




γ

×







∑

u Q1(u)

(

∑

x Q2(x|u)P3(z|x)
λρ

(1−δ)α(1+ρ)

)

α(1−δ)
(1−γ)







1−γ



















1+ρ

0 ≤ γ ≤ 1.
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Assigning γ = δ = 1
1+ρ

we have:

{

∑

u

Q1(u)

(

∑

x

Q2(x|u)P3(z|x)1/α(1+ρ)

)α}1+ρ

≤
[

∑

u

Q1(u)

(

∑

x

Q2(x|u)P3(z|x)(1−ρλ)/α

)α][
∑

u′

Q1(u
′)

(

∑

x′

Q2(x
′|u′)P3(z|x′)λ/α

)α]ρ

Note that the last term is equivalent to (92) when λ = 1
1+ρ

and greater or equal for every

other value of λ. Since this is true for every z the proof is completed.

A.2 The Existence of δ(Q̂u|z)

We need to show that for Q̂u|z , there exist a δ(Q̂u|z) such that, when P (x|u, z) ∈ Gc(Ry, Q̂u|z),

the partition function of Gc(Ry, Q̂u|z) is zero. Namely:

Ry + EQ log P (X|U) + HQ(X|Z, U) = 0 (94)

where the above entropy and expectation are calculated with respect to

Q(x, u, z) = Q∗(x|u, z)Q̂u|z(u, z)Q̂z(z)

(Q∗(x|u, z) is defined in (34)).

Denote C(δ(Q̂u|z), u, z) =
∑

x P (x|u)P
δ(Q̂u|z )

3 (z|x) and define

g(δ(Q̂u|z) , Ry + EQ log P (X|U) + HQ(X|Z, U)

= Ry + EQ log
P (X|U)C(δ(Q̂u|z), u, z)

P (X|U)P
δ(Q̂u|z
3 (Z|X)

= Ry + δ(Q̂u|z)EQ log
1

P (Z|X)
+ Euz log C(δ(Q̂u|z , u, z) (95)

For P (x|u, z) ∈ Gc(Ry, Q̂u|z), g(1) ≤ 0 and since Ry ≥ 0, g(0) ≥ 0. Therefore, because

of the continuity of g(δ(Q̂u|z), we conclude that there exist δ(Q̂u|z) ∈ [0, 1) such that

g(δ(Q̂u|z)) = 0. It can be shown that g(δ(Q̂u|z)) is non increasing for δ > 0.
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A.3 The Behavior of MQ̂u|z

MQ̂u|z
=

enRyz
∑

i=1

I(ui ∈ Tu|z) (96)

The probability that a cloud center um, drawn with P (un) =
∏n

i=1 P (ui) will belong to Tu|z

is (exponentially) en(Êu log P (U)+Ĥ(u|z). Using D(a||b) >
(

ln a
b
− 1
)

([10, Appendix]) and the

Chernoff bound we have:

Pr(MQ̂u|z
≥ en·a) ≤ exp

{

−nen·a
[

a − Ryz − Ĥ(u|z) − Êu log P (U)
]}

a ≥ Ryz + Ĥ(u|z) + Êu log P (U)

Pr(MQ̂u|z
≤ en·a) ≤ exp

{

nen·a
[

a − Ryz − Ĥ(u|z) − Êu log P (U)
]}

a ≤ Ryz + Ĥ(u|z) + Êu log P (U)

(97)

Therefore, for Q̂u|z ∈ Gz(Ryz), ǫ > 0:

Pr(MQ̂u|z
·
= en(Ryz+Ĥ(u|z)+Êu log P (U))) = 1 − Pr(MQ̂u|z

≥ en(Ryz+Ĥ(u|z)+Ê log P (u)+ǫ))

− Pr(MQ̂u|z
≤ en(Ryz+Ĥ(u|z)+Ê log P (u)−ǫ))

≥ 1 − 2e−nǫen(Ryz+Ĥ(u|z)+Ê log P (u)−ǫ)

(98)

And thus, for Q̂u|z ∈ Gz(Ryz), MQ̂u|z
converges to its expectation double exponentially

fast. It is obvious from (97) that when Q̂u|z ∈ Gc
z(Ryz), we wont find an exponential

number of cloud centers of this type. Furthermore, the dominant term in EMQ̂u|z
will be

1 ·Pr(MQ̂u|z
= 1). We now show the exponential behavior of MQ̂u|z

when Q̂u|z ∈ Gc
z(Ryz)

Pr(MQ̂u|z
= 1) = enRyzen(Ĥ(u|z)+Êu log P (U))(1 − en(Ĥ(u|z)+Êu log P (U)))enRyz−1

≤ enRyzen(Ĥ(u|z)+Êu log P (u))

= enm̄(Q̂u|z ) (99)
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Pr(MQ̂u|z
= 1) = enRyzen(Ĥ(u|z)+Êu log P (U))(1 − en(Ĥ(u|z)+Êu log P (U)))enRyz−1

·
= enm̄(Q̂u|z )(1 − en(Ĥ(u|z)+Êu log P (U)))enRyz

= enm̄(Q̂u|z ) exp
[

log(1 − en(Ĥ(u|z)+Êu log P (U)))enRyz

]

≥ enm̄(Q̂u|z ) exp

[

enRyz
−en(Ĥ(u|z)+Êu log P (U))

1 − en(Ĥ(u|z)+Êu log P (U))

]

(100)

= enm̄(Q̂u|z ) exp

[

enm̄(Q̂u|z )

1 − en(Ĥ(u|z)+Êu log P (U))

]

→ enm̄(Q̂u|z ) (101)

where in (100), we used log(1 + x) ≥ x
1+x

and the last line is true since enm̄(Q̂u|z ) → 0 when

n → ∞ for Q̂u|z ∈ Gc
z(Ryz). To conclude, we have:

Pr(MTu|z = 1)
·
= enm̄(Q̂u|z ) (102)

A.4 Deriving PA(Q̂x|z, Q̂u|z)

For a given u∗, the probability of drawing x with P (x|u) which will belong to Tx|z is

∑

x∈Tx|z

P (x|u∗) =
∑

x∈Tx|z

n
∏

i=1

P (xi|u∗
i )

=
∑

Tx|z,u∗

|Tx|z,u∗|
n
∏

a∈U ,b∈X ,c∈Z

P (b|a)nP̂ (a,b,c) (103)

where P̂ (a, b, c) is the joint empirical distribution of the triplet a ∈ U , b ∈ X , c ∈ Z. Note

that for different x ∈ Tx|z, P̂ (a, b, c) have different values. Exponentially, the behavior will

be according to the maximal element. Namely:

·
= e

n·maxTx|z,u|Tx|z
{Ê log P (x|u)+Ĥ(x|z,u)} (104)

The last expression remains true for all permutations of u∗ which belong to Tu∗|z . This is

because we can apply the same permutation to the x vector and get the same value in the

exponent. This value will be the maximizer since the range of the maximization remains
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constant while u belongs to the same Tu∗|z. for a given u ∈ Tu∗|z (if there is such a u

in our random codebook) we draw enRy x series independently according to
∏n

i=1 P (xi|ui).

Therefore, the average number of x that will belong to Tx|z when u belongs to Tu|z is

e
n

(

Ry+maxQ̂x|z,u|Q̂x|z ,Q̂u|z{Êxu log P (X|U)+Ĥ(x|z,u)}
)

△
= enN(Q̂x|z ,Q̂u|z ,Ry) (105)

Since we are evaluating the probability of drawing an exponential number of x which will

belong to Tx|z we are only interested in the case where the last exponent is positive. By the

same arguments in Section A.3, when N(Q̂x|z , Q̂u|z , Ry) > 0 the number of {xm} which

will belong to Tx|z concentrates double exponentially fast around the expectation (105).

Therefore, for N(Q̂x|z , Q̂u|z , Ry) > 0, ǫ > 0:

Pr
{

1
(

Nz,m′(Q̂x|z)
·
= enN(Q̂x|z ,Q̂u|z ,Ry)

)

= 1
}

≥ 1 − 2e−nǫe
n(N(Q̂x|z ,Q̂u|z ,Ry)−ǫ)

(106)

To conclude, PA,Tu|z either vanishes double exponentially fast if A 6= N(Q̂x|z , Q̂u|z , Ry) or

converges double exponentially fast to 1 if A = N(Q̂x|z , Q̂u|z , Ry).

When the exponent in (105) is negative, for every A > 0 PA(Q̂x|z , Q̂u|z) vanishes double

exponentially fast. However, for A = 0, by the same arguments as in section A.3 we show

that

Pr
{

Nz,m′(Q̂x|z)
·
= en0

}

= Pr
{

1 ≤ Nz,m′(Q̂x|z) < enǫ
}

·
= Pr

{

Nz,m′(Q̂x|z) = 1
}

(107)

and

Pr
{

Nz,m′(Q̂x|z) = 1
}

·
= enN(Q̂x|z ,Q̂u|z ,Ry). (108)
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