

IRWIN AND JOAN JACOBS

CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

Efficient On- line Schem es for

Encoding I ndividual Sequences

w ith Side I nform at ion at the

Decoder

Avraham Reani and Neri Merhav

CCI T Report # 7 3 8

August 2 0 0 9

DEPARTMENT OF ELECTRICAL ENGINEERING

Electronics
Computers

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL Communications

Efficient On-line Schemes for Encoding Individual Sequences

with Side Information at the Decoder ∗

Avraham Reani and Neri Merhav
Department of Electrical Engineering

Technion - Israel Institute of Technology
Technion City, Haifa 32000, Israel

Emails: [avire@tx,merhav@ee].technion.ac.il

August 5, 2009

Abstract

We present adaptive on-line schemes for lossy encoding of individual sequences un-
der the conditions of the Wyner-Ziv (WZ) problem, i.e., the decoder has access to side
information whose statistical dependency on the source is known. Both the source se-
quence and the side information consist of symbols taking on values in a finite alphabet
X . In the first part of this article, a set of fixed-rate scalar source codes with zero delay
is presented. We propose a randomized on-line coding scheme, which achieves asymp-
totically (and with high probability), the performance of the best source code in the set,
uniformly over all source sequences. The scheme uses the same rate and has zero delay.
We then present an efficient algorithm for implementing our on-line coding scheme in
the case of a relatively small set of encoders. We also present an efficient algorithm for
the case of a larger set of encoders with a structure, using the method of the weighted
graph and the Weight Pushing Algorithm (WPA). In the second part of this article, we
extend our results to the case of variable-rate coding. A set of variable-rate scalar source
codes is presented. We generalize the randomized on-line coding scheme, to our case.
This time, the performance is measured by the Lagrangian Cost (LC), which is defined
as a weighted sum of the distortion and the length of the encoded sequence. We present
an efficient algorithm for implementing our on-line variable-rate coding scheme in the
case of a relatively small set of encoders. We then consider the special case of lossless
variable-rate coding. An on-line scheme which use Huffman codes is presented. We
show that this scheme can be implemented efficiently using the same graphic methods
from the first part. Combining the results from former sections, we build a generalized
efficient algorithm for structured set of variable-rate encoders. Finally, we show how
to generalize all the results to general distortion measures. The complexity of all the
algorithms is no more than linear in the sequence length.

Index Terms: side information, Wyner-Ziv problem, source coding, on-line

schemes, individual sequences, expert advice, exponential weighting

∗This research is supported by the Israeli Science Foundation (ISF), grant no. 208/08.

1

lesley
Text Box
CCIT REPORT #738 August 2009

1 Introduction

Consider a communication system with the following components: an individual source

sequence to be compressed, a discrete memoryless channel (DMC) with known statistics,

a noiseless channel with rate constraint R, and a decoder. The encoder maps the source

sequence, x1, x2, . . . , xn, into a sequence of channel symbols, z1, z2, . . . , zn, taking values in

{1, 2, . . . ,M}, M = 2R, which is transmitted to the decoder via a noiseless channel. The

decoder, in addition to the encoded data arriving from the noiseless channel, has access

to a side information sequence, y1, y2, . . . , yn, which is the output of the DMC fed by

the source sequence. Using the compressed data, z1, z2, . . . , zn, and the side information,

the decoder produces a reconstructed sequence x̂1, x̂2, . . . , x̂n. The goal is to minimize

the distortion between the source and the reconstructed signal by optimally designing an

encoder-decoder pair. This is a variation of the problem of rate-distortion coding with

decoder side information, which is well known as the Wyner-Ziv (WZ) coding problem,

first introduced in [6]. The case of scalar source codes for the WZ problem was handled

in several papers, e.g. [7] and [8]. In contrast to our case, these schemes operate under

specific assumptions of known source statistics. WZ coding of individual sequences was

also considered, e.g. in [9] and [10], and existence of universal schemes was established.

However, these schemes are based on block coding or DUDE implementation and assume

the knowledge of the source and side information sequences in advance. Thus, they are

irrelevant to the case of on-line encoding considered here.

A coding scheme is said to have an overall delay of no more than d if there exist positive

integers d1 and d2, with d1 + d2 ≤ d, such that each channel symbol at time t, zt, depends

only on x1, . . . , xt+d1
, and each reconstructed symbol x̂t depends only on z1, . . . , zt+d2

and

y1, . . . , yt+d2
. Weissman and Merhav [3], following Linder and Lugosi [2], constructed a

randomized limited delay lossy coding scheme for individual sequences using methods based

on prediction theory. These schemes perform, for any given reference class of source codes,

called experts, almost as well as the best source code in the set, for all individual sequences.

The performance of the scheme is measured by the distortion redundancy, defined as the

difference between the normalized cumulative distortion of the scheme and that of the best

source code in the set, matched to the source sequence. The scheme is based on random

choices of source codes from the set. The random choices are done according to exponential

2

weights assigned to each code. The weight of each source code, each time we choose a code,

depends on its past performance and has to be calculated. Thus, implementing this scheme

for a large set of source codes requires efficient methods, to prevent prohibitive complexity.

György, Linder and Lugosi offered efficient algorithms for implementing such a scheme for

sets of scalar quantizers [4],[5] without side information. Our main contribution in this

paper is to extend this scenario to include side information at the decoder, in the spirit of

the WZ problem, for both the fixed rate case and the variable-rate case.

In the first part of this paper, a fixed-rate, zero-delay adaptive coding scheme for indi-

vidual sequences under the WZ conditions is presented. We define a set of scalar source

codes for the WZ problem. Then, the scheme of [3] is extended for the WZ problem w.r.t.

the Hamming distortion measure. For any given set of WZ source codes, this scheme per-

forms asymptotically as well as the best source code in the set, for all source sequences.

We then demonstrate efficient implementations of this scheme. First, it is shown that the

scheme can be implemented efficiently for any relatively small set of encoders, even though

the set of decoders is large. Then, using graph-theoretic methods similarly to [5], we show

that we can implement the scheme for large sets of scalar encoders with a structure.

In the second part of the paper, we extend the results of [3], and the coding schemes from

the first part, to the variable-rate coding case. Without loss of generality, we assume that

the noiseless channel is binary. The encoder, instead of using a fixed-rate code for encoding

the source sequence into M symbols, now uses a variable-length binary prefix code with M

codewords. The decoder, upon receiving the binary encoded sequence, first produces the

indexes of the codewords transmitted, and then continues exactly as in the fixed-rate case.

The prefix property enables instantaneous decoding of the codewords.

We start by defining a set of variable-rate scalar source codes. Then, the scheme of [3] is

generalized to the variable-rate case. The performance is now measured by the LC function,

which is defined as a weighted sum of the distortion and the length of the binary encoded

sequence. As before, for any given set of variable-rate source codes, this scheme performs

asymptotically as well as the best source code in the set, for all source sequences. We then

demonstrate efficient implementations of this scheme. Again, it is shown that the scheme

can be implemented efficiently for any relatively small set of encoders, in a way similar to the

fixed-rate case. Then, we handle the special case of lossless variable-rate coding. We first

demonstrate a method of representing sets of Huffman codes on an a-cyclic directed graph.

3

Using this representation and the WPA, we present efficient implementation for the lossless

case. Then, combining this result and the set of encoders with a structure from the fixed-

rate case, we show that we can implement the generalized variable-rate scheme for large

sets of scalar encoders. Finally, all the implementations are generalized to accommodate

any distortion measure, at the price of increased complexity.

It should be pointed out that the development of our efficient on-line scheme in the

fixed-rate case, is not a straightforward extension of those in [4],[5] because of the following

reasons: (i) Due to the side information, the optimal partition of the source alphabet does

not necessarily correspond to intervals. (ii) The problem of choosing an expert is more

complicated in the WZ setting. In [4] and [5], which deals with quantizers, the problem

of choosing an expert is reduced to the problem of choosing decoding points. Given these

points, the encoder is chosen to be the nearest-neighbor encoder which uses this points.

In our case, this mechanism is irrelevant, and we have to choose the encoder and decoder

separately.

The remainder of the paper is organized as follows. In Section 2, a formal description

of the fixed-rate case is given. In Subsection 2.1, we define the set of WZ scalar source

codes. A general coding scheme, which achieves essentially the same performance as the

best in a given set of WZ codes, is presented in Subsection 2.2. Section 3 is dedicated to

the efficient implementation of this scheme for sets of scalar source codes. In Subsection

3.1, we present an efficient implementation for large sets of encoders with structure, using

graphical methods. In Section 4, we give a formal description of the problem for the

variable-rate case. In Subsection 4.1 we define the set of variable-rate source codes. In

Subsection 4.2, we generalize the scheme and results of section 2. In Section 5, we present

an efficient implementation of this scheme for scalar source codes with variable-rate coding.

In Subsection 5.1 we handle the special case of lossless variable-rate coding. We establish

efficient scheme which achieves essentially the same compression of the best in a given set

of Huffman codes. In Subsection 5.2, we present an efficient implementation for the general

lossy coding scheme. In Subsection 5.3, we show how to generalize our results to any

bounded distortion measure. Finally, in Subsection 5.4, we describe the implementation of

our variable-rate coding scheme, for the special case of quantizers which use Huffman codes.

4

2 Definition of an on-line Adaptive WZ Scheme

Throughout this paper, for any positive integer n, we let an denote the sequence a1, a2, . . . , an.

Given a source sequence xn, the encoder maps the source sequence xn into a sequence

zn whose symbols {zi} take on values in the set {1, 2, . . . ,M}. The decoder, in addition to

zn, has access to a sequence yn, dependent on xn via a known DMC, defined by the single-

letter transition probability PY |X(yi|xi), which is the probability of yi given xi. Based on zn

and yn, the decoder produces the reconstructed sequence x̂n. For convenience, we assume

that xi, yi and x̂i, all take on values in the same finite alphabet X with cardinality |X |.

All the results can be generalized straightforwardly to the case of different alphabets. The

distortion between two symbols is defined to be the Hamming distortion:

ρ(x, x̂) =

{

0 if x = x̂
1 elsewhere.

(1)

We define the distortion for the input symbol xt at time t, (t = 0, 1, 2, . . .) as:

∆t(xt) = Eρ(xt, x̂t(z
t, yt)) (2)

where the expectation is taken with respect to yt.

2.1 Definition of the reference set of source codes

In this part, we define a general set of scalar source codes, here referred to as experts.

Each expert is a source code with a fixed rate, R = log M , which partitions X into M

disjoint subsets (m1, m2, . . . ,mM). The encoder e for each expert is given by a function

e : X →{1, 2, . . . ,M} that is, zi = e(xi). The decoder d receives zi, together with the side

information yi, and generates x̂i, using a decoding function d : {1, 2, . . . ,M}×X → X , i.e.,

x̂i = d(zi, yi). The definition above is not complete. It is easy to see that different encoders

may actually implement the same partition. For example: if X ={1, 2, 3} and M = 2,

consider the two encoders:

e1 : e1(1) = 1, e1(2) = 2, e1(3) = 2
e2 : e2(1) = 2, e2(2) = 1, e2(3) = 1

(3)

It is easy to see that they have the same functionality. In our definition we treat these

encoders as the same encoder, otherwise, the same expert will be taken into account several

times. The number of times depends on the specific partition, so we will get an unbalanced

weighting of experts.

5

2.1.1 Definition of the encoders using the partition matrix

To define an encoder uniquely, and to get bounds on the cardinality of the general set of

encoders, let us define the partition matrix:

PMj,l =

{

1 if xj and xl belongs to the same subset.
0 else.

(4)

where j, l ∈ {1, 2, . . . , |X |}, are the indexes of the alphabet letters, xj , xl ∈ X , given that

we ordered the alphabet in some arbitrary order.

The properties of PM:

1. PMi,j ∈ (0, 1).

2. If i = j then PMi,j = 1.

3. PM is symmetric, i.e. PMi,j = PMj,i

4. If PMi,j = 1 and PMi,k = 1 then PMj,k = 1.

5. If PMi,j = 1 and PMi,k = 0 then PMj,k = 0.

It is easy to see that each partition matrix (a matrix which has the above properties) defines

unique partition of the alphabet thus defines an encoder uniquely. Using the properties of

this matrix, we can derive bounds on the number of encoders:

2|X |−1 ≤ Number of PM ′s ≤ 2|X | log M (5)

The lower bound is derived from the fact that the first row to be determined has |X | − 1

degrees of freedom, i.e., it can be any binary vector of length |X | and with the first element

equals to 1. This reflects the fact, that the choice of the first subset of letters is unrestricted.

The upper bound is derived from the fact that the number of encoders without the limitation

of counting every partition only once is M |X |. So the number of encoders is exponential

in |X |. Therefore, using the general set of encoders is a challenge from a computational

complexity point of view.

2.1.2 Definition of the decoders

We limit our discussion to decoders which satisfy:

d(e(x̂), y) = x̂, for all x̂ and y. (6)

6

which means that the decoded symbol x̂, is chosen from the same subset of the input

symbol x. Using the Hamming distortion measure, it is easy to see that there is no point to

choose x̂i outside the subset mzi
, hence this set of decoders is sufficient. For other distortion

measures, the results can be generalized straightforwardly to the set of all possible decoders.

From the above definition, we see that every encoder defines a set of possible decoders. This

set consists of all combinations of choices of x̂ from the set z, for different pairs (z, y).

2.1.3 The set of scalar source codes

We define FWZ(M) as the set of all scalar WZ source codes with rate R = log M , i.e. all

the pairs that consist of a scalar encoder and one of its possible decoders, as defined in (6).

Remark. In contrast to our case, when there is a known joint distribution P (xi, yi) , then

given the encoder and yi, the best strategy for minimizing the Hamming distortion is, of

course, maximum likelihood, i.e., choose the most probable x from the subset mzi
, given yi.

x̂ = arg max
x∈mzi

PX|Y (x|yi) (7)

However, in our case, PX|Y (x|y) is unavailable since P (x), the source statistics, is unknown

or non-existent. Therefore, knowing the encoder is not sufficient for determining the best

decoder.

2.2 An on-line WZ coding scheme

In this part, we describe an on-line adaptive scheme for the WZ case based on the results of

[3]. For any source sequence xn, the distortion ∆n
(e,d)(x

n) of a source code (e, d) is defined

by:

∆n
(e,d)(x

n) =

n
∑

i=1

∆i(xi) (8)

where ∆i(xi) is as defined in (2). In the case of a scalar source code, we get:

∆n
(e,d)(x

n) =

n
∑

i=1

∑

y∈X

PY |X(y|xi)ρ(xi, d(e(xi), y)) (9)

Given any finite set of scalar source codes with rate R and zero delay, this scheme (which

has the same rate R and zero delay) achieves asymptotically the distortion ∆n
(e,d)(x

n) of

the best source code in the set, for all source sequences xn. To be more specific, we extend

[3, Theorem 1] to include side information at the decoder. We get, that for any bounded

distortion measure (ρ(x, x̂) < B,∀x, x̂ ∈ X for some positive real number B), the following

result holds:

7

Theorem 1 Let A be a finite subset of FWZ(M). Then there exists a sequential source

code (ẽ, d̃) with rate R = log M and zero delay such that for all xn ∈ X n:

E{ 1
n
[∆n

(ẽ,d̃)
(xn) − min(e′,d′)∈A ∆n

(e′,d′)(x
n)]} ≤ 3B

(2R)
1

3

[log |A|]
2

3 n− 1

3 (10)

where the expectation is taken w.r.t. a certain randomization of the algorithm, which will

be described below. For the Hamming distortion measure, we have B = 1. The proof is

similar to the proof of [3, Theorem 1], where in our case, we use the distortion as defined

in (8). Since the proof steps are the same, we will not repeat them here.

The scheme works as follows: Assume some reference set A of WZ scalar source codes.

We divide the time axis, i = 1, 2, . . . , n, into K = n/l consecutive non-overlapping blocks

(assuming l divides n), where l is a parameter to be determined. At the beginning of each

block, i.e., at times t = (k− 1)l, k ∈ {1, 2, . . . ,K}, we randomly choose an expert according

to the exponential weighting probability distribution:

Pr{next expert = (e, d)} =
exp{−η∆t

(e,d)(x
t)}

∑

(e′,d′)∈A exp{−η∆t
(e′,d′)(x

t)}
(11)

where η > 0 is a parameter to be determined. Notice that for t = 0, we get uniform

distribution. After choosing the expert (e, d), the encoder dedicates the first ⌈log |A|/R⌉

channel symbols, at the beginning of the k-th block, to inform the decoder the identity

of d. At the remainder of the block, the encoder produces the channel symbols zi =

e(xi). At the same time, at the decoder side, in the beginning of the block, at times

i = (k − 1)l + 1, . . . , ⌈log |A|/R⌉, the decoder outputs arbitrary symbols from X . At the

rest of the block, knowing d, it reproduces x̂i = d(zi, yi).

Exactly as in [3], the values of l and η are optimized to get minimal redundancy, and

are given by:
l = 2{log(|A|)n/R2}

1

3

η = {8 log(|A|)/lB2n}
1

2

(12)

Remark. Throughout this paper, we assume that n is known in advance. Generalizing the

scheme to the case where the horizon is unknown is straightforward, as explained in [3].

3 Efficient implementation for sets of scalar source codes

In this section, we present an efficient implementation of the scheme described in Section

2, for sets of scalar source codes. Each one of these sets of source codes consists of all pairs

8

(e, d), where e is one of the encoders in some small set of encoders, and d is one of its

possible decoders, as defined in Subsection 2.1 . By “small set”, we mean that the random

choice of the encoder can by done directly (as will be explained below). This definition

depends, of course, on the computational resources we allocate. Remember that given a

specific encoder, the decoder, for each (z, y), chooses some x from the subset of source

letters mz. Thus, for each pair (z, y) there are |mz| possible x̂’s. Hence, given an encoder,

the number of possible decoders is:

∏

y∈X

M
∏

z=1

|mz| = (|m1||m2| . . . |mM |)|X | ≥ 2|X | (13)

where |mz| is the cardinality of the subset of letters mz. The lower bound is derived from

the fact that in the lossy encoding case M < |X |, so the product above is at least 2.

Thus, given a set of encoders, the number of possible WZ source codes is at least |E|2|X |,

where |E| is the number of encoders. Given a set of experts A, we follow the scheme of

the previous subsection. We divide the time axis, i = 1, 2, . . . , n, into K = n/l consecutive

non-overlapping blocks. We randomly choose the next expert at the beginning of each block

according to the exponential weighting probability distribution. The distortion of an expert

(e, d) at time t is given by:

∆t
(e,d)(x

t) =
∑t

i=1 ∆(xi)

=
∑t

i=1

∑

y PY |X(y|xi)ρ(xi, x̂(xi, y))

=
∑t

i=1

∑

y PY |X(y|xi)I(xi,y)∈A

=
∑

x,y∈X nt(x)PY |X(y|x)I(x,y)∈A

(14)

where A is the set of all pairs (x, y) which contribute to the distortion, i.e., d(e(x), y) 6= x,

IB is the indicator function for an event B, and nt(x) is the number of times x appeared in

xt. For a more convenient form of (11), we multiply the numerator and denominator with

exp{η
∑

x,y∈X nt(x)PY |X(y|x)} and we get:

Pr{next expert = (e, d)} =
λ(e,d),t

∑

(e′,d′)∈A λ(e′,d′),t
(15)

where:

λ(e,d),t = exp{η
∑

x,y∈X

nt(x)PY |X(x, y)I(x,y)∈Ā} (16)

where Ā is the complementary set of A, i.e. all pairs (x, y) such that d(e(x), y) = x. Given

a set of experts, the random choice of an expert at the beginning of each block is done in

9

two steps. First, we choose an encoder randomly according to:

Pr{next encoder = e} =
Fe,t

∑

e′∈E Fe′,t

(17)

where E is the set of encoders, and:

Fe,t =
∑

(e,d)∈Ae

λ(e,d),t (18)

is the sum of the exponential weights of all experts in Ae, where Ae is the subset of all

experts which use the encoder e. Fe,t can be calculated efficiently in the following way: For

each pair (x, y) calculate λx,y,t where:

λx,y,t = exp{ηnt(x)PY |X(y|x)} (19)

and then for each (z, y), calculate the sum
∑

x:e(x)=z λx,y,t where e(x) is the encoding of x.

Lemma 1.1 The product of all these sums is Fe,t:

Fe,t =

M
∏

z=1

∏

y∈X

∑

x:e(x)=z

λx,y,t

 (20)

Proof .

∏M
z=1

∏

y∈X (
∑

x:e(x)=z λx,y,t)

=
∏

y∈X

∏M
z=1 (

∑

x:e(x)=z λx,y,t)

=
∏

y∈X {
∑

x∈m1×m2...×mM

∏M
i=1 λx(i),y,t}

=
∑

x1,x2...,x|X|∈m1×m2...×mM

∏|X |
j=1

∏M
i=1 λxj(i),yj ,t

=
∑

x1,x2...,x|X|∈m1×m2...×mM
exp(η

∑|X |
j=1

∑M
i=1 nt(xj(i))PY |X(xj(i), yj)

=
∑

x1,x2...,x|X|∈m1×m2...×mM
exp(η

∑|X |
i,j=1 nt(xi)PY |X(xi, yj) · Ixi∈(xj(1),xj(2)...,xj(|X |)))

=
∑

(e,d)∈Ae
λ(e,d),t

(21)

In the second line, we change the order of the products, first over all z’s for a given y and then

on all the y’s. In the third line, we calculate the product over z. x = (x(1), x(2), . . . , x(M))

is a vector of length M , where x(1) ∈ m1 (i.e. e(x(1)) = 1), x(2) ∈ m2 etc.. The sum is over

all such vectors. In other words, when expanding the product over z, we obtain the sum

10

of all combinations of multiplying M λx,y,t’s where the x of each λ belongs to a different

subset of letters (according to the encoder). In the fourth line, we expand the product over

y. Now, we obtain the sum of all combinations of multiplying |X | terms, where each product

depends on some vector x as defined before, and on a different y. The rest is obtained by

simply substituting the expression for λx,y,t. Choosing a decoder for a given encoder e, is

actually choosing |X | vectors of length M , one vector for each y. The vector of each y,

contains the decoding for each z given that y, as explained for the third line.

In the second step, we choose the decoder randomly according to:

Pr{decoder = d | encoder = e} =
λ(e,d),t

Fe,t
(22)

The random choice of the decoder can be implemented efficiently in the following way: For

each pair (z, y), choose the decoder output d(z, y) randomly, according to the probability

distribution:

Pr{d(z, y) = x} =
λx,y,t

∑

x′:e(x′)=z λx′,y,t

(23)

where x ∈ {x : e(x) = z}. Choosing the decoder function in this way, we get that:

Pr{decoder = d | encoder = e} =
∏

y∈X

M
∏

z=1

Pr{d(z, y) = x} =

∏

y∈X

∏M
z=1 λx,y,t

∏

y∈X

∏M
z=1

∑

x′:e(x′)=z λx′,y,t

(24)

The numerator and denominator were already proved to be given by λ(e,d),t and Fe,t, respec-

tively in (21). Therefore, the decoder is indeed chosen according to (22). We demonstrated

an efficient random selection of a pair (e, d). Below is a formal description of the on-line

algorithm:

1. Calculate l, the optimal length of a data block, according to (12), and let K = n/l.

2. Initialize k to 0, and all the weights λx,y,0 to 1.

3. At the beginning of block no. k, update the weights in the following way:

λx,y,tk = λx,y,tk−1
exp(η

∑kl
i=(k−1)l+1 Ixi=xPY |X(x, y))

tk = kl + 1, 1 ≤ k ≤ K − 1

4. For each (e, z, y), calculate the sums:
∑

x:e(x)=z λx,y,tk

5. Calculate Fe,tk , for each e ∈ E, according to (20).

11

6. Choose an encoder ek randomly according to (17).

7. For each pair (z, y), choose the decoder function dk randomly according to (23).

8. Use the first ⌈log(N)/R⌉ channel symbols at the beginning of the kth block to inform

the decoder the identity of dk, chosen in the previous step, where N is the number of

experts.

9. Encode the next block using the chosen expert ek:

zi = ek(xi), kl + log(N)/R + 1 ≤ i ≤ (k + 1)l − 1

10. If k < K, increment k and go to 3.

The total complexity of the algorithm is O(n/l · |X |2) + O(n/l · |E||X |M) + O(n). The

complexity depends on |E|, which thus should be small as was mentioned above.

The computational complexity of the algorithm is as follows: The calculations of
∑kl

i=(k−1)l+1 Ixi=x

for each x ∈ X at each time tk take O(n) computations totally. After calculating these quan-

tities, we can update the λx,y,t’s as described in step 3 of the algorithm above. This takes

O(|X |2). Calculating the sums in step 4, given the λx,y,t’s, takes O(|X |2). Calculating the

Fe,t’s takes O(|E||X |M) calculations where |E| is the cardinality of the set of encoders.

3.1 Large set of encoders with structure

As was shown, we can choose a pair (e, d) randomly, in two steps. In the first step, we choose

the encoder according to (17). In the second step, we choose randomly one of its possible

decoders according to (22). In the previous part, we assumed that the set of encoders is

small, so we can implement (17) directly, i.e., calculate Fe,t for each encoder separately. In

this part, we use a large structured set of encoders. Using the structure, we can efficiently

implement (17). We assume that the input alphabet X is ordered. We enumerate the source

symbols according to that order. By Num(x), 1 ≤ Num(x) ≤ |X |, we denote the location

of the symbol x in that order.

3.1.1 Definition of the set of encoders

The Input Alphabet Axis (IAA) is defined as the |X |-dimensional vector (1, 2, . . . , |X |). A

partition of the IAA is given by the (M − 1)-dimensional sequence r = (z1, . . . , zM−1), zi ∈

{1, 2, . . . , |X | − 1}, 0 ≡ z0 < z1 < . . . < zM ≡ |X |. Each partition r represents a specific

12

encoder in the following way:

e(x) = i : zi−1 < Num(x) ≤ zi, i ∈ {1, . . . ,M} (25)

We define E as the set of all such encoders. The cardinality of the set of encoders is
(

|X |
M − 1

)

.

3.1.2 Graphical representation of the set of encoders

The random choice of the encoders can be done efficiently using an a-cyclic directed graph

(see Fig. 1). We use the following notation:

V - The set of all vertices:

{1, 2, . . . , |X | − 1} × {1, 2, . . . ,M − 1} ∪ (0, 0) ∪ (|X |, M)

E - The set of all edges:

{((z, j − 1), (ẑ, j)) : z, ẑ ∈ {0, 1, 2, . . . , |X |}, j ∈ {1, 2, . . . ,M}, ẑ > z}

s - The starting point in the bottom left, i.e. (0, 0)

u - The end point in the top right, i.e. (M, |X |)

Ez - The set of all edges starting from vertex z.

A general graph is described in Fig. 1. The horizontal axis represents the ordered input

alphabet. The vertical axis represents the M − 1 choices needed for dividing the IAA into

M segments. A path composed of the edges {(0, 0), (z1, 1) . . . , (zM−1, M − 1), (|X |, M)}

represents M −1 consecutive choices of M −1 x’s (z1, . . . , zM−1) which divide the IAA into

M segments, creating M subsets of the input alphabet. Each edge on a path represents

one choice, the choice of the next point on the horizontal axis, which defines the next

segment. An edge ((z, j − 1), (ẑ, j)) matches to the segment (z, ẑ] on the horizontal axis,

thus equivalent to the subset {x : z < x ≤ ẑ}. There are O(M |X |2) edges. For each edge

a ∈ E and time t we assign a weight δa,t:

δa,t =
∏

y∈X

∑

x∈(z,ẑ] λx,y,t, a = ((z, j − 1), (ẑ, j)) (26)

where λx,y,t is given by (19). It can be seen from (26) that a weight δa,t depends only on

the horizontal coordinates of the edge a, thus we can denote it as δ(z,ẑ),t. The cumulative

weight of a path r = {(0, 0), (z1, 1) . . . , (zM−1, M − 1), (|X |, M)} at time t is defined as the

product of its edge weights:

Λr,t =
∏

a∈r

δa,t (27)

13

Figure 1: The graph representing all possible partitions of the input alphabet into M subsets
given the alphabet is ordered in some specific order. For example, the left dashed arrow
defines the subset {1, 2, 3}, the middle and right dashed arrows define the subsets {4} and
{|X | − 2, |X | − 1, |X |} respectively.

Λr,t is simply Fe,t:

Λr,t =
∏

a∈r

δa,t =

M
∏

m=1

∏

y∈X

∑

x∈(zm−1,zm]

λx,y,t = Fe,t (28)

where the last equality was proved in (21). From now on, our WPA description is general,

thus will be used for all a-cyclic directed graphs in this article. Following the WPA, also

used in [4] and [5] we define:

Gt(z) =
∑

r∈Rz

Λr,t (29)

where now, z is a vertex on the graph (and not only coordinate), Rz is the set of all paths

from z to u and a is an edge on the path r.

We see that:

Gt(s) =
∑

r∈Rs

Λr,t =
∑

e∈E

Fe,t (30)

where E, the set of encoders, is of course equivalent to Rs, the set of all paths from s to u.

The function Gt(z) can be computed recursively:

Gt(u) = 1, Gt(z) =
∑

ẑ:(z,ẑ)∈E δ(z,ẑ),tGt(ẑ) (31)

Because each edge is taken exactly once, calculating Gt(z) for all z’s requires O(|E|) com-

putations given the weights δa,t. The function Gt(z) offers an efficient way to choose an

14

encoder randomly according to probability distribution in (17).

We define for each ẑ ∈ Ez:

Pt(ẑ|z) = δ(z,ẑ),tGt(ẑ)/Gt(z) (32)

It is easy to see that Pt(ẑ|z) is indeed a probability distribution, i.e.,
∑

ẑ:(z,ẑ)∈Ez
Pt(ẑ|z) = 1.

We also have:

M
∏

m=1

Pt(zm,r|zm−1,r) =

M
∏

m=1

δ(zm−1,r,zm,r),t
Gt(zm,r)

Gt(zm−1,r)

=
Gt(u)

Gt(s)
·

M
∏

m=1

δ(zm−1,r, zm,r)

= Pr{next encoder = r} (33)

and we get exactly the probability in (17).

Therefore, the encoder can be chosen randomly in the following sequential manner: Starting

from z0 = s, at each step m = 1, 2, . . . ,M − 1, choose the next vertex zm ∈ Ezm−1
with

probability Pt(zm|zm−1). The procedure stops when zm = u.

Formal description of the on-line algorithm: Using the set of encoders described above, we

now have the following algorithm:

1. Calculate l, the optimal length of a data block, according to (12), and let K = n/l.

2. Initialize k to 0, and all the weights λx,y,0 to 1.

3. Build the encoders graph as described in this section.

4. Initialize all the weights δa,0 to 1.

5. At the beginning of block no. k, i.e. at time tk = kl + 1, k = {1, . . . ,K} update the

weights in the following way:

λx,y,tk = λx,y,tk−1
exp(η

∑kl
i=(k−1)l+1 Ixi=xPY |X(x, y))

6. At the beginning of block no. k, calculate δz,ẑ,tk for each pair (z, ẑ) according to (26).

7. Update the weights of all edges to the new δ(z,ẑ),tk ’s.

8. Calculate Gtk(z) recursively, for all z, according to (31).

9. Choose the encoder ek randomly as described above, using (32).

15

10. For each pair (z, y), choose the decoder function dk randomly according to (23).

11. Use the first ⌈log(N)/R⌉ channel symbols at the beginning of the kth block to inform

the decoder the identity of dk, chosen in the previous step, where N is the number of

experts.

12. Encode the next block, using the chosen expert ek:

zi = ek(xi), kl + log(N)/R + 1 ≤ i ≤ (k + 1)l − 1

13. If k < K, increment k and go to 3.

The total complexity of the algorithm is O(n/l · |X |3)+O(n/l ·M |X |2)+O(n/l|X |2)+O(n).

4 Definition of an On-line Adaptive Variable-Rate Coding

Scheme

In this section, we generalize the results of Theorem 1 to the variable-rate coding case.

This is done by generalizing the performance criteria, to include also the compression, in

addition to the cumulative distortion of the code. The scheme we use is similar to that

of theorem 1. The use of variable-rate codes complicates the problem. A choice of an

expert is actually a combination of two choices. We now have to choose simultaneously,

a lossy code and a lossless variable-rate code (as will be explained). The challenge is to

describe the reference set in such a way that allow us efficient implementation. We start by

defining a variable-rate code. Without loss of generality, we assume that the compressed

sequence is binary. We define CM as a binary prefix code, which contains M codewords

{b1, b2, . . . , bM}, where each bi is a binary string of length l(bi). We call the ordered set

{l(b1), l(b2), . . . , l(bM)}, the length set of the code. Since we deal with prefix codes, a length

set must, of course, maintain the Kraft inequality, i.e.,
∑M

i=1 2−l(bi) ≤ 1. A source code of

variable-rate is defined in the following way: Given a source sequence xn, the operation of

the encoder can be described as being composed of two steps, the first one is lossy and the

second is lossless. First, the encoder transforms xn into a sequence zn whose symbols {zi}

take on values in the set {1, 2, . . . ,M}. If M < log |X |, this step is of course lossy. Then, the

encoder uses a code CM to encode zn into bn, a sequence of variable-length binary strings,

by encoding each zi into a codeword bi, where bi takes on values in a set {b1, b2, . . . , bM}.

This step is lossless. The decoder, knowing bn, produces zn without error. Then, based on

16

zn and the side information sequence yn, the decoder produces the reconstructed sequence

x̂n. Throughout the rest of the paper, we omit the intermediate sequence zn, and the

lossless part of the decoding. We define the Lagrangian Cost (LC) for the input symbol at

time t, xt, as:

L(xt) = ∆(xt) + δl(bt) (34)

where ∆(xt) ∈ [0, B] is a bounded distortion measure, l(bt) is the length of the binary

codeword at time t and δ is a positive constant. If the CM ’s are Huffman codes, l(bt) is

bounded by M − 1, the maximal depth of a complete binary tree with M leaves.

4.1 Definition of the reference set of source codes

In this part, we define the general set of variable-rate scalar source codes, i.e., our set

of experts. Each expert is a source code with M binary codewords which consists of some

binary prefix code CM . Each expert partitions X into M disjoint subsets (m1, m2, . . . ,mM),

where each subset mi is encoded as a binary codeword bi, i ∈ {1, 2, . . . ,M}. The variable-

rate encoder e for each expert is given by a function e : X →{b1, b2, . . . , bM} that is,

bi = e(xi). The decoder d receives bi, and together with the side information yi if available,

decides on x̂i, using a decoding function d : {b1, b2, . . . , bM} × X → X , i.e., x̂i = d(bi, yi).

The set of decoders is defined as in Subsection 2.1, with only one difference: instead of

getting an index zi, it gets a binary codeword which represents this index. Again, we limit

our discussion to decoders which satisfy:

d(e(x̂), y) = x̂, for all x̂ and y (35)

To complete the definition, as was explained in Subsection 2.1, all the encoders which have

the same functionality is treated as the same encoder. In this part, by same functionality,

we mean that encoders which implement the same partition of the input alphabet as was

defined in Subsection 2.1, and in addition, have the same length set, are treated as the same

encoder.

We define GV R(M) as the set of all variable-rate scalar source codes, i.e., all the pairs of

variable-rate scalar encoders and one of their possible decoders, as defined in this section.

4.2 An on-line variable-rate coding scheme

In this part, we describe an on-line adaptive variable-rate scheme coding based on the results

of [3]. We actually extend Theorem 1 from the case of a pure distortion criterion to the LC

17

case. For any source sequence xn, the LC Ln
(e,d)(x

n) of a source code (e, d) is defined by:

Ln
(e,d)(x

n) =
n

∑

t=1

L(xt) (36)

For the WZ case of scalar source code we get:

Ln
(e,d)(x

n) =

n
∑

t=1

∑

y∈X

PY |X(y|xt)ρ(xt, d(e(xt), y)) + δ

n
∑

t=1

l(bt). (37)

Given any finite set of variable-rate scalar source codes, our coding scheme achieves asymp-

totically the LC, Ln
(e,d)(x

n), of the best source code in the set, for all source sequences xn.

To be more specific, it can be shown, in a similar way as in [3], that for any bounded

distortion measure and some positive δ, the following result holds:

Theorem 2 Let A be a finite subset of GV R(M). Then there exists a sequential source code

(ẽ, d̃) such that for all xn ∈ X n:

E{ 1
n
[Ln

(ẽ,d̃)
(xn) − min(e′,d′)∈A Ln

(e′,d′)(x
n)]} ≤ C1[log |A|]

2

3 n− 1

3 (38)

Where C1 is a constant depends only on B, M and δ.

The proof is similar to the proof of Theorem 1. Nonetheless, we give the full proof for

completeness because there are some differences between the case of fixed-rate and the

variable-rate case.

Proof of Theorem 2 :

The scheme works similarly to the scheme in the fixed-rate case: Assume that we have

some reference set A of variable-rate WZ scalar source codes. We divide the time axis,

t = 1, 2, . . . , n, into K = n/l consecutive non-overlapping blocks (assuming l divides n). At

the beginning of each block, i.e., at time t = (k−1)l, k ∈ {1, 2, . . . ,K}, we randomly choose

an expert according to the exponential weighting probability distribution:

Pr{next expert = (e, d)} =
exp{−ηLt

(e,d)(x
t)}

∑

(e′,d′)∈A exp{−ηLt
(e′,d′)(x

t)}
(39)

The parameters l and η > 0 will be optimized later . After choosing the expert (e, d), the

encoder dedicates the first ⌈log |A|⌉ bits, at the beginning of the k-th block, to inform the

decoder the identity of d. At the remainder of the block, the encoder produces the binary

strings bi = e(xi). At the same time, at the decoder side, when getting the first ⌈log |A|⌉

18

bits of the block, the decoder outputs arbitrary symbols. At the rest of the block, knowing

d, it reproduces x̂i = d(bi, yi). Define for each k:

Wk =
∑

(e′,d′)∈A

exp{−ηL
(k−1)l
(e′,d′) (x)} (40)

As in [3], we then have for N = n/l:

log
WN+1

W1
= log

∑

(e′,d′)∈A

exp{−ηLNl
(e′,d′)(x)} − log |A|

≥ log max
(e′,d′)∈A

exp{−ηLNl
(e′,d′)(x)} − log |A|

= −η min
(e′,d′)∈A

Ln
(e′,d′)(x) − log |A| (41)

On the other hand, for each 1 ≤ k ≤ n

log
Wk+1

Wk

= log

∑

(e′,d′)∈A exp{−ηL
(k−1)l+1,kl

(e′,d′) (x)} exp{−ηL
(k−1)l
(e′,d′) (x)}

∑

(e′,d′)∈A exp{−ηL
(k−1)l
(e′,d′) (x)}

= log EQk
exp{−ηL

(k−1)l+1,kl

(e′,d′) (x)}

≤ −ηEQk
L

(k−1)l+1,kl

(e′,d′) (x) +
η2l2B̃2

8

≤ −η{E[L
(k−1)l+1,kl

(e,d) (x)] − B log |A|} +
η2l2B̃2

8
(42)

where in our case, we have defined the maximum LC for a single input symbol:

B̃ = B + δ(M − 1) (43)

and where EQk
denotes expectation with respect to the distribution Qk on A, which assigns

a probability proportional to exp{−ηL
(k−1)l
(e′,d′) } to each (e′, d′) in A. The expectation in the

last line is with respect to the random choices of the code. The first inequality follows from

the Hoeffding’s bound (cf. [11, Lemma 8.1]). The second follows from the construction of

the code described above. We use the first ⌈log |A|⌉ bits of each data block, to inform the

decoder the identity of the encoder. This causes a cumulative distortion which depends on

the number of codewords we lose. Unlike in [3], this number is not constant because we use

a variable-length code. The maximal number of codewords we can lose is ⌈log |A|⌉−1 (The

worst case is when each one of the first ⌈log |A|⌉−1 codewords have length of one bit. Since

the ⌈log |A|⌉ bit belongs to the next codeword we lose it too). Therefore, the cumulative

distortion caused by the lose of the first ⌈log |A|⌉ bits can be no more than B ⌈log |A|⌉. The

19

cumulative distortion of the rest of the block is exactly the loss of the pair (e, d) chosen at

the beginning of the block. Summing over k, we get:

log
WN+1

W1
≤ −η

N
∑

k=1

E[L
(k−1)l+1,kl

(e′,d′) (x)] + ηBN log |A| +
η2l2B̃2N

8
(44)

Combining (41) and (44), we get:

N
∑

k=1

E[L
(k−1)l+1,kl

(e′,d′) (x)] − min
(e′,d′)∈A

Ln
(e′,d′)(x)

≤
log |A|

η
+

ηl2B̃2N

8
+ BN log |A|

= B̃
√

log |A|/2 · l · N
1

2 + BN log |A| (45)

where the equality follows upon taking the minimizing value η =
√

8 log |A|/l2B̃2N . For

convenience, we denote α = B̃
√

log |A|/2 and β = B log |A|, so that the last line of (45)

becomes αlN
1

2 +βN = αnN− 1

2 +βN . Minimizing with respect to N we take N = (αn/2β)
2

3

and get an expression upper bounded by 2(αn)
2

3 β
1

3 . Placing the values of α, β we obtain:

E{
1

n
[Ln

(ẽ,d̃)
(x) − min

(e′,d′)∈A
Ln

(e′,d′)(x)]} ≤ B
1

3 (2B̃ log |A|)
2

3 n− 1

3 (46)

Throughout the above proof, we got the following optimized values for l and η:

l = 2{log(|A|)nB2/B̃2}
1

3

η = {8 log |A|/lB̃2n}
1

2

(47)

5 Efficient implementation for sets of scalar source codes

with variable-rate coding

In this section, we present an efficient implementation of the scheme described, for sets

of variable-rate scalar source codes. Each one of these sets of source codes consists of all

pairs (e, d) where e is one of the encoders in some small set of encoders, and d is one of its

possible decoders. At the beginning of Section 3, E was defined as some small set of fixed-

rate encoders. We now define H as a small set of binary prefix codes. In this section, our

set of encoders is defined to be E ×H, which is all the encoders obtained by a combination

between one of the encoders of E and a binary prefix code belongs to H. Generalizing (14),

the LC of an expert (e, d) at time t is given by:

Lt
(e,d)(x

t) =
∑

x,y∈X

nt(x)PY |X(y|x)I(x,y)∈A + δ
∑

x∈X

nt(x)l(e(x)) (48)

20

where A, nt(x) and IB were defined in (14) and l(e(x)) is the length of the codeword

b = e(x). As in (15), we change to a more convenient form by multiplying the numerator

and denominator by exp{η
∑

x,y∈X nt(x)PY |X(y|x)}, and we get:

Pr{next expert = (e, d)} =
λ(e,d),t · γe,t

∑

(e′,d′)∈A λ(e′,d′),t · γe′,t

(49)

where λ(e,d),t is given by (16) and where we define:

γe,t = exp{−η · δ
∑

x∈X

nt(x)l(e(x))} (50)

As in Section 3, given a set of experts, the random choice of an expert at the beginning of

each block is done in two steps. First, we choose an encoder randomly according to:

Pr{next encoder = e} =
FL

e,t
∑

e′∈E×H FL
e′,t′

(51)

where E ×H is the set of encoders, and:

FL
e,t =

∑

(e,d)∈Ae
exp{−ηLt

(e,d)(x
t)}

=
∑

(e,d)∈Ae
λ(e,d),t · γe,t

= γe,t ·
∑

(e,d)∈Ae
λ(e,d),t

= γe,t · Fe,t

(52)

is the sum of the exponential weights of all experts in Ae, where Ae is the subset of all

experts which use the encoder e, and Fe was defined in (18). It was shown in Section 3

that Fe can be calculated efficiently. γe,t can be calculated directly for each e, given that

|E×H| is reasonably small. In the second step, we choose the decoder randomly exactly as

we did before, according to (22). Let us show that the pair (e, d) is indeed chosen according

to (51):

Pr{next expert = (e, d)} = Pr{next encoder = e} · Pr{decoder = d | encoder = e}
= (FL

e,t/
∑

e′∈E×H FL
e′,t′) · (λ(e,d),t/Fe,t)

= γe,t · λ(e,d),t/
∑

e′∈E×H FL
e′,t′

(53)

We demonstrated an efficient random choice of a pair (e, d). Below is a formal description

of the on-line algorithm:

1. Calculate l, the optimal length of a data block, according to (47), and let K = n/l.

2. Initialize k to 0, and all the weights λx,y,0 and γe,0 to 1.

3. At the beginning of block no. k, update the weights in the following way:
λx,y,tk = λx,y,tk−1

exp{η
∑kl

i=(k−1)l+1 Ixi=xPY |X(x, y)}

tk = kl + 1, 1 ≤ k ≤ K − 1

21

4. For each (e, z, y), calculate the sums:
∑

x:e(x)=z λx,y,tk

5. Calculate Fe,tk , for each e ∈ E, according to (20).

6. Update the γ’s, for each e ∈ E ×H, in the following way:

γe,tk = γe,tk−1
exp{−η · δ

∑kl
i=(k−1)l+1 l(e(xi))}

7. Calculate FL
e,tk

, for each e ∈ E ×H according to (52).

8. Choose an encoder ek randomly according to (51).

9. For each pair (z, y), choose the decoder function dk randomly according to (23).

10. Use the first ⌈log(N)⌉ bits at the beginning of the kth block to inform the decoder

the identity of dk, chosen in the previous step, where N is the number of experts.

11. Encode the next block using the chosen expert ek:

bi = ek(xi), kl + log(N) + 1 ≤ i ≤ (k + 1)l − 1

12. If k < K, increment k and go to 3.

Notice that in step 10, the lower bound on i is the worst case, as was explained in the proof

of Theorem 2. The total complexity of the algorithm is O(n/l · |X |2) + O(n/l · |E × H| ·

M) + O(n/l · |E||X |M) + O(n). The complexity depends on |E ×H|, which thus should be

small as was mentioned above.

In the following subsection, we first show an efficient scheme which use an a-cyclic directed

graph and the WPA to implement an adaptive Huffman coding. We then use the idea of

representing all Huffman codes by a graph, to extend the scheme for structured sets of

encoders from Subsection 3.1, and build a full LC scheme for the WZ case.

5.1 An efficient adaptive lossless coding scheme using Huffman codes

In this subsection, we assume that the input alphabet have M symbols and we use M

codewords, thus the encoding is lossless. This is a special case of the general LC coding

we defined in the previous parts, when ∆(x) = 0 for all x. From now on, the prefix codes

we use are Huffman codes. Using their structure, we can efficiently implement our coding

schemes. An Huffman code will be characterized by a mapping Hλ
M , Hλ

M : (1, . . . ,M) →

22

(l1, . . . , lM), such that Hλ
M (i) = li, li ∈ {1, . . . , log(λ)} where λ = 2l for some positive

integer l ≤ M . The li’s represents the lengths of codewords of some Huffman code with

M codewords and maximum codeword length of log(λ). We call Hλ
m(i) the length function

of the Huffman code. It is well known that Hλ
M (i) is indeed a legitimate length function

of some Huffman code if and only if
∑M

i=1 2−Hλ
M

(i) = 1. Notice that from our point of

view, all Huffman codes with the same length function or equivalently, the same length set,

have the same functionality, thus considered as the same code. Given some length set, it is

of no importance, of course, which Huffman codebook will be actually used for encoding.

Building an Huffman codebook from a length function is straightforward. We will use the

scheme described in Theorem 2 for creating the sequential source code.

5.1.1 Definition of the reference set of source codes

We define HM (λ) as the set of all Huffman codes (or equivalently, of all Huffman length

sets) with M codewords and maximal length of log(λ). Our reference set of source codes is

HM (λ). Each encoder is defined by a mapping e(i) = bi, i ∈ {1, 2, . . . ,M}. {b1, b2, . . . , bM}

is some Huffman codebook with length set {l(b1), l(b2), . . . , l(bM)}. As was explained, the

actual codebook can be chosen arbitrarily among all codebooks which share the same length

set. The corresponding decoder is, of course, defined by d(bi) = i, i ∈ {1, 2, . . . ,M}.

5.1.2 Graphical representation of all Huffman codes with maximal length log(λ)

Our next step is to reduce the problem of designing our source code (in other words,

choosing randomly Hk ∈ HM (λ), for each k, k ∈ {1, 2, . . . , N} given x(k−1)l) to the problem

of choosing randomly a path on an a-cyclic directed graph.

We describe each Huffman code as a path r on a graph in the following way (see Fig. 2):

We use the following notation:

V - The set of all vertices:

{ 1
λ
, 2

λ
, . . . , λ−1

λ
} × {1, 2, . . . ,M − 1} ∪ (0, 0) ∪ (1, M)

E - The set of all edges:

{((q, j − 1), (q̂, j)) : q, q̂ ∈ {0, 1
λ
, 2

λ
, . . . , 1}, q̂ > q, log 1

(q̂−q) ∈ Z
+, j ∈ {1, 2, . . . ,M}}

s - The starting point at the bottom left, i.e. (0, 0).

u - The end point at the top right, i.e. (1, M).

Ez - The set of all edges starting from vertex z.

23

A general graph and the graph for all Huffman codes of order 3 with λ = 4, i.e., with

maximal length l = 2 are described in Fig. 2. The horizontal axis represents the Probability

Axis (PA) [0, 1]. The vertical axis represents the M − 1 choices needed for dividing the PA

into M segments. A path composed of the edges {(0, 0), (q1, 1) . . . , (qM−1, M − 1), (1, M)}

represents M − 1 consecutive choices of M − 1 points (q1, . . . , qM−1) which divide the PA

into M segments, creating discrete probability distribution, with M probabilities. Each

edge on a path represents one choice, the choice of the next point on the PA, which defines

the next segment. An edge ((q, j − 1), (q̂, j)) matches to the segment [q, q̂) on the PA, thus

equivalent to the probability (q̂ − q). Each path is thus equivalent to some probability

Figure 2: The above figure describes a general graph. Below is a directed graph that
represents H3(4), i.e., all Huffman codes with M = 3 codewords and λ = 4. The dashed
path represents the probability function {1

4 , 1
2 , 1

4} which is equivalent to the length set
{l1 = 2, l2 = 1, l3 = 2}. Remember that only edges with (q̂ − q) equal to negative power of
2 are legal.

distribution. The correspondence between a probability distribution and a source code is as

follows: each probability distribution {p1, p2, . . . , pM}, corresponds to the binary prefix code

which has the length set {
⌈

log(1
p1

)
⌉

,
⌈

log(1
p1

)
⌉

, . . . ,
⌈

log(1
pM

)
⌉

}, i.e., to its suitable Shannon

code. Therefore, in order to represent all the Huffman codes and only them, we allow only

24

partitions which divides the PA to negative integer powers of 2. This is implemented in the

following way:

First, we consider only edges ((q, m), (q̂, m + 1)) such that log 1
(q̂−q) ∈ Z

+ as mentioned

above, meaning that we choose only symbol probabilities from the type pm = 2−j , j ∈

Z
+, m ∈ {1, 2, . . . ,M}. We get |E| < Mλ log(λ) edges. It is easy to see that part of the

edges are not members of at least one full path from s to u, thus of no use. In order to get

rid of the unnecessary edges, we simply start from the edges which end on M − 1 vertically,

and erase those with no edges starting from them. Then we move down to row M − 2,

and so on. This process takes O(Mλ log(λ)) time and is done once and off-line. After

“cleaning” the graph, we have a graph that contains all the probability functions from the

type P : P (m) = 2−jm , jm ∈ Z
+, m ∈ {1, 2, . . . ,M} and only them. It is well known that for

probabilities of this type, the length set of the corresponding Huffman code is identical to

that of the Shannon code and is simply {log(1
p1

), log(1
p2

), . . . , log(1
pM

)}. Each path matches

uniquely to a specific Huffman code from the set HM (λ) and vice versa, so the graph cover

all Huffman codes with different length set and maximal codeword length of log(λ) and only

them. For each edge a ∈ E and time t, we assign a weight δa,t:

δa,t = exp{−ηft(j) log 1
(q̂−q)} = exp{−ηft(j)l(q, q̂)}, a = ((q, j − 1), (q̂, j)) (54)

where ft(j) is the empirical relative frequency of the jth input symbol at time t, i.e., the

number of times this symbol appears in the input sequence xt. It can be seen from (54) that

a weight δa,t depends only on the horizontal coordinates of the edge a, thus we can denote

it as δ(q,q̂),t. The cumulative weight of a path r = {(0, 0), (q1, 1) . . . , (qM−1, M − 1), (1, M)}

at time t is defined as the product of its edges’ weights:

Λr,t =
∏

a∈r

δa,t = exp{−η
∑

a∈r

ft(j)l(q, q̂)} (55)

The sum is exactly the cumulative length of the encoding of the string xt, using the Huffman

code represented by this path, i.e., the length of bt. Again, following the WPA, we define:

Gt(z) =
∑

r∈Rz

∏

a∈r

δa,t (56)

where z is a vertex on the graph, Rz is the set of all paths from z to u and a is an edge on

the path r. Continuing exactly as in Subsection 3.1.2, we efficiently implement the random

choices of codes according to (51).

25

The procedure of updating the weights and finding the next code a total of O(|E|)+O(M) <

O(Mλ log(λ)) + O(M). Now, it is easy to see that it suffices to take λ = min (2M−1, n) to

get all relevant Huffman codes of order M when the sequence length is n. The procedure

is repeated at the beginning of each data block, giving a total computational complexity

of O(n/l · Mλ log(λ)) + O(nM/l). As a special case of the general LC scheme, we get the

following result:

Corollary 2.1 Let HM (λ) be the set of Huffman codes we defined above. Then there exists

a sequential source code (ẽ, d̃) such that for all xn ∈ X n:

E{
1

n
[Ln

(ẽ,d̃)
(xn) − min

(e′,d′)∈HM (λ)
Ln

(e′,d′)(x
n)]} ≤ M

√

log |HM (λ)|/2(n/l)−
1

2 (57)

Moreover, the scheme can be implemented with computational complexity of O(n/l·Mλ log(λ))+

O(n/l · M).

The proof is similar to that of the Theorem 2, with

L(xt) = l(bt) ⇒ B = M − 1,Ln
(e,d)(x

n) =

n
∑

t=1

l(bt) (58)

and with one additional difference: suppose we use a randomization sequence {Ui} of i.i.d.

random variables, uniformly distributed on [0, 1], for implementing the random choices used

in our WPA. If we assume that the decoder also has access to this sequence, there is no

need to inform it the identity of the encoder. Since the encoding is lossless, the decoder

has all the information about the past. Therefore, given the randomization sequence, the

decoder can achieve the identity of the next source code by itself.

Also notice that in this case, in choosing l, there is a trade-off between convergence and the

computational complexity. Choosing a small l will improve the upper bound, but on the

other hand, will increase the complexity.

In order to get some feeling about the compression performance of this scheme, we give the

following example.

Example. : if we have n = 1010, M = 256 and we take l = log(n), λ = n so we have

HM (λ) < [log(n)]M , we obtain that the difference between the best static Huffman code for

xn and our scheme is less than 0.3 bit per symbol.

Formal description of the on-line algorithm: Using the set of encoders described above, we

now have the following algorithm:

26

1. Choose l, the length of a data block, and let K = n/l.

2. Initialize k to 0.

3. Build the encoders graph as described in this section.

4. Initialize all the weights δa,0 to 1.

5. At the beginning of block no. k, i.e. at time tk = kl + 1, k = {1, . . . ,K}, calculate

δq,q̂,tk for each pair (q, q̂) according to (54).

6. Update the weights of all edges to the new δ(q,q̂),tk ’s.

7. Calculate Gtk(z) recursively, for all z, according to (31).

8. Choose the encoder ek randomly as described in Subsection 3.1.2, using (32).

9. Encode the next block, using the chosen expert ek:

bi = ek(xi), kl ≤ i ≤ (k + 1)l − 1

10. If k < K, increment k and go to 5.

5.2 An efficient adaptive LC scheme for the WZ case

In this subsection, we return to the general LC scheme and the reference set of source codes

defined in Subsection 4.2. We combine the WZ scheme from Subsection 3.1 and the Huffman

coding from the previous subsection into one efficient LC scheme. One interesting special

case of the following scheme, is described in appendix A. This special case is obtained by

degenerating the side information alphabet into alphabet of size one.

5.2.1 Definition of the reference set of source codes

The Input Alphabet Axis (IAA) is defined as the |X |-sized vector (1, 2, . . . , |X |). A division

of the IAA is given by the (M − 1)-sized increasing sequence r = (z1, . . . , zM−1), zi ∈

{1, 2, . . . , |X | − 1}. z0 and zM are defined to be 0 and |X | respectively. Each combination

between specific division r and a specific Huffman length function defines a specific encoder

in the following way:

e(x) = bi : zi−1 < Num(x) ≤ zi, i ∈ {1, . . . ,M}, bi ∈ {bi}
M
i=1, {l(bi)}

M
i=1 ∈ HM (λ)

(59)

We define E ×HM (λ) as the set of all encoders which obtained by such combination.

27

5.2.2 Graphical representation of the set of encoders

The random choice of the encoders can be done efficiently using in this case, a Three-

Dimensional (3D) a-cyclic directed graph instead of 2D. We use the following notation:

V - The set of all vertices:

{1, 2, . . . , |X | − 1} × { 1
λ
, 2

λ
, . . . , λ−1

λ
} × {1, 2, . . . ,M − 1} ∪ (0, 0, 0) ∪ (|X |, 1, M)

E - The set of all edges: {[(z, q, j − 1), (ẑ, q̂, j)] : z, ẑ ∈ {0, 1, 2, . . . , |X |}

q, q̂ ∈ {0, 1
λ
, 2

λ
, . . . , 1}, j ∈ {1, 2, . . . ,M}, ẑ > z, q̂ > q, log 1

(q̂−q) ∈ Z
+}

s - The starting point in the bottom left, i.e. (0, 0, 0)

u - The end point in the top right, i.e. (|X |, 1, M)

Ez - The set of all edges starting from vertex z.

The IAA represents the ordered input alphabet. The PA represents the probability

Figure 3: The lower graph presents the PA-IAA plane for |X | = 6, M = 3 and λ = 4.
The dashed path represent the probability distribution with probabilities {1

4 , 1
4 , 1

2} attached
to the input alphabet subsets {{1, 2, 3}, {4, 5}, {6}} respectively. The other path represent
the probability distribution {1

4 , 1
2 , 1

4} attached to the partition {{1, 2}, {3, 4, 5}, {6}}. The
upper graph shows the same paths on the IAA - vertical axis plane. Remember that the
vertical axis represent the M − 1 consecutive decisions needed for defining an encoder.

axis [0, 1]. The vertical axis represents the M − 1 choices needed for dividing the IAA

and the PA simultaneously, each one into M segments. A path composed of the edges

{(0, 0, 0), (z1, q1, 1) . . . , (zM−1, qM−1, M−1), (|X |, 1, M)} represents M−1 consecutive choices

28

of M −1 points ([z1, q1], . . . , [zM−1, qM−1]) on the PA-IAA plane, which divide the IAA and

the PA into M segments, creating M subsets of the input alphabet, and M probabilities.

Each edge on a path represents one choice, the choice of the next point on the horizontal

subspace, which defines the next segment on the IAA and the next point on the PA. An

edge ((z, q, j − 1), (ẑ, q̂, j)) matches to the segment (z, ẑ] on the IAA and to the segment

(q, q̂] on the PA, thus equivalent to the subset {x : z < x ≤ ẑ} when assigned the probabil-

ity (q̂ − q). Therefore, a path from s to u, having M edges, defines partition of the input

alphabet into M subsets, each subset assigned a probability. Each probability (q̂ − q) is

equivalent to the length log(1
q̂−q

), which is the length of a codeword in a real Huffman code

as was explained in detail in Subsection 5.1. Therefore, each partition defines a specific

encoder, which implements the alphabet division r = (z1, . . . , zM−1) and uses an Huffman

code with the length set {log(1
q1−q0

), . . . , log(1
qM−qM−1

)} for the variable rate coding part,

where the lengths assigned to the subsets respectively. As in the case with no distortion, we

“clear” the graph at off-line from edges with no use. This is done in the same way described

in Subsection 5.1.2. After that, we end up with |E| < M |X |2λ · log(λ). An example of a

PA-IAA plane is presented in Fig. 3. For each edge a ∈ E and time t, we assign a weight

δa,t:

δa,t = δ(z,ẑ),t · exp{−η · δ · ft(z, ẑ)l(q, q̂)}, a = ((z, q, j − 1), (ẑ, q̂, j)) (60)

where δ(z,ẑ),t is given by (26), and ft(z, ẑ) is given by:

ft(z, ẑ) =

t
∑

i=1

Ixi∈(z,ẑ] (61)

which is the empirical frequency of the subset {x : z < x ≤ ẑ} in the input sequence xt.

The cumulative weight of a path {(0, 0, 0), (z1, q1, 1) . . . , (zM−1, qM−1, M − 1), (|X |, 1, M)}

at time t is the product of its edges’ weights:

Λr,t =
∏

a∈r

δa,t (62)

Λr,t is simply FL
e,t:

Λr,t =
∏

a∈r δa,t

=
∏M

m=1{δ(z,ẑ),t · exp{−η · δ · ft(zm−1, zm)l(qm−1, qm)}}

=
∏M

m=1 δ(z,ẑ),t

∏M
m=1 exp{−η · δ · ft(zm−1, zm)l(qm−1, qm)}

= Fe · γe,t

(63)

where the last equality follows from (28) and the definition of γe,t. Following the WPA

exactly as we did in the previous parts, we implement efficiently the random choice of the

29

encoder. The random choice of one of the possible decoders given the encoder, remains the

same, as was shown before.

Formal description of the on-line algorithm: Using the set of encoders described above, we

now have the following algorithm:

1. Calculate l, the optimal length of a data block, according to (47), and let K = n/l.

2. Initialize k to 0, and all the weights λx,y,0 to 1.

3. Build the encoders graph as described in this section.

4. Initialize all the weights δa,0 to 1.

5. At the beginning of block no. k, i.e. at time tk = kl + 1, update the weights in the

following way:

λx,y,tk = λx,y,tk−1
exp(η

∑kl
i=(k−1)l+1 Ixi=xPY |X(x, y))

6. At the beginning of block no. k, calculate δz,ẑ,tk and ftk(z, ẑ) for each pair (z, ẑ)

according to (26) and (61), respectively.

7. Update the weights of all edges to the new δa,tk ’s according to (60).

8. Calculate Gtk(z) recursively, for all z, according to (31).

9. Choose the encoder ek randomly as described in Subsection 3.1.2, using (32).

10. For each pair (z, y), choose the decoder function dk randomly according to (23).

11. Use the first ⌈log(N)⌉ bits at the beginning of the kth block to inform the decoder

the identity of dk, chosen in the previous step, where N is the number of experts.

12. Encode the next block using the chosen expert ek:

bi = ek(xi), kl + log(N) + 1 ≤ i ≤ (k + 1)l − 1

13. If k < K, increment k and go to 3.

The total complexity of the algorithm is O(n/l·|X |3)+O(n/l·M |X |2λ·log(λ))+O(n/l|X |2)+

O(n).

30

5.3 General distortion measures

Let ρ(x, x̂) be some bounded distortion measure. Given an encoder e, we define:

λx,y,e,t = exp
{

−η
∑

{x′:x′ 6=x,e(x)=e(x′)} nt(x
′)PY |X(y|x′)ρ(x, x′)

}

(64)

It is easy to see that given some possible decoder d, the distortion of the pair r = (e, d) is:

λr,t =
∏

y∈X

M
∏

z=1

λd(z,y),y,e,t (65)

using the generalized λ’s we defined, we can continue exactly as in the Hamming case. Each

generalized λx,y,e,t contains an exponent of a sum of O(|X |) products. So given an encoder

the complexity is increased by a factor of |X |. An example of using a general distortion

measure is in the next subsection.

5.4 Variable-Rate coding - Quantizers with Huffman codes

In this subsection, we describe a special case of the variable-rate coding scheme of Sec-

tion 5.2. The ordered input alphabet is now composed of points on the real axis X =

{0, 1
K

, 2
K

, . . . , 1} where K > 2 is some positive integer. It is easy to see that |X | = K +1. In

this part, we assume there is no side information or equivalently, that the side information

alphabet is of size one. As described in 5.2, each encoder partitions the input alphabet into

M subsets and use some Huffman code for the lossless coding part. We use some general

bounded distortion measure which satisfies:

ρ(x, x̂) = ρ(|x − x̂|) (66)

Under these conditions, our set is actually a set of quantizers of size M , where the points

of each quantizer are encoded with some Huffman code. A source code (e, d) is called a

Nearest-Neighbor (NN) quantizer if for all x it satisfies:

ρ(|x − d(e(x))|) = min
x′∈X

ρ(|x − x′|) (67)

By definition, the distortion of a NN quantizer is always the minimal among all quantizers

with the same points. It is easy to see that all the possible NN quantizers for this case, are

included in our reference set of source codes. The cumulative LC is:

Ln
(e,d)(x

n) =

n
∑

t=1

L(xt) =

n
∑

t=1

ρ(xt, d(e(xt))) + δ

n
∑

t=1

l(e(xt)) (68)

31

We call our set of encoders Q × H. We build an a-cyclic directed graph according to the

description in Subsection 5.2. For each edge a ∈ E and time t, we assign a weight δa,t, where

in δ(z,ẑ),t we substitute the generalized λ’s defined in (64):

λx,(z,ẑ],t = exp

−η
∑

{x′:x′ 6=x,x′∈(z,ẑ]}

nt(x
′)ρ(x, x′)

(69)

Notice that the dependency on y was omitted, and that the dependency on e was replaced

by (z, ẑ]. This stems from the fact that the subset {x′ : e(x) = e(x′)} in (64), is equal to

the subset {x′ : x′ ∈ (z, ẑ]} in our case, by the definition of our graph. After choosing an

encoder, choosing a decoder is done according to (23) where again, we use the generalized

λ’s, and the dependency on y is omitted. The complexity of the algorithm remains the same

as in Subsection 5.2.

32

References

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol.

27, pt. I, pp. 379–423, 1948; pt. II, pp. 623–656, 1948.

[2] T. Linder and G. Lugosi, “A zero-delay sequential scheme for lossy coding of individual

sequences,” IEEE Trans. Inform. Theory, vol. 46, pp. 2533–2538, Sept. 2001.

[3] T. Weissman and N. Merhav, “On limited-delay lossy coding and filtering of individual

sequences,” IEEE Trans. Inform. Theory, vol. 48, pp. 721–733, Mar. 2002.

[4] A. György, T. Linder and G. Lugosi, “Efficient adaptive algorithms and minimax bounds

for zero-delay lossy source coding,” IEEE Trans. Signal. Proc., vol. 52, pp. 2337–2347,

Aug. 2004.

[5] A. György, T. Linder and G. Lugosi, “Tracking the best quantizer,” IEEE Trans. Inform.

Theory, vol. 54, pp. 1604–1625, April. 2008.

[6] A. Wyner and J. Ziv, “The rate-distortion function for source coding with side infor-

mation at the decoder,” IEEE Trans. Inform. Theory, vol. IT-22, pp. 1–10, Jan. 1976.

[7] D. Muresan and M Effros, “Quantization as histogram segmentation: Optimal scalar

quantizer design in network systems,” IEEE Trans. Inform. Theory, vol. 54, pp. 344–

366, Jan. 2008.

[8] J. Kusuma, L. Doherty and K. Ramchandran, “Distributed compression for sensor net-

works,” in Proc. ICIP 2001, vol. 1, pp. 82–85, Thessaloniki, Greece, Oct. 2001.

[9] N. Merhav and J. Ziv, “On the Wyner-Ziv problem for individual sequences,” IEEE

Trans. Inform. Theory, vol. 52, pp. 867-873, Mar. 2006.

[10] S. Jalali, S. Verdú and T. Weissman, “A universal Wyner-Ziv scheme for discrete

sources, ”Proc. ISIT 2007, pp. 1951-1955, Nice, France, June. 2007.

[11] L. Devroye, L. Györfy and G. Lugosi, A Probabilistic Theory of Pattern Recognition,

Springer-Verlag, New York, 1996.

33

